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Abstract

This thesis is concerned with the interaction between an along-

shore coastal current and flow driven by a jump in potential vorticity.

In particular, we develop and apply idealised models for a river

outflow, a potential vorticity front, and waves generated by changes

in continental-shelf width. In all cases the model ocean has one

active layer with piecewise-uniform potential vorticity, and analytic

progress is made by assuming the flow varies slowly in the along-shore

direction. The behaviour of the model depends strongly on whether

the vorticity dynamics reinforce or oppose the coastal current, and

on the relative strengths of these two effects.

In the outflow model, vorticity is generated by stretching or

squashing of fluid columns as they leave the source and adjust to the

depth of the upper ocean layer. We explore how this basic mechanism

affects the behaviour of the outflow plume by extending the quasi-

geostrophic model of Johnson et al. [2017]. In chapter 2, we extend

Johnson et al.’s model to order-one Rossby number using the semi-

geostrophic equations, and show that the same range of behaviours

occurs. In chapter 3 we allow the potential vorticity of the outflow

to vary in space, and show that the behaviour of the resulting plume

depends on the net contribution of vorticity at the source.

Chapter 4 considers free waves on a potential vorticity front,

and shows how they are affected by the presence of a coast. The

evolution of the front is described by a nonlinear finite-amplitude

equation including first-order dispersive effects, which is analysed

using ‘dispersive shock-fitting’ [El, 2005]. Chapter 5 extends this

model to include the continental shelf, and shows that the flow

can become hydraulically controlled when the background current

opposes coastal-trapped wave propagation.
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Impact statement

The models developed below are simple representations of coastal

flows, and thus provide insight into the underlying dynamics which

can in principle be applied to any coastal region. Chapters 2-3

explore how vorticity dynamics affect the behaviour of river water

once it discharges into the ocean. River water transports nutrients,

pollutants and sediments from the land to the sea and thus river

plumes play an important role in coastal ecosystems. Real river

plumes display a ‘menagerie’ of behaviours, and there are many

theoretical, experimental, numerical and observational studies that

seek to explain these differences. The results presented here contribute

to this discussion by isolating the role of source vorticity, and showing

that this mechanism alone can produce the three most commonly

observed behaviours. Further, §2 identifies the nonlinear Kelvin wave

as an important dynamical feature of the ocean’s response to an

outflow, and the concept of vorticity competition discussed in §3

contributes to the general problem of flow around a curved wall.

Both of these topics are of interest to experimentalists wishing

to understand fundamental properties of rotating flows, and the

idealised nature of the models used here makes them well-suited to

comparison with laboratory experiments.

In §§4-5, theoretical predictions from a dispersive long-wave

model are compared to contour-dynamic simulations of the full quasi-

geostrophic system. The high level of agreement between these two

indicates that first-order dispersive effects are sufficient to capture

the quantitative long-time behaviour of the full system, and thus

the analytical techniques applied below (dispersive shock fitting,

hydraulic and dispersive critical control) are useful in studying a

wider range of quasi-geostrophic flows. In addition to its analytic

properties, numerical integration of the long-wave model is orders of

magnitude faster than contour dynamics. Researchers investigating

similar problems thus may use the long-wave model to first explore the

parameter space, and then select particular values for use in contour

dynamics.

Coastal-trapped waves, which are the topic of §5, form a ma-

jor component of high-frequency variability in the coastal oceans.

However, these waves are too small to be resolved directly by global

climate models and must instead be included through parameterisa-

tion. A greater understanding of how the properties of these waves

relate to known data such as coastal bathymetry is thus important

for improving the reliability of model output. Chapter 5 shows that

sufficiently large changes in shelf width can lead to reduced alongshore

transport, and thus provides further evidence of the importance of

bathymetry-aware parameterisations. This chapter was also guided
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by an ongoing discussion with researchers at Johns Hopkins Earth

and Planetary Sciences, who are interested in the possibility that

coastal-trapped waves may contribute to melting of the Greenland

ice sheet.

The results presented here have produced three publications

in peer-reviewed journals [Jamshidi and Johnson, 2019a,b, 2020].

Presentations based on these results have also been given at several

conferences in the U.K. (British Applied Mathematics Colloquium,

2017, 2018, 2019; The dynamics of rotating fluids, 2017, 2020)

and internationally (Japan Geoscience Union, 2018; AGU Ocean

Sciences, 2020) to audiences in both mathematics and oceanography.

Communication between these two disciplines is vital; as a way of

providing insight into observations and for understanding the limits

of idealised models.
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Chapter 1

Introduction

1.1 Coastal outflows

Rivers play an important role in the transport of nutrients, sediment and

pollutants from the land to the sea, and as such the dynamics of coastal

outflow plumes is an active area of study. Outflow plumes that are large

enough to be affected by planetary rotation often comprise two distinct

parts: an anticylonic gyre or ‘bulge’ of fresh water that accumulates near

the river mouth, and a coastally-trapped current that transports some or

all of the outflow away from the mouth in the direction of Kelvin-wave

propagation [Horner-Devine et al., 2015]. This prototypical structure has

been observed in the Chang Jiang, Hudson and Columbia river plumes

[Beardsley et al., 1985, Chant et al., 2008, Horner-Devine, 2009], as well

as in laboratory and numerical studies [Avicola and Huq, 2003a,b, Chen,

2014]. However some river plumes do not typically develop bulges, and

instead all of the outflow volume is transported away from the source

by the coastal current. This ‘coastal-current mode’ has been observed

in the Delaware and Chesapeake bay plumes [Münchow and Garvine,

1993a,b, Donato and Marmorino, 2002] and, in one particularly striking

example, after the removal of a hydroelectric dam on the Elwha river

released a large amount of silt into the Strait of Juan De Fuca, leaving

the shape of the outflow plume clearly visible from the air (figure 1.1).

Other plumes may operate in either mode at different times of the year

[Conlon, 1982, Shetye et al., 1993]. This wide range of behaviours is a

result of nonlinear interaction between many influencing factors including
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Figure 1.1: A hydroelectric dam on the Elwha river was removed in 2014, releasing
a large build up of silt into the Strait of Juan De Fuca, where it formed a coastal
current. Image reproduced by permission of Tom Roorda.

outflow buoyancy, rotation, bathymetry, tides and currents, and highlights

the importance of theoretical or numerical studies that seek to isolate the

contribution made by each of these. Here our focus is on the vorticity-driven

dynamics of outflow plumes, and in particular how vorticity generated

at the mouth of the river affects plume behaviour. A convenient way to

visualise the effect of source vorticity on plume behaviour is through the so-

called ‘method of images’. A cyclonic vortex near a vertical, impermeable

boundary propagates in the direction of Kelvin-wave flow (rightward in

the Northern hemisphere, referred to hereafter as downstream) under the

influence of its image, while an anticyclonic vortex propagates upstream. In

the context of a coastal outflow cyclonic vorticity increases transport in the

coastal current, while anticyclonic vorticity feeds the bulge and can even

drive fluid upstream in the direction opposite to Kelvin-wave propagation

[Garvine, 2001, Magome and Isobe, 2003, Johnson et al., 2017].

Although it is known that vorticity plays an important role in outflow

dynamics, it is not clear how source vorticity can be controlled in a

laboratory, or even measured at the required scales in real plumes (see §4.3

of Crawford [2017] for a discussion of the difficulties involved). Thus one

way to make progress is to relate coastal-current transport to properties
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of the bulge rather than of the outflow profile [Nof and Pichevin, 2001,

Chen, 2014]. While these theories have been successful at explaining coastal

current transport, it is not clear how one could determine the properties

of the bulge a priori. An alternative approach that incorporates source

conditions is to parameterise vorticity using the source Rossby number

RoS = US/(fW ). Here US is a scaling for the outflow velocity, f is the

Coriolis frequency and W is the width of the river mouth. The source

Rossby number thus gives the ratio of source vorticity to the background

rotation rate [Fong and Geyer, 2002, Horner-Devine et al., 2006]. However

as noted by Horner-Devine et al. [2015], the empirical relationship derived

in these experiments suggests that coastal current transport depends only

weakly on the source Rossby number.

1.1.1 Idealised models of coastal outflows

Another way to avoid the difficulties associated with measuring source

vorticity is to use an idealised, inviscid model where the potential vorticity

(PV) of the outflow can be specified. Kubokawa [1991] uses a quasi-

geostrophic (QG) model in which the outflow has the same density as

a buoyant upper layer of oceanic fluid. Part of the outflow has the same

PV as the (uniform) upper ocean layer, and the remainder has a lower

PV. Possible flows are split into three distinct modes depending on the

total volume and PV distribution of the outflow. These modes are a steady

coastal current, a widening current, and the prototypical anticyclonic gyre

and coastal current mode. Johnson et al. [2017] (JSM hereafter) employ

a similar model where the outflow has uniform PV, and show that the

dynamics are governed by the PV anomaly (PVa) of the outflow. If the

upper ocean layer is deeper than the river mouth (positive PVa) then

fluid columns stretch on leaving the source and, by PV conservation, gain

positive vorticity. The source vorticity is cyclonic everywhere and all the

outflow travels downstream, leading to a steady, constant-width coastal

current and no bulge formation. On the other hand, if the upper layer is

shallower than the river mouth (negative PVa) then fluid columns squash

on leaving and gain negative vorticity. In some cases, this leads to an

outflow where the source vorticity is negative everywhere and so all fluid

turns left, forming an upstream coastal current with only a fraction of the

outflow eventually recirculating downstream. JSM identify two mechanisms

that drive the flow in their model: flow driven downstream by a Kelvin

wave and flow driven by image vorticity. The vortical flow is caused by the

PV jump and, depending on the sign of the PVa, can drive fluid in either
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direction. In fact Johnson and McDonald [2006] show that in the vorticity-

dominated limit all of the outflow turns left and the coastal current flows

upstream.

