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Abstract: We study the accuracy of estimating the covariance and the
precision matrix of aD-variate sub-Gaussian distribution along a prescribed
subspace or direction using the finite sample covariance. Our results show
that the estimation accuracy depends almost exclusively on the components
of the distribution that correspond to desired subspaces or directions. This
is relevant and important for problems where the behavior of data along a
lower-dimensional space is of specific interest, such as dimension reduction
or structured regression problems. We also show that estimation of precision
matrices is almost independent of the condition number of the covariance
matrix. The presented applications include direction-sensitive eigenspace
perturbation bounds, relative bounds for the smallest eigenvalue, and the
estimation of the single-index model. For the latter, a new estimator, de-
rived from the analysis, with strong theoretical guarantees and superior
numerical performance is proposed.
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1. Introduction

Estimating the covariance Σ = E(X−EX)(X−EX)� and the precision matrix
Σ† of a random vector X ∈ R

D is a standard and long standing problem in
multivariate statistics with applications in a number of mathematical and ap-
plied fields. Notable examples include any form of dimension reduction, such as
principal component analysis, nonlinear dimension reduction, manifold learning,
but also problems ranging from classification, regression, and signal processing
to econometrics, brain imaging and social networks.

Given independent copies X1, . . . , XN of X, the most widely used estimator
is the sample covariance Σ̂ := 1

N

∑N
i=1 XiX

�
i , and the inverse thereof. The

crucial question in estimating covariance and precision matrices is to quantify
the minimal number of samples N ensuring that for a desired accuracy ε > 0,
and a confidence level u > 0, we have∥∥Σ̂−Σ

∥∥
2
≤ εSΣ(X), respectively,

∥∥Σ̂† −Σ†∥∥
2
≤ εSΣ†(X), (1.1)
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with probability at least 1 − exp(−u). Constants SΣ(X) and SΣ†(X) in (1.1)
describe the dependence of the error with respect to the distribution of X and
properties of Σ, respectively Σ†.

In practice however, we are often not directly interested in matrices Σ or
Σ† themselves, but rather in how they, as (bi)-linear operators, act on specific
vectors or matrices. In terms of concentration inequalities, this can be inter-
preted as developing bounds for A(Σ̂ − Σ)B� and A(Σ̂† − Σ†)B�, where A
and B are a given pair of (rectangular) matrices. Bounds of this type in case of
sub-Gaussian distributions are the principal subjects of this work.

For any submultiplicative matrix norm ‖·‖ perturbations ‖A(Σ̂−Σ)B�‖ and
‖A(Σ̂† −Σ†)B�‖ are bounded by ‖A‖‖Σ̂−Σ‖‖B‖ and ‖A‖‖Σ̂† −Σ†‖‖B‖.
This suggests that standard bounds for ‖Σ̂−Σ‖ and ‖Σ̂† −Σ†‖ (see the
overviews in Sections 1.1 and 1.2) suffice so long as the distribution is nearly
isotropic, i.e. Σ ≈ IdD. However, many modern data analysis tasks explicitly
rely on anisotropic distributions because different spectral modalities of the co-
variance matrix provide crucial, and complementary, information about the task
at hand. In this case, using norm submultiplicativity and standard bounds for
‖Σ̂−Σ‖ and ‖Σ̂† −Σ†‖ overestimates incurred errors because it decouples A
and B from their effect on covariance and precision matrices. Thus, such bounds
cannot capture the true behavior of the estimation error.

A typical example that leverages different modalities of (conditional) covari-
ance matrices are problems that analyze the structure of point clouds, such as
manifold learning. This is because such methods are often prefaced by a lin-
earization step, where the globally non-linear geometry is locally approximated
by tangential spaces. In such a case the conditional covariance of localized data
points is anisotropic, i.e. eigenvalues in tangential directions are notably larger
than those in non-tangential directions, and the degree of anistropicity increases
as the data is more localized [37], facilitating the linearization.

Anisotropic distributions also play an important role in high-dimensional
nonparametric regression problems that use structural assumptions. Denoting
Y as the dependent output variable, a popular example is the multi-index model
E[Y |X = x] = g(A�x), for a matrix A with rank(A) � D. The complexity of
the underlying nonparametric regression problem can be significantly reduced
by first identifying Im(A) and then performing nonparametric regression in
R

rank(A). Many methods in the structural dimension reduction literature [2, 39]
propose estimators forA that compare the global covariance matrixΣ (typically
assumed to be isotropic), with conditional covariance matrices Cov (X|Y ∈ R).
Here R ⊂ Im(Y ) represents a connected level set of the output. The rationale
behind this approach is that conditioning breaks the isotropicity and induces
different spectral modalities with respect to directions belonging to Im(A) and
its orthogonal complement. This is then leveraged to identify Im(A) [15, 33].

We showcase the usability of bounds for A(Σ̂†−Σ†)B� on a concrete exam-
ple in Section 4 by analyzing the ordinary least squares estimator Σ† Cov (X,Y )
as an estimator for the index vector a in the single-index model E[Y |X = x] =
g(a�x). Our analysis extends studies [10, 5] and shows how is the accuracy of
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the estimator be affected by anisotropicity of X. Furthermore, an examination
of developed estimation bounds motivates a modification of the ordinary least
squares estimator via an approach based on conditioning and averaging in the
spirit of structural dimension reduction techniques [2, 39]. We validate the su-
periority of this modified estimator theoretically and numerically, and thereby
show how a careful tracking of different modalities of the distribution X helps
to develop improved methods for common data analysis tasks.

Bounds developed in this work also have a few immediate corollaries, which
might be of independent interest. These include eigenspace perturbation bounds
similar to [59, Theorem 1], but which are sensitive to the behavior of X in the
direction corresponding to the eigenspace of interest, and a relative bound for
the smallest eigenvalue of Σ̂ comparable to [58, Theorem 2.2], but without the
isotropicity assumption.

1.1. State of the art: covariance matrix estimation

The most common bounds for estimating the covariance matrix from finitely
many observations consider sub-Gaussian [54, 52] and bounded [6] random vec-
tors. They state that with probability at least 1− exp(−u)

‖Σ̂−Σ‖2 � ‖X‖2ψ2

(√
D + u

N
∨ D + u

N

)
, (1.2)

‖Σ̂−Σ‖F � C2
X

√
u

N
, provided ‖X‖2 ≤ CX a.s, (1.3)

where A � B means A ≤ CB for some universal constant C. Besides these
two cases, researchers have over the years investigated minimal moment- or tail
conditions on X such that bounds similar to (1.2) can be achieved. We refer to
papers [52, 49, 1, 53] that consider more general classes of distributions. The
most general setting we are aware of is [49] that considers distributions which
for universal C, η > 0 satisfy the tail condition

P
(
‖PX‖22 > t

)
≤ Ct−1−η, for t > C rank(P),

for every orthogonal projection P. Distributions satisfying this condition in-
clude log-concave random variables (e.g. uniform distributions on convex sets)
and product distributions, where the marginals have uniformly bounded 4 + s
moments for some s > 0.

Our bounds show that the sample covariance estimator Σ̂ automatically and
implicitly adapts to rank(Σ̂), which serves as a complexity parameter of the
estimation problem. However, in the regime N < rank(Σ) the sample covariance
is rank deficient and the estimation is in general not possible. Instead, structural
assumptions, such as sparsity or bandedness, are needed to reduce the effective
complexity of the problem and allow consistent estimation. These assumptions
can be leveraged by regularized estimation techniques, which include banding
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[9], thresholding [13, 8], or penalized likelihood estimation [21]. We refer to
[17, 13] for detailed reviews of existing methods.

We also mention [29] that considers Gaussian random variables taking values
in general Banach spaces, and [30] which analyze the concentration of spectral
projectors of the covariance matrix, and (bi)-linear forms thereof, for Gaussian
random variables in a separable Hilbert space. This is conceptually related to
our work as the bounds take into account information about relevant spectral
projectors, and their interplay with vectors to which they are applied. This has
recently been extended to the estimation of smooth functionals of covariance
operators [27, 28] for Gaussians in separable Hilbert spaces.

1.2. State of the art: precision matrix estimation

Estimation of the precision matrix is relevant for many problems, ranging from
simple tasks such as data transformations (e.g. standardization Z := Σ−1/2X),
to applications that include linear discriminant analysis, graphical modeling, or
complex data visualization. Furthermore, precision matrix encodes information
about partial correlations of features of X. Namely, if X follows a Gaussian (or
paranormal) distribution, the ij-th entry of Σ† is zero if the i-th and the j-th
feature are conditionally independent.

The inverse Σ̂† of the sample covariance, constructed from N independent
copies of a mean zero random vector X ∈ R

D, is a well-behaved estimator of Σ†

as N → ∞ and D is considered fixed [3]. In such a case bounds for the precision
matrix can be obtained by using general perturbation bounds for the Moore-
Penrose inverse. One of the first such bounds [55] states that for G ∈ R

d1×d2 ,
and an additively perturbed matrix H = G+Δ, we have

‖H† −G†‖ ≤ ωmax
{
‖G†‖22, ‖H†‖22

}
‖Δ‖, and (1.4)

‖H† −G†‖ ≤ ω‖G†‖2‖H†‖2‖Δ‖, if rank(G) = rank(H), (1.5)

where ‖·‖ is any unitarily invariant norm, and ω is a small universal constant
[42]. Recent studies [36, 57] examine the influence of the perturbation in greater
detail, implying the bound

‖H† −G†‖F ≤ min
{
‖H†‖2‖G†Δ‖F , ‖G†‖2‖H†Δ‖2

}
,

if rank(G) = rank(H) = min{d1, d2}.

Using these general perturbation bounds it is easy to derive first concentra-
tion bounds for the precision matrix. For example, assume X is sub-Gaussian
and that the number of independent data samples satisfies N = C4k(D +

u) ‖X‖4ψ2
/λrank(Σ)(Σ)2 for some universal C > 0 and k ∈ N. Equation (1.2)

and Weyl’s bound [56] imply

λrank(Σ)(Σ̂) ≥ λrank(Σ)(Σ)− ‖Σ̂−Σ‖2 ≥ λrank(Σ)(Σ)(1− 2−k),
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and consequently ‖Σ̂†‖2 ≤ (1 − 2−k)−1‖Σ†‖2. The perturbation bound (1.5)
and covariance bound (1.2) give with probability 1− exp(−u)

‖Σ̂† −Σ†‖2 � ‖Σ†‖22‖Σ̂−Σ‖2 � ‖Σ†‖22 ‖X‖2ψ2

√
D + u

N
, (1.6)

where the higher order term in (1.2) vanishes in the applicable regime N ≥
C(D + u) ‖X‖4ψ2

/λ2
rank(Σ)(Σ). While this effectively provides bounds as soon

as the covariance perturbation is bounded, in this work we show that (1.6)
overestimates the error by assigning a quadratic scaling of ‖Σ†‖2 (Corollary 11).

Moreover, we are not aware of precision matrix bounds that take into account
the specific nature of the perturbation nor of bounds for ‖A(H† −G†)B‖2 that
are sensitive to objects of interest.

