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Active inference is a first principle account of how autonomous agents
operate in dynamic, nonstationary environments. This problem is also
considered in reinforcement learning, but limited work exists on com-
paring the two approaches on the same discrete-state environments. In
this letter, we provide (1) an accessible overview of the discrete-state
formulation of active inference, highlighting natural behaviors in active
inference that are generally engineered in reinforcement learning, and
(2) an explicit discrete-state comparison between active inference and re-
inforcement learning on an OpenAI gym baseline. We begin by provid-
ing a condensed overview of the active inference literature, in particular
viewing the various natural behaviors of active inference agents through
the lens of reinforcement learning. We show that by operating in a
pure belief-based setting, active inference agents can carry out epistemic
exploration—and account for uncertainty about their environment—in
a Bayes-optimal fashion. Furthermore, we show that the reliance on an
explicit reward signal in reinforcement learning is removed in active in-
ference, where reward can simply be treated as another observation we
have a preference over; even in the total absence of rewards, agent behav-
iors are learned through preference learning. We make these properties
explicit by showing two scenarios in which active inference agents can in-
fer behaviors in reward-free environments compared to both Q-learning
and Bayesian model-based reinforcement learning agents and by placing
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zero prior preferences over rewards and learning the prior preferences
over the observations corresponding to reward. We conclude by noting
that this formalism can be applied to more complex settings (e.g., robotic
arm movement, Atari games) if appropriate generative models can be for-
mulated. In short, we aim to demystify the behavior of active inference
agents by presenting an accessible discrete state-space and time formu-
lation and demonstrate these behaviors in a OpenAI gym environment,
alongside reinforcement learning agents.

1 Introduction

Active inference provides a framework (derived from first principles) for
solving and understanding the behavior of autonomous agents in situ-
ations requiring decision-making under uncertainty (Friston, FitzGerald,
Rigoli, Schwartenbeck, & Pezzulo, 2017; Friston, Rosch, Parr, Price, & Bow-
man, 2017). It uses the free energy principle to describe the properties of
random dynamical systems (such as an agent in an environment), and by
minimizing expected free energy over time, Bayes-optimal behavior can be
obtained for a given environment (Friston et al., 2014; Friston, 2019). More
concretely, this optimal behavior is determined by evaluating evidence
(i.e., marginal likelihood) under an agent’s generative model of outcomes
(Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2016). The agent’s
generative model of the environment is an abstraction, which assumes that
certain internal (hidden) states give rise to these outcomes. One goal of the
agent is to infer what these hidden states are, given a set of outcomes. The
generative model also provides a way, through searching and planning, to
form beliefs about the future. Thus, the agent can make informed decisions
over which sequence of actions (i.e., policies) it is most likely to choose.
In active inference, due to its Bayesian formulation, the most likely poli-
cies lead to Bayes-optimal outcomes (i.e., those most coherent with prior
beliefs). This formulation has two complementary objectives: infer Bayes-
optimal behavior, and optimize the generative model based on the agent’s
ability to infer which hidden states gave rise to the observed data. Both
can be achieved, simultaneously, by minimizing free energy functionals.
This free energy formulation gives rise to realistic behaviors, such as nat-
ural exploration-exploitation trade-offs, and, by being fully Bayesian, is
amenable to online learning settings, where the environment is nonstation-
ary. This follows from the ability to model uncertainty over contexts (Friston
et al., 2015; Parr & Friston, 2017).

Active inference can also be seen as providing a formal framework for
jointly optimizing action and perception (Millidge, Tschantz, Seth, & Buck-
ley, 2020). In the context of machine learning, this is often referred to as
planning as inference (Attias, 2003; Botvinick & Toussaint, 2012; Baker &
Tenenbaum, 2014; Millidge, Tschantz, Seth, et al., 2020), and in the case
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of non-equilibrium physics, it is analogous to self-organization or self-
assembly (Crauel & Flandoli, 1994; Seifert, 2012; Friston, 2019).

The main contributions of active inference, in contrast to analogous re-
inforcement learning (RL) frameworks, follow from its commitments to a
pure belief-based scheme. Reinforcement learning is a broad term used in
different fields. To make meaningful comparisons between active inference
and reinforcement learning, we commit to the definition of reinforcement
learning in Sutton and Barto (1998, 2018): “Reinforcement learning is learn-
ing what to do—how to map situations to actions—so as to maximize a nu-
merical reward signal.” RL algorithms, under this definition, can be model
based or model free. Model-based methods learn a model of environmental
dynamics, which is used to infer a policy that maximizes long-term reward,
while model-free RL estimates a policy that maximizes long-term reward
directly from trajectory data. Throughout this letter, RL refers to both model
based and model free unless stated otherwise. This definition rests on the
reward hypothesis: that “any goal or purpose can be well thought of as max-
imization of the expected value of the cumulative sum of a received scalar
signal (reward)” (Sutton & Barto, 2018). Here, reward is, by definition, some
outcome that reinforces behavior, and hence a circular definition of reward
behavior. For example going to the cafe and buying coffee can be explained
from two perspectives: (1) a cup of coffee in the morning is intrinsically re-
warding and therefore I go out to the cafe to get the coffee, and (2) going
to the cafe to get coffee means, tautologically, that coffee is rewarding. In
short, rewards reinforce behaviors that secure rewards. Traditionally, these
(model-free) RL algorithms operate directly on the state of the environment,
but (model-based) RL algorithms that operate on beliefs also represent an
active area of research (Igl, Zintgraf, Le, Wood, & Whiteson, 2018).

Conversely, in active inference, an agent’s interaction with the environ-
ment is determined by action sequences that minimize expected free energy
(and not the expected value of a reward signal). Additionally, unlike in rein-
forcement learning, the reward signal is not differentiated from other types
of sensory outcomes. That is, any type of outcome may be more or less pre-
ferred. This means that the implicit reward associated with any outcome is a
feature of the creature seeing the observation, not the environment they in-
habit. This may be different for different agents or even for the same agent
at different points in time. This highlights that the two frameworks have
fundamentally different objectives: reward maximization in reinforcement
learning and free energy minimization in active inference.

In this letter, we reveal circumstances in which behavior might be the
same and when it may differ under these two distinct objectives. We show
that the main contributions of active inference, in comparison to reinforce-
ment learning, are that (1) reward functions (i.e., prior preferences) are not
always necessary because any policy has an epistemic value, even in the ab-
sence of prior preferences; (2) agents can learn their own reward function
and this becomes a way of describing how the agent expects itself to behave,
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as opposed to getting something from the environment; (3) a principled
account of epistemic exploration and intrinsic motivation as minimizing
uncertainty (Parr & Friston, 2017; Schwartenbeck et al., 2019); and (4) in-
corporating uncertainty as a natural part of belief updating (Parr & Friston,
2017). Why are these contributions of interest? In standard reinforcement
learning, the reward function defines the agent’s goal and allows it to
learn how to best act within the environment (Sutton & Barto, 1998).
However, defining the reward function is difficult; if it is a specific sig-
nal from the environment based on action, then is it unanimously good in
that environment—for example, whether an agent controlling the thermo-
stat should get a positive reward only for turning on the heating during
winter. Consequently, crafting appropriate reward functions is not easy,
and it is possible for agents to learn suboptimal actions if the reward
function is poorly specified (Amodei et al., 2016). However, active infer-
ence bypasses this problem by replacing the traditional reward function,
used in reinforcement learning, with prior beliefs about preferred out-
comes. This causes the agent to act in a way—via the beliefs it holds—such
that the observed outcomes match prior preferences. This is useful when
we have imprecise or no prior preferences since active inference endows
agents with the ability to learn prior preferences from interacting with the
environment itself by learning and empirical prior distribution over pre-
ferred outcomes. In other words, an agent can learn the kinds of outcomes
it can achieve, and these become its prior preferences (in virtue of the fact
that these outcomes are achievable, they underwrite the agent’s viability in
that environment). This way of defining the reward function (prior prefer-
ences) highlights that whether a state is rewarding (or not) is a function of
the agent, not the environment. This reward function conceptualization is
distinct from reward functions under reinforcement learning.

Another challenge within reinforcement learning is balancing the ra-
tio between exploration and exploitation: What actions should the agent
take at any given point in time? Should the agent continue to explore
and find more valuable actions or exploit its (current) most valuable ac-
tion sequence? Many different algorithms have been used to address this,
including ε-greedy (Vermorel & Mohri, 2005; Mnih et al., 2013, 2016), action
selection based on action-utility (Sutton, 1990) and counter-based strategies
(Wiering & Schmidhuber, 1998; Tijsma, Drugan, & Wiering, 2016). How-
ever, even with these exploratory mechanisms in place, most reinforcement
learning formulations call on a temperature hyperparameter to weight ex-
trinsic reward (from the environment) against the intrinsic motivation (from
the agent). There is no such hyperparameter in active inference, although
the precision of various priors plays an analogous role, because the dis-
tinction between extrinsic value (i.e., expected reward) and intrinsic value
(i.e., intrinsic motivation) is just one way of decomposing expected free en-
ergy. In active inference, everything minimizes free energy, including hy-
perparameters. Usually, these hyperparameters transpire to be precise over
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various beliefs, which allows for a natural trade-off between epistemic ex-
ploration and pragmatic behavior. This means that all the required ma-
chinery is in play from the start but should be added to the reinforcement
framework (by definition) only if it helps maximize expected return. Conse-
quently, state-of-the-art reinforcement learning approaches can be regarded
as a series of refinements to the base algorithm that help resolve problems as
they are encountered, including the need to marginalize out hyperparame-
ters instead of defining particular values (Cesa-Bianchi, Gentile, Lugosi, &
Neu, 2017).