In §2, we extend the quasi-geostrophic model of JSM to allow order-one

Rossby number. That is, we allow the difference between the initial upper-

layer depth and the PV depth of the river water to be of arbitrary magni-

tude. Analytical progress relies on invoking a long-wave assumption—that

along-shore scales are large compared to cross-shore scales. This results in

a semi-geostrophic (geostrophic balance alongshore only) set of equations,

which have been used previously for studying similar problems involving

coastal currents with uniform PV [Stern, 1980, Stern et al., 1982, Kubokawa

and Hanawa, 1984a, Stern and Helfrich, 2002]. The boundary of these

currents can be completely described by similarity solutions that relate

the current width to the velocity at the current edge. Similar ideas are

applicable for the present set-up in regimes where the flow evolves to

become steady. These steady flows can be matched with unsteady coastal

currents away from the source region, and thus it is possible to develop

a full theory for the behaviour of the plume that depends only on the

non-dimensional PVa and the outflow mass flux.

In §3, we return to the quasi-geostrophic model and allow the outflow

to have spatially-varying PV. In particular we choose the PV distribution

such that the outflow has a region of positive vorticity on the left and a

region of negative vorticity on the right, looking seaward. Image vorticity

drives a tendency for fluid emerging from each region to turn and propagate

into the other, and so we call such an outflow ‘competitive’. Alternatively,

if the outflow consists of a region of negative vorticity on the left and

a region of positive vorticity on the right, there is no competition and

the fluid with negative vorticity turns upstream unimpeded. This chapter

thus generalises the work of Kubokawa [1991] to include a wider range of

PV distributions, and re-analyses previous results within the framework of

vorticity competition. We derive a simple constraint on the source vorticity

that must be satisfied in order for the outflow to operate in coastal current

mode.

1.1.2 Validity of the coastal outflow model

The models developed here are not appropriate for quantitative comparison

with real outflows, due to two important simplifications. Firstly, neither

model allows the plume boundary to outcrop, and so ignores horizontal

density gradients. However, the interaction between vorticity dynamics and
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Kelvin-wave flow which is the main focus of this work is still relevant in

a more realistic setting, and may sometimes (for example, in the limit of

weak horizontal stratification) be a dominant factor in determining plume

behaviour. Secondly, we have chosen to model the coast as a vertical wall

and are thus ignoring the effect of topographic stretching, which introduces

additional cyclonic vorticity into the plume. The role played by topography

in plume behaviour is discussed at length in Garvine [2001] and Pimenta

et al. [2011], but as it pertains to the present work we note that for a steep

bottom slope the plume is known to be ‘surface advected’ and the influence

of topography is small [Yankovsky and Chapman, 1997].

Two important parameters in the theoretical study of coastal outflows

are the source Rossby number RoS discussed above and the Kelvin number,

K = W/LR, where LR = c/f is the Rossby radius of deformation (here

c = (g′H)1/2 is the internal gravity-wave speed for a layered model, with g′

the reduced gravity for the active layer and H a depth scale to be chosen

later). The Kelvin number was introduced by Garvine [1995] as a means

of classifying plume behaviour. Outflows with large K have relatively slow

flow and are in geostrophic balance, whereas those with small K are little-

affected by rotation. Huq [2009] presents laboratory experiments showing

that bulges only form in outflows with K < 1, while Garvine [1995] notes

that real outflows fall into the ‘large-K regime’ when K is as small as 2.

Note that the two parameters differ only in their choice of velocity scale;

that is K−1 = RoS × FS for FS = US/c the source Froude number. Further

discussion of model results in an oceanographic context is given within.

1.2 Coastal fronts

Coastal or boundary currents are an integral part of global ocean circu-

lation. For example, currents may respond to external forcing or intrinsic

instability by expelling vortex filaments or larger eddies into the ocean, with

implications for the mixing of coastal and ocean waters; and currents driven

by outflows are important for the transport of fresh water, pollutants and

land-derived nutrients. Theoretical studies of coastal currents often employ

idealised models in which the current and the upper ocean have uniform

PV, a simplification that allows the dynamics to be understood by following

the evolution of the PV front separating the ocean from the current. Stern

and Pratt [1985] use this model to study the nonlinear evolution of a coastal

front in a non-rotating environment, and Pratt and Stern [1986] develop

a general QG model for a PV front. There is also much interest in the

behaviour of ‘free’ fronts, i.e. those that are far from the coast, which can
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be used to model Western boundary currents such as the Gulf Stream or

the Kuroshio Extension (see figure 1.2) [Pratt et al., 1991, Cushman-Roisin

et al., 1993, Sasaki and Schneider, 2011a, Tracey et al., 2012].

§4 considers the propagation of unforced long waves on a coastal front

using a 11
2 -layer, QG model introduced by Pratt and Stern [1986]. Although

Pratt and Stern developed the model in a general form, their specific

calculations are mostly concerned with free fronts in which the only wave

is the Rossby wave. At leading order in the long-wave expansion, waves on

a free front are stationary. At next order, the curvature of the front obeys

the modified Korteweg–de Vries (KdV) equation [Pratt, 1988, Nycander

et al., 1993]. The picture is dramatically different in the presence of a

coastal boundary, and the purpose of this chapter is to provide an initial

exploration of the regime in which the front is sufficiently close to the

boundary to be influenced by two coastal effects; namely Kelvin wave-

driven flow, and flow due to image vorticity. The combination of the two

coastal effects and the Rossby wave leads to a rich set of dynamics, with

the behaviour of the front depending strongly on the relative strengths of

the three mechanisms. When first-order dispersive effects are included in

the model, the governing equation belongs to a class of ‘weakly-dispersive’

equations and is somewhat similar to the modified KdV. We analyse the

Riemann initial-value problem for this equation using ‘dispersive shock-

fitting’ [El, 2005] and show that the dispersive long-wave theory captures
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the quantitative behaviour of the full QG system extremely well.

1.3 Continental shelf waves

As well as being of interest in its own right, the coastal front model used

in §4 can be extended to include a continental shelf (which is modelled

as a constant-height step of variable width). In §5 we use this model to

study the hydraulic control of coastal-trapped waves (CTWs) generated

by variations in shelf width. (CTWs are vorticity waves that arise when

columns of fluid are forced across isobaths, either by upper-layer Ekman

transport or by the interaction of a mean current with an alongshore

change in bathymetry.) CTWs are ubiquitous in the worlds oceans and

play an important role in coastal upwelling. They are very long-lived, and

can communicate the ocean’s response to localised events over hundreds

to thousands of kilometres. Linear CTWs in a continuously stratified

ocean are governed by a form of the vorticity equation in which the non-

dimensional parameter is the slope Burger number,

S =

(
N0H

fL

)2

, (1.1)

where N0 = (−gρ−1
0 ρ′(z))1/2 is the buoyancy frequency, ρ0 is a reference

density and ρ(z) is the (small) deviation from this in the vertical co-

ordinate. H and L are representative depth and cross-shelf length scales

respectively, and f is the Coriolis frequency. The slope Burger number

illustrates the relative importance of stratification and the continental shelf.

For large S , the shelf-width scale L is small compared to the Rossby radius

of deformation LR = c/f (where here c = N0H is the internal gravity-

wave speed in a continuously stratified fluid), and CTWs behave much like

Kelvin waves (i.e. they ignore the shelf and propagate as if along a vertical

wall). Alternatively when S � 1 stratification is not important and CTWs

are barotropic topographic Rossby waves, often called continental shelf

waves (CSWs). CTWs can therefore be thought of as a hybrid between

internal Kelvin waves and topographic Rossby waves [Brink, 1991]. §5 is

concerned with CSWs, which are known to occur off the coast of Scotland,

along the Iceland-Faroe ridge, and on the Amundsen Sea shelf [Gordon and

Huthnance, 1987, Miller et al., 1996, Wåhlin et al., 2016].

1.3.1 Hydraulic control of CTWs

CTWs always propagate to the right in the Northern hemisphere (the same

direction as Kelvin wave flow), and can become arrested if the mean flow
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Figure 1.3: Hovmöller diagram showing sea-surface height (SSH) anomaly in an
along-shore slice taken at the centre of the valley. The anomaly is defined relative
to the far-field. The wind direction is marked by the thick black arrows and
drives flow (a) in the direction of CTW propagation, and (b) counter to CTW
propagation. Grey dashed lines show mode-1 CTW phase speed, and the black
dashed line in (b) is the mean speed of the background flow. Triangles mark the
edge of the valley. Adapted from Zhang and Lentz [2017].

is to the left. Zhang and Lentz [2017] use numerical simulations repre-

sentative of the Hudson shelf valley to illustrate the asymmetric response

of topographically-generated CTWs to the direction of the background

flow. The Hovmöller diagram in figure 1.3 (adapted from figure 11 of

Zhang and Lentz [2017]) shows an alongshore slice of the sea-surface

height at the valley centre. For either direction of background flow, a

mode-1 CTW (defined as the lowest-frequency solution to the relevant

eigenvalue equation, (16) in Zhang and Lentz [2017]) propagates away from

the valley (grey dashed line in (a) and (b)), while a train of standing lee

waves develops on the left of the valley when the background flow opposes

CTW propagation, and spreads at approximately the mean speed of the

background current (black dashed line in (b)). Zhang and Lentz [2017]

show that the characteristics of the lee waves are consistent with CTWs

that have phase speed equal and opposite to the background flow, and thus

they are arrested CTWs. The mode-1 wave is not arrested because its phase

speed is much greater than the mean speed of the background flow. Martell

and Allen [1979] identify the same response in a simpler barotropic model,

and additionally demonstrate that the standing lee waves are a dispersive

feature which do not occur in the long-wave limit.