If rank(Σ) grows with N , then Σ̂ is not a consistent estimator of Σ and
thus the precision matrix cannot be estimated well by inverting the sample
covariance matrix. Various families of structured precision matrices have been
studied to mitigate these issues, motivated by applications in genomics, finance,
and other fields. Dominant assumptions are sparsity and bandedness, which are
exploited through the use of regularized estimators. Algorithms for estimating
Σ† based on regularization include computing Σ† column by column through
entry-wise Lasso [41, 18], constrained �1 minimization [11], adaptive �1 mini-
mization [12], �1 regularized score matching [38], or ridge regressors [51]. See
[17, 13] for comprehensive overviews.

1.3. Overview and contributions

Throughout, X ∈ R
D is a sub-Gaussian random vector with X̃ := X −EX and

Σ = Cov (X), and X1, . . . , XN are independent copies of X. Sub-Gaussians are
a broad class of light-tailed distributions that have received increasing attention
in recent years and are used in many branches of probability and statistics.
We define finite sample estimators of EX and Σ by μ̂X := N−1

∑N
i=1 Xi and

Σ̂ := N−1
∑N

i=1(Xi − μ̂X)(Xi − μ̂X)�.
Let A ∈ R

d1×D, B ∈ R
d2×D be matrices determining a direction, subspace,

or generally an object of interest. We can summarize our findings as follows.

(1) In Section 2 we show that with probability at least 1− exp(−u)

‖A(Σ̂−Σ)B�‖2 � ‖AX̃‖ψ2‖BX̃‖ψ2m

(√
dA + dB + u

N

)
, (1.7)

where m(t) = t ∨ t2, dA := rank(AΣ), and dB := rank(BΣ). This is
similar to [52, Proposition 2.1] but replaces the sub-Gaussian norm ‖X̃‖ψ2

by direction/subspace dependent quantities ‖AX̃‖ψ2 and ‖BX̃‖ψ2 .
(2) In Section 3 we show that with probability at least 1− exp(−u), we have

‖A(Σ̂† −Σ†)B�‖2 � ‖AΣ†X̃‖ψ2‖BΣ†X̃‖ψ2

√
rank(Σ) + u

N
, (1.8)
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provided N ≥ C‖
√
Σ†X̃‖4ψ2

, for an absolute constant C > 0, where
√
Σ†X̃

is the standardization of a random variable X, with Cov(
√
Σ†X̃) = IdD.

(3) In Section 3 we show stronger bounds for (1.7) and (1.8) in case of bounded
random vectors.

Remark 1. As we point out in Corollary 11, the bound (1.8) is interesting even
when A = B = IdD, particularly in view of general perturbation bounds such
as (1.6). Consider for example a random vector X for which the sub-Gaussian
norm is a good proxy for the variance, i.e. so that ‖Σ†X̃‖ψ2 ≈

√
‖Σ†‖2 holds.

(This is the case for example if X ∼ N (μ,Σ), or more generally for strict
sub-Gaussians [4]). The right hand side of (1.8) then scales linearly in ‖Σ†‖2,
whereas (1.6) shows a quadratic behavior. This has a significant impact for ill-
conditioned covariance matrices and implies that inverting the sample covariance
exhibits better conditioning than inverting a general matrix perturbation. The
same effect is observed if A and B are arbitrary.

Two applications of bounds (1.7) and (1.8) are presented. In Section 2 we use
the covariance bound (1.7) to establish a bound for perturbations of eigenspaces
of the covariance matrix that is sensitive to the distribution of the random
vector in the eigenspace of interest. This is relevant for example when estimating
manifolds from unlabeled point cloud data, see [43, 44, 25].

In Section 4.1 we use (1.8) to establish sharp concentration bounds for single-
index model estimation. In this model a response Y ∈ R is assumed to follow the
regression model E[Y |X] = f(a�X), and the task is to estimate the unknown
vector a using a finite data set {(Xi, Yi) : i = 1, . . . , N}. A common estimator
is the normalized ordinary least squares vector, for which we provide direction-
sensitive concentration bounds. Furthermore, our analysis yields an insight into
how the estimator can be improved by a simple and straightforward procedure
based on conditioning and averaging. This is presented in Section 4.2.

Most proofs are deferred to the Appendix for the sake of brevity and clarity.

1.4. General notation

We denote [M ] = {1, . . . ,M}, a∧ b = min{a, b}, a∨ b = max{a, b}, and we may
use the auxiliary function m(t) = t∨ t2. For a real, symmetric matrix A ∈ R

d×d

we denote by λ1(A) ≥ . . . ≥ λd(A) the ordered set of its eigenvalues, and
by u1(A), . . . ,ud(A) the corresponding eigenvectors. ‖·‖2 denotes the spectral
norm of a matrix, and the Euclidean norm of a vector, and 〈·, ·〉 is the dot
product. ‖·‖F is the Frobenius norm. IdD ∈ R

D×D is the identity matrix. SD−1

is the unit sphere in R
D. For any random vector X we write X̃ := X −EX. For

p ≥ 1 and a random variable X we define the Orlicz norm

‖X‖ψp := inf{s > 0 : E exp(|X/s|p) ≤ 2}.

The definition extends to random vectors X ∈ R
D by

‖X‖ψp := sup
v∈SD−1

‖v�X‖ψp < ∞. (1.9)
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We only use p = 1 (sub-exponential) and p = 2 (sub-Gaussian). If Ω is a
finite set, |Ω| denotes its cardinality. If Ω is an interval, |Ω| denotes its length.
Throughout the paper C is a placeholder for a positive universal constant that
may have a different value on each occurrence, even in the same line of text.
Furthermore, we sometimes use A � B instead of A ≤ CB.

2. Covariance matrix estimation

In this section we present bounds for covariance and eigenspace estimation that
are sensitive to the distribution of a given random vector in directions of inter-
est. The following matrix concentration bound is the fundamental tool of our
analysis.

Lemma 2. Let A ∈ R
d1×D,B ∈ R

d2×D and define dA = rank(AΣ), and
dB = rank(BΣ). Then for all u > 0, with probability at least 1 − exp(−u) we
have for m(t) = t ∨ t2

‖A(Σ̂−Σ)B�‖2 �‖AX̃‖ψ2‖BX̃‖ψ2m

(√
dA + dB + u

N

)
. (2.1)

Remark 3. An analogous result holds for almost surely bounded random vectors
by using a different concentration inequality. In that case ‖·‖ψ2 can be replaced
by a bound for the Euclidean norm of X, and the dimensionality does not appear
in the requirement on N . We will return to this point at the end of Section 3.

The proof of Lemma 2 by and large follows along the lines of traditional
concentration results. Indeed, if A = B, the result would follow by applying [52,
Proposition 2.1] to the random vector AX, along with some minor adjustments
to account for the ranks. When A �= B, a somewhat more careful tracking of the
behavior of the random vector X, with respect directions induced by matrices
A and B is needed. In the end, as (2.1) suggests, the payoff is that the error
rate scales only with components of X along those directions.

Remark 4. Some works that consider concentration inequalities for sub-
Gaussian random variables do so with respect to the effective rank, defined as
r(Σ) = tr (Σ)/ ‖Σ‖2, see for instance [27] or [54, Remark 5.6.3]. Effective rank
cannot exceed the true rank of a matrix, and unlike rank(Σ), it is less affected
by small eigenvalues. It can thus be a useful surrogate for approximately low
dimensional distributions, and can in those cases be used to provide informative
estimation bounds even if N � rank(Σ).

On the other hand, r(Σ) is not as useful for precision matrix estimation,
since inverting a matrix reverses the ordering of the eigenvalues. Thus, r(Σ)
should be replaced with r(Σ†). Furthermore, our current proof technique for

precision matrix estimation requires Im(Σ̂) = Im(Σ), which immediately implies
N ≥ rank(Σ). To provide a unified framework, we decided to abstain from using
the effective rank in our results.
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Applying Lemma 2 we can reconstruct known error rates in case of low-rank
distributions in high-dimensional ambient spaces.

Corollary 5. For all u > 0 with probability at least 1− exp(−u) we have

‖Σ̂−Σ‖2 � ‖X̃‖2ψ2
m

(√
rank(Σ) + u

N

)
, where m(t) = t ∨ t2. (2.2)

Lemma 2 also has an immediate effect on the estimation of eigenvectors
and eigenspaces. Denote by Pi,l(Σ) :=

∑l
k=i uk(Σ)uk(Σ)� the orthoprojector

onto the space spanned by i-th to l-th eigenvectors of Σ, and let Pi,l(Σ̂) be

the corresponding finite sample estimator. Moreover, denote Qi,l(Σ̂) := IdD −
Pi,l(Σ̂), and dist(I1; I2) := inft∈I1,t′∈I2 |t− t′| for I1, I2 ⊂ R.

Proposition 6. Let i ≤ l ∈ N, and define

δil = dist([λl(Σ), λi(Σ)]; [−∞, λl+1(Σ̂)] ∪ [λi−1(Σ̂),+∞]),

with λ0(Σ̂) := ∞, λD+1(Σ̂) = −∞.
(2.3)

For any u > 0, with probability at least 1− exp(−u) we have, with m(t) = t∨ t2,

‖Qi,l(Σ̂)Pi,l(Σ)‖2 �
‖Pi,l(Σ)X̃‖ψ2

∥∥X̃∥∥
ψ2

δil
m

(√
rank(Σ) + u

N

)
. (2.4)

Proof. Davis-Kahan Theorem in [7, Theorem 7.3.2] gives

‖Qi,l(Σ̂)Pi,l(Σ)‖2 ≤ π

2

‖Qi,l(Σ̂)(Σ− Σ̂)Pi,l(Σ)‖2
δil

≤ π

2

‖(Σ− Σ̂)Pi,l(Σ)‖2
δil

.

The claim now follows by applying Lemma 2 with A = IdD and B = Pi,l(Σ).

Typical bounds for eigenspace perturbations ‖Qi,l(Σ̂)Pi,l(Σ)‖2 take the spe-
cific eigenspace into account only through the denominator, whereas the nu-
merator relies on squared terms of the form ‖X̃‖2ψ2

in the sub-Gaussian case,

or a bound for ‖X‖22 in the bounded case. Expression (2.4) is thus beneficial if
‖Pi,l(Σ)X̃‖ψ2 is smaller than ‖X̃‖ψ2 , as it provides a sharper estimate.

In order to ensure δil > 0, the covariance matrix Σ must have a popu-
lation eigengap, that is, δ∗il := (λi−1(Σ) − λi(Σ)) ∧ (λl(Σ) − λl+1(Σ)) > 0,
and sufficiently many samples are required in order to stabilize δil around
δ∗il. The latter is typically achieved by first using Weyl’s bound [56], giving

|λj(Σ̂)− λj(Σ)| ≤ ‖Σ̂−Σ‖2 for all j ∈ [D], and then applying a concentration

bound for ‖Σ̂−Σ‖2. A consequence however is that Proposition 6 is only in-
formative if we have sufficiently many samples with respect to δ∗il and ‖X̃‖ψ2 .
Thus, the estimation error is no longer sensitive to the eigenspace of interest.

Preserving the dependence on ‖Pil(Σ)X̃‖ψ2 , instead of on ‖X̃‖ψ2 , requires
the use of relative eigenvalue bounds. Such bounds have been recently provided
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in [48] under the assumption that X is strictly sub-Gaussian [4], i.e. for some
K > 0, and for arbitrary matrices U ∈ R

k×D, X satisfies

‖UX̃‖2ψ2
≤ K‖Cov(UX̃)‖2. (2.5)

This asserts that the sub-Gaussian norm is a good proxy for variances of one-
dimensional marginals of the random vector X, and is for instance satisfied
for X ∼ N (0,Σ) with K = 1. For such distributions we obtain the following
concentration of the sample eigengap.