Here, we unpack these properties of active inference, with appropriate
ties to the reinforcement learning literature, under the discrete state-space
and time formulation, thereby providing a brief overview of the theory. Fur-
thermore, we demonstrate these properties, and points of contact, with re-
inforcement learning agents on a series of experiments using a modified
FrozenLake OpenAI baseline. This is purely an illustration of the concep-
tual premises, not a demonstration of their implications. Thus, while our
simulations of reinforcement learning could have included more complex
(i.e., context-aware) aspects, such as in Cao and Ray (2012), Lloyd and Leslie
(2013), and Padakandla and Bhatnagar (2019). These approaches describe
various ways to perform inference without explicit reference to their impact
on behavior. Indeed, as O’Donoghue, Osband, and Ionescu (2020) showed,
state-of-the-art approaches, which can be seen as framing reinforcement
learning as probabilistic inference, make simplifications for practical rea-
sons. These subtle modeling choices that trade off tractability for accuracy
can result in suboptimal behavior (e.g., failing to account for Q-value un-
certainty and ensuing “dithering” behavior). Active inference avoids this
ambiguity by clearly defining how latent variable models are constructed
to solve partially observable Markov decision process problems and how
inference should proceed, using gradient descent on expected free energy.
This allows the agent to consider the effect of its own actions on future re-
wards (i.e., preferred outcomes) when evaluating the expected free energy
of all plausible policies (i.e., action trajectories), based on the anticipated
consequences of those policies. However, these are Bellman–optimal for
one time step but Bayes–optimal (i.e., realize prior beliefs and minimize
free energy) for distal time horizons. Additionally, by minimizing expected
free energy, the agent balances exploration, and exploitation resulting in a
Bayes-optimal arbitration between the two, which may not be reward max-
imizing from an RL perspective. In contrast to RL, active inference accounts
for epistemic uncertainty by operating in an explicitly belief-based frame-
work (Levine, 2018). Additionally, the conceptual approach of active infer-
ence means that all the appropriate terms, relating to the intrinsic value
of information, are in play from the start but should be added to the rein-
forcement framework (by definition) only if they help maximize long-term
reward. Consequently, state-of-the-art reinforcement learning approaches
can be regarded as a series of refinements to the base algorithm that help
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resolve problems as they are experienced. Therefore, for explicit behavioral
comparison, we simulate the performance of the two frameworks after re-
moval of the reward signal from the FrozenLake environment, that is, a flat
value function. In this setting, there is no motivation for adding any new in-
formation gain terms because they cannot be justified in terms of increasing
expected value of reward.

This letter has four sections. Section 2 considers the discrete state-space
and time formulation of active inference and provides commentary on
its derivation, implementation, and connections to reinforcement learning.
Section 3 provides a concrete example of the key components of the gener-
ative model and update rules in play, using a modified version of OpenAI’s
FrozenLake environment. Through these simulations, we compared the
performance of three types of agents: active inference, Q-learning (Watkins
& Dayan, 1992) using ε-greedy exploration, and Bayesian model-based re-
inforcement learning using Thompson sampling (Poupart, 2018) in station-
ary and non-stationary environments. We note that while all agents are able
to perform appropriately in a stationary setting, active inference’s ability to
carry out online planning allows for Bayes-optimal behavior in the nonsta-
tionary environment. The simulations demonstrate that in the absence of
a reward signal, the active inference exhibits information-seeking behav-
ior (to build a better model of its environment), in contrast to Q-learning
agents but similar to the Bayesian reinforcement-learning agent. We make
explicit the conceptual differences in reward function under active infer-
ence and reinforcement learning through learning of prior preferences that
enable the agent to settle into its niche. We highlight that from the perspec-
tive of reinforcement learning, this niche might be counterintuitive, that is,
reward minimizing. We conclude with a brief discussion of how this for-
malism could be applied in (more complex) engineering applications (e.g.,
robotic arm movement, Atari games) if the appropriate underlying proba-
bility distribution or generative model can be formulated.

2 Active Inference

2.1 Motivation. Active inference describes how (biological or artificial)
agents navigate dynamic, nonstationary environments (Friston, FitzGerald,
et al., 2017; Friston, Rosch, et al., 2017). It postulates that agents maintain
homeostasis by residing in (attracting) states that minimize surprise (Fris-
ton, Mattout, & Kilner, 2011; Bogacz, 2017).

Definition 1. Surprise is defined as the negative log probability of an outcome.
For this, we introduce a random variable, o ∈ O, that corresponds to a particular
outcome received by the agent, and O is a finite set of all possible outcomes,

S(o) = −log P(o), (2.1)

where P denotes a probability distribution.
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In active inference, the agent determines how to minimize surprise by
maintaining a generative model of the (partially observable) world. This is
necessary because the agent does not have access to a true measurement
of its current state (i.e., the state of the actual generative process). Instead,
it can only perceive itself and the world via outcomes (Friston, FitzGerald,
et al., 2017; Friston, Parr, et al., 2017). This allows the problem to be framed
as a partially observable Markov decision process (POMDP) (Astrom, 1965),
where the generative model allows us to make inferences about true states
given outcomes. In active inference, the agent makes choices based on its
beliefs about these states of the world and not based on the value of the
states (Friston et al., 2016). This distinction is key: in standard model-based
reinforcement learning frameworks, the agent is interested in optimizing
the value function of the states (Sutton & Barto, 1998) that is, making deci-
sions that maximize expected value. In active inference, we are interested
in optimizing a free energy functional of beliefs about states, that is, making
decisions that minimize expected free energy. Put even more simply, in rein-
forcement learning, we are interested in residing in high-value states under
a reward function, while in active inference, we wish to reside in states that
give rise to outcomes that match our prior preferences (i.e., a target distribu-
tion). In one sense, this is a false distinction, as we could interpret a reward
function as a log prior preference or vice versa. However, ensuring con-
sistency with a distribution is different from maximizing reward. The latter
implies we try to spend all of our time in the most rewarding state, while the
former nuances this with an imperative to spend time in states that generate
outcomes proportionate to the prior probability associated with those out-
comes. However, particular RL algorithms, such as SMM (Lee et al., 2019)
also optimize similar objectives of matching state marginal distributions to
some target distribution.

From an implementation perspective, this means replacing the tradi-
tional reward function used in reinforcement learning with prior beliefs
about preferred outcomes. The agent’s prior preferences, log P(o), are de-
fined only to within an additive constant (i.e., a single negative or positive
number). This means that the prior probability of an outcome is a softmax
function of utility, P(o) = σ (U(o)), and therefore depends on relative differ-
ences between rewarding (Chong, Familiar, & Shim, 2016) and unrewarding
(surprising) outcomes. Additionally, by incorporating learning over priors,
active inference agents can be equipped with the ability to learn their own
preferences over outcomes, thereby bypassing the need for an explicit re-
ward signal from the environment and the agent to exhibit self-evidencing
behavior (see section 3).

2.2 Variational Free Energy. Starting from a simple generative model
for outcomes, it is possible to derive a variational free energy formula-
tion, as motivated by Figure 1. This gives the starting point for the full ac-
tive inference derivation. First, we introduce the random variable, s ∈ S, to
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Figure 1: Graphical representation of the generative process (based on true
states, s∗) in the world and the corresponding (internal) generative model
(based on probabilistic beliefs random variables, s, that stand in for true states
that are hidden) that best explain the outcomes, o. This graphic highlights that
the outcomes are shared between the generative process and model.

represent a particular hidden state of the world, where S is a finite set of all
possible (hidden) states.

The generative model abstraction asserts that the world has a true (hid-
den) state s∗, which results in the outcomes o (via the generative process):
s∗ ∈ S. The agent correspondingly has an internal representation of (or dis-
tribution over) s, which it infers from o (via its generative model). The hid-
den state is a combination of features relevant to the agent (e.g., location,
color), and the outcome is the information from the environment (e.g., feed-
back, velocity, reward). By the reverse process of mapping from its hidden
state to the outcomes (through Bayesian model inversion), the agent can ex-
plain the outcomes in terms of how they were caused by hidden states. This
is Bayesian model inversion or inference.

Definition 2. Generative model is defined as a partially observable MDP that
rests on the following (simplified) joint probability: P(o, s) where o ∈ O and s ∈ S
as stated previously. The joint probability can be factorized into a likelihood function
P(o|s) and prior over internal states P(s) (see the supplementary materials for a full
specification of the generative model):

P(o, s) = P(o|s)P(s). (2.2)
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We know that for the agent to minimize its surprise, we need to marginal-
ize over all possible states that could lead to a given outcome. This can be
achieved by using the above factorization:

P(o) =
∑
s∈S

P(o|s)P(s). (2.3)

This is not a trivial task, since the dimensionality of the hidden state (and
sequences of actions) space can be extremely large. Instead, we utilize a vari-
ational approximation of this quantity, P(o), which is tractable and allows
us to estimate quantities of interest.

Definition 3. Variational free energy, F, is defined as the upper bound on surprise
(see definition 1). It is derived using Jensen’s inequality and commonly known as
the (negative) evidence lower bound (ELBO) in the variational inference literature
(Blei, Kucukelbir, & McAuliffe, 2017):

− log P(o) = − log
∑
s∈S

P(o, s) (2.4)

≤ −
∑
s∈S

Q(s) log
P(o, s)
Q(s)

(2.5)

=
∑
s∈S

Q(s) log
Q(s)

P(o, s)
. (2.6)

Here, Q(.) is the variational distribution.
To make the link more concrete, we further manipulate the variational free energy

quantity, F:

F =
∑
s∈S

Q(s) log
Q(s)

P(o, s)
(2.7)

=
∑
s∈S

Q(s) log
Q(s)

P(s|o)P(o)
(2.8)

=
∑
s∈S

Q(s)
(

log
Q(s)

P(s|o)
− log P(o)

)
(2.9)

= DKL[Q(s)||P(s|o)] − log P(o). (2.10)

By rearranging the last equation, the connection between surprise and variational
free energy is made explicit:

− log P(o) = F − DKL[Q(s)||P(s|o)]. (2.11)
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Additionally, we can express variational free energy as a function of these posterior
beliefs in many forms:

F = DKL[Q(s|π )||P(s|o, π )]︸ ︷︷ ︸
evidence bound

− log P(o)︸ ︷︷ ︸
log evidence

(2.12)

= DKL[Q(s|π )||P(s|π )]︸ ︷︷ ︸
complexity

−Es∼Q(s)[log P(o|s)︸ ︷︷ ︸
accuracy

]. (2.13)

Since KL divergences cannot be less than zero, from equation 2.12, we see
that free energy is minimized when the approximate posterior becomes the
true posterior. In that instance, the free energy would simply be the neg-
ative log evidence for the generative model (Beal, 2003). This shows that
minimizing free energy is equivalent to maximizing (generative) model ev-
idence. In other words, it is minimizing the complexity of accurate expla-
nations for observed outcomes, as seen in equation 2.13. Note that we have
conditioned the probabilities in equations 2.12 and 2.13 on policies, π . These
policies can be regarded as hypotheses about how to act that, as we will see,
pertain to probabilistic transitions among hidden states. For the moment,
the introduction of policies simply means that the variational free energy
above can be evaluated for any given action sequence.