As noted by Zhang and Lentz [2017], the combination of a wave

that propagates away from an obstacle against the background flow and
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standing waves on the other side is suggestive of hydraulic control, whereby

geometric constrictions force a transition from subcritical to supercritical

flow [Gill, 1977, Johnson and Clarke, 2001, Pratt and Whitehead, 2008].

Gill and Schumann [1979] and Dale and Barth [2001] study the hydraulic

control of coastal flows using a model where each layer has uniform PV.

This model therefore does not have Rossby waves, and the controlling

mode is the internal Kelvin wave (S � 1). In contrast, Haynes et al.

[1993] study controlled barotropic flow (S = 0) in a stepped channel with

piecewise-uniform PV and thus a single Rossby mode. They show that two

different types of control are possible: one where the flow is controlled at

the maximum perturbation in step width, as for Kelvin waves, and one

where the flow transitions from one supercritical branch of the solution to

another via a control point at the edge of the perturbation. Johnson and

Clarke [1999] extend this model to include first-order dispersive effects,

which enables them to specify the location of the jump between branches.

Chapter 5 studies the hydraulic control of CSWs and the corresponding lee

waves, and thus is a coastal extension of the rigid-lid, channel model used

by Haynes et al. [1993].

1.4 Vortical and Kelvin-wave flow

All of the models developed in this thesis focus on the dynamical behaviour

of a coastal current with anomalous vorticity in a rotating co-ordinate

system. Thus the flux and PV anomaly of the current, denoted Q0 and

Π0 respectively, are key parameters in the analysis. In the QG limit Q0

has units of area flux (Q0 multiplied by the vertical scale gives the volume

flux) and Π0 has units of vorticity, so the vortex length LV =
√

(Q0/|Π0|)
emerges as a natural scale for the problem. In two-dimensional rigid-lid

flow, Johnson and McDonald [2006] show that a vortical current against

a vertical wall has width LV, with the direction of flow determined by

sign (Π0). For systems where the Rossby radius of deformation is finite,

JSM show that the parameter a = LR/LV provides a useful means of

interpreting the behaviour of such currents (LR = (g′H)1/2/f now reverting

to the definition for a layered model). Vortical effects dominate when a is

large, with the limit a→∞ recovering the two-dimensional flow of Johnson

and McDonald [2006]. For smaller values of a vortical effects are relatively

weaker and the response is instead dominated by the zero-PVa component,

which we will call the ‘Kelvin-wave driven flow’ or, in §5, the ‘background

current’. In the QG limit the parameter a can be understood either as

the ratio of the Kelvin-wave decay scale LR to the width of the vortical
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current LV, or equivalently as the ratio of the vortical speed Q0/LV to the

Kelvin-wave speed Q0/LR.

To estimate a for a coastal current in the real ocean we may take

LR = O(1 − 10km) as a typical range of values. The vorticity length LV

is less well-studied but may be estimated as follows. Assuming that the

ocean is stagnant outside the coastal current, we may scale the vorticity

within the current as the coastal velocity divided by the current width,

that is we set |Π0| = uw/w for uw the velocity at the coast. Further, we

may scale w with LR so that a2 = LRuw/Q0. Away from any source,

uw = O(0.1m s−1) is reasonable while Q0 varies between currents, say over

the range O(10 − 1000m2/s), assuming an upper-layer depth of O(10m)

[Horner-Devine et al., 2015]. This gives a2 = O(0.1− 100) so that the full

range of behaviours shown below, including both Kelvin wave-dominated

and vorticity-dominated flows, is reasonable in the real ocean.

In §2 we show that, for finite Rossby number, the Kelvin wave prop-

agates ahead of the vortical outflow, leaving behind a steady geostrophic

current which displaces the interface and establishes the coastal boundary

condition for all time. In the QG model employed in §3 the Kelvin wave

travels at infinite speed relative to the outflow, and is instead represented

by a coastal boundary condition where the interface is displaced everywhere

downstream of the source at t = 0+ [Hermann et al., 1989]. In §§4-5 there

is no source and the coastal boundary condition is applied everywhere. In

this setting the boundary condition can be interpreted as the signal of a

quickly-propagating mode such as the Kelvin wave, or simply as the zero-

PVa component of the current which, depending on the direction of the

flow, either depresses or raises the interface at the coast.

1.5 Background on the shallow-water model

The models used in this thesis can all be derived from the shallow-water

equations, in which the continuously stratified ocean is represented by a

(usually small) number of vertically-stacked layers, each with homogeneous

density. As such we will briefly present some important properties of the

shallow-water model, following chapter 3 of Vallis [2017].

In chapter 5 the model ocean consists of a single layer, with density ρ0

and a free surface at z = η(x, y, t). Taking the shallow-water (small aspect

ratio) limit of the rotating Euler equations reduces the vertical momentum

equation to hydrostatic balance. Integrating with respect to z and applying
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the boundary condition that the pressure p vanishes at the free surface gives

p(x, y, z, t) = ρ0g(η(x, y, t)− z). (1.2)

Thus horizontal pressure gradients are proportional to the free-surface

gradient ∇η and consequently horizontal velocities are independent of

z (∇p is independent of z). An important corollary of this is that the

relative height of particles within a column of fluid is materially conserved:

stretching or squashing is uniform throughout the water column. Note that

in chapter 5 we write η as the sum of a mean value H and a small deviation

(here denoted h(x, y, t)) in order to apply quasi-geostrophic theory.

In chapters 2-4 we use the ‘reduced-gravity’ shallow-water equations,

in which the ocean consists of a thin upper layer of density ρ1 lying above

an infinitely-deep inactive layer with density ρ0 > ρ1. The upper layer

represents the top few hundred metres of the ocean, and the lower-layer

the stagnant abyss. The pressure in the lower layer, p1, is given by the

weight of the water above it:

p1(x, y, z, t) = ρ1g(η − h) + ρ0g(h− z), (1.3)

where here z = h(x, y, t) is the interface between the two layers. Since there

is no motion in the lower layer, ∇p1 = 0 and thus

g∇η + g′∇h = constant, (1.4)

where we have introduced the reduced gravity g′ = g(ρ0 − ρ1)/ρ1. The

dynamics of the active layer are the same as those of the single layer in §5,

up to replacing g with g′. Assuming that variations in density are small,

g′ � g and thus ∇η � ∇h. We may therefore further simplify the model

by placing a rigid lid at z = 0, and thus in this thesis we refer to h as

the depth of the upper layer. The rigid-lid approximation is supported by

observations: the vertical displacement of isopycnals in the upper ocean is

much larger than variations in the mean height of the ocean surface (tens

of meters versus a few centimetres).
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Chapter 2

A semi-geostrophic model

for coastal outflows

In this chapter, we model a coastal outflow using the long-wave, reduced-

gravity, shallow-water equations (the semi-geostrophic equations). The

river water is taken to have the same density as a finite-depth upper

layer of oceanic fluid, and the two fluids have different, uniform, potential

vorticities. The model is thus an extension of Johnson et al. [2017] (JSM

hereafter) to order-one Rossby number. We show that, as in JSM, the

dynamics are determined by the sign of the PVa and the strength of the

outflow, and are strongly correlated with the value of a single dimensionless

parameter (a) which expresses the ratio of the speed of the flow driven

by the Kelvin wave to that driven by image vorticity. We show that

for moderate values of the Rossby number the behaviour of the outflow

depends on the magnitude of both effects independently, unlike in the QG

limit where the plume behaviour is determined by their ratio alone.

In §2.1 we derive the semi-geostrophic system from the rotating shallow-

water equations, and show that the assumption of piecewise uniform PV

reduces the problem to a pair of nonlinear partial differential equations

in flux form. A similar set of equations has previously been used to study

coastal currents with uniform PV [Stern, 1980, Stern et al., 1982, Kubokawa

and Hanawa, 1984a, Stern and Helfrich, 2002], and is amenable to analysis

due to the existence of similarity solutions in unforced regions of the domain

(i.e. away from the source, which here is a novel addition to the semi-
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Figure 2.1: Fluid is expelled from a coastal source of depth Hs located at |x| < W ,
y = 0. The oceanic fluid in y > 0 initially consists of a lighter layer (with the
same density as the expelled fluid) of dimensional depth H∗ lying over a deep,
denser, inactive layer. (a) Plan view, (b) side view with y = w(x, t) denoting the
boundary of the expelled fluid. Variables are dimensional.

geostrophic model). When the outflow has positive PVa, all fluid turns

to the right and the plume always becomes steady. This allows us to

describe the plume behaviour analytically by matching steady solutions in

the source region with similarity solutions downstream. §§2.2-2.3 derives

theoretical results for outflows with positive and negative PVa respectively

and shows that they agree excellently with numerical simulations of the

semi-geostrophic system, while §2.4 briefly compares the main results to

previous theoretical and experimental studies.