Lemma 7. Assume X satisfies (2.5) for some K > 0. Let i, l ∈ N with 1 ≤
i ≤ l ≤ rank(Σ), and {i, l} �= {1, rank(Σ)}. Let m(t) = t ∨ t2. There exists a
constant CK > 0, depending only on K, so that whenever

N > CK (rank(Σ) ∨ u)m

(
λl+1(Σ)

λl(Σ)− λl+1(Σ)
∨ λi−1(Σ)

λi−1(Σ)− λi(Σ)

)
, (2.6)

(with conventions λ0(Σ) = ∞, λrank(Σ)+1(Σ) = 0, and ∞/∞ = 0) for any
u > 0 with probability at least 1− 2 exp(−u) we have δil ≥ δ∗il/2.

The case {i, l} = {1, rank(Σ)} is equivalent to asking whether Im(Σ̂) =
Im(Σ). This holds for N ≥ rank(Σ) if the law of X has a density which is
absolutely continuous with respect to the Lebesgue measure on Im(Σ), because
X1, . . . , XN are almost surely linearly independent. It also holds with probability
at least 1 − exp(−u) if X is sub-Gaussian as soon as N > CK(rank(Σ) + u),
provided (2.5) holds, and if (2.5) does not hold then we need N > C(rank(Σ)+

u)‖
√
Σ†X̃‖4ψ2

.
Lemma 7 now allows to refine Proposition 6 with a population eigengap.

Proposition 8. Assume X satisfies (2.5) for some K > 0. Let 1 ≤ i ≤ l ≤
rank(Σ) with {i, l} �= {1, rank(Σ)}. Let m(t) = t ∨ t2. There exists CK > 0,
depending only on K, so that whenever N satisfies (2.6) for any u > 0, with
probability at least 1− exp(−u) we have

‖Qi,l(Σ̂)Pi,l(Σ)‖2 ≤ CK

‖Pi,l(Σ)X̃‖ψ2

∥∥X̃∥∥
ψ2

δ∗il
m

(√
rank(Σ) + u

N

)

≤ CK

√
Kλi(Σ)

∥∥X̃∥∥
ψ2

δ∗il
m

(√
rank(Σ) + u

N

)
(2.7)

Proof. The first inequality follows immediately by first conditioning on events
in Proposition 6, Lemma 7, and then using the union bound (probability 1 −
3 exp(−u) can be adjusted by adjusting CK). The second inequality in (2.7)
comes from additionally using (2.5) and ‖Cov (Pi,l(Σ)X)‖2 = λi(Σ).

Recently, [59] showed a useful alternative

‖Qi,l(Σ̂)Pi,l(Σ)‖F �
(
D1/2‖Σ̂−Σ‖2 ∧ ‖Σ̂−Σ‖F

)
δ∗il

. (2.8)
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Thus, with (2.8) we do not have to stabilize the sample eigengap, and the
eigenspace perturbation bound (2.8) can be used for arbitrary N ≥ 1. A natural
question to ask is whether Proposition 6 holds if δil is replaced with δ∗il. The
following example strongly suggests this is not the case.

Example 9. Assume that Proposition 6 holds with δ∗il in place of δil. Let X ∼
N (0,Σ), where Σ =

∑D−1
i=1 uiu

�
i + η2uDu�

D, for η < 1. Notice that in this case

‖X̃‖ψ2 = 1 and ‖u�
DX‖ψ2 = η, by the definition of the sub-Gaussian norm. For

any N ≥ 1 with probability at least 1− exp(−u) we would have

‖QD,D(Σ̂)PD,D(Σ)‖2 � η

1− η2
m

(
D + u

N

)
.

In particular, we have an increasingly small estimation error as η → 0 by using
only one data sample, i.e. by estimating PD,D(Σ) based on the eigendecompo-
sition of a rank one matrix XX�.

3. Precision matrix estimation

In this section we investigate directional estimates of the precision matrix Σ†

through the empirical precision matrix Σ̂†, analogously to results in Section 2.

Theorem 10. Let A ∈ R
d1×D, B ∈ R

d2×D. There exists a uniform constant
C > 0 such that if N > C(rank(Σ)+u)‖

√
Σ†X̃‖4ψ2

for any u > 0 with probability
at least 1− exp(−u) we have

‖A(Σ̂† −Σ†)B�‖2 � ‖AΣ†X̃‖ψ2‖BΣ†X̃‖ψ2

√
rank(Σ) + u

N
. (3.1)

Let us comment on the implications of Theorem 10. First, we note that
‖
√
Σ†X̃‖ψ2 is the sub-Gaussian norm of the standardization of X. Provided

X is strictly sub-Gaussian for some K > 0, see (2.5), we have ‖
√
Σ†X̃‖2ψ2

≤
K‖Cov(

√
Σ†X̃)‖2 = K. It follows that for such distributions ‖

√
Σ†X̃‖ψ2 has a

negligible effect on estimating precision matrices.
Second, similar to Lemma 2, the bound (3.1) depends only on components

of X induced by A and B. Since the sub-Gaussian norm can be interpreted
as a proxy for the variance, this improves non-directional bounds whenever the
eigenvalues of AΣ†A� and BΣ†B� are small compared to those of Σ†.

Third, as soon asN > C(rank(Σ)+u)‖
√
Σ†X̃‖4ψ2

, the estimation rate in (3.1)
is similar to the covariance estimation rate in Lemma 2. That is, assume we are
trying to estimate Σ† with the sample covariance matrix of the random vector
Z = Σ†X through iid. copies Zi = Σ†Xi. In that case Lemma 2 gives precisely
the bound (3.1). This should come as a bit of a surprise, since it implies that
estimating the precision matrix through the inverse of the sample covariance
has the same theoretical guarantees as if we had access to a random vector Z
whose covariance is exactly Σ†. To further stress this point, we now compare
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Theorem 10 for A = B = IdD with the bound

‖Σ̂† −Σ†‖2 � ‖Σ†‖22‖Σ‖2
√

D + u

N
, (3.2)

which was derived in Section 1.2 using general perturbation bounds for the
matrix inverse.

Corollary 11. There exists a uniform constant C > 0 such that if N >
C(rank(Σ) + u)‖

√
Σ†X̃‖4ψ2

for any u > 0 with probability at least 1− exp(−u)
we have

‖Σ̂† −Σ†‖2 � ‖Σ†X̃‖2ψ2

√
rank(Σ) + u

N
. (3.3)

Assuming the squared sub-Gaussian norm is a good proxy for the variance, i.e.
if (2.5) holds, the right hand side in (3.3) becomes K‖Σ†‖2

√
(rank(Σ) + u)/N .

Compared to (3.2), this shows that using a general perturbation bound overes-
timates the influence the matrix condition number ‖Σ‖2

∥∥Σ†∥∥
2
has on precision

matrix estimation. The discrepancy between these two results suggests that the
finite sample covariance estimator induces a specific type of a perturbation that
performs a form of regularization when estimating the inverse.

An immediate corollary is a relative bound for the smallest eigenvalue of Σ.

Corollary 12. Let d := rank(Σ) and assume X satisfies (2.5) for some K > 0.

There exists a constant C > 0 such that provided N > C(d+ u)‖
√
Σ†X̃‖4ψ2

, we
have with probability at least 1− exp(−u)∣∣∣∣λd(Σ)

λd(Σ̂)
− 1

∣∣∣∣ � K

√
d+ u

N
. (3.4)

If (2.5) does not hold the right hand side of (3.4) is, up to absolute constants,
replaced by λd(Σ)‖Σ†X̃‖2ψ2

√
(d+ u)/N .

The bound (3.4) is similar to [58, Theorem 2.2], which holds for isotropic
random variables with finite fourth order moments. Moreover, it is possible
to avoid the dependence on d if the number of samples N is large compared to∑d−1

i=1
λi(Σ)

λi(Σ)−λd(Σ) , by using relative eigenvalue bounds from [48, Theorem 2.15].

Numerical validation To validate the results of Theorem 10 we consider
X ∼ N (0,Σ) for two types of covariance matrices Σ ∈ R10×10:

Setting 1: Set Σ=USU�, for U∈R
10×10 sampled uniformly at random from the

space of orthonormal matrices, and S=Diag (1, 1, 1, 1, 1, ν, ν, ν, ν, ν).
We consider ν = 10−j+1 for j ∈ [10], which implies that the matrix
condition number ‖Σ‖2‖Σ†‖2 ranges from 1 to 109.

Setting 2: SetΣi,j = ν|i−j|, with ν ∈ {0.5, 0.55, . . . , 0.9, 0.95}. This is a common
model for distributions where entries of X correspond to values of a
certain feature at different time stamps. It leads to correlated entries
when the time stamps are close by, i.e. when |i− j| is small.



Covariance and precision matrices along subspaces 565

Fig 1. Relative errors for directional and isotropic precision matrix estimation. Different
colors correspond to different directions of evaluation (see legend). Per each color we plot
10 lines corresponding to the 10 parameter choices of ν in the construction of Σ. The plots
show that the relative error does not depend on ν, despite the fact that changing ν changes
the sub-Gaussian condition number by a factor of 10.

We choose matrices A and B by sampling an orthoprojector A uniformly at
random with rank(A) = 3 and setting B = IdD−A. We repeat each experiment
100 times and report the averaged relative errors in Figure 1. Different lines of
the same color correspond to different values of ν.

The estimation error shows the expected N−1/2 rate. Moreover, directional
errors show a clear dependence on the directional spectral norm. On the other
hand, since we are sampling Gaussians the squared sub-Gaussian norm is a
proxy for the variance of the given random vector, and the results confirm that
the error term in Theorem 10 indeed scales with the corresponding (directional)
sub-Gaussian norm. Lastly, although the condition number of Σ depends on ν,
the specific value of ν does not affect how accurate Σ̂† is, as predicted by the
theory.

Bounded random vectors As mentioned in Remark 3, a stronger form of
direction dependent covariance and precision matrix estimation bounds hold for
bounded random vectors. The proofs for the bounded case follow along similar
lines as for the sub-Gaussian case, except for the use of a slightly different
probabilistic argument. We now state only the results for the estimation of
covariance and precision matrix, since the remaining bounds follow by analogy.

Theorem 13. Let A ∈ R
d1×D,B ∈ R

d2×D. Assume ‖AX̃‖2 ≤ CA, ‖BX̃‖2 ≤
CB almost surely. Then for any u > 0 with probability at least 1− exp(−u) we
have

‖A(Σ̂−Σ)B�‖F � CACB

√
1 + u

N
. (3.5)

Assume ‖AΣ†X̃‖2 ≤ C†
A, ‖BΣ†X̃‖2 ≤ C†

B, ‖
√
Σ†X̃‖22 ≤ Θ almost surely. There

exists C > 0 such that provided N > C(1+u)Θ2, for any u > 0 with probability
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at least 1− exp(−u) we have

‖A(Σ̂† −Σ†)B�‖F � C†
AC

†
B

√
1 + u

N
. (3.6)

4. Application to single-index model estimation

In this section we use the results of Sections 2 and 3 to establish concen-
tration bounds for estimating the index vector a in the single-index model
E[Y |X = x] = g(a�x). Moreover, directional terms that arise from using di-
rectional dependent matrix concentration bounds provide an insight into how
to further improve the performance of the standard estimator. The second half
of the section is thus devoted to describing this strategy (which is based on
splitting up the data, conditioning and averaging), proving the error estimates,
and providing numerical evidence to show and examine the claimed performance
gains.