2.3 Expected Free Energy. Variational free energy gives us a way to per-
ceive the environment (i.e., determine s from o) and addresses one part of
the problem: making inferences about the world (i.e., the “inference” in ac-
tive inference). However, the “active” part of the formulation is still lacking;
we have not accounted for the fact that the agent can take actions. To mo-
tivate this, we would like to minimize not only our variational free energy
F calculated from past and present observations, but also our expected free
energy G, which depends on anticipated observations in the future. Min-
imization of expected free energy allows the agent to influence the future
by taking actions in the present, which are selected from policies. We first
consider the definition of a policy and later determine how to evaluate their
likelihoods from the generative model, which ultimately leads to the action
selected by the agent.

Definition 4. Policy is defined as a sequence of actions at time τ that enable an
agent to transition between hidden states—τ ∈ [1, 2, . . . , T], where T is the total
number of time steps in a given experiment under the generative model. For this,
we introduce two random variables: (1) uτ ∈ U to represent a particular action at
time τ where U is a finite set of all possible actions, and (2) π ∈ � to represent a
particular policy, where � is a finite set of allowable policies, that is, sequences of
actions in the sense of sequential policy optimization (Alagoz et al., 2010),

π = {u1, u2, . . . , uτ }, (2.14)
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up to a given time horizon, τ . The explicit link between policy and action is

uτ = π (τ ). (2.15)

Remark 1 (Connections to State-Action Policies). From definition 4, in ac-
tive inference, a policy is simply a sequence of choices for actions through
time (i.e., a sequential policy). This contrasts with state-action policies in
reinforcement learning, where πRL denotes a mapping of states to actions
(Bellman, 1952; Sutton, 1990):

πRL(u, s) = P(u | s).

The two policy types (sequential, π and state-action πRL) are equivalent,
under a POMDP formulation when τ = 1 that is, π = {u1} (Friston et al.,
2016). Note that the Bayes-optimal policy is selected from these policies.
For the remainder of the letter, a policy (π) refers to sequential policy.

To derive the expected free energy, we first extend the variational free
energy definition to be dependent on time (τ ) and policy (π) (and present
its matrix formulation, equation 2.18):

F(τ, π ) =
∑

sπ
τ

Q(sτ |π )Q(sτ−1|π ) log
Q(sτ |π )

P(oτ , sτ |sτ−1, π )
(2.16)

= EQ(sτ−1|π )
[
DKL[Q(sτ |π )||P(sτ |sτ−1, π )]

]
− EQ(sτ |π )

[
ln P(oτ |sτ )

]
(2.17)

= sπ
τ · (

log sπ
τ − log Bπ

τ−1sπ
τ−1 − log A · oτ

)
. (2.18)

Here sπ
τ is the expected state conditioned on each policy; Bπ

τ is the transi-
tion probability for hidden states, contingent on pursuing a given policy, at
a particular time; A is the expected likelihood matrix mapping from hidden
states to outcomes, and oτ represents the outcomes. These are simply vec-
tors (sπ

τ ) or matrices (Bπ
τ and A) specifying a probability for each alternative

state or outcome. For the matrices, each column corresponds to a differ-
ent value to the variable we condition on (here, hidden states), while rows
give the probability of each hidden state at the next time or the outcome at
the current time step, respectively. Now having developed this functional
dependency on time, we simply take an expectation with respect to the pos-
terior distribution of outcomes from our generative model, P(oτ |sτ ).

Definition 5. Expected free energy is defined as a free energy functional of future
trajectories, G. It effectively evaluates evidence for plausible policies based on out-
comes that have yet to be observed (Parr & Friston, 2019b). Heuristically, we can
obtain G from equation 2.16 by making two moves. The first is to include beliefs
about future outcomes in the expectation, that is, supplementing the expectation



NECO_a_01357-Sajid MITjats-NECO.cls December 19, 2020 15:16

U
nc

or
re

ct
ed

Pr
oo

f

12 N. Sajid, P. Ball, T. Parr, and K. Friston

under the approximate posterior with the likelihood, resulting in a predictive dis-
tribution given by P(oτ |sτ )Q(sτ |π ). The second is to (implicitly or explicitly) con-
dition the joint probabilities of states and observations in the generative model on
some desired state of affairs (C), as opposed to a specific policy. These two moves
ensure (1) we can evaluate this quantity before the observations are obtained and
(2) minimization of G encourages policies whose result is consistent with C.1

G(τ, π ) =
∑
sτ ,oτ

P(oτ |sτ )Q(sτ |π )Q(sτ−1|π ) log
Q(sτ |π )

P(oτ , sτ |sτ−1,C)
(2.19)

= EQ̃

[
log(Q(sτ |π ) − log(P(oτ , sτ |sτ−1,C))

]
(2.20)

= EQ̃

[
log(Q(sτ |π ) − log(P(sτ |oτ , sτ−1)) − log(P(oτ |C))

]
(2.21)

≥ EQ̃

[
log(Q(sτ |π ) − log(Q(sτ |oτ , sτ−1, π ))

]
︸ ︷︷ ︸

-ve mutual information

−EQ̃

[
log(P(oτ |C))

]
︸ ︷︷ ︸
expected log evidence

(2.22)

= EQ̃

[
log(Q(oτ |π ) − log(Q(oτ |sτ , sτ−1, π ))

]
︸ ︷︷ ︸

-ve epistemic value

−EQ̃

[
log(P(oτ |C))

]
︸ ︷︷ ︸

extrinsic value

(2.23)

= DKL[Q(oτ |π )||P(oτ |C)]︸ ︷︷ ︸
expected cost

+ EQ(sτ |sτ−1,π ) [H[P(oτ |sτ )]]︸ ︷︷ ︸
expected ambiguity

(2.24)

= oπ
τ · (oπ

τ − Cτ ) + sπ
τ · H, (2.25)

where the following notation is used: Q̃ = P(oτ |sτ )Q(sτ |π ); Q(oτ |sτ , π ) =
P(oτ |sτ ); Cτ = log P(oτ |C) is the logarithm of prior preference over out-
comes, oτ is the vector of posterior predictive outcomes (i.e., Asπ

τ ), and
H = −diag

(
EQ[Ai, j].EQ[A]

)
is the vector encoding the ambiguity over out-

comes for each hidden state.
When minimizing expected free energy, we can regard equation 2.23 as

capturing the imperative to maximize the amount of information gained,
from observing the environment, about the hidden state (i.e., maximiz-
ing epistemic value), while maximizing expected value, as scored by the

1
There are other ways in which we could consider constructing free energy functionals

to deal with outcomes that have yet to be observed. While some of the alternatives are
plausible from a theoretical perspective, they tend to dispense with aspects of observed
behavior that we seek to capture and therefore do not apply to the kinds of system we
are interested in here. For example, Millidge, Tschantz, and Buckley, (2020) propose an
alternative that subtracts the conditional entropy of the likelihood (i.e., ambiguity) from
the expected free energy shown here. This leads to agents that are less-ambiguity-averse
agents and do not seek information. As active inference deals with curious agents, we
retain this ambiguity in the expected free energy functional.
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Active Inference 13

(log) preferences (i.e., extrinsic value). This entails a clear trade-off: the for-
mer (epistemic) component promotes curious behavior, with exploration
encouraged as the agent seeks out salient states to minimize uncertainty
about the environment, and the latter (pragmatic) component encourages
exploitative behavior through leveraging knowledge that enables policies
to reach preferred outcomes. In other words, the expected free energy for-
mulation enables active inference to treat exploration and exploitation as
two different ways of tackling the same problem: minimizing uncertainty.

This natural curiosity can be contrasted with handcrafted exploration
in reinforcement learning schemes, where curiosity is replaced by random
action selection (Mnih et al., 2013) or through the use of ad hoc novelty
bonuses, which are appended to the reward function (Pathak, Agrawal,
Efros, & Darrell, 2017). Information-theoretic approaches have also been ex-
plored in a reinforcement learning context (Still & Precup, 2012; Mohamed
& Rezende, 2015; Blau, Ott, & Ramos, 2019). Some of these approaches lever-
age beliefs about latent states (Blau et al., 2019; Sekar et al., 2020). For exam-
ple, Blau et al. (2019) is a model-free algorithm that implicitly accounts for
beliefs over the latent states. Additionally, Seker et al. (2020) is very close in
its treatment of latent states to active inference but leverages an ensemble
of belief states to inform epistemic exploration, rather than a true Bayesian
posterior. Additionally, curiosity as formulated under active inference can
emerge in reinforcement learning under POMDP formulations. Example
algorithms may incorporate inductive biases (Igl, Zintgraf, Le, Wood, &
Whiteson, 2018) and uncertainty over state transitions or outcomes (Ross,
Chaib-draa, & Pineau, 2008; Kolter & Ng, 2009; Zintgraf et al., 2019). The key
aspect of these belief-POMDP schemes is that they deal with belief states
(i.e., a space of probability distributions over hidden states). This is crucial
for exploration and minimizing uncertainty, because uncertainty is an at-
tribute of a belief about hidden states, not the hidden states per se.