2.1 Model and governing equations

Consider a layer of buoyant fluid with dimensional depth H∗ lying above

an infinitely deep, inactive layer, with the whole system rotating about

a vertical axis Oz at constant angular speed f/2 > 0, where Oxyz are

Cartesian axes fixed in the fluid. The fluid lies in y > 0, with the coast

at y = 0 a solid vertical boundary. At time t = 0, a coastal source lying
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between −W < x < W is switched on. The fluid expelled by the source is

of the same density as the active layer, and has a different PV. The active

layer is taken to be sufficiently shallow to be governed by the reduced-

gravity rotating shallow-water equations, which in non-dimensional form

are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v = −∂h

∂x
, (2.1)(

LR

W

)2(∂v
∂t

+ u
∂v

∂x
+ v

∂v

∂y

)
+ u = −∂h

∂y
, (2.2)

∂h

∂t
+
∂

∂x
(uh) +

∂

∂y
(vh) = 0, (2.3)

where h is the depth of the active layer, and u and v are the along-shore

and off-shore velocities respectively. Here x has been non-dimensionalised

with W (so that the source lies in |x| < 1), y with the Rossby radius

for the source fluid LR =
√
g′Hs/f , velocities u and v with

√
g′Hs and√

g′Hs(LR/W ) respectively, h with Hs (the source depth) and t with the

advective time-scale W/
√
g′Hs, where g′ is the reduced gravity for the

upper layer. Within the upper layer horizontal velocities are independent

of z and the boundary between the expelled fluid and the upper ocean layer

remains vertical. A schematic of this set-up is shown in figure 2.1.

Taking the limit LR/W = K−1 → 0 gives the semi-geostrophic or

long-wave equations, and requires that the flow is slowly varying in the x

direction, or that the river mouth is wide relative to the Rossby radius

(recall from §1.1 that the Kelvin number K is large for outflows that

are strongly-affected by rotation [Garvine, 1995]). The semi-geostrophic

equations can in fact still be a valid asymptotic description of the full

shallow-water system if variations in x are fast (for example, in the region

of a shock) provided the off-shore velocity v � u [Kubokawa and Hanawa,

1984b]. The long-wave assumption requires further justification in the

source region, especially at early times when v and u are of the same

order, and the x and y scales are similar. Strong support for the use of this

scaling comes from JSM, where they find excellent agreement between their

long-wave theory and contour-dynamic simulations of the full QG problem,

even in simulations where fluid is expelled from a point source (their

figures 11-13). Discrepancies do exist in the source region, but it appears

that the long-wave scaling does not affect the qualitative behaviour of the

outflow, including the strength of the upstream propagation in outflows

with negative PVa. Thus while the present model may have applications to

outflows of any width, it is formally only valid for those where K � 1 and

thus, as shown in Huq [2009], bulges are not expected to form at the river
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mouth. In the coastal oceans the deformation radius is on the order of a

few kilometres, so that some rivers that fall into the K � 1 regime are the

Delaware [Münchow and Garvine, 1993b] and the Hudson [Chant et al.,

2008], in both of which W ≈ 20km. For example, Münchow and Garvine

[1993b] employ conductivity-temperature-depth casts over a period of three

months in 1989 to estimate LR at the mouth of the Delaware as 6.2km,

which gives K = 3.2. Further estimates of K for different plumes are given

in table 1 of Garvine [1995] and figure 10 of Huq [2009].

A standard manipulation of equations (2.1) - (2.3) shows that the PV

q =
1− ∂u/∂y + (LR/W )2∂v/∂x

h
(2.4)

is conserved by fluid parcels [Stern, 1980]. Taking the limit LR/W → 0 and

substituting (2.2) gives the field equation for h,

∂2h

∂y2
− qh+ 1 = 0. (2.5)

The ambient outer layer begins at rest with non-dimensional depth H and

so has PV qout = 1/H, while the non-dimensional PV of the expelled fluid

is qin = 1. Thus H > 1 corresponds to positive PVa, and H < 1 to negative

PVa. In the scenario described here, where flow starts at rest and the source

has uniform depth, the choice of uniform PV would seem quite natural. This

restriction on the river mouth geometry is not necessary for the outflow

to have uniform PV. One could instead consider flow from a wide, deep

upstream reservoir as in Gill [1977] whereHs is the potential vorticity depth

of the river water. In either case, the use of piecewise-constant PV is a

necessary simplification required to solve (2.5) and make analytic progress.

Models with uniform PV have been used to provide a theoretical framework

for understanding large-scale ocean flows [Stern, 1980, Kubokawa, 1991,

Helfrich et al., 1999, for example] and this simplification has also been

used successfully to describe laboratory experiments that simulate coastal

outflows [Thomas and Linden, 2007, Gregorio et al., 2011]. The Rossby

number of the flow can be defined, following Clarke and Johnson [1999], as

Ro =

∣∣∣∣H∗ −Hs

Hs

∣∣∣∣ = |H − 1|, (2.6)

that is, the ratio of the PVa and background PV. The limit H → 1 thus

recovers the quasi-geostrophic flow of JSM.

Provided it does not overturn, the boundary of the expelled fluid can

be described as a single-valued function y = w(x, t) and the field equation

(2.5) can be solved separately in the river water and the ambient to give h
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(and hence u and, by (2.1), v), in terms of y, w and U = u(x,w, t). Solving

(2.5) gives

h =

H +
√
HUe(w−y)/

√
H y > w(x, t)

1 +
(
H − 1 +

√
HU

)
cosh (w − y) + U sinh (w − y) 0 < y < w(x, t),

(2.7)

where the following conditions have been applied:

h→ H as y →∞,
u = U at y = w,

h is continuous at y = w. (2.8)

That the solution depends on x parametrically through U and w is a

common feature of long-wave models. This prohibits wave-breaking, and

requires that the expelled fluid remain contiguous. This is at odds with,

for example, the shallow-water numerical results of Helfrich [2006] (their

figure 10) which shows that wave-breaking occurs during the geostrophic

adjustment of buoyant fluid against a vertical coast. However, differences

between theory and numerical results are restricted to the area around the

current boundary and the long-wave model still provides a useful guide to

the behaviour of the full shallow-water system.

Other quantities that appear in the calculations below are the layer

depths at the wall and the current edge, and the fluid velocity at the wall.

These are given by:

hw = h(x, 0, t) = 1 + (H − 1 +
√
HU) cosh (w) + U sinh (w), (2.9)

he = h(x,w, t) = H +
√
HU, (2.10)

uw = u(x, 0, t) = U cosh (w) + (H +
√
HU − 1) sinh (w). (2.11)

The mass flux of oceanic fluid at a station x is given by∫ ∞
w

uh dy =
h2

2

∣∣∣∣w
∞

=
h2
e

2
− H2

2
. (2.12)

These expressions are used in (2.1)-(2.3) to write the governing equa-

tions as a pair of first-order partial-differential equations (PDEs) in terms of

U(x, t) and w(x, t), which are amenable to analysis and a simpler numerical

treatment than the original system. In deriving these PDEs below we also

make use of the kinematic boundary condition

v =
∂w

∂t
+ U

∂w

∂x
at y = w, (2.13)
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and the relationship

∂Φ

∂ξ

∣∣∣∣
y=w

=
∂

∂ξ
Φ(y = w)− ∂Φ

∂y

∣∣∣∣
y=w

∂w

∂ξ
, (2.14)

for ξ = x or t and Φ = h or u.

Stern [1980] notes that the y-derivative of the alongshore momentum

equation (2.1) vanishes and thus it is sufficient to solve (2.1) at one y-value

only, which we choose to be the current edge. Evaluating (2.1) at y = w

gives
∂U

∂t
+ U

∂U

∂x
+
√
H
∂U

∂x
− ∂w

∂t
= 0. (2.15)

The system is closed by an integrated form of mass conservation (2.3),

which is

∂

∂t

∫ w

0
h dy +H

(
∂U

∂t
− ∂w

∂t

)
+ hw

∂hw

∂x
= Q′(x), (2.16)

for∫ w

0
h dy = (H − 1) sinh (w) + w + U

(
−1 + cosh (w) +

√
H sinh (w)

)
.

(2.17)

Here, Q(x) is a monotonic-increasing function that gives the (steady)

cumulative volume flux from the river mouth for t > 0 through∫ x

−1
vh|y=0 dx′ = Q(x) (2.18)

so that the total mass flux from the source is Q0 = Q(1) which, along

with H, is a key physical parameter for the flow. Thus the coastal

boundary condition is applied by specifying a mass outflow profile Q(x),

and extending this function to take values zero and Q0 in x < −1 and x > 1

respectively. The long-term evolution of the current away from the source

region is found below to depend on Q(x) only through the total mass flux

Q0, and so for simplicity all examples presented here use the linear profile

Q(x) = (Q0/2)(x+1) in |x| < 1. The theory below classifies the qualitative

behaviour of the outflow in terms of the two parameters Q0 and H, and

so applies to any steady volume flux profile Q(x), including those resulting

from a critically controlled outflow. Results presented here can also be

easily extended to unsteady outflows, and an analysis of such changes is

explored in more detail for the quasi-geostrophic limit in Southwick et al.