Throughout the section, we use a directional sub-Gaussian condition number

κ(P, X) := ‖PΣ†X̃‖2ψ2
‖PX̃‖2ψ2

, P is an orthoprojector.

This quantity can be seen as a restricted condition number ‖PΣ†P‖2‖PΣP‖2
for the matrix Σ = Cov (X). Indeed, for strict sub-Gaussians, i.e. those satisfy-
ing (2.5) for some K, the two are equal up to a factor depending on K.

4.1. Ordinary least squares for the single-index model

Single-index model (SIM) is a popular semi-parametric regression model that
poses the relationship between the features X ∈ R

D and responses Y ∈ R

as E[Y |X] = f(a�X), where f is an unknown link function and a ∈ S
D−1

is an unknown index vector. SIM was developed in the 80s and 90s [10, 22]
as an extension of generalized linear regression that does not specify the link
function, and which could thus avoid errors incurred by model misspecification.
Common applications are in econometrics [16, 40] and signal processing under
sparsity assumptions on the index vector [46, 45]. It has been shown, e.g. in [19],
that (in certain scenarios) the minimax estimation rate of SIM equals that of
nonparametric univariate regression.

Methods for estimating the SIM from a finite data set {(Xi, Yi) : i ∈ [N ]}
often first construct an approximate index vector â, and then use nonparametric
regression on {(â�Xi, Yi) : i ∈ [N ]} to estimate the link function. With such an
approach the generalization error of the resulting estimator depends largely on
the error incurred by estimating the index vector. Thus, the construction of â
becomes the critical point.

An efficient approach, which first appeared in [35, 10], and later in modified
forms in [20, 5], is to solve the ordinary least squares (OLS) problem

(ĉ, b̂) = argmin
c∈R, b∈RD

N∑
i=1

(
Yi − c− b�(Xi − μ̂X)

)2
, where μ̂X =

N∑
i=1

Xi

N
, (4.1)



Covariance and precision matrices along subspaces 567

and then set d̂ := b̂/‖b̂‖2. It was shown in [5] that
√
N(d̂−a) is asymptotically

normal with mean zero, provided X has an elliptical distribution and f is a non-
decreasing function that is strictly increasing on some non-empty sub-interval
of the support of a�X. Assuming only ellipticity of X and statistical indepen-
dence of Y and X given a�X, the population vector b := Σ† Cov (X,Y ) is
still contained in span{a}, see e.g. [26, Proposition 3]. Provided b �= 0, in these

cases the direction d := b/ ‖b‖2 equals the index vector a up to sign. Thus, d̂
is in many cases a consistent estimator of the index vector a, and under certain
conditions it converges with an N−1/2 rate.

The minimal ‖·‖2-norm solution of (4.1) admits a closed form

ĉ = μ̂Y , b̂ = Σ̂†r̂, with μ̂Y :=

N∑
i=1

Yi

N
, r̂ :=

N∑
i=1

(Xi − μ̂X)(Yi − μ̂Y )

N
. (4.2)

Using the results of the previous two sections we can show a direction dependent
concentration bound for the vector b̂.

Lemma 14. Let Y ∈ R be sub-Gaussian. Denote P = dd�, Q := IdD − P,
and κPQ = κ(P, X) ∨ κ(Q, X). There exists C > 0 such that provided N >

C(rank(Σ)+u)‖
√
Σ†X̃‖4ψ2

, for any u > 0, with probability at least 1− exp(−u)
we have

‖P
(
b− b̂

)
‖2 � ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κPQ

√
rank(Σ) + u

N
, (4.3)

‖Q
(
b− b̂

)
‖2 � ‖Ỹ ‖ψ2‖QΣ†X̃‖ψ2

√
κPQ

√
rank(Σ) + u

N
. (4.4)

For the normalized vector, respectively the directions, the following bound
holds.

Corollary 15. Assume the setting of Lemma 14. There exists a constant C > 0
such that for any u > 0, with probability at least 1− exp(−u) we have∥∥∥d̂− d

∥∥∥
2

�
‖Ỹ ‖ψ2‖QΣ†X̃‖ψ2

√
κPQ

‖b‖2

√
rank(Σ) + u

N
, provided that (4.5)

N > C(rank(Σ) + u)

(
‖
√
Σ†X̃‖4ψ2

∨
‖Ỹ ‖2ψ2

‖PΣ†X̃‖2ψ2
κPQ

‖b‖22

)
. (4.6)

As mentioned before, under certain conditions we have d = a, where a is the
index vector in the given SIM. In such cases Corollary 15 confirms that d̂ is
a consistent estimator of a and achieves a N−1/2 convergence rate, which has
been observed in previous works. To provide some context for our result we give
a brief description of the two most popular strategies for estimating a.

The first group of methods can be distinguished by their simplicity and effi-
ciency as they estimate the index vector using empirical estimates of first and
second order moments of random variables X and Y . The studied OLS esti-
mator (sometimes also referred to as the average derivative estimator [10, 35])
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belongs to this group. Inverse regression based techniques also fall into this cat-
egory, see e.g. [34, 15, 33] or the review [39], and their convergence rate usually
equals N−1/2 and is thus on par with OLS. A drawback caused essentially by
the simplicity of these methods is that theoretical guarantees typically require
X to be an elliptical distribution, and sometimes a form of monotonicity is
needed to avoid issues that arise when dealing with symmetric functions such
as x �→ (a�x)2.

The second, more sophisticated but also computationally heavier, class of
methods is based on solving more complicated optimal programs for the recovery
of a, to which a closed form solution does not exist. This includes non-parametric
methods for sufficient dimension reduction, e.g. [14], aiming at estimating the
gradients of f(a�X) at all training samples Xi; methods based on combining
index estimation and monotonic regression, e.g. [24, 23]; and methods that si-
multaneously estimate the index vector and use spline interpolation [47, 32],
to name just a few. For these methods convergence rates up to N−1/2 (some-
times slower) can typically be proven, and the theory requires less stringent
assumptions than those exhibited by the first class of methods.

A new insight in Corollary 15, which has not been emphasized before, is
the directionally-dependent influence of the spectrum of Σ on the estimation
guarantee. To make this more precise, we now consider a special case when X is
strictly sub-Gaussian, the link function f is Lipschitz-smooth, and the index a
is an eigenvector of Σ. We note that similar results hold if a is an approximate
eigenvector of Σ, in the sense that a�Σ†a ≈ (a�Σa)−1.

Corollary 16. Let Y be sub-Gaussian, X be strictly sub-Gaussian (i.e. sat-
isfying (2.5) for some K > 0) and assume Y = f(a�X) + ζ for Eζ = 0
with σζ := ‖ζ‖ψ2 < ∞. Assume consistent estimation, i.e. d = a, and that
Σa = σ2

Pa. Then there exists CK > 0, depending only on K, so that if

N > CK(rank(Σ) + u)
(L+ σζσ

−1
P )2κ(Q, X)

‖b‖22
,

for any u > 0 we have with probability at least 1− exp(−u)

∥∥∥d̂− a
∥∥∥
2

� (LσP + σζ)
√

‖QΣ†Q‖2 κ(Q, X)

‖b‖2

√
rank(Σ) + u

N
. (4.7)

Corollary 16 shows that the variance in the direction of the index vector, σ2
P =

Var(a�X), and the variance in orthogonal directions, quantified through the
spectrum of QΣ†Q, influence index vector estimation in a significantly different
manner. Namely, as long as σP � σζ , smaller σP has a provably beneficial
effect on estimation accuracy, whereas small non-zero eigenvalues of Σ (i.e. large
eigenvalues of Σ†), corresponding to eigenvectors in Im(Q), can only worsen the
accuracy. A similar observation can be made when inspecting the asymptotic
covariance of

√
N(d̂ − a), which after using Σa = σ2

Pa and [5, Theorem 1], is
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Fig 2. (X,Y ) sampled according to X ∼ Uni({X : ‖X‖2 ≤ 1}) and Y = f(a�X) + ζ, where
span {a} is the horizontal line, and ζ ∼ N (0, 0.01Var

(
f(a�X)

)
). We use a dyadic level-set

partitioning of the data into J sub-intervals. The color indicates the labeling.

given by

σ2
P

Cov (f(a�X),a�X)︸ ︷︷ ︸
=:T1

QΣ†QCov
(
(Ỹ − X̃�b)X̃

)
QΣ†Q︸ ︷︷ ︸

=:T2

.

The scalar factor T1 is comparable to ‖b‖22, and the matrix T2 shows that the
variance of the estimator grows with large eigenvalues of QΣ†Q. On the other
hand, the variance of the residual Ỹ −X̃�b decreases if the accuracy of the linear
fit of X̃�b ≈ f(a�X) − Ef(a�X) improves, which can typically be observed
under monotonic links f and decreasing σ2

P = Var(a�X).
We will now use this observation as a guiding principle for developing a

modified estimator that splits the data into subsets with small σP’s, computes
corresponding OLS vectors on each subset, and then combines local estimators
into a global estimator by weighted averaging.

4.2. Averaged conditional least squares for the single-index model

We now study the just discussed alternative procedure, where we first split
the data into subsets, aiming to reduce the variance of the data distribution
in the direction of the index vector, and then compute and average out the
estimators from each subset. Since we have no a priori knowledge about the
index vector, constructing such a partition seems challenging. However, when
the link function is monotonic the partitioning is induced by a decomposition
of Im(Y ) into equisized intervals, see Figure 2. For the sake of simplicity, in the
following we assume Y ∈ [0, 1) holds almost surely.

For � ∈ [J ] let RJ,� := [ �−1
J , �

J ) denote equisized regions partitioning [0, 1).
Furthermore, define herein called level-sets SJ,� = {(Xi, Yi) : Yi ∈ RJ,�}, which
induce a partition of the data set into J subsets based on the responses. Then
estimate a according to the following algorithm.

Step 1 Solve (4.2) on each subset SJ,�, by computing ĉJ,� ∈ R and b̂J,� ∈ R
D.

Step 2 Define the empirical density ρ̂J,� := |SJ,�| /N , set the thresholding pa-
rameter α > 0, and compute the averaged outer product matrix

M̂J =

J∑
�=1

1[αJ−1,1](ρ̂J,�)ρ̂J,�b̂J,�b̂
�
J,�. (4.8)
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Step 3 Use the eigenvector corresponding to the largest eigenvalue of MJ , de-
noted as u1(M̂J), as an approximation of the index vector a.

The parameter α is used to promote numerical stability by suppressing the
contributions of sparsely populated subsets. In other words, we only keep those
level-sets whose empirical mass behaves as if Y were uniformly distributed over
Im(Y ) (which can in some problems be achieved by a suitable transformation of
the responses). The parameter J on the other hand defines the number of sets
we use in the partition of the given data set, and dictates the trade-off between
Var

(
a�X|Y ∈ RJ,�

)
and the number of samples |SJ,�| in a given level set.

For a random vector Z we denote a conditional random vector ZJ,� := Z|Y ∈
RJ,�. Note that ZJ,� inherits sub-Gaussianity of Z provided P(Y ∈ RJ,�) > 0,
see Lemma 23. We now analyze the approach under the following assumption:

(A) bJ,� :=Cov (X|Y ∈ RJ,�)
†
Cov (X,Y |Y ∈ RJ,�) ∈ span{a} for all � ∈ [J ].