Normatively speaking, active inference dispenses with the Bellman op-
timality principle and replaces it with a (variational) principle of least ac-
tion (see Friston, Samothrakis, & Montague, 2012, for further discussion).
However, recent Bayesian RL schemes have used variational principles, for
example, maintaining latent over the MDP (Zintgraf et al., 2019) or the ex-
plicit beliefs (Igl et al., 2019). While in many of these settings, the distance
between the two schools of thought may seem to be closing, a fundamen-
tal distinction, which has yet to be bridged, is the situation in which there
are no rewards or, in active inference, when prior preferences are uninfor-
mative. In a scheme motivated by reward maximization, no meaningful
behavior can be generated in this setting. This is not a criticism of such
schemes but a statement of their scope and the problems they are designed
to solve. In contrast, the intrinsic value of seeking information—regardless
of its potential to evince reward—in active inference means that in the ab-
sence of any rewarding outcomes, agents are still driven by a curiosity
that helps them build a better model of their world. Furthermore, active
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14 N. Sajid, P. Ball, T. Parr, and K. Friston

inference agents can learn their priors over observations and will exhibit
ambiguity-minimizing behavior in order to fulfill these prior expectations
(Friston et al., 2016). In short, they can learn epistemic habits in the absence
of extrinsic rewards.

Equation 2.24 offers an alternative perspective on the same objective: an
agent wishes to minimize the ambiguity and the degree to which outcomes
(under a given policy) deviate from prior preferences P(oτ |C). Thus, am-
biguity is the expectation of the conditional entropy, or uncertainty about
outcomes, under the current policy. Low entropy suggests that outcomes
are salient and uniquely informative about hidden states (e.g., visual cues
in a well-lit environment, as opposed to the dark). In addition, the agent
would like to pursue policy-dependent outcomes (Q(oτ |π )) that resemble its
preferred outcomes (P(oτ |C)). This is achieved when the KL divergence be-
tween predicted and preferred outcomes (i.e., expected cost) is minimized
by a particular policy. Furthermore, prior beliefs about future outcomes
equip the agent with goal-directed behavior (i.e., toward states they expect
to occupy and frequent).

It is now also possible to specify priors over policies using the expected
free energy. Policies, a priori, minimize the expected free energy term, G
(Friston, FitzGerald, et al., 2017). This has sometimes been framed in terms
of a heuristic reductio ad absurdum argument that if selected policies real-
ize prior beliefs and minimize free energy, then the only tenable prior be-
liefs are policies that will minimize free energy (Parr & Friston, 2019b). If
this were not true, then an active inference agent would not have prior be-
lief that it selects policies that minimize expected free energy and it would
infer (and pursue) policies that were not free energy minimizing. As such, it
would not be an active inference (i.e., free energy minimizing) agent, which
is a contradiction. This leads to the agent’s prior belief that it will select
policies that minimize the free energy expected under that policy. There
are some subtleties to this argument that leave some room for maneuver.
Specifically, this does not tell us how to construct an expected free energy
functional, but this is typically chosen to be consistent with definition 5. This
choice ensures both exploratory and exploitative behavior and is therefore
sufficiently flexible to deal with the kind of problem we are interested in for
this letter.

This can be realized by expressing the probability of any policy with a
softmax function (i.e., normalized exponential) of expected free energy,

P(π ) = σ [−β−1 · G(π )], (2.26)

where σ denotes a softmax function and β is a temperature parameter.
This illustrates the “self-evidencing” behavior of active inference. Ac-

tion sequences (policies) that result in lower expected free energy are more
likely. Intuitively this makes sense; since all notions of how to act in the
world (i.e., exploration, exploitation) are wrapped up in the expected free
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Active Inference 15

energy G, policy selection simply becomes a matter of determining (through
search) the set of actions that get us closest to this goal (i.e., the attracting
set defined by prior preferences P(o|C)).

Note the similarities to Dyna-style/planning model-based reinforce-
ment learning (Sutton, 1990): hypothetical rollouts are used to model the
consequences of each policy. However, the actual controller in active infer-
ence is derived through an approach similar to model predictive control
(Camacho & Alba, 2013), where a search is performed over possible action
sequences at each time step.

Now that we have priors over policies, we can incorporate these into the
generative model and into the free energy. This gives

F = EQ(π )[F(π )] + DKL[Q(π )||P(π )]. (2.27)

Here, the free energy of the model conditioned on the model plays the role
of a negative log marginal likelihood, giving this the form of an accuracy
and complexity term in the space of beliefs about policies. Often the temper-
ature parameter β is also equipped with priors (normally using a gamma
distribution) and posteriors, which add another complexity term to the free
energy.

2.4 Optimizing Free Energy. From this free energy formulation, we can
optimize expectations about hidden states, policies, and precision through
inference and optimize model parameters (likelihood, transition states)
through learning (via a learning rate, η). This optimization requires finding
sufficient statistics of posterior beliefs that minimize variational free energy
(Friston, Parr, et al., 2017). Under variational Bayes, this would mean iter-
ating the appropriate formulations (for inference and learning) until con-
vergence. Under the active inference scheme, we calculate the solution by
using a gradient descent (with a default step size, ζ , of 4) on free energy
F, which allows us to optimize both action-selection and inference simul-
taneously, using a mean-field approximation (Beck, Pouget, & Heller, 2012;
Parr, Markovic, Kiebel, & Friston, 2019). The gradients of the negative free
energy with respect to states and precisions, respectively, are

επ
τ = (log A · oτ + log Bπ

τ−1sπ
τ−1 + log Bπ

τ · sπ
τ+1) − log sπ

τ , (2.28)

εγ = (β − βτ ) + (π − π0) · G, (2.29)

where βτ = β + (π − π0).G; β = 1
γ

encodes posterior beliefs about (inverse)
precision (i.e., temperature); π represents the policies specifying action se-
quences; and π0 = σ (−γ .G). G in this equation is a vector whose elements
are the expected free energies for each policy under consideration.

This involves converting the discrete updates, defined in equations 2.28
and 2.29, into dynamics for inference that minimize state and precision
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16 N. Sajid, P. Ball, T. Parr, and K. Friston

prediction errors: επ
τ = −∂sF and εγ = −∂γ F. These prediction errors are

free energy gradients. Gradient flows then produce posterior expectations
that minimize free energy to provide Bayesian estimates of hidden vari-
ables. This particular optimization scheme means expectations about hid-
den variables are updated over several timescales. During each outcome or
trial, beliefs about each policy are evaluated based on prior beliefs about
future outcomes, which get in through the expected free energy. This is
determined by updating posterior beliefs about hidden states (i.e., state es-
timation under each policy, Q(s|π )) on a fast timescale, while posterior be-
liefs find new extrema (i.e., as new outcomes are sampled, P(s|o, π )). These
posterior beliefs are then used to compute the posterior predictive prob-
abilities of future outcomes, Q(o|π ), which themselves contribute to the
expected free energy and, through this, the priors over policies. This in-
troduces an unusual feature of the online inference schemes under active
inference rarely seen in Bayesian accounts; the priors over policies change
with new outcomes. This is a key distinction between active inference and
standard Bayesian RL perspectives and can occur only when the best poli-
cies to engage in are functionals of beliefs that may be updated.

Using this kind of belief updating, we can calculate the posterior beliefs
about each policy—namely, a softmax function based on expected free en-
ergy and the likelihood of past observations under that policy (approxi-
mated with F(π )), extending the definition of the prior covered in equation
2.26. The softmax function is a generalized sigmoid for vector input and can,
in a neurobiological setting, be regarded as a firing rate function of neuronal
depolarization (Friston, Rosch, et al., 2017). Having optimized posterior be-
liefs about policies, they are used to form a Bayesian model average of the
next outcome (i.e., under these beliefs about what I will do next, which ob-
servations I would expect on average), which is realized through action se-
lected to conform to this. Practically, action selection is often achieved more
simply by sampling from the distribution over actions at a given time im-
plied by posterior beliefs about policies.

In active inference, the scope and depth of the policy search are exhaus-
tive, in the sense that any policy entertained by the agent is encoded ex-
plicitly and any hidden states over the sequence of actions entailed by
policy are continuously updated. However, in practice, this can be com-
putationally expensive; therefore, a policy is no longer evaluated if its log
evidence is ζ (default 20) times less likely than the (current) most plausi-
ble policy. This, ζ , can be treated as an adjustable hyperparameter. Addi-
tionally, at the end of each sequence of outcomes, the expected parameters
are updated to allow for learning across trials. This is like Monte Carlo re-
inforcement learning, where model parameters are updated at the end of
each trial. Finally, temporal discounting emerges naturally from active in-
ference, where the generative model determines the nature of discounting
(based on parameter-capturing precision), with predictions in the distant
future being less precise and thus discounted in a Bayes-optimal fashion
(Friston, FitzGerald, et al., 2017). Practically, this involves the inclusion of
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a hyperparameter β = γ −1 that can be regarded as the (inverse precision
or temperature) of posterior beliefs over policies. This is marginalized out
during belief updating, enabling the exploration-exploitation trade-off to
be inferred. This highlights the flexibility of active inference in the sense
that it can be applied to any generative model. It is unclear how similar pa-
rameterizations could be adopted in conventional reinforcement learning,
where optimizing temperature parameters typically involves a grid search
over value. Having said this, sophisticated formulations of reinforcement
learning, such as soft actor-critic (Haarnoja, Zhou, Abbeel, & Levine, 2018;
Cesa-Bianchi et al., 2017), have addressed this issue.