[2017].

2.1.1 Vortical and Kelvin-wave driven flow

The two principal mechanisms that drive the outflow are the Kelvin wave

and image vorticity. In the QG model employed by JSM and elsewhere in
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this thesis, the relative strengths of the two mechanisms can be controlled

through the parameter a = LR/LV, which can be understood either as the

ratio of the Rossby radius to the vortex length or as the ratio of the vortex

speed to the Kelvin-wave speed (see 1.4). JSM show that solutions to the

QG model can be fully characterised by the value of a and the sign of the

PVa, and one of the main goals of this chapter is to assess to what extent a

can be used to categorise outflows with finite Ro. It is expected, and shown

below, that the results here reduce to those of JSM in the limit Ro→ 0 and

Q0 → 0, with a ∼ √(Ro/Q0) fixed. However the speed and length-scale

ratios are not equivalent in the semi-geostrophic model and so, finding the

interpretation in terms of speed to be more instructive, for this chapter

only we set a = |uV|/uKW 6= LR/LV, with these speeds discussed in more

detail below.

First consider the Kelvin-wave flow, which propagates faster than the

river water and thus transports both river and oceanic fluid [Helfrich et al.,

1999, Helfrich, 2006]. In the zero-PVa problem (that is, with H = 1) image

vorticity is absent and flow is due to the Kelvin wave alone. In this case,

the problem reduces to solving (2.1) at the wall,

∂B

∂t
+ (1 +B)

∂B

∂x
= Q′(x), (2.19)

with B related to the layer depth by

h = 1 +B(x, t)e−y. (2.20)

Equation (2.19) is the forced Hopf equation, which can be solved explicitly

using the method of characteristics, and gives rise to a current that expands

offshore and spreads downstream at speed uKW = −1 +
√

(1 + 2Q0) at

the wall. This is referred to hereafter as the Kelvin-wave flow. Non-trivial

solutions of the homogeneous Hopf equation always develop shocks, which

occur in the present problem in the oceanic (rather than river) water at the

leading edge of the Kelvin-wave flow. These shocks are discussed in greater

detail in §2.2.5.

The effect of image vorticity can be isolated by considering the limiting

case of rotating fluid ejected into a non-rotating background, and it is

shown in Johnson and McDonald [2006] that the velocity of the current

at the wall is uV = ±√(Q0|H − 1|/H) where the sign depends on the

sign of the PVa. Thus, for positive PVa both the vortical and Kelvin-wave

effects drive fluid downstream, and the dynamics are reinforcing, while for

negative PVa the dynamics are opposing. The ratio between the two speeds

is

a =
|uV|
uKW

=

√
Q0|H − 1|

−√H +
√
H(1 + 2Q0)

. (2.21)
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Anticipating the importance of a in determining the behaviour of the flow,

we will briefly outline some results from the quasi-geostrophic limit.

When a < 1, the Kelvin wave-driven flow is dominant: |uV| < uKW

and LR < LV. For positive PVa, vortical overturning is weak at the nose

of the river water and the outflow boundary joins smoothly to the coast.

For negative PVa, the weak vortical flow is not sufficient to counteract the

Kelvin wave, and the solution expands indefinitely away from the coast,

with fluid spreading up and downstream. When a > 1, vorticity dynamics

dominate the outflow: |uV| > uKW and LR > LV. For positive PVa, vortex

turning affects fluid closer to the wall, causing the boundary of the current

to overturn and a shock to form. As a increases further, this happens over

a shorter and shorter scale until, for a = am ≈ 1.868, the vortical current

manages to adjust to the far-field condition within the expelled fluid and

there is no disturbance in the oceanic fluid y > w. In this case, the solution

downstream is a current of constant width. For negative PVa, the relatively

stronger vortical flow balances the Kelvin wave and the flow is steady in

the source region.

Note that the choice of LR for horizontal length scales ensures that the

length over which the Kelvin wave decays is O(1), while vortical currents

can be of arbitrary width. On the other hand, JSM scale horizontal lengths

on LV, thus keeping the vortical current width at O(1) and allowing the

Kelvin wave decay scale to be arbitrarily small as a→ 0.

2.1.2 Constants of motion

Benjamin and Lighthill [1954] describe trains of steadily-translating long

gravity waves using three constants of motion: volume flux, alongshore

momentum flux, and total energy. The volume flux of river water is simply

the parameter Q0, and similar expressions for the momentum flux and total

energy can also be derived.

Multiplying the along-shore momentum equation (2.1) by h, the mass

conservation equation (2.3) by u, taking the sum of these and integrating

from y = 0 to y =∞ gives

∂

∂t

∫ ∞
0

uh dy +
∂

∂x

∫ ∞
0

(
hu2 +

h2

2

)
dy − uwhwvw =

∫ ∞
0

vh dy. (2.22)

(Note that u and v decay exponentially as y → ∞, so that the integrals

in (2.22) and below are bounded.) The right hand side of (2.22) can be

written in flux form by multiplying (2.3) by y and integrating:∫ ∞
0

vh dy =
∂

∂t

∫ ∞
0

yh dy +
∂

∂x

∫ ∞
0

yuh dy (2.23)
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so that (2.22) becomes

∂I

∂t
+
∂S

∂x
= uwhwvw, (2.24)

where

I =

∫ ∞
0

(u− y)h dy, S =

∫ ∞
0

(
hu(u− y) +

h2

2

)
dy (2.25)

are the along-wall impulse and the flow force respectively. The quantity

uwhwvw is the downstream momentum input at the wall, and vanishes away

from the source region. The total downstream momentum added across the

source in steady flow is thus

S0 =

∫ 1

−1
uwQ

′(x) dx =

∫ Q0

0
uw dQ, (2.26)

giving a second constant of the motion. The momentum input term is

discussed in greater deal for QG flow in Southwick et al. [2017], where its

presence is shown to resolve the momentum imbalance paradox of Pichevin

and Nof [1997].

In steady flow, (2.3) allows a volume-flux streamfunction ψ to be defined

such that vh = ψx and uh = −ψy. The along-shore momentum equation

(2.1) can be integrated once in x to give

u2

2
− ψ + h = R. (2.27)

Since the y-derivative of (2.1) vanishes R is constant throughout the

domain, providing a third constant of motion for steady flow that can

be found by evaluating (2.27) at the wall, where ψ = Q.

2.2 Outflows with positive PVa

2.2.1 Numerical results

Having now reduced the problem to two nonlinear PDEs (2.15) and (2.16)

in x and t, solutions can be obtained numerically. Starting from the initial

conditions U = w = 0, the equations are integrated away from t = 0 using

the Lax-Wendroff method with a nonlinear smoothing filter [Engquist et al.,

1989] to prevent overshoot in the region of a shock. To ensure that the

numerical scheme explicitly preserves mass and momentum, the equations

are solved in conservation form, i.e

∂

∂t

(
φ1

φ2

)
+
∂

∂x

(
U2/2 +

√
HU

h2
w/2

)
=

(
0

Q′(x)

)
, (2.28)
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Figure 2.2: The off-shore extent of the expelled fluid, y = w(x, t), for flows with
positive PV anomaly. (a) Q0 = 1, Ro = 0.3 and hence a = 0.66 (Kelvin-wave
dominated flow) at t = 5, 10, 25, 40. (b) Q0 = 0.4, Ro = 1 and a = 1.31 (vortically-
dominated flow) at t = 5, 10, 40, 60. Vertical dotted lines mark the source region,
and the dashed red curve is the steady profile wsp computed in §2.2.2.

where

φ1 = U − w, φ2 =

∫ w

0
h dy +H(U − w). (2.29)

This presents some difficulty, since the ∂/∂x-terms cannot be written

explicitly in terms of φ1 and φ2, and so U and w are extracted at each grid-

point and each time step via Newton’s method, using as an initial guess

the values of the solution at the previous time-step. Applying homogenous

Neumann boundary conditions at the upstream end of the spatial domain

increases stability. Runs are conducted with grid spaces of ∆t = 0.01

or 0.005, and ∆x ≈ 0.03 as increasing the resolution further made no

noticeable difference.

Figure 2.2 shows numerically computed w for two different sets of

parameters, with each subplot showing the solution at several times. Figure

2.3 shows w, U and contours of h−H for a third set of parameters. In all

plots, the source region is marked by vertical dotted lines, and theoretical

results derived below are shown dashed and in red. From the two functions

w and U , the depth and velocity profile at any point can be computed using

(2.7). In all solutions with positive PVa, a steady current forms across the

source region. The current width increases monotonically across the source

and the fluid at the current edge has zero velocity, so the outer layer is

undisturbed in regions where the flow is steady. Numerical results agree
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Figure 2.3: Outflow with positive PVa, Q0 = 0.4, Ro = 0.5 and hence a = 1.07. (a)
The current width w and (b) the edge velocity U are shown at times t = 4, 9, 12, 40.
The red dashed curve in (a) gives the steady profile wsp, and thin dashed lines in
(a) and (b) correspond to predictions from the theory of §§2.2.3-2.2.5. (c) Contours
of h−H, perturbations to the depth of the upper layer at t = 12. The thick curve
gives w at the same time, thus the shaded region is the extent of the expelled
fluid.

excellently with the theory presented in §2.2.2 (red dashed curve). Once

the steady solution reaches all the way across the source, a steady current

of constant width propagates downstream.