Assumption (A) is not particularly restrictive. For example, it can be shown
that (A) holds if X is elliptically symmetric, which is a standard assumption
when using the OLS functional (4.2), and if the function noise Y − E[Y |X] is
statistically independent of X given a�X [26, Proposition 3].

Theorem 17. Assume (A) holds and that Y ∈ [0, 1) almost surely. Let J > 0,
α > 0, and assume we are given N iid. copies of (X,Y ). Denote P := aa�,
Q := IdD −P, ΣJ,� := Cov (X|Y ∈ RJ,�), and

κJ,� :=κ(P, XJ,�) ∨ κ(Q, XJ,�), and KJ,� :=
∥∥√Σ†

J,�X̃J,�

∥∥
ψ2
.

Let IJ := {� ∈ [J ] : ρ̂J,� > αJ−1} be the index set containing the indices of
active level-sets and set KJ := max�∈IJ KJ,�. There exists C > 0 such that, if

N > CK4
J

J(rank(Σ) + log(J) + u)

α
, (4.9)

there exists a sign s ∈ {−1, 1} so that for any u > 0, with probability at least
1− exp(−u) we have

‖su1(M̂J )−a‖22≤εN,J,u

∑
�∈IJ

ρ̂J,�κJ,�‖QΣ†
J,�X̃J,�‖2ψ2∑

�∈IJ
ρ̂J,�

(
‖bJ,�‖22−εN,J,uκJ,�‖PΣ†

J,�X̃J,�‖2ψ2

) , (4.10)

where

εN,J,u := C
rank(Σ) + log(J) + u

αJN
.

The same guarantee holds when replacing the denominator in (4.10) with

λ1(M̂J ).

The error rate in Theorem 17 is dictated by εN,J,u and there are two ways to
interpret Theorem 17. First, for a fixed parameter J all terms in (4.9) and (4.10)
(except N and εN,J,u) are constants, and we obtain a N−1/2 convergence rate
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for the non-squared error as soon as the sample size is sufficiently large. This is
the same rate as the one achieved with the standard OLS estimator (4.2).

Parameter J however provides additional flexibility and an intriguing option
is to select J as a function that grows with N while still complying with (4.9).
Namely, using u = log(J) and J � N/ log(N), and plugging into (4.10), implies
that a

√
log(N/ log(N)) log(N)N−1 ≤ log(N)N−1 rate is achievable, so long as

the remaining terms involving parameter J are balanced.
To give an illustrative example of such a case, we consider the following

idealized setting. We assume the noise-free regime Y = f(a�X) with strictly
monotonic link in the sense that for some L > 0 we have

Cov
(
a�X, f(a�X)|Y ∈ RJ,�

)
> LVar(a�X|Y ∈ RJ,�). (4.11)

Furthermore, conditional random variables XJ,� are assumed strictly sub-
Gaussian, where the strict sub-Gaussianity constant K > 0 in (2.5) is inde-
pendent of J and �, and we model local covariance matrices as

Cov
(
X̃J,�

)
= C�J

−2P+Q with c1 ≤ C� ≤ c2, (4.12)

where c1, c2 are universal constants independent of J . Condition (4.12) implies
that partitioning the data into J level-sets results in a reduction of the vari-
ance along the direction of the index vector, while not affecting the variance in
directions orthogonal to the index vector.

With strict sub-Gaussianity and (4.12), we haveKJ ≤
√
K, κJ,� ≤ (c2/c1)K

2,

‖PΣ†
J,�X̃J,�‖2ψ2

≤ KJ2/c1, and ‖QΣ†
J,�X̃J,�‖2ψ2

≤ K. Then, using u = log(J)
and J = τN/ log(N) for some τ > 0, the result (4.10) can be written as

‖su1(M̂J )− a‖22 ≤ CK rank(Σ)

ατ
∑

�∈IJ
ρ̂J,�

(
‖bJ,�‖22 − τ CK(rank(Σ)+1)

α

)log2(N)

N2
, (4.13)

where CK > 0 depends only on K, c1, and c2. Furthermore, using Assump-
tion (A), and (4.12), we have Cov (X,Y |Y ∈ RJ,�) = Cov

(
a�X,Y |Y ∈ RJ,�

)
a,

and with the asserted monotonicity (4.11) we get

‖bJ,�‖2 ≥
Cov (X,Y |Y ∈ RJ,�)

�
Σ†

J,� Cov (X,Y |Y ∈ RJ,�)

‖Cov (X,Y |Y ∈ RJ,�)‖2
> LVar(a�X|Y ∈ RJ,�)a

�Σ†
J,�a = L. (4.14)

Plugging this bound into (4.13), and choosing τ ∈ (0, αL2/(2CK(rank(Σ)+1))),
we thus obtain a log2(N)/N2 convergence rate for the squared error.

The described idealized setting can be a reasonable approximation of reality
for strictly monotonic link functions f in the noise-free regime, since (4.12) can
be motivated by the observation that in this case slicing the distribution of X
based on Y reduces the variance of the data along the direction of the index
vector, as shown in Figure 2. Thus, monotonicity is a key requirement for estab-
lishing a faster rate. In the case of noisy responses and strictly monotone links,
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the matter is more delicate. Namely, by the minimax rate of linear regression,
which equals Var(Y − f(a�X))/N , result (4.13) can only hold for all N ∈ N, if
Var(Y − f(a�X)) ∈ O(log2(N)/N) as N → ∞.

The same observation carries over to more general strictly monotonic links,
because, in the presence of noise, condition (4.12) and the lower bound (4.14)
do not hold for all J ∈ N. For instance, if J2 exceeds 1/Var(Y − f(a�X))
or becomes even larger, the conditional distribution Y |Y ∈ RJ,� has roughly
as much correlation with label noise as it does with the labels, f(a�X). This
suggests ‖bJ,�‖2 ≈ 0, and that further slicing the distribution of X based on Y
will not decrease the variance in index vector direction, as required per (4.12).
For J−2 � Var(Y −f(a�X)) however, Condition (4.12) and (4.14) can still hold
approximately, and our experiments below suggest that the proposed estimator
benefits from an aggresive splitting of the data in the case of nonlinear, strictly
monotonic links. We now confer the implications of Theorem 17, with synthetic
examples, under a data-driven parameter choice rule for J .

Numerical setup and parameter choice We sample X ∼ N (0, IdD), with
D = 10, and let a = (1, 0, . . . , 0)� (the specific choice of a is irrelevant for
the results due to the rotational invariance of X). Responses are generated
by Y = f(a�X) + ζ, where ζ ∼ N (0, σ2

ζVar(f(a
�X))). We set α = 0.05 and

additionally exclude subsets with |SJ,�| < 2D, for the sake of numerical stability.
Our goal is twofold. First, to compare estimation of the index vector using the
standard OLS approach (4.2) with the strategy proposed in this section, and
second, to empirically confer the observations described after Theorem 17.

A critical step of the modified approach is the selection of J as a function
of N . As mentioned in Theorem 17, the denominator effectively lower bounds
λ1(M̂J ), and the corresponding concentration bound can be written as

‖su1(M̂J )− a‖22 � rank(Σ) + log(J) + u

αNJ

∑
�∈IJ

ρ̂J,�κJ,�‖QΣ†
J,�X̃J,�‖2ψ2

λ1(M̂J )
.

Neglecting the dependence of κJ,� and ‖QΣ†
J,�X̃J,�‖2ψ2

on J and log(J)-terms,
originating from union bounds in the proofs, the error is minimized when max-
imizing Jλ1(M̂J ). We thus propose to adaptively choose J by

J∗ := max{J = �(1.5)k� : k ∈ N0, Jλ1(M̂J ) > J ′λ1(M̂J ′) ∀ J ′ < J}, (4.15)

where we use an exponential grid in N to decrease the computational demand.
Note also that λ1(M̂J ) ≥

∑
�∈IJ

ρ̂J,�‖b̂J,�‖22 ≈
∑

�∈IJ
ρ̂J,�‖bJ,�‖22, so, using pa-

rameter choice (4.15), we expect no further increase of J if ‖bJ,�‖2’s decay
rapidly.

Numerical experiments Figure 3 shows the errors ‖d̂− a‖2 and the cor-
responding optimized choices J∗ of the number of level-sets J , for different
link functions f . Solid lines correspond to the estimator (4.2), the dashed lines

to u1(M̂J∗), and different colors represent different noise levels σζ . In Fig-
ures 3(b)–3(d) we consider monotonic link functions and we can see that the
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Fig 3. We plot the error ‖â− a‖2 using (4.2) (solid lines), respectively â = u1(M̂J∗ ) (dashed
lines), for several link functions. The right plots in each subplot shows J∗ that is chosen
according to the rule (4.15). We see that in all cases where f is a nonlinear, monotonic

function u1(M̂J∗ ) improves upon (4.2), especially in scenarios with moderate noise levels
σζ . In the other cases the two estimators achieve similar accuracy.

approach presented in this section performs substantially better than the stan-
dard OLS approach. On the other hand, in Figures 3(a), 3(e) and 3(f) the two
approaches achieve similar performance. In case of 3(a) this is because (4.2) is
indeed optimal, according to the Gauss-Markov Theorem, whereas link func-
tions in 3(e), 3(f), are not monotonic. In the latter case, the plots of J∗ confirm

that λ1(M̂J ) decays rapidly as a function of J , leaving J∗ essentially constant
as a function of N .

Let us examine the results for monotonic functions in more detail. The plots
for J∗ in Figures 3(b)–3(d) show that the number of level-sets J∗ indeed grows
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as a function of N , and it does so up to a level dictated by the noise level
σζ . This shows that λ1(M̂J) does not decay faster than J−1 over a reasonably
large range of N values, i.e. until J−1 ≈ σζ . As a consequence, our approach
achieves a faster, N−1 estimation rate for the index vector. Specifically, in the
noise-free case this holds asymptotically as N → ∞. On the other hand, in the
case of corrupted Y ’s, we first have a faster N−1 convergence, and then a sharp
transition into the usual N−1/2 rate. The number of points N at which this
transition occurs depends inversely on the level of noise.
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Appendix

A.1. Additional technical results

Lemma 18 (Properties of the sub-Gaussian norm). Let X,Z be sub-Gaussian
random vectors in R

D, let Σ = Cov (X), and A ∈ RD×D. Then we have

(1) ‖X − EX‖ψ2 � ‖X‖ψ2 (holds also for sub-exponential random variables),

(2) ‖AX̃‖ψ2 ≤ ‖A‖2‖PIm(A�)X̃‖ψ2 ,

(3) ‖AΣA�‖2 � ‖AX̃‖2ψ2
,

(4) X�Z is sub-exponential with ‖X̃�Z̃ − E[X̃�Z̃]‖ψ1 � ‖X̃‖ψ2‖Z̃‖ψ2 .

Proof. Property (1) is shown in [54, Lemma 2.6.8] for sub-Gaussian random
variables. Applying the definition of the sub-Gaussian norm (1.9) the claim
follows, since v�X is a sub-Gaussian random variable for every v ∈ S

D−1. The
same line of arguments holds for sub-exponential vectors.