This discussion suggests that from a generic generative model, we can
derive Bayesian updates that clarify how perception, policy selection, and
actions shape beliefs about hidden states and subsequent outcomes in a
dynamic (nonstationary) environment. This formulation can be extended
to capture a more representative generative process by defining a hierar-
chical (deep temporal) generative model (described in Friston, FitzGerald,
et al., 2017; Friston, Parr, et al., 2017; Parr & Friston, 2017), continuous state-
space models (Buckley, Kim, McGregor, & Seth, 2017; Parr & Friston, 2019a;
Ueltzhöffer, 2018) or mixed models with both discrete and continuous states
as described in Friston, Parr, et al. (2017) and Parr and Friston (2018). In
the case of a continuous formulation, the generative model state-space can
be defined in terms of generalized coordinates of motion (i.e., the coeffi-
cients of a Taylor series expansion in time, as opposed to a series of discrete
time steps), which generally have a nonlinear mapping to the observed out-
comes. Additionally, future work looks to evaluate how these formulations
(agents) may interact with each other to emulate multi-agent exchanges.

The implicit variational updates presented here have previously been
used to simulate a wide range of neuronal processing (using a gradient
descent on variational free energy): ranging from single cell responses (in-
cluding place-cell activity) (Friston, FitzGerald, et al., 2017) and midbrain
dopamine activity (Friston et al., 2014) to evoked potentials, including those
associated with mismatch negative (MMN) paradigms (Friston, FitzGer-
ald, et al., 2017). Additionally, there has been some evidence implicating
these variational inferences with neuromodulatory systems: action selec-
tion (dopaminergic), attention and expected uncertainty (cholinergic), and
volatility and unexpected uncertainty (noradrenergic) (Parr & Friston, 2017,
2019b). (For a detailed overview, see Friston, FitzGerald, et al., 2017; Parr &
Friston, 2019b, and Da Costa et al., 2020.)

In what follows, we provide a simple worked example to show precisely
the behaviors that emerge—naturally—under active inference.

3 Simulations

This section considers inference using simulations of a modified version of
OpenAI gym’s FrozenLake environment. For simplicity, we have chosen
this paradigm. Note that more complex simulations have been explored in
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the literature—for example, behavioral economics trust games (Moutous-
sis, Trujillo-Barreto, El-Deredy, Dolan, & Friston, 2014; Schwartenbeck et al.,
2015), narrative construction and reading (Friston, Rosch, et al., 2017), sac-
cadic searches and scene construction (Mirza, Adams, Mathys, & Friston,
2016), and Atari games (Cullen, Davey, Friston, & Moran, 2018). In closely
related work, Cullen, Davey, Friston, and Moran (2018) demonstrated
that active inference agents perform better in another OpenAI gym envi-
ronment, Doom, compared to reward-maximizing agents. Their reward-
maximizing agents are active inference agents without the epistemic value
term (G) and can therefore be considered distinct from standard reinforce-
ment learning agents.

We first describe the environment setup and then simulate how an agent
learns to navigate the lake to successfully reach the goal. The simulations
involve searching for the reward (a Frisbee) in a 3 × 3 frozen lake and avoid-
ing falling in a hole. The purpose of these simulations is to provide an acces-
sible overview (and accompanying code; see the Software Note at the end
of the main text of this letter) of the conceptual (and practical) differences
between active inference and standard reinforcement learning.

3.1 Setup. The frozen lake has a gridlike structure with four patches:
starting point (S), frozen surface (F), hole (H), and goal (G), where the Fris-
bee is located. All patches, except for (H), are safe. The agent starts each
episode at (S)—position 1. From there, to reach the Frisbee location, the
agent needs to take a series of actions: left, right, down, or up. The agent
is allowed to continue moving around the frozen lake, with multiple revis-
its to the same positions, but each episode ends when either (H) or (G) is
visited. (G) and (H) can be located in one of two locations: positions 8 and
6 or 6 and 8, respectively. The objective is to reach (G), the Frisbee location,
ideally in as few steps as possible, while avoiding the hole (H). If the agent is
able to reach the Frisbee without falling in the hole, it receives a score of 100
at the end of trial. This scoring metric is framework agnostic and allows
us to compare active inference to reinforcement learning methods. How-
ever, it is important to note that maximizing reward is not the definition
of Bayes-optimal behavior for an active inference agent, where information
gain is also of value. This will become important later. Finally, we limit the
maximum number of time steps (i.e., the horizon) to 15.

3.2 Active Inference Agents. For this paradigm, we define the gener-
ative model for the active inference agent as follows (see Figure 2): four
action states that encode direction of movement (left, right, down, and up),
18 hidden states (9 locations factorized by 2 contexts), and outcome modal-
ities include grid position (9) and score (3). The action states control the
transitions between the hidden state location factors; for example, when
at location 4, the agent can move to location 5 (right), 7 (down), or 1 (up)
or stay at 4 (left). The hidden state factor, location, elucidates the agents’
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Figure 2: Graphical representation of the active inference generative model.
The model contains four action states that encode direction of movement: right,
down, up, and left. They control the ability to transition between hidden state
location factors (one of the nine locations going from 1 → 9; only a few states
are shown). Each action navigates the agent to a different location (a select few
are shown)—for example, if the agent starts in position 1 and chooses to turn
right, it will end up in state 2 at the next time step. However, if the agent started
in location 5 and goes up, it would end up in location 2 instead. Note that both 8
and 6 are absorbing states; only 8 is denoted as such by the circular arrow. Addi-
tionally, if an agent makes an improbable move by trying, for example, to go left
from location 1, it will remain in location 1 (as shown). The hidden states have a
Kronecker tensor product (⊗) form with two factors: location and context (one
of the two goal locations). The context cannot be changed by the agent and cor-
responds to the associated Frisbee location: 8 if context 1 or 6 if context 2. Note
that in context 1, the hole location is 6. From each of the two hidden state factors
(location and context) an outcome is generated. The agent observes two types
of outcomes at each time point: its grid position and score. Categorical param-
eters, that define the generative model, A (likelihood − P(o|s)): have an identity
mapping between hidden state location and outcome grid position with some
uncertainty: for example. “If I have beliefs that I am in position 6, then I will ob-
serve myself in position 6, irrespective of context.” The score likelihood, given
the hidden states, is determined by the context: for context 1, a positive score
received at location 8, and negative or nothing elsewhere. P(o) corresponds to
prior preference: the agent expects to find a positive score and not remain at the
starting location.

beliefs about its location in the frozen lake. The context hidden state factor
elucidates the agent’s beliefs about the location of (G) and (H): if context is
1, then (G) location is 8 and (H) location is 6. The outcomes correspond to
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the following: being at any of the 9 possible grid positions and receiving 3
types of potential reward (positive, negative, or neutral). Positive reward is
received if the agent correctly navigates to the (G) location, negative if to
the (H) location, and neutral otherwise (F, S).

We define the likelihood P(o|s) as follows: an identity mapping between
hidden state location and outcome grid position-for example, if I have be-
liefs that I am located in position 6, then I will observe myself in position 6
regardless of context. However, the likelihood for scoring, given the hid-
den states, is determined by the context: if the context is 1 (2), then the
positive score will be received at location 8 (6), and negative or nothing
elsewhere. The action-specific transition probabilities P(st−1|st, u) encode
allowable moves, except for the sixth and eighth locations, which are ab-
sorbing latent states that the agent cannot leave. We define the agent as
having precise beliefs about the contingencies (i.e., large prior concentration
parameters = 100). The utility of the outcomes, C, is defined by ln P(o) : 4
and −4 nats for rewarding and unrewarding outcome: this can be regarded
as a replacement for writing out an explicit reward function. This means,
that the agent expects to be rewarded e8 times more at (G) than (H). No-
tice that rewards and losses are specified in terms of nats or natural units,
because we have stipulated reward in terms of the natural logarithms of
some outcome. The prior beliefs about the initial state were initialized: lo-
cation state (D = 1) for the first location and zero otherwise, with uniform
beliefs for context state. We equip the agent with deep policies: these are po-
tential permutations of action trajectories—for example, (Left, Left, Right)
or (Down, Right, Up). Practically, policies (action sequences) are removed
if the relative posterior probability is of 1/128 or less than the most likely
policy. After each episode, the posteriors about the current state are carried
forward as priors for the next episode. By framing the paradigm in this way,
we treat solving the POMDP as a planning-as-inference problem; in order to
act appropriately, the agent needs to correctly update internal beliefs about
the current context.

Having specified the state-space and contingencies, we can solve the
belief updating equations 2.28 and 2.29 to simulate appropriate behavior.
Pseudocode for the belief updating and action selection for this particular
type of discrete state-space and time formulation is presented in the supple-
mentary materials. To provide a baseline for purely exploratory behavior,
we also simulated a null active inference agent, which had no prior prefer-
ences (i.e., was insensitive to the reward).

3.3 Reinforcement Learning Agents. We compared the active inference
agents’ performance against two reinforcement learning algorithms: Q-
Learning using ε-greedy exploration (Watkins, 1989; Sutton & Barto, 1998)
and Bayesian model-based reinforcement learning using standard Thomp-
son sampling (Poupart, 2018; Ghavamzadeh, Mannor, Pineau, & Tamar,
2016). Thompson sampling is an appropriate procedure here because it
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entails the optimization of dual objectives: reward maximization and in-
formation gain. This is achieved by having a distribution over a particular
function that is parameterized by a prior distribution over it.

We evaluate two permutations of the Q-learning algorithm: an agent
with fixed exploration (ε = 0.1) and an agent with decaying exploration
(ε = 1 decaying to 0). The pseudocode is presented in the supplementary
materials. For both Q-learning agents, we specify the learning rate as 0.5
and discount factor as 0.99.