Downstream of the steady region, the current narrows and the velocity

around the edge increases according to a similarity solution discussed

in §2.2.3. The parameters in figures 2.2-2.3 are chosen to illustrate each

possible qualitative behaviour and, as in JSM, these correlate with the

value of the speed ratio a. For small a, as in figure 2.2(a), the flow is

dominated by the Kelvin wave and the downstream current joins smoothly

to the wall. For larger a, as in figures 2.2(b) and 2.3(a), vorticity is stronger

and the current terminates in a shock. The width of the shock increases

monotonically, until it reaches a maximum value that is set by the flow
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parameters. If a is large enough, and vortical effects are strongly dominant,

this maximum value can be the same as the width of the steady current

at the downstream edge of the source region, in which case there is no

rarefaction and the solution after a finite time is a ‘blunt-headed current’

(c.f. Figure 2.2(b)).

In regions where w = 0, the governing equations are still valid but U

is now to be interpreted as the velocity at the coast, with the layer depth

decaying offshore as U exp (−y/√H). At all times and for all parameters,

a nonlinear Kelvin wave propagates ahead of the expelled fluid. That is,

U > 0 in some region where w = 0. The effects of this are most clearly seen

in the contour plot of figure 2.3(c) – the river water (shaded) has reached

x = 4, but the wall depth is increased by 0.25 over the region 4 < x < 16,

an interfacial disturbance travelling in the oceanic fluid ahead of the river

water. In the quasi-geostrophic limit, the Kelvin wave travels at infinite

speed in the outer layer and so is not seen explicitly in the solutions –

although it still induces a flow of finite velocity in the river water. The

properties of the Kelvin wave are discussed in detail in §2.2.5.

2.2.2 Analysis across the source region

Since the PVa is positive, the image vorticity and the Kelvin wave both

drive the flow downstream. System (2.15), (2.16) has two eigenvalues, λR

and λC, with λR ≤ λC always (see appendix A for more details). Kubokawa

and Hanawa [1984a] note that λC is a nonlinear coastal wave, and that λR

is associated with disturbances at the current edge – across which the

density jump from their model has been replaced by a PV jump in the

present model.

For the initial conditions w = U = 0, λR = 0 and λC =
√
H. Thus,

characteristics λR that start in x < −1 are unable to reach the source

region. Further, it is impossible to satisfy λC = 0 or λR = 0 when U > 0

and H > 1 and so the flow is supercritical everywhere in x > −1, with no

information able to propagate upstream. Since the characteristic speed λR

vanishes at x = −1 this is the control point for the steady flow that forms

across the source region. The flow matches smoothly to the undisturbed

outer layer at x = −1, where w = U = 0.

Solving the steady versions of (2.15) and (2.16) gives

U = c1,

hw =
√

2Q(x) + c2, (2.30)
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Figure 2.4: The width of the steady current wD downstream of the source, as a
function of the total mass flux Q0, for various values of the Rossby number Ro.

where c1 and c2 are constants of integration determined by the requirement

that U and hw are continuous at x = −1 to be 0 and H2 respectively.

Downstream, the dimensional depth of the current at the wall is therefore

h∗ =

√
2Q∗f

g′
+H∗2 (2.31)

where Q∗ and H∗ are the (dimensional) mass flux and outer-layer depth

respectively. The relationship (2.31) can be derived from a simple quasi-

geostrophic scaling argument when H = 0 [Chant, 2011, p. 218].

Solving (2.9) for w provides the steady solution

wsp(Q) = acosh

(√
2Q+H2 − 1

H − 1

)
, (2.32)

which is valid exactly when H > 1. The steady solution wsp is shown

as a dashed red curve in figure 2.2 and 2.3(a). Agreement with the

numerical results is excellent in all cases. The steady current depends on x

only parametrically through Q, and hence the downstream current width

wD = wsp(Q0) does not depend on the specific form of the outflow velocity.

In the quasi-geostrophic limit, Ro→ 0 and Q0 → 0 with a2 = Ro/Q0 fixed,

wD ∼ log
(

1 + 1/a2 +
√

1/a4 + 2/a2
)

+O(Ro) as Ro→ 0, (2.33)

as in (3.9) of JSM, up to the use of LV as the characteristic length for y.

The downstream width of the steady solution wD is shown as a function

of Q0 and H in figure 2.4. Since the steady solution always has U = 0, the

river water completely adjusts to the upper layer depth over the vortex
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scale LV in the source region. Large Q0 – which corresponds to small a

and large LV – thus gives rise to a wider current (growing logarithmically

as Q0 → ∞), while large Ro gives small LV and a narrow current as the

vortical turning happens closer to the wall.

2.2.3 Downstream solution

Away from the source region the governing equations are unforced, and

hence possess two Riemann invariants, i.e. there exist functionsRC/R(w,U)

such that
d

dt
RC/R(w,U) = 0 on

dx

dt
= λC/R. (2.34)

Thus RC/R are constant on each characteristic, with that constant deter-

mined by the values of w and U at the time when a given characteristic

leaves the source region. For this system, the Riemann invariants cannot

be found analytically and are obtained instead by solving the equivalent

problem
dU

dw
= αC/R(w,U) on

dx

dt
= λC/R (2.35)

as in Helfrich [2006]. The functions αC/R are found by diagonalising the

system (2.15)-(2.16), and are given explicitly in appendix A. The initial

conditions for integrating (2.35) along a particular characteristic are given

by the values of w and U at the point when that characteristic leaves

the source region. In particular, once the steady solution reaches the

downstream edge of the source region, the values of w and U are fixed and

so all integrations start with the same conditions – the Riemann invariants

are uniform.

The uniformity of one Riemann invariant is used in Stern and Helfrich

[2002] to build similarity solutions U(w) and describe the propagation of

a coastal current with negative PVa. The same approach is applied here,

whilst noting that uniform Riemann invariants only occur once the steady

solution has been completely set up, and so the similarity solution is only

valid after a finite time.

Immediately downstream of x = 1 both Riemann invariants are

uniform. Here, there are two universal relationships RC/R(w,U) = mC/R

and so the only continuous solution has w = wD and U = 0 (visible at late

times in figures 2.2 and 2.3). The region of two uniform invariants is led by

the slower characteristic λR, and so the speed at which the constant-width

current spreads can be calculated by setting w = wD and U = 0 in λR.

Downstream of this constant-width region, only the λC characteristic is

determined by the steady values of w and U and so only the RC invariant
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Figure 2.5: The velocity U at the edge of the expelled fluid, as a function of the
width w, in the unsteady downstream rarefactions that lead the outflow. (a)
Ro = 0.5, (b) Ro = 2. These relationships are valid once the steady solution
has been been set up across the source region.

is uniform. The similarity solution U(w) can thus be found by integrating

(2.35) away from the initial conditions U = 0, w = wD until the point

w = 0, where we define U(w = 0) = Unose. Similarity solutions for various

source fluxes are shown for Ro = 0.5 and Ro = 2 in figure 2.5. The solutions

are all rarefactions (also called wedge intrusions or expansion waves) since

they all have the property that U increases as w decreases. Rarefaction

solutions have been previously described for coastal currents driven by PV

jumps in Helfrich [2006] and JSM.

2.2.3.1 Termination of the rarefaction

In regions where the similarity solution applies, the slope of the λR

characteristics – those on which the Riemann invariant RR is not uniform –

can be computed as a function of w only. This is done for various parameter

values in figure 2.6.

Since the solution grows monotonically in the source region, charac-

teristics with larger values of w leave the source later and thus shocks

form after a finite time if λR is not a monotonic decreasing function of w.

Differentiating the characteristic speed with respect to w and evaluating

at the wall gives

dλR

dw

∣∣∣∣
w=0

=
∂λR

∂w
+
∂λR

∂U

dU

dw

∣∣∣∣
w=0

= H − 1 +
H − 2√
H

Unose (2.36)
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Figure 2.6: Characteristic slope dx/dt = λR as a function of w in regions where the
similarity solution U(w) applies (downstream of the source). The characteristic
slopes are computed over the range 0 ≤ w ≤ wD with (a) Ro = 0.3, (b) Ro = 1.
The dashed curve (a)(iv) does not form a shock, and circular markers on other
curves indicate the maximum value of w immediately behind the shock for that
outflow. Solid curves without a marker develop shocks that increase in width until
w = wD (a ‘blunt-headed current’).

A shock develops if (2.36) is positive. This occurs either if H ≥ 2, or if

Unose <

√
H(H − 1)

2−H (2.37)

and 1 < H < 2. For large Rossby number (H > 2) a shock always

forms, while for moderate or small Rossby number a shock forms only

if the vortical current overturns at the wall and the nose velocity is

sufficiently small. From the plots of Unose shown in figure 2.7, a slow nose

velocity corresponds to smaller Q0 (and bigger a) and so, as in the quasi-

geostrophic limit, vortically dominated flows are more likely to develop a

shock. The values of Q0 below which a shock forms are marked on curves

with 1 < H < 2 in figure 2.7. The dashed curve in figure 2.6(a) is the only

one presented that does not develop a shock – note that it has the smallest

a of all solutions shown.