For (2) we compute for arbitrary v ∈ S
D−1 and A�v ∈ Im(A�)

‖v�AX̃‖ψ2 = ‖A�v‖2‖
(
A�v/‖A�v‖2

)�
X̃‖ψ2

≤ ‖A�‖2 sup
u∈Im(A�)∩SD−1

‖u�X̃‖ψ2 ≤ ‖A‖2‖PIm(A�)X̃‖ψ2 .

For (3) we first note that [54, Proposition 2.5.2] implies Var (u) � ‖ũ‖2ψ2
for

any sub-Gaussian u, where ũ = u− E[u]. Thus, for every v ∈ S
D−1 we have

v� Cov (AX)v = Var
(
v�AX

)
� ‖v�AX̃‖2ψ2

.

Taking the supremum with respect to v ∈ SD−1, the result follows since
Cov(AX) is positive semidefinite.

Property (4) follows from the centering property (1) and [54, Lemma 2.7.6].
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Lemma 19. Let A∈R
D×D be positive semidefinite, B1 ∈R

d1×D, B2 ∈ R
d2×D.

For u ∈ R
d1 , v ∈ R

d2 we have u�B1AB�
2 v ≤

√
u�B1AB�

1 u
√

v�B2AB�
2 v.

Moreover, ‖B1AB2‖22 ≤ ‖B1AB�
1 ‖2‖B2AB�

2 ‖2.
Proof. Applying the Cauchy-Schwartz inequality we have

u�B1AB�
2 v = 〈A1/2B�

1 u,A
1/2B�

2 v〉 ≤ ‖A1/2B�
1 u‖2‖A1/2B�

2 v‖2. (A.1)

By the same line of argument we have ‖A1/2B�
1 u‖22 = u�B1AB�

1 u and
‖A1/2B�

2 v‖22 =v�B2AB�
2 v, giving the first statement. Considering now ‖u‖2 =

‖v‖2 = 1, we have

sup
‖u‖2=1,
‖v‖2=1

u�B1AB�
2 v ≤

√
sup

‖u‖2=1

u�B1AB�
1 u

√
sup

‖v‖2=1

v�B2AB�
2 v. (A.2)

Notice that since A is positive semidefinite, then B1AB�
1 and B2AB�

2 are
positive semidefinite. Therefore,

sup
‖u‖2=1

u�B1AB�
1 u = sup

‖u‖2=1

‖(B1AB�
1 )

1/2u‖22 =
∥∥B1AB�

1

∥∥
2
.

An analogous expression holds for the other term. Identifying the quadratic form
on the left hand side in (A.2) as the operator norm of B1AB2, the conclusion
follows.

The following is a standard concentration bound for sub-Gaussian and sub-
exponential random vectors around their mean.

Lemma 20. Let {Xi : i ∈ [N ]} be independent copies of a centered random

vector X ∈ R
D. Denote μ̂ := N−1

∑N
i=1 Xi and m(t) = t ∨ t2. For any u > 0

the following hold with probability at least 1− exp(−u).

(1) If ‖X‖ψ2 < ∞ we have ‖μ̂‖2 � ‖X‖ψ2

√
D+u
N .

(2) If ‖X‖ψ1 < ∞ we have ‖μ̂‖2 � ‖X‖ψ1m
(√

D+u
N

)
.

Proof. The argument for the two bounds follows along analogous lines. Let
δ < 1/4, and N be a δ-net of SD−1. We first use [54, Exercise 4.4.3] to rewrite

‖μ̂‖2 = sup
v∈SD−1

v�μ̂ = sup
v∈SD−1

N−1
N∑
i=1

v�Xi ≤ 2 sup
v∈N

N−1
N∑
i=1

v�Xi.

The term N−1
∑N

i=1 v
�Xi is a sum of either sub-Gaussian or sub-exponential

random variables, for any v∈N . In the former case we have ‖v�Xi‖ψ1 ≤‖X‖ψ1 ,
and ‖v�Xi‖ψ2 ≤‖X‖ψ2 in the latter. Hoeffding’s inequality [54, Theorem 2.6.2],
in the sub-Gaussian case, or Bernstein’s inequality [54, Theorem 2.8.1], in the
sub-exponential case, now yield concentration bounds for the sums. The claim
follows by applying the union bound over v∈N , where the number of events is
bounded by |N | ≤ 12D, see for instance [54, Corollary 4.2.13].
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A.2. Proofs for Section 2

Proof of Lemma 2. Let X̃ = X − EX. Let UA ∈ R
dA×D and UB ∈ R

dB×D be
matrices whose rows contain the orthonormal basis for Im(AΣ) and Im(BΣ),

respectively. Since Σ and Σ̂ are symmetric, and Im(Σ̂) ⊆ Im(Σ), we have

Σ̂ −Σ = PΣ(Σ̂ −Σ)PΣ, where PΣ is the orthogonal projection onto Im(Σ).
We thus have

‖A(Σ̂−Σ)B�‖2 = ‖AΣ(Σ̂−Σ)B�
Σ‖2,

for AΣ = UAAPΣ ∈ R
dA×D and BΣ = UBBPΣ ∈ R

dB×D. Denote now

Σ̃ = N−1
∑N

i=1 X̃iX̃i
�
. Notice that Σ̃, compared to the empirical covariance

Σ̂, uses the true, instead of the empirical mean of X̃. We then have

‖AΣ(Σ̂−Σ)B�
Σ‖2 ≤ ‖AΣ(Σ̃−Σ)B�

Σ‖2 +
∥∥∥ N∑
i=1

AΣX̃i

N

∥∥∥
2

∥∥∥ N∑
i=1

BΣX̃i

N

∥∥∥
2
.

By Lemma 20 the second term is always of higher order, and the resulting error
can be absorbed into a corresponding upper bound for the first term. Thus, in
the following we focus on ‖AΣ(Σ̃−Σ)B�

Σ‖2.
We closely follow the proof of [52, Proposition 2.1]. Let δ < 1/4, and by N ,

M denote δ-nets of SdA−1 and S
dB−1. From [54, Exercise 4.4.3] we have

‖AΣ(Σ̃−Σ)B�
Σ‖2 ≤ (1− 2δ)−1 sup

x∈N
y∈M

〈
AΣ(Σ̃−Σ)B�

Σx,y
〉

(A.3)

≤ 2 sup
x∈N
y∈M

〈
(Σ̃−Σ)B�

Σx,A
�
Σy

〉
. (A.4)

Consider now any pair (x,y) ∈ N ×M, and write

〈
Σ̃B�

Σx,A
�
Σy

〉
=

N∑
i=1

〈
X̃i(X̃

�
i B�

Σx),A
�
Σy

〉
N

=

N∑
i=1

〈
AΣX̃i,y

〉〈
BΣX̃i,x

〉
N

.

Since 〈AΣX̃i,y〉 and 〈BΣX̃i,x〉 are sub-Gaussian, their product is sub-
exponential, and from [54, Lemma 2.7.7] we have

‖〈AΣX̃i,y〉〈BΣX̃i,x〉‖ψ1 ≤‖〈AΣX̃i,y〉‖ψ2‖〈BΣX̃i,x〉‖ψ2 ≤‖AΣX̃‖ψ2‖BΣX̃‖ψ2 ,

which we denote by σAB := ‖AΣX̃‖ψ2‖BΣX̃‖ψ2 for short. Since E[Σ̃] = Σ, by
Lemma 20 we have for any u > 0, with m(t) = t ∨ t2,

P

(∣∣〈Σ̃B�
Σx,A

�
Σy

〉
−

〈
ΣB�

Σx,A
�
Σy

〉∣∣ ≥ σABm

(√
1 + u

N

))
≤ exp(−u).

The size of the nets can be bounded as |N | ≤ 12dA and |M| ≤ 12dB , see [54,
Corollary 4.2.13]. Thus, considering all pair (x,y) ∈ N ×M and using the union
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bound we get, for some universal constant C (bounded e.g. by log(12) + 1),

P

(∣∣∣ sup
x∈N ,y∈M

〈
Σ̃B�

Σx,A
�
Σy

〉
−
〈
ΣB�

Σx,A
�
Σy

〉∣∣∣≥CσABm

(√
u+ (dA + dB)

N

))
≤ |N | |M| exp (−u− (dA + dB) log(12))

≤ exp ((dA + dB) log(12)− u− (dA + dB) log(12)) .

Using the δ-net approximation bound (A.3) we thus get

P

(
‖AΣ(Σ̃−Σ)B�

Σ‖2 ≥ 2CσABm

(√
u+ (dA + dB)

N

))

≤P

⎛⎝∣∣∣ sup
x∈N
y∈M

〈
Σ̃B�

Σx,A
�
Σy

〉
−
〈
ΣB�

Σx,A
�
Σy

〉∣∣∣≥CσABm

(√
u+ (dA + dB)

N

)⎞⎠ .

The result now follows from ‖AΣX̃‖ψ2 = ‖AX̃‖ψ2 and ‖BΣX̃‖ψ2 = ‖BX̃‖ψ2

and thus σAB = ‖AX̃‖ψ2‖BX̃‖ψ2 .

Proof of Lemma 7. We use the shorthand notation λi := λi(Σ) and λ̂i :=

λ̂i(Σ). By the definition of δil we have

δil = |λ̂i−1 − λi| ∧ |λl − λ̂l+1| ≥ (λ̂i−1 − λi) ∧ (λl − λ̂l+1)

≥
(
(λi−1 − λi) + (λ̂i−1 − λi−1)

)
∧
(
(λl − λl+1) + (λl+1 − λ̂l+1)

)
,

so it suffices to show λ̂i−1 − λi−1 ≥ −(λi−1 − λi)/2 and λl+1 − λ̂l+1 ≥ −(λl −
λl+1)/2. Note that if i = 1 or l = rank(Σ), the corresponding gap is trivial
and no concentration is required. Hence, we can focus on the case i > 1 and
l < rank(Σ). Using [48, Proposition 3.13], we obtain that for any u > 0 a relative
eigenvalue bound

λ̂i−1 − λi−1 < −λi−1 − λi

2
, (A.5)

holds with probability at most exp(−u), provided

N > CK

(
λi−1

λi−1 − λi
∨ 1

)⎛⎝i−1∑
j=1

λj

λj − λi−1 +
λi−1−λi

2

∨ u
λi−1

λi−1 − λi

⎞⎠ . (A.6)

Furthermore, since λi−1 − (λi−1 − λi)/2 < λj for all j ≥ i − 1, the summands
in the sum in (A.6) are increasing, and we thus get

i−1∑
j=1

λj

λj − λi−1 +
λi−1−λi

2

≤ (i− 1)
2λi−1

λi−1 − λi
� rank(Σ)

λi−1

λi−1 − λi
.
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Thus, (A.6) is implied by the requirement on N in the statement. Similarly,
using [48, Proposition 3.10] we get that

λ̂l+1 − λl+1 >
λl − λl+1

2
(A.7)

holds with probability at most exp(−u), provided

N > CK

(
λl+1

λl − λl+1
∨ 1

)⎛⎝ D∑
j=l+1

λj

λl+1 − λj +
λl−λl+1

2

∨ u
λl+1

λl − λl+1

⎞⎠ . (A.8)

As before, we have λj − (λl − λl+1)/2 < λl+1 for all j ≥ l + 1, so that

D∑
j=l+1

λj

λl+1 − λj +
λl−λl+1

2

≤ (rank(Σ)− l)
2λ�+1

λl − λl+1
� rank(Σ)

λl+1

λl − λl+1
.