The Bayesian RL approach is a standard Dyna-style (Sutton, 1990) ap-
proach, where we train Q-learning agents in a belief-based internal model
(planning), which accounts for uncertainty over both the transition model
and reward function (i.e., separate prior distribution over both functions);
the pseudocode is presented in the supplementary materials. The transi-
tion model encodes the probability for the next state, given the current
state and action. These transition probability distributions are the same
as the active inference generative model: high probability for intended
move and extremely low probability for an implausible move. The reward
function encodes the uncertainty about the reward location (an implicit
contextual understanding about the environment). The likelihoods, for
the transition model and reward function, are modeled via two separate
Bernoulli distributions, with beta distributions as the conjugate prior over
their parameters. The beta distribution pseudocounts for the reward and
transition model—are initialized as 1. The posterior for the reward and
that for the transition model distribution are evaluated by updating the
prior (Beta(α, β )). Thus, by treating them as pseudocounts, the evidence
for intended move (likely reward location), x, is added to α, and an im-
plausible move (unlikely reward location), y, is added to β: the posterior is
Beta(α + x, β + y). The discount factor is specified as 0.9.

The Bayesian RL agent is a planning-based RL algorithm that parame-
terizes the transition and reward model using two separate Bernoulli dis-
tribution with a beta prior. At each episode, we sample k (=50), θ , from each
of the beta distributions. Using the sampled priors, we define k MDPs and
solve them using value iteration. This simulation gives us the Q-value func-
tion, which is averaged out to get the optimal Q-value. The optimal Q-value
function is used to determine the next action and move to the next state. This
procedure continues until the agent reaches the goal or falls down the hole.
The process of solving the k MDP to determine the next action is similar to
hypothetical rollouts in other planning-based algorithms.

Note that more sophisticated reinforcement learning schemes may have
been more apt for solving this task (Daw, Courville, & Touretzky, 2006;
Fuhs & Touretzky, 2007; Gershman & Niv, 2010; Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Gershman & Daw, 2017). However, our aim was to
compare standard formulations of active inference and reinforcement learn-
ing. The rationale for this will become clearer when we compare the be-
havioral performance in the absence of reward: no motivation for adding
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Table 1: Average Reward (and 95% Confidence interval) for Each agent, across
Both Deterministic and Stochastic Environments.

Average Score [95% CI]

Belief- Deterministic Stochastic
Algorithm Based Environment Environment

Q-Learning (ε = 0.1) N 97.79 [97.41, 98.16] 66.08 [63.28, 68.88]
Q-Learning (ε = 1 decaying to 0) N 80.44 [78.96, 81.93] 65.13 [62.57, 67.68]
Bayesian RL Y 99.76 [99.45, 100.00] 64.39 [60.33, 68.44]
Active Inference Y 99.88 [99.64, 100.00] 98.90 [98.00, 99.79]
Active Inference (null model) Y 50.03 [49.70, 50.35] 50.22 [49.89, 50.22]

The results are calculated from the 200 trials across 500 episodes.

more heuristics because they cannot be justified in terms of increasing ex-
pected value of reward. Thus, the adopted RL agents are suited for our
purpose.

3.4 Learning to Navigate the Frozen Lake. We evaluate how well the
different agents are able to navigate the frozen lake in both stationary and
nonstationary environments, as described below. Each of the environments
was simulated for 200 trials with 500 episodes for the five agents: Q-learning
(ε = 0.1), Q-learning (ε = 1 decaying to 0), Bayesian model-based reinforce-
ment learning, active inference (see Figure 2) and active inference (null
model; without any prior outcome preferences, i.e., log P(o|C) = 0 for all
outcomes). To aid intuition, the flattening of the prior preferences in the ac-
tive inference model is equivalent to reclassifying reward as just another
state or observation in a reinforcement learning scheme. While an agent
would still be “told” whether it had encountered a rewarding stimulus, this
would have no impact on the value function. As noted, this is not an exact
equivalence: there is a philosophical distinction between making a change
to the environment (in the reinforcement learning setting) and to the agent
(in the active inference setting).

3.4.1 Stationary Environment. For this setup, the goal (G) exists at posi-
tion 6 and hole (H) location at 8 for the entire experiment. We then evaluate
the agent performance online and make no distinction between offline and
online behavior modes. This is to better simulate exploration and exploita-
tion in the real world, where we use the same policy to gather training data
and act; indeed, it is this exact paradigm that is one of the major motivators
for active inference. The average score (see Table 1) for all agents, except
the null model specification of the active inference model, was consider-
ably high at over 80, showing that all frameworks were able to solve the
MDP.
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The low score for the null (active inference) model reflects the lack of
prior preferences for the type of outcomes the agent would like to observe—
that is, it does not differentiate among any of the different patches (S, F,
G, and H) in the frozen lake. The null model does not seek out the goal
state (i.e., reward), which it does not prefer over other states. Instead, it
either falls in the hole or reaches the goal with equal probability. From the
perspective of information seeking, this is a very sensible policy, as the same
amount of information can be obtained by finding either the hole (which
tells us where the goal is) or the goal (which tells us where the hole is). As
such, there is nothing to disambiguate between the two. Over subsequent
exposures to the environment, given that it is stationary, this agent will be
left with little uncertainty to resolve, as it will know everything at the start of
a trial based on experience. Over time, this will lead to a loss of purposeful
behavior, resembling what we might expect from a reinforcement learning
agent in the absence of any environmental rewards (even in the presence of
uncertainty).

The learning curve, shown in Figure 3, highlights that the active infer-
ence and Bayesian model-based reinforcement learning agent learn reward-
maximizing behavior (and resolve uncertainty about reward location) in a
short amount of time (fewer than 10 episodes). They are able to maintain
this for the remaining trials. This is reflected by the tight confidence in-
tervals around the average reward for both agents. In contrast, Q-learning
(ε = 0.1), while also quickly learning appropriate state-action pairing, has
slightly larger confidence intervals for the average reward due to the 10%
of selecting a random action.

3.4.2 Nonstationary Environment. We introduce nonstationarity into the
environment; the location of the (G) and (H) are flipped after a certain num-
ber of episodes. Initially (G) is located at position 6 and (H) at position 8, and
then we swap (G) and (H) at the following time steps: 21, 121, 141, 251, 451.
This means that after episode 451, (G) remains at position 8 until the end of
the simulation. These changes in the reward location test how quickly the
agent can relearn the correct (G) location. The average score for all agents
is presented in Table 1.

As in the stationary setup, all agents are initially uncertain about the
reward location. Figure 4 illustrates the performance of these agents. This
is quickly resolved, and by episode 20, active inference, Bayesian RL, and
Q-learning (ε = 0.1) exhibit appropriate behavior for solving the task. The
null (active inference) model and Q-learning (ε = 1 decaying to 0.00) exhibit
fairly poor performance (consistent with stationary). However, at episode
21, the performance for all agents drops to zero due to the change in re-
ward location—except for the agent with no preferences, who persists with
achieving the reward half of the time. For the reinforcement learning (Q-
learning and Bayesian RL) agents, this drop in performance persists for
the next 40 or so episodes. This is because by treating this as a “learning”
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Figure 3: Learning curve for deterministic environment. The x-axis denotes the
episode number and y-axis the average (online) reward. The results presented
are calculated from 200 trials.

problem, the agent has to do the following: (1) reverse the learning of its
previous understanding of the reward location and (2) relearn the cur-
rent reward location. In contrast, by treating this as a planning-as-inference
problem, the active inference agent is able to quickly recover performance
after a single episode, as the generative model takes into account the context
switch. In other words, the agent simply infers that a switch has happened,
and acts accordingly. This quick performance recovery is persistent for all
changes in reward location across the 500 episodes (see Figure 4). However,
for Bayesian RL, the ability to adapt its behavior to the changing goal loca-
tions continues to prove difficult; each time a greater number of episodes
are required to reverse the learning of the prior distribution over the reward
function due to the accumulation of pseudocounts. This contrasts with



NECO_a_01357-Sajid MITjats-NECO.cls December 19, 2020 15:16

U
nc

or
re

ct
ed

Pr
oo

f

Active Inference 25

Figure 4: Learning curve for stochastic environment. The x-axis denotes the
episode number and y-axis the average (online) reward. The results presented
are calculated from 200 trials. The dotted gray lines represent the change in (G)
(and (H)) location.

Q-learning (ε = 0.1), which adapts fairly quickly to these fluctuating re-
ward locations because it needs to only update the appropriate state and
action Q-values.

Therefore, for nonstationary environments, active inference offers an at-
tractive, natural adaptation mechanism—for training artificial agents—due
to its Bayesian model updating properties. This is in contrast to standard
reinforcement learning, where issues of environmental nonstationarity are
not accommodated properly, as shown through the above simulations.
They can be dealt with using techniques that involve the inclusion of in-
ductive biases, such as, importance sampling of experiences in multi-agent
environments (Foerster et al., 2017) or using metalearning to adapt
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Table 2: Reward Shaping: Average Score and Number of Moves across 100
Episodes for 100 Agents.

Rewards Average Score (Average Number of Moves)

(G) (H) (F) Q-Learning* (ε = 0.1) Bayesian RL Active Inference

0.00 0.00 0.00 0.00 (15.00) 39.94 (9.17) 44.00 (8.67)
0.00 −100 0.00 0.00 (15.00) 0.00 (15.00) 0.00 (15.00)
100 −100 0.00 95.56 (3.53) 99.77 (3.02) 99.52 (3.03)
100 0.00 −10.0 96.00 (3.48) 99.89 (3.00) 99.47 (3.00)
100 −100 −10.0 96.47 (3.42) 99.79 (3.01) 99.58 (3.00)
100 0.00 0.00 95.32 (3.58) 99.74 (3.00) 99.50 (3.07)

Note: For this experiment, we evaluate under ε = 0.0 (i.e., on-policy).

gradient-update approaches more quickly (Al-Shedivat et al., 2017). Fi-
nally, we acknowledge that the simulations presented limit the compar-
ison between active inference and standard (i.e., naive) reinforcement
learning schemes. We could have introduced further complexity (i.e., addi-
tional distributions to be learned) within the Bayesian reinforcement learn-
ing model—for example, explicit beliefs about latent contexts instead of
implicit context encoding via the reward location (Gershman & Niv, 2010;
Gershman, Norman, & Niv, 2015; Rakelly, Zhou, Finn, Levine, & Quillen,
2019). To evaluate the comparison of more complex reinforcement learn-
ing agents, to active inference, in nonstationary environments remains an
outstanding research question. We appreciate that with additional design
choices the Bayesian reinforcement learning agent may exhibit similar be-
havioral performance to the active inference agent.