If no shock forms then the rarefaction is propagated by the λR

characteristic, which reduce to λR = U when w = 0. The expelled fluid

thus travels along the wall with velocity Unose and the fluid velocity is

equal to the propagation velocity. If, on the other hand, a shock does form

then, applying conservation of mass moving at the shock speed V gives∫ w

0
(u− V )h dy = 0 (2.38)
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or

V =

(
1 + (−1 +H +

√
HU) coshw + U sinhw

)2
− (H +

√
HU)2

2(w − U + U coshw + (−1 +H +
√
HU) sinhw)

(2.39)

where U and w are evaluated just behind the shock.

Because shocks form after a finite time, jumps in w and U are initially

small and increase in magnitude until one of two things happens. If the

shock velocity V becomes equal to the characteristic speed λR, then at this

point the shock and characteristic are tangential in the (x, t) plane and

no more information can enter the shock. That is, there exists some value

wM such that λR(wM, U(wM)) = V (wM, U(wM)). The solution is thus a

rarefaction terminating in a shock, where the width of the shock approaches

wM as t → ∞. The circular markers on characteristic curves in figure 2.6

indicate the value of wM for that particular Q0 and H. An example of such

a solution is displayed in figure 2.3(a), where the value of wM is marked as

a horizontal dashed line. Alternatively, the characteristic speed λR can be

greater than V for all 0 < w < wD. In this case, the shock keeps expanding

until the maximum width of the current is reached, as seen in figure 2.2(b)

where at late times the solution is simply a blunt current of width wD. This

situation occurs when vortical effects are dominant and a is large, as in the

unmarked solid curves of figure 2.6.
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2.2.4 Interpretation in terms of the speed ratio a

From §2.2.3, the qualitative behaviour of outflows can be categorised

according to the form of the downstream current as: a rarefaction joining

smoothly to the wall, a rarefaction terminating in a shock, or a blunt

current. The space of parameters (Q0, H) can be divided into three regions,

the boundaries of which can be computed efficiently by integrating the

Riemann ODE (2.35) to determine whether a shock forms and, if it does,

whether the maximum jump magnitude is less than wD.

Figure 2.8 compares the numerically-determined boundaries of these

regions (numbered one, two and three respectively) with contours of a, to

illustrate the extent to which the flow behaviour depends on Q0 and H

independently or whether, as in the quasi-geostrophic limit, the value of a

alone is sufficient to categorise the solution. In the quasi-geostrophic limit

(inset) the region boundaries coincide precisely with the contours a = 1

and a = am ≈ 1.87 given in JSM. For larger Ro and Q0, however, the

region boundaries deviate from these values of a, although the progression

from no shock to partial-width shock and full-width shock with increasing

a remains.

2.2.5 Disturbance in the oceanic fluid

The similarity solutions obtained by integrating (2.35) give Unose – the

value of U at the point where w = 0, i.e. the fluid velocity at the leading

edge of the expelled fluid. The horizontal dashed line in figure 2.3(b) marks

the predicted value of Unose, and the figure also indicates that uw = Unose

in the Kelvin wave that travels ahead of the river water. This follows by

noting that the similarity solution is valid anywhere that the RC Riemann

invariant is uniform – that is, at any point in the (x, t)-plane occupied by

a λC characteristic that left the source region after the steady solution was

set up. In particular, this region extends beyond the nose of the river water

and into the oceanic fluid. As discussed below, this then creates a shock in

the oceanic fluid (the Kelvin wave shock) and so all remnants of the initial

conditions are erased with, at late times, RC uniform everywhere that the

fluid is disturbed. Note also that in vorticity-dominated flows where a shock

develops in the river water, this is through the collision of λR characteristics

and so RC is conserved across the shock [El, 2005]. The similarity solution

thus remains valid at the nose of river water, and U = Unose ahead of the

expelled fluid. Curves showing Unose as a function of the total mass flux are

presented in figure 2.7 for various Ro, along with the speed of the Kelvin

wave-driven flow uKW (dashed).
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regions (thick red curves). Solution type one joins smoothly to the wall, solution
type two is a rarefaction terminating in a shock, and solution type three is a full-
width shock. Also shown are contours of the speed ratio a. The inset details the
behaviour in the quasi-geostrophic limit.

The motion in the oceanic fluid ahead of the river fluid is governed by

(2.15) with w = 0,

∂U

∂t
+ (U +

√
H)

∂U

∂x
= 0 (2.40)

(c.f. the zero-PVa equation (2.19)). The propagation speed ahead of the

river water is therefore the sum of
√
H, the non-dimensional speed of the

linear Kelvin wave, and a nonlinear advection at speed U . Solutions to

(2.40) always develop a shock when U is a decreasing function of x, as seen

in the development of figure 2.3(b). Once a shock forms, the jump height

increases until U = Unose and the shock propagates into the resting fluid
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at a speed determined by the relevant Rankine-Hugoniot condition to be

VKW =
Unose

2
+
√
H. (2.41)

The horizontal vertical lines on figure 2.3(b) are separated by 3VKW, and

match well with the solutions at t = 9, 12 even though U has not quite

reached Unose. A full 3-dimensional model of such shocks is considered in

Fedorov and Melville [1996], and the propagation speed here agrees with

their relation (7.20).

2.3 Outflows with negative PVa

When the expelled fluid has negative PV anomaly (H < 1), image vorticity

opposes the Kelvin wave-driven flow and fluid travels both upstream and

downstream. JSM show that steady flow only occurs if the outflow is

vortically dominated (a > 1); otherwise the current expands indefinitely

in the source region. For the positive PVa outflows of §2.2, fluid travels

downstream only and the oceanic layer is undisturbed in x < −1. This

matching condition leads to a full description of the steady current in

the source region, which then provides initial conditions for integrating

the Riemann ODEs (2.35) and the theory that describes the rarefaction

solution. For outflows with negative PVa, fluid is disturbed both upstream

and downstream and so analogous matching conditions do not exist.

For outflows that evolve to become steady across the source region, an

asymptotic theory based on properties of the steady quasi-geostrophic

solution can be derived, and this is shown to agree well with numerical

results even at moderate Ro.

2.3.1 Numerical results

An example of an unsteady, widening current is shown in figure 2.9 where

Ro = 0.4, Q0 = 0.7 and so a = 1.24. Since a > 1 the outflow is vortically

dominated and the corresponding quasi-geostrophic flow would evolve to

become steady across the source region. Here, however, Ro is sufficiently

large that the current width continues to grow. Some expelled fluid travels

downstream, joining smoothly to the wall in a rarefaction with a Kelvin

wave travelling ahead in the outer layer. The rest of the expelled fluid

travels upstream. The boundary between fluid moving upstream and fluid

moving downstream (where the upper-layer depth is at a maximum) is

denoted y = w̃(x, t) and shown as a dotted blue curve in figure 2.9(a).

Fluid thus travels upstream along the wall, before turning and heading
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Figure 2.9: An outflow with negative PVa, Ro = 0.4, Q0 = 0.7 and a = 1.24 at
times t = 20, 30, 40. (a) The current width w, which continues increasing across
the source region (marked by vertical dotted lines). The dotted blue curve gives
y = w̃ along which u = 0 (at t = 40). (b) The edge velocity U at t = 20, 30, 40.

downstream around the edge of the current, taking oceanic water with it

as U > 0. Thus one important difference between solutions with positive

and negative PVa is that outflows with negative PVa transport oceanic

fluid from upstream of the source region to downstream. Computation of

the off-shore velocity v reveals that fluid travels at infinite velocity around

the upstream boundary of the outflow before heading downstream. This

failure of the semi-geostrophic equations is due to the short length-scales

in the shock region, as noted by Helfrich [2006].

Figure 2.10 shows an example of a steady current where Ro = 0.5,

Q0 = 0.2 and a = 2.44. In steady solutions, the curve y = w̃ (blue, dotted

online) touches the wall at x = 1, thus uw = 0 here and all the outflow

first heads upstream before a portion recirculates to form the downstream

current, which again is a rarefaction. In all solutions with negative PVa,

the shock condition (2.37) cannot be satisfied with U > 0 and so the

downstream rarefaction joins smoothly to the wall, demonstrating the

importance of vortical flow in the formation of leading shocks. The steady

solution is very similar to that of McCreary et al. [1997] (their figure 9)

where upstream flows are driven by geostrophic adjustment of a density

front. The upstream solution here is similar to the downstream solution for
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Figure 2.10: Solutions to the outflow problem with negative PVa, Ro = 0.5,
Q0 = 0.2 and a = 2.44 at times t = 20, 40, 120. (a) The current width w. The
green dashed line at x ≈ −6 indicates the location of the transect used to compare
with experimental solutions in §2.4. (b) The velocity U at the current edge. The
red dashed curves are the steady solutions wsn and Uc from §2.3.2, the blue dotted
line is y = w̃, and the black dashed lines are derived from the theory of §2.3.3 and
discussed there. (c) Contours of the depth perturbation h − H at t = 40, where
the shaded region indicates the expelled fluid.

positive PVa; a constant-width region near the source, then a rarefaction

terminating in a leading shock. Figure 2.10(b) shows the edge velocity U ,

and the ripples visible at late times are the result of numerical dispersion.