It follows that (A.8) is implied by the requirement on N in the statement.
Taking the complementary event of the union of events (A.5) and (A.7), which

holds with probability 1− 2 exp(−u), we get λ̂i−1 − λi−1 ≥ −(λi−1 − λi)/2 and

λl+1 − λ̂l+1 ≥ −(λl − λl+1)/2 and thus the result is proven.

A.3. Proofs for Section 3

Lemma 21. If ‖
√
Σ†(Σ− Σ̂)

√
Σ†‖2 < 1, then ker(Σ̂) ∩ Im(Σ) = {0}.

Proof. We prove the statement by contraction. Assume there exists a nonzero
v ∈ ker(Σ̂) ∩ Im(Σ). Since v ∈ Im(Σ) we have v ∈ Im(

√
Σ†) implying the

existence of a u ∈ S
D−1 with v =

√
Σ†u (possibly after scaling v). Using the

properties of u and v, we get a contradiction by

1 = v�Σv = v�(Σ−Σ̂)v = u�
√
Σ†(Σ− Σ̂)

√
Σ†u ≤

∥∥√Σ†(Σ− Σ̂)
√
Σ†

∥∥
2
<1.

Proof of Theorem 10. Assume for now ‖
√
Σ†(Σ− Σ̂)

√
Σ†‖2 < 1

2 which will be
ensured later by concentration arguments. Conditioned on this event, Lemma 21
implies ker(Σ̂) ∩ Im(Σ) = {0}. Since Im(Σ̂) ⊂ Im(Σ) holds almost surely,

this implies Im(Σ) = Im(Σ̂) almost surely. Denote now Δ := Σ̂ − Σ. We

want to use a von Neumann series argument to express Σ̂† in terms of Σ† and
the corresponding finite sample perturbation. Recall that for general symmetric
matrices U and V with Im(U) = Im(V), we have (UV)† = V†U† [50, Corollary
1.2]. Letting PΣ be the orthogonal projection onto Im(Σ), and QΣ = IdD−PΣ,
we can thus write

Σ̂† = (Σ+Δ)† =
(
Σ1/2(PΣ +

√
Σ†Δ

√
Σ†)Σ1/2

)†

=
√
Σ†(PΣ +

√
Σ†Δ

√
Σ†)†

√
Σ†
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=
√
Σ†(IdD −QΣ +

√
Σ†Δ

√
Σ†)†

√
Σ†

=
√
Σ†(IdD +

√
Σ†Δ

√
Σ†)−1

√
Σ†,

where we used the additivity of the Moore-Penrose inverse for matrices with
orthogonal non-trivial eigenspaces in the last equality. Using a von Neumann
series expansion for the second term, we obtain

Σ̂† =
√
Σ†(IdD +

√
Σ†Δ

√
Σ†)†

√
Σ† =

√
Σ†

∞∑
k=0

(−
√
Σ†Δ

√
Σ†)k

√
Σ†

= Σ† +
√
Σ†

∞∑
k=1

(−
√
Σ†Δ

√
Σ†)k

√
Σ†,

where we used
√
Σ†

√
Σ† = Σ† in the last equality. Subtracting Σ†, and multi-

plying by A from the right and B� from the left, it follows that

A(Σ̂† −Σ†)B� = A
√
Σ†

∞∑
k=1

(−
√
Σ†Δ

√
Σ†)k

√
Σ†B�

= −AΣ†ΔΣ†B� +AΣ†Δ
√
Σ†

∞∑
k=0

(−
√
Σ†Δ

√
Σ†)k

√
Σ†ΔΣ†B�. (A.9)

The rest of the proof requires to apply Lemma 2 multiple times to concentrate Δ
when multiplied by different matrices from left and right. More specifically, since
‖
√
Σ†X̃‖2ψ2

� ‖Cov(
√
Σ†X)‖2 � 1, we can assume the regime N > rank(Σ)+u

by the assumption on N in Theorem 10. Then, we have by Lemma 2 with
probability 1− 4 exp(−u)

‖AΣ†ΔΣ†B�‖2 � ‖AΣ†X̃‖ψ2‖BΣ†X̃‖ψ2

√
rank(Σ) + u

N
,

‖AΣ†Δ
√
Σ†‖2 � ‖AΣ†X̃‖ψ2‖

√
Σ†X̃‖ψ2

√
rank(Σ) + u

N
,

‖
√
Σ†ΔΣ†B�‖2 � ‖BΣ†X̃‖ψ2

‖
√
Σ†X̃‖ψ2

, and ‖
√
Σ†Δ

√
Σ†‖ ≤ 1

2
,

(A.10)

whenever N > C(rank(Σ) + u)‖
√
Σ†X̃‖4ψ2

(we used properties of the sub-

Gaussian norm in Lemma 18 to get ‖
√
Σ†X̃‖2ψ2

≥ C‖Cov(
√
Σ†X)‖2 = C)

and thus ‖
√
Σ†X̃‖2ψ2

� ‖
√
Σ†X̃‖4ψ2

). Using identity (A.9), combining the above
bounds and adjusting the uniform constant C, the desired result holds with
probability 1− exp(−u).

Proof of Theorem 13. For the covariance estimation bound denote first Σ̃ =
N−1

∑N
i=1 X̃iX̃

�
i , where X̃i = Xi − EX, and decompose the error, as in the
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proof of Lemma 2 into

‖A(Σ̂−Σ)B�‖F = ‖AΣ(Σ̂−Σ)B�
Σ‖F

≤ ‖AΣ(Σ̃−Σ)B�
Σ‖F +

∥∥∥ 1

N

N∑
i=1

AΣX̃i

∥∥∥
F

∥∥∥ 1

N

N∑
i=1

BΣX̃i

∥∥∥
F
.

The second term is again of higher order, with high probability, and can thus
be disregarded. For the first term, define random matrices ξi = AΣX̃iX̃

�
i B�

Σ −
AΣΣB�

Σ. First note E[ξi] = 0, and

‖ξi‖F ≤ ‖AΣX̃iX̃
�
i B�

Σ‖F + ‖A�
ΣΣB�

Σ‖F
= ‖AΣX̃i‖2‖BΣX̃i‖2 + E‖AΣX̃X̃�B�

Σ‖F ≤ 2CACB.

Moreover, ξi take values in the Hilbert space (RdA×dB , ‖·‖F ). Thus, by [6, Sec-
tion 2.4], for every u > 0 we have∥∥∥∥ 1

N

N∑
i=1

ξi

∥∥∥∥
F

≤ 2
√
2CACBu√

N
,

with probability at least 1 − exp(−u2). The conclusion follows after adjusting
the confidence level u to account for the higher order term and the union bound.

The first steps for establishing the bound for precision matrices are the same
as in the proof of Theorem 10. Indeed, the only differences are in the following
lines of inequalities. Instead of (A.10), we have

∥∥AΣ†ΔΣ†B�∥∥
F

� C†
AC

†
B

√
1 + u

N
, and

∥∥√Σ†ΔΣ†B�∥∥
F

� C†
B

√
Θ

√
1 + u

N
;

∥∥AΣ†Δ
√
Σ†

∥∥
F

� C†
A√
Θ
, and

∥∥√Σ†Δ
√
Σ†

∥∥
F
≤ 1

2
,

using the just proven covariance bounds. The claim now follows by using this
together with (A.9), as in the proof of Theorem 10.

A.4. Proofs for Section 4

We first need a bound for r = Cov (X,Y ), and a concentration around the finite

sample estimate r̂ = N−1
∑N

i=1(Xi − μ̂X)(Yi − μ̂Y ).

Lemma 22. Let A ∈ R
k×D. If X ∈ R

D, Y ∈ R are sub-Gaussian, we have
‖Ar‖2 � ‖AX̃‖ψ2‖Ỹ ‖ψ2 . Furthermore, with probability at least 1− exp(−u) we
have

‖A(r− r̂)‖2 � ‖AX̃‖ψ2‖Ỹ ‖ψ2

(√
k + u

N
∨ k + u

N

)
.
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Proof. By Lemma 18 we have Var
(
v�AX

)
� ‖AX̃‖2ψ2

, and Var (Y ) � ‖Ỹ ‖2ψ2
,

which implies

‖Ar‖2 = ‖Cov (AX,Y )‖2 = sup
v∈Sk−1

v� Cov (AX,Y ) = sup
v∈Sk−1

Var
(
v�AX,Y

)
≤ sup

v∈Sk−1

√
Var (v�AX)

√
Var (Y ) � ‖AX̃‖ψ2‖Ỹ ‖ψ2 .

Define the random variable Zi := X̃iỸi − Cov (X,Y ) with EZi = 0. We write

A(r− r̂) =
1

N

N∑
i=1

AZi −
( 1

N

N∑
i=1

AX̃i

)( 1

N

N∑
i=1

Ỹi

)
.

As in the proof of Lemma 2, by applying Lemma 20 it follows that the second
term is of higher order. On the other hand, the first term is an empirical mean
of a sub-exponential centered variable AZi,

‖AZi‖ψ1
= ‖AX̃iỸi − Cov (AX,Y )‖ψ1 � ‖AX̃iỸi‖ψ1

� sup
v∈Sk−1

‖v�AX̃iỸi‖ψ1 � ‖AX̃i‖ψ2‖Ỹi‖ψ2 ,

where we use the centering property of the sub-exponential norm, and the
bound for the sub-exponential norm by the product of sub-Gaussian norms
(Lemma 18). Applying now Lemma 20, the statement follows.

Proof of Lemma 14. We first note that ‖
√
Σ†X‖2ψ2

� ‖Cov(
√
Σ†X)‖2 ≥ 1,

so by choosing C in the statement large enough, we assume the regime N >
(rank(Σ) + u) in the following. We begin with a bound for ‖P(Σ†r− Σ̂†r̂)‖2.

‖P(Σ†r− Σ̂†r̂)‖2 ≤ ‖P(Σ†−Σ̂†)Pr‖2+‖P(Σ†−Σ̂†)Qr‖2
+‖PΣ̂†P(r̂− r)‖2 + ‖PΣ̂†Q(r̂− r)‖2

≤ ‖P(Σ†−Σ̂†)P‖2‖Pr‖2 + ‖P(Σ†−Σ̂†)Q‖2‖Qr‖2
+ ‖PΣ̂†P‖2‖P(r̂− r)‖2+‖PΣ̂†Q‖2‖Q(r̂− r)‖2.

By Lemma 22 we have ‖Qr‖2 ≤ ‖QX̃‖ψ2‖Ỹ ‖ψ2 , ‖Pr‖2 ≤ ‖PX̃‖ψ2‖Ỹ ‖ψ2 .
Furthermore, since r ∈ Im(Σ), we can rewrite ‖Q(r− r̂)‖2 = ‖UQ(r− r̂)‖2
and ‖P(r− r̂)‖2 = ‖UP(r− r̂)‖2, where the rows of UQ ∈ R

dQ×D and UP ∈
R

dP×D contain orthonormal bases for Im(QΣ) and Im(PΣ), respectively. Us-
ing Lemma 22 and dQ ∨ dP ≤ rank(Σ), we have with probability at least
1− 2 exp(−u)

‖Q(r− r̂)‖2 � ‖QX̃‖ψ2‖Ỹ ‖ψ2

√
rank(Σ) + u

N
,

‖P(r− r̂)‖2 � ‖PX̃‖ψ2‖Ỹ ‖ψ2

√
rank(Σ) + u

N
.