3.5 Comparing Prior Preferences and Rewards. In reinforcement
learning, goals are defined through reward functions, that is, explicit scalar
signal from the environment. In contrast, in active inference, goals are de-
fined through the agent’s prior preferences over outcomes. We now il-
lustrate the link between these definitions of goal-directed behavior by
presenting experiments that show the effect of reward shaping (Ng, 2003)
in the FrozenLake stationary environment (see Table 2).

We apply the following shaping: modifying the reward for reaching the
goal (G), modifying the reward for falling down the hole (F), and modifying
the reward for any state that isn’t a goal (H) (this can be considered a “liv-
ing cost”). In order to convert the shaped reward into prior preferences, we
manipulate the prior preferences such that their relative weighting matches
that introduced through the reward shaping for example, a reward of −100
is equivalent to prior preferences of − log(5).

As our experiments show, when we define a prior preference through
a reward function, the behaviors of the belief-based policies (i.e., Bayesian
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RL and active inference) are nearly identical and learn to solve the environ-
ment as soon as a positive reward is defined for the goal. On the other hand,
the nonprobabilistic Q-learning approach appears more sensitive to reward
shaping, with living costs causing greedier behavior (i.e., taking fewer steps
per episode). A possible explanation for this is that the construction of the
generative models for both Bayesian RL and active inference clearly de-
fine that the location of the goal/hole is in either state 6 or 8 hence, Bayes-
optimal behavior (i.e., getting to the goal in as few steps as possible) can
be learned even in the absence of negative rewards/preferences over cer-
tain states. All that is required is some notion of where the goal state might
exist—hence the ability to learn Bayes-optimal policies by only specifying
the goal location (see the last row of Table 2).

Another interesting behavior is when there is an absence of prefer-
ences/rewards (see the first row of Table 2). The Q-learning approach learns
a deterministic circular policy with little exploration despite the ε term since
it does not update its parameters due to the lack of reward signal. The belief-
based approaches on the other hand maintain exploration throughout,
represented by the average score ranging between 40 and 45, as their proba-
bilistic models remain uniform over the beliefs of which transitions produce
preferred outcomes. This suggests that by having an objective function that
is optimizing a dual objective, the agent exhibits some sort information gain
(i.e., exploring the world is intrinsically motivated because it helps the agent
build a better model of the world). We will see more purposeful exploration,
under active inference, in the next section.

Finally, we observe that all three approaches learn the same circu-
lar behavior when only a negative preference or reward is specified (see
the second row of Table 2). This is because all the approaches learn to
avoid the hole state (H), but since there is no notion of goal-seeking behav-
ior, the agents do not learn to go to the goal state. Interestingly, in the case
of the belief-based approaches (Bayesian RL and active inference), since the
generative model defines the presence of hole states in either state 6 or 8
and since it receives no preference for goal states, the generative model as-
signs nonzero probability with the hole state being in either state 6 or 8. As
a result, policies derived from these generative models learn to avoid both
states, therefore terminating only when the time limit is reached.

Through this brief study, we have illustrated an implicit equivalence be-
tween Bayesian model-based reinforcement learning and active inference.
This equivalence rests on treating prior preferences as a reward function.
In other words, by expressing an arbitrary reward function as a potential
function (i.e., a log probability over future outcomes), reward functions can
be absorbed into expected free energy. This means one can elicit identical
behaviors from reinforcement learning and active inference. Indeed, if one
removes uncertainty, in the form of epistemic value, we are left with prag-
matic value: expected future reward. This shows that reinforcement learn-
ing can be regarded as a limiting or special case of model-based approaches
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in general—or active inference in particular. However, the FrozenLake en-
vironment is by no means representative of all discrete environments, and
this merits further research. It is important to note that behavioral equiva-
lences are a result purely of the environmental setup and the accompanying
reward signal (e.g., changing the FrozenLake environment for a maze with
noisy attractor state and no reward) might reveal additional behavioral dif-
ferences between Bayesian model-based reinforcement learning and active
inference.

3.6 Learning Prior Outcome Preferences. In some settings, explicitly
defining prior outcome preferences might be challenging due to time-
dependent preferences, an inability to disambiguate between different
types of outcomes, or simply lack of domain knowledge. In those instances,
the appropriate distribution of prior outcome preferences can be learned via
the agent’s interaction with the environment. This difficulty extends to rein-
forcement learning, where defining a reward function may not be possible,
and in its vanilla formulation, reinforcement learning offers no natural way
to learn behaviors in the absence of a reward function (see the first row of
Table 2).

In order to demonstrate the ability of active inference to select policies in
the absence of prespecified prior preferences, we allow both the likelihood
distribution (log P(o|s)) and outcome preferences (log P(o|C)) to be learned.
This allows us to make explicit that whether a state is rewarding or not is
determined by the agent learning its prior preferences and it is not a specific
signal from the environment. For this, the generative model is extended to
include prior beliefs about the parameters of these two distributions (a prior
over priors in the case of (log P(o|C)), which are learned through belief up-
dates (Friston, FitzGerald, et al., 2017). The natural choice for the conjugate
prior for both distributions is a Dirichlet distribution, given that the prob-
ability distributions are specified as a categorical distribution. This means
that the probability can be represented simply in terms of Dirichlet concen-
tration parameters. We define the Dirichlet distribution (for both likelihood
and prior preferences) as completely flat (initialized as 5 for likelihood and
1 for prior preferences for all possible options). This is in contrast to row
1 of Table 2, where we specify flat prior preferences but the agent is not
equipped with (Dirichlet) hyperpriors that enable the agent to learn about
the kind of outcomes it prefers.

Incrementally, we enabled learning of these parameters. First, all out-
come preferences (and their Dirichlet priors) are removed. Therefore, the
agent can only learn the likelihood. As a result, there is no behavioral im-
perative other than pure exploration (Schmidhuber, 2006). This setup was
simulated 15 times, and likelihood was learned in an experience-dependent
fashion. This results in an initial (exploratory) trajectory that covers all un-
chartered territory in the most efficient way possible, that is, there is no
revisiting of locations that have already been encountered (see Figure 5.1).
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Figure 5: Parameter learning for a single reward location: results for likeli-
hood learning presented in panels 1 and 2 and prior preference learning pre-
sented in panels 3 and 4. Blue arrows denote the trajectory taken, and numbers
in the circles denote the trajectory sequence. Circular arrows represent loops:
once in that state, the same outcome is observed until the maximum number
of moves reached (15). Panel 1 is a pictorial representation of the first episode
trajectory, with no prior preference: right(1 → 2), right (2 → 3), down(3 → 6),
right(6 ↔ 6). Panel 2 depicts the next four episodes from the trial. Panel 3 has
two figures: a pictorial representation of the trajectory to the hole and a heat map
of the accumulated Dirichlet parameters for score (+is positive, — is negative,
and/is neutral). For this trial, there is a strict preference for holes at time step
4. Panel 4 presents similar information but for a goal-preferring agent: a picto-
rial representation of the trajectory to the goal and a heat map of the accumu-
lated Dirichlet parameters for score. There is a strict preference for goals at time
step 4.

Furthermore, this behavior persists past the initial exploration, with con-
tinuous explorations via new (nonoverlapping) trajectories (see Figure 5.2).
This represents “true” exploratory behavior, distinct from random action
selection, of the sort possible only in a belief-based scheme. Furthermore, as
there are no rewards, this behavior would be impossible to motivate from a
reinforcement learning perspective, as this learning is for its own sake, not
to improve reward seeking. While such an imperative could plausibly be
introduced to a belief-based reinforcement learning scheme, it would have
to appeal to heuristic arguments like the potential for a reward function to
be introduced in the future.
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Next, we equip the agent with the ability to learn outcome preferences
(rather than learn about the environment). This entails updating the out-
come preferences via accumulation of Dirichlet parameters, without learn-
ing the likelihood. The setup was simulated 10 times, for two separate
kinds of outcome. During the first kind, in the absence of negative prefer-
ences, holes become attractive because they are encountered first, and this is
what the agent learns about its behavior (and implicit preferences). In other
words, because holes (H) are absorbing states and the agent observes itself
falling in a hole recurrently, it learns to prefer this outcome (see Figure 5.3).
Similarly, in the second kind of trial, the agent finds itself recurrently ac-
quiring the Frisbee. This causes it to exhibit preferences for acquiring Fris-
bees (see Figure 5.4). These represent the capacity of active inference agents
to develop into hole-seeking or Frisbee-seeking agents. As one of these out-
comes becomes more familiar, the agent observes its own behavior and con-
cludes, “I am the sort of creature that enjoys spending time in holes [or with
Frisbees],” and adjusts future behavior to be consistent with this.

This capacity is another important point of distinction with reinforce-
ment learning approaches, where the problem is defined in terms of a
prespecified reward function. If this is the problem one hopes to solve, it
is clearly undesirable for agents to develop ulterior motives. This speaks
to the fundamental differences in the problems being solved by the two ap-
proaches. Under active inference, the ultimate goal is to maintain a coherent
phenotype and persist over time. Hole-seeking agents achieve this despite
their behavior deviating from what an observer, or the designer of an AI
gym game, might regard as appropriate.