(A.11)
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Furthermore, by Theorem 10 whenever N > C(rank(Σ) + u)‖
√
Σ†X̃‖4ψ2

we get
with probability 1− 2 exp(−u) for each B ∈ {P,Q}

‖P(Σ†−Σ̂†)B‖2 � ‖PΣ†X̃‖ψ2‖BΣ†X̃‖ψ2

√
rank(Σ) + u

N
. (A.12)

Conditioned on all four events we now have

‖P(Σ† − Σ̂†)P‖2‖Pr‖2 � ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κ(P, X)

√
rank(Σ) + u

N
,

‖P(Σ† − Σ̂†)Q‖2‖Qr‖2 � ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κ(Q, X)

√
rank(Σ) + u

N
.

Moreover, since N > rank(Σ) + u as stated in the beginning, we get

‖PΣ̂†P‖2‖P(r̂− r)‖2 ≤
(
‖PΣ†P‖2 + ‖P(Σ̂† −Σ†)P‖2

)
‖P(r̂− r)‖2

� ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κ(P, X)

√
rank(Σ) + u

N
,

and

‖PΣ̂†Q‖2‖Q(r̂− r)‖2 ≤
(
‖PΣ†Q‖2 + ‖P(Σ̂† −Σ†)Q‖2

)
‖Q(r̂− r)‖2

� ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κ(Q, X)

√
rank(Σ) + u

N
,

where we use property (3) in Lemma 18, exploiting the identity Σ† = Σ†ΣΣ†,
and using Lemma 19 in the second line. Combining the bounds and conditioning
on the events above, we have that with probability at least 1− 4 exp(−u)

‖P(Σ†r− Σ̂†r̂)‖2 � ‖Ỹ ‖ψ2‖PΣ†X̃‖ψ2

√
κ(P, X) ∨ κ(Q, X)

√
rank(Σ) + u

N
,

ifN > C(rank(Σ)+u)(‖
√
Σ†X̃‖4ψ2

). Adjusting the constant C to account for the
change in the probability constant and the requirement on N , the claim follows.
The proof for the bound on ‖QΣ̂†r‖2 follows analogous lines or argument.

Proof of Corollary 15. Assume for the moment b̂�b > 0. In this case b and Pb̂

are co-linear since Pb̂ = 〈d, b̂〉d. Therefore, d = b
‖b‖2

= Pb̂

‖Pb̂‖
2

, which implies

‖P(d̂− d)‖2 = ‖Pb̂‖2
∣∣∣∣ 1

‖b̂‖2
− 1

‖Pb̂‖2

∣∣∣∣ ≤ ∣∣∣∣‖Pb̂‖2 − ‖b̂‖2
‖b̂‖2

∣∣∣∣ ≤ ‖Qb̂‖2
‖b̂‖2

.

Since Qd = 0 we now have

‖d̂− d‖2 =

√
‖P(d̂− d)‖22 + ‖Qd̂‖22 ≤

√
2
‖Qb̂‖2
‖b̂‖2

≤
√
2

‖Qb̂‖2
‖b‖2 − ‖P(b̂− b)‖2

.
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Therefore, it suffices to ensure ‖P(b̂ − b)‖2 < 1
2‖b‖2, which would also give

b̂�b > 0. To that end, Lemma 14 gives that ‖P(b̂ − b)‖2 ≤ 1
2‖b‖2 holds with

probability at least 1− exp(−u) provided

N > C(rank(Σ) + u)

(
‖
√
Σ†X̃‖4ψ2

∨
‖Ỹ ‖2ψ2

‖PΣ†X̃‖2ψ2
κPQ

‖b‖22

)
.

The result follows by bounding ‖Qb̂‖2 through Lemma 14.

Proof of Corollary 16. We first note

‖Ỹ ‖ψ2 ≤ ‖f(a�X)− Ef(a�X)‖ψ2 + σζ .

Furthermore, we can use a bounded difference inequality for unbounded spaces,
see [31, Theorem 1], to get ‖f(a�X)− Ef(a�X)‖ψ2 � L‖a�X‖ψ2 �

√
KLσP,

where we used the strict sub-Gaussianity in (2.5) and a�Σa = σ2
P. Therefore,

‖Ỹ ‖ψ2 � KLσP + σζ .

Using κ(P, X) � K2, ‖
√
Σ†X̃‖ψ2 =

√
K, and plugging in the bounds on ‖Ỹ ‖ψ2 ,

as well as ‖PΣ†X̃‖ψ2 =
√
K

σP
and ‖QΣ†X̃‖ψ2 =

√
K‖QΣ†Q‖2, the claim fol-

lows.

Lemma 23. If Z is sub-Gaussian and E an event with P(E) > 0, then Z|E is
also sub-Gaussian.

Proof. Assume without loss of generality that Z ∈ R. The argument for vectors
then follows by the definition. We use the characterization of sub-Gaussianity
by the moment bound [54, Proposition 2.5.2, b)]. Let p ≥ 1. By the law of total
expectation it follows

E[|Z|p] = E[|Z|p|E]P(E) + E[|Z|p|Ec]P(Ec) ≥ E[|Z|p|E]P(E).

Dividing by P(E) and using the monotonicity of the p-th root yields

(E[|Z|p|E])1/p ≤ (E[|Z|p])1/p
P(E)1/p

�
‖Z‖ψ2

√
p

P(E)
,

where we used P(E) ≤ 1 and the sub-Gaussianity of Z in the last inequality.

Proof of Theorem 17. Using 0 ≤ maxs=±1〈su1(M̂J),a〉 ≤ 1, we first compute

min
s=±1

‖su1(M̂J)− a‖22 = min
s=±1

2
(
1− 〈su1(M̂J),a〉

)
≤ 2

(
1− 〈u1(M̂J ),a〉2

)
≤ 2‖Qu1(M̂J)‖22.

The Davis-Kahan Theorem [7, Theorem 7.3.1] for M̂J and P = aa� then gives

‖Qu1(M̂J )‖22=‖Qu1(M̂J )u1(M̂J)
�‖2F ≤ ‖Q(P− M̂J)‖2F

λ1(M̂J )2
=

‖QM̂J‖2F
λ1(M̂J )2

.

(A.13)



584 Ž. Kereta and T. Klock

It remains to find a concentration bound for the matrix QM̂J around zero and
a lower bound for the leading eigenvalue λ1(M̂J ). Now let π : [|IJ |] → IJ be
bijective and introduce the matrix

B̂J =
[√

ρ̂J,π(1)b̂J,π(1)| . . . |
√
ρ̂J,π(|IJ |)b̂J,π(|IJ |)

]
∈ R

D×|IJ |,

satisfying M̂J = B̂JB̂
�
J , and thus λ1(M̂J) = λ1(B̂JB̂

�
J ). Using ‖GH‖F ≤

‖G‖2‖H‖F and ‖G‖F = ‖G�‖F , which hold for arbitrary G and H, yields

‖QM̂J‖2F = ‖QB̂JB̂
�
J ‖2F ≤ ‖B̂J‖22‖QB̂J‖2F ≤ λ1(M̂J )‖QB̂J‖2F .

By Lemma 23, conditioning on a sub-Gaussian random vector gives a sub-
Gaussian random vector. Thus, by (4.4) we have simultaneously for all � ∈ IJ

‖Qb̂J,�‖22 � ‖ỸJ,�‖2ψ2
‖QΣ†

J,�X̃J,�‖2ψ2
κJ,�

rank(ΣJ,�) + log(|IJ |) + u

NJ,�
, (A.14)

with probability at least 1−exp(−u), provided NJ,� > C(rank(ΣJ,�)+log(|IJ |)+
u)K4

J,� for all � ∈ IJ . By definition of IJ , we have NJ,� > αNJ−1, and thus the
previous condition is satisfied whenever for all � ∈ IJ

N

J
>

C(rank(ΣJ,�) + log(J) + u)K4
J,�

α
,

which is implied by N > CJK4
J(rank(Σ) + log(J) + u)/α. Under the same

conditions and with similar probability we obtain

‖QM̂J‖2F ≤ λ1(M̂J )
∑
�∈IJ

ρ̂J,�‖Qb̂J,�‖22

� λ1(M̂J )
∑
�∈IJ

ρ̂J,�‖ỸJ,�‖2ψ2
‖QΣ†

J,�X̃J,�‖2ψ2
κJ,�

rank(Σ) + log(J) + u

NJ,�

� λ1(M̂J )(rank(Σ) + log(J) + u)

αNJ

∑
�∈IJ

ρ̂J,�‖QΣ†
J,�X̃J,�‖2ψ2

κJ,�,

where we used NJ,� > αNJ−1 and ‖ỸJ,�‖ψ2 � |RJ,�| = J−1 (definition of RJ,�)

in the last inequality. To bound λ1(M̂J ) from below, we note that on the same
event where bound (A.14) holds, we also have for all � ∈ IJ

‖P(b̂J,� − bJ,�)‖22 � ‖ỸJ,�‖2ψ2
‖PΣ†

J,�X̃J,�‖2ψ2
κJ,�

rank(ΣJ,�) + log(J) + u)

NJ,�

� rank(Σ) + log(J) + u

αNJ
‖PΣ†

J,�X̃J,�‖2ψ2
κJ,�

(A.15)

Thus, multiplying M̂J from left and right by a and using (A), we obtain

λ1(M̂J)≥a�M̂Ja=
∑
�∈IJ

ρ̂J,�〈a, b̂J,�〉2 =
∑
�∈IJ

ρ̂J,�

(
‖bJ,�‖22 −

∥∥∥P(bJ,� − b̂J,�)
∥∥∥2
2

)

≥
∑
�∈IJ

ρ̂J,�

(
‖bJ,�‖22 −

C(rank(Σ) + log(J) + u)

αNJ

∥∥∥PΣ†
J,�X̃J,�

∥∥∥ ‖2ψ2
κJ,�

)
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for some universal constant C > 0. The result follows by plugging the bounds
on ‖QM̂J‖2F and λ1(M̂J) into (A.13), and using the definition of εN,J,u.
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588 Ž. Kereta and T. Klock

Multivariate Analysis 139, 266–282. MR3349492
[48] Reiß, M. and Wahl, M. (2020). Nonasymptotic upper bounds for the

reconstruction error of PCA. The Annals of Statistics 48, 2, 1098–1123.
MR4102689

[49] Srivastava, N. and Vershynin, R. (2013). Covariance estimation for
distributions with 2 + ε moments. The Annals of Probability 41, 5, 3081–
3111. MR3127875

[50] Tian, Y. and Cheng, S. (2004). Some identities for Moore–Penrose in-
verses of matrix products. Linear and Multilinear Algebra 52, 6, 405–420.
MR2102196

[51] van Wieringen, W. N. (2019). The Generalized Ridge Estimator of the
Inverse Covariance Matrix. Journal of Computational and Graphical Statis-
tics 28, 4, 932–942. MR4045859

[52] Vershynin, R. (2012a). How close is the sample covariance matrix to the
actual covariance matrix? Journal of Theoretical Probability 25, 3, 655–686.
MR2956207

[53] Vershynin, R. (2012b). Introduction to the non-asymptotic analysis of
random matrices. 210–268. MR2963170

[54] Vershynin, R. (2018). High-dimensional probability: An introduction
with applications in data science. Vol. 47. Cambridge University Press.
MR3837109
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