Finally, we look at the interaction between the epistemic imperatives to
resolve uncertainty about the likelihood mapping and uncertainty about
prior preferences. This setup was simulated 10 times and both likelihood
distribution and prior outcome preferences learned. By parameterizing
both the likelihood and prior outcome preferences with Dirichlet distri-
butions, we induce a contribution to expected free energy that makes
visiting every location attractive (i.e., every location acquires epistemic
affordance or novelty). However, after a sufficient number of trials, the
agent has learned (i.e., reduced its uncertainty) that it prefers to hide in
holes (see Figure 6). This causes the agent to exhibit the exploitative behav-
ior of hiding rather than continue exploring. After five trials, the agent goes
straight to the hole.

This is an interesting example of how by observing one’s own behavior,
preference formation contextualizes the fundamental imperative to explore.

It is important to note that the learned outcome preferences are time de-
pendent: the agent prefers to visit safe (F) patches for the first three time
points and then visit goal (G) patches with a high preference (see Fig-
ure 6). As noted, these are learned by accumulating experience (in the form
of Dirichlet concentration parameters) such that uniform priors over out-
comes become precise posteriors. These precise posteriors then become the
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Figure 6: Learning prior outcome preferences for outcome modality, score: ini-
tial (top) and after five episodes (bottom) for a single reward location.

agent’s preferences. Put simply, it has learned that this is the kind of crea-
ture it is.

We have observed that even in the absence of clearly defined prior pref-
erences, active inference agents are able to learn these preferences naturally;
since prior preferences are defined in terms of probability distributions, we
simply define a distribution over distributions and learn these from the data
using the standard inference/gradient updates (see section 2.4). However,
it is important to highlight that these learned prior preference might be at
odds with the reward from the environment. This conceptualization flips re-
warding states on its head—a matter of preference, not a specific scalar sig-
nal from the environment. Concretely, we can indeed encourage AI agents
to solve RL environments by placing a prior preference that maximizes the
observation corresponding to reward, but definitionally, active inference
does not require the resultant reward-maximizing behavior to be consid-
ered a successful agent. As long as it can learn and then maintain a con-
sistent set of behaviors over time—through free energy minimization—we
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consider such an agent to be successful under the active inference problem
definition.

Furthermore, by allowing various parts of the active inference frame-
work to be learned from the environment (i.e., log P(o|s)), we can infer time-
dependent preferences from the environment. This is in contrast to vanilla
reinforcement learning, where it is less clear how to naturally account for
learning an intrinsic reward function, with many competing approaches
(Still & Precup, 2012; Mohamed & Rezende, 2015; Pathak et al., 2017).

4 Discussion

We have described active inference, and the underlying minimization of
variational and expected free energy, using a (simplified) discrete state-
space and time formulation. Throughout this review, we have suggested
that active inference can be used as framework to understand how agents
(biological or artificial) operate in dynamic, nonstationary environments
(Friston, Rosch, et al., 2017), via a standard gradient descent on a free energy
functional. More generally, active inference can be thought of as a formal
way of describing the behavior of random dynamical systems with latent
states.

As noted in the formulation of active inference (see equation 2.23), epis-
temic foraging (or exploration) emerges naturally. This is captured by the
desire to maximize the mutual information between outcomes and the hid-
den states on the environment. Exploration means that the agent seeks out
states that afford outcomes, which minimize uncertainty about (hidden)
states of affairs. In the FrozenLake simulation, this was highlighted by the
initial exploratory move made by the agent due to uncertainty about reward
location. The move resolved the agent’s uncertainty about the reward loca-
tion, and all subsequent episodes (when the reward location remained con-
sistent) exploited this information. Note that in the formulation presented,
we discussed model parameter exploration that might also be carried out
by the agent, when learning either the likelihood or prior preferences, by
having priors over the appropriate probability distributions and apply-
ing the expected free energy derivations to those parameters (Schwarten-
beck et al., 2019). The simulations showed that in the absence of a reward
signal from the environment, the agent could learn a niche and exhibit
self-evidencing behavior. Additionally, it highlighted that due to the funda-
mental differences in the conceptual approach, active inference agents may
exhibit Bayes-optimal behavior that is counterintuitive from the perspec-
tive of reinforcement learning (i.e., reward minimization). However, from
an active inference perspective, reward is simply the sort of outcome that is
preferred, and an agent can learn to prefer other sorts of outcomes.

The canonical properties presented with respect to decision making un-
der uncertainty are usually engineered in conventional reinforcement learn-
ing schemes. However, more sophisticated formulations of reinforcement
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learning define a central role for uncertainty over Q-value functions (Dear-
den, Friedman, & Russell, 1998; Dearden, Friedman, & Andre, 2013; Os-
band, Blundell, Pritzel, & Van Roy, 2016; O’Donoghue, Osband, Munos,
& Mnih, 2018), MDP (Dearden et al., 2013; Osband, Blundell, Pritzel, &
Van Roy, 2016; Zintgraf et al., 2019) or even the reward function (Sorg, Singh,
& Lewis, 2012; Fürnkranz, Hüllermeier, Cheng, & Park, 2012; Zintgraf et al.,
2019). The formulation presented in Zintgraf et al. (2019) incorporates un-
certainty over both the model parametrization and reward function. This
suggests that there is potential to build on (and remove components of)
Bayesian reinforcement learning algorithms to render them formally equiv-
alent to active inference. However, this may come at increased algorithmic
complexity cost and loss of generalization. Additionally, these algorithmic
design choices are nontrivial and may demonstrate counterintuitive behav-
ior (O’Donoghue, Osband, & Ionescu, 2020). In contrast, active inference
enables decision making under uncertainty with no heuristics in play.

The simulations reveal that once the reward signal is removed, the active
inference exhibits information-seeking behavior (to build a better model of
its environment), similar to the Bayesian reinforcement-learning agent. This
type of reward-free learning has been central to the curiosity literature in re-
inforcement learning despite by definition not being true to the definition
of reinforcement learning. Concretely, these approaches induce an intrin-
sic reward using some heuristic—dynamics prediction (Pathak et al., 2017),
random feature prediction (Burda, Edwards, Storkey, & Klimov, 2018), or
information gain (Mohamed & Rezende, 2015)—but this does not necessar-
ily align with the axiomatic goal of maximizing a numerical reward signal;
they are simply tools (i.e., inductive biases) that may lead us to achieve this,
and in the case of completely absent rewards, it is unclear what the goal of
reinforcement learning is (i.e., What behaviors are we reinforcing?).

Our treatment emphasizes that, via a belief-based scheme, active infer-
ence enables us to specify prior beliefs over preferred outcomes or not (to
produce purely epistemic behavior). Practically, these can produce sim-
ilar outcomes and have behavioral equivalences to the reward function
in reinforcement learning by assigning high and low prior preferences to
outcomes with positive and negative rewards, respectively. Moreover, this
highlights a conceptual distinction between prior beliefs over preferred out-
comes in active inference and reward functions in standard reinforcement
learning. While a reward function specifies how an agent should interact
with the environment, prior beliefs over preferred outcomes are a descrip-
tion (via some particular instantiation) of how the agent wishes to behave.
Crucially, this description can be learned over time, based on relative fre-
quencies of outcomes encountered. This speaks to an eliminative use of
Bayes optimality, which replaces the notion of reward as a motivator of
behavior with prior beliefs about the outcomes an agent works toward.
Conceptually, this dissolves the tautology of reinforcement learning, that
rewards reinforce behaviors that secure rewards. Having said this, related
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formulations can be found in reinforcement learning—for example, belief-
based reward functions in Sorg et al. (2012), Fürnkranz et al. (2012), and
Zintgraf et al. (2019).

In active inference, the an agent is likely to maximize extrinsic value (cf.
expected reward) by having prior preferences about unsurprising outcomes
(see equation 2.22) via the minimization of expected free energy. It is im-
portant to note that the minimization of expected free energy is achieved
by choosing appropriate policies (sequences of actions). We accounted for
this in the initial setup of the FrozenLake simulation, where the agent had
strong positive preference for finding the Frisbee. Additionally, hole loca-
tions were associated with strong negative preferences. In contrast, the ac-
tive inference null model with no prior preferences and no ability to learn
them encouraged exploratory behavior, and the agent ended in the (G) lo-
cation 44.0% of the time.

However, it is worth noting that these properties follow from the form
of the underlying generative model. The challenge is to identify the appro-
priate generative model that best explains the generative process (or the
empirical responses) of interest (Gershman & Beck, 2017). In the Frozen-
Lake simulation, by equipping the agents with beliefs about the current
context, we were able (via the generative model and its belief updating pro-
cess) to convert a learning problem into a planning-as-inference problem.
However, this can be treated as a learning problem by specifying a hier-
archical MDP with learning capacity over the problem space. This would
allow for slow-moving dynamics at a higher level that account for changes
in context and fast-moving dynamics at the lower level that equip the agent
with the ability to navigate the given instantiation of the FrozenLake (Fris-
ton, Rosch, et al., 2017). When comparing prior preferences and rewards,
we highlighted that due to no explicit prior preference for goal states, the
belief-based (active inference and Bayesian RL) agents exhibit conservative
behaviors; choosing to avoid the (G) state. This behavior is a caveat of the
underlying generative model form—uncertainty modeled over the location
of the (G) & (H) state—and manipulating the prior probability distribu-
tions (or the factorization of the states) might lead to policies where agents
chooses to not avoid the (G) location. Additionally, the generative models
underlying this active inference formulation can be equipped with richer
forms (e.g., via amortization) or learned via structural learning (Gershman
& Niv, 2010; Tervo, Tenenbaum, & Gershman, 2016). Thus, if one was to
find the appropriate generative model, active inference could be used for
a variety of problems: robotic arm movement, dyadic agents, and playing
Atari games, for example. We note that the task of defining the appropriate
generative model (discrete or continuous) might be difficult. Thus, future
work should look to incorporate implicit generative models (based on fea-
ture representation from empirical data) or shrinking hidden state-spaces
by defining transition probabilities based on likelihood (rather than latent
states).
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Software Note

The simulations presented in this letter are available at https://github.
com/ucbtns/dai.
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