Figure 2.10(c) shows contours of the layer-depth perturbation h − H at

t = 40. The contour closest to the coast has a negative value: the outflow

has caused a shallowing of the layer upstream of the source. The river fluid

is shaded, with the region where u < 0 shaded darker, and the Kelvin wave

is again seen to travel ahead of the river water and disturb the oceanic

fluid.
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2.3.2 Steady solutions across the source region

Since the oceanic layer is disturbed both upstream and downstream of the

source, there are no matching conditions to determine the constants of

integration and obtain a steady solution as in §2.2.2. Instead, specifying

the constants requires two additional relations, which are based on quasi-

geostrophic theory and later verified against numerical results to the initial-

value problem.

First, note that one family of characteristic slopes λC are always positive

(see appendix A), while the other set λR vanishes whenever uw = 0, i.e.

when

U = Uc =
1−H

coth (w) +
√
H
. (2.42)

Now Uc < 0 when H > 1 but Uc > 0 when H < 1, allowing λR to send

information upstream if the PVa is negative. Thus the λR characteristic

may be associated with the vortical flow and λC with the Kelvin wave-

driven flow, as noted for the special case H = 0 in Kubokawa and Hanawa

[1984a].

As in outflows with positive PVa, steady currents are controlled at the

edge of the source region. In particular there exists a separatrix, i.e. a

characteristic λR that has a turning point at x = 1. Characteristics that

start to the right of the separatrix end up downstream of the source, and

those that start to the left go upstream. There is thus a region in the wake

of the turning point of the separatrix where characteristics that originate at

t = 0 cannot penetrate, and characteristics instead propagate out from the

turning point, where (2.42) is satisfied. The steady solution thus spreads

upstream across the source region, starting at the downstream edge where

it is controlled by the λR characteristic. Physically, this sets uw = 0 at the

downstream edge of the source region and shows that, for steady solutions,

all of the outflow must first head upstream driven by image vorticity, as seen

in figure 2.10(c). There are, however, an infinite number of steady solutions

that satisfy this control condition, and a further equation is needed to close

the system.

Note that the curve y = w̃, on which u = 0, can be computed from

(2.7) as

w̃ = w − log

(√
H − 1− U +

√
HU√

H − 1 + U +
√
HU

)
(2.43)

so that w− w̃ is constant for steady solutions. Using (2.43), the system can

be closed with one further relationship between w and w̃. This is equation
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(21) in McCreary et al. [1997],

w̃∞ =
1

2
log (2ew∞ − 1), (2.44)

where the subscript refers to values evaluated far upstream at late times,

after a steady current has completely developed. In McCreary et al. [1997],

(2.44) is derived by taking the first term in an asymptotic expansion of

a mass-balance equation similar to (2.38), which effectively requires that

the coastal depth change is small relative to H. As such, (2.44) is also the

relationship between w and w̃ in the quasi-geostrophic solutions of JSM

and so must hold for small Ro and Q0 in the semi-geostrophic problem.

We thus develop here a theory assuming that (2.44) holds for all values of

Q0 and Ro, and then verify numerically that this asymptotic approximation

captures the qualitative behaviour of the outflow even at moderate Q0 and

Ro.

Given the conditions (2.42)-(2.44), the relevant solution to the steady

equations (2.30) can be most succinctly described as

wsn(Q) = log

(
r(Q) +

√
r(Q)2 + k2 − 1

1 + k

)
(2.45)

where

k =
U

H − 1 +
√
HU

, r(Q) =

√
2(Q+ c)− 1

H − 1 +
√
HU

and c and U are determined by applying (2.42)-(2.44). The red dashed

curves in figure 2.10 give wsn and Uc, both of which are in good agreement

with the numerical results even at Ro = 0.5.

Figure 2.11 shows the downstream width of the steady current

wsn(Q0) = wD. As for positive PVa, for a given Ro the downstream

current width increases with increasing mass flux. For fixed Q0, the width

dos not increase monotonically with Ro. As the magnitude of the PVa is

increased, the current first contracts (in line with the results for positive

PVa) before expanding again after Ro ≈ 0.6. Numerical computations

show that for a given Ro there is a maximum flux Q0 for which both

(2.42) and (2.44) can be solved simultaneously, and thus an upper bound

on the mass flux that supports a steady solution (marked by a dot in

figure 2.11). The limited capacity of coastal currents to transport fluid

with negative PVa was remarked on in Kubokawa [1991] and observed

in laboratory experiments in Horner-Devine et al. [2006]. Figure 2.12(a)

shows this maximum flux, which is not a monotonic function of Ro – a

result discussed in more detail in §2.3.4. Also marked (dashed) in figure
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Figure 2.11: The steady solution width at the downstream edge, wD, as a function
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2.12(a) is the line Q0 = Ro, which is the maximum flux that supports a

steady solution in the quasi-geostrophic limit.

In addition to the upper bound on Q0 at fixed Ro, there is an

absolute maximum of Q0 over all Ro that supports a steady current. For

real solutions, (2.45) requires that r is positive, which only occurs when

Q+ c < 1/2. As Q and c are non-negative, they must both individually be

less than 1/2. Thus no controlled steady solution exists when Q0 > 1/2,

as in the similar relation obtained in Whitehead and Salzig [2001] for flow

out of a wide basin.

For negative PVa, only a portion of the outflow recirculates and so the

downstream flux Qd, given by

Qd =

∫ wD

0
uh dy =

h2

2

∣∣∣∣y=0

y=wD

, (2.46)

is less than the total flux Q0. Profiles of Qd as a function of Q0 are shown

for various Ro in figure 2.12(b). The curve for Ro = 0.6 lies above that for

Ro = 0.5, in accord with the non-monotonic behaviour of the total flux

shown in (a).

2.3.3 Downstream rarefaction

Once the steady solution has been determined, analysis via Riemann

invariants can be applied by integrating (2.35) away from the point

U(wD) = Uc. In particular, figure 2.13 shows Unose as a function of
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Figure 2.12: Mass flux for steady solutions with negative PVa. (a) The maximum
mass flux supported by a given Ro. (b) The downstream mass flux Qd as a function
of total mass flux Q0, for various Ro.

Q0 for various Ro, allowing direct comparison with figure 2.7. As with

positive PVa, increasing the mass flux for a fixed Ro increases the nose

speed. However, in contrast to figure 2.7, fixing Q0 and increasing Ro now

increases the nose speed. That is, the fluid speed in the nonlinear Kelvin

wave becomes slower and slower as the outer layer depth is decreased,

irrespective of the sign of the PVa. A similar relationship between Unose

and layer depth is shown in figure 2 of Stern and Helfrich [2002], and in

figure 3 of Martin et al. [2005]. The thin dashed horizontal line in figure

2.10(b) shows the value of Unose predicted from the analysis of the Riemann

invariants, and is in good agreement with the numerical solution. When the

current width vanishes Unose is also the propagation velocity of the expelled

fluid at the farthest downstream edge. This is confirmed by the two vertical

lines in figure 2.10(a), which are separated by 20Unose corresponding to the

interval between solutions at t = 20 and t = 40.

The upstream rarefaction for steady solutions with negative PVa can

also be described by Riemann invariants, although in this case it is RR

that is uniform. Applying a similar test to (2.36) shows that a shock always

forms upstream for negative PVa, and the same ideas about matching shock

and characteristic velocities can be used to determine the maximum width

of this, which increases as vortical effects become more important.
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Figure 2.13: The nose speed Unose for a controlled rarefaction, as a function of Q0.
The dashed line shows the wall velocity of the zero PVa solution.

2.3.4 Range of behaviours for negative PVa

For negative PVa, solutions can be categorised according to whether they

are steady in the source region. In the quasi-geostrophic limit, JSM found

that the speed ratio a was again of crucial importance; with a > 1 being

necessary for a steady solution to form. Figure 2.14 shows the type of

solution that occurs in semi-geostrophic flow as Ro and Q0 are varied. The

solution type was determined by attempting to compute a steady solution

that satisfies both (2.42) and (2.44). If, for a given Q0 and Ro, such a

solution is possible, then these values permit a steady solution (region

two). A higher-resolution sweep of the quasi-geostrophic limit of small Q0

and Ro shows that the boundary between flows that are steady and those

that grow (region one) aligns with the contour a = 1 as expected. In

addition to this test, which is based on the asymptotic theory of §2.3.2,

the initial-value problem was solved over the full parameter range, using

a grid that was refined close to the apparent boundaries between regions.

Although there were some quantitative differences between theoretical and

numerical results (these being larger far away from the QG limit) the test

based on (2.44) and (2.42) was found to correctly describe the qualitative

behaviour of all solutions.

As for positive PVa, away from the quasi-geostrophic limit region

boundaries can differ from contours of a, and so the system depends on

Q0 and Ro independently, although it is still the case that solutions with

small a (Kelvin wave dominated) are of the growing type. The shape of
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Figure 2.14: Solution type for negative PVa, compared with curves of constant
speed ratio a. Solution type one grows indefinitely in the source region, solution
type two is steady and solution type three is believed to separate from the wall.
The inset shows that the boundary between regions one and two aligns with the
curve a = 1 in the quasi-geostrophic limit.

region two reflects the results of figure 2.12(a), where increasing Ro allows

a larger flux to be supported by steady solutions until, at some cut-off

point around Ro = 0.6, the maximum permitted flux starts to decrease

again. Increasing Ro past this point is associated with a rapid increase in

the value of a – for flows that are strongly dominated by vorticity, steady

solutions occur only at small fluxes.

Parameter values in the region marked three on figure 2.14 give rise

to complex solutions to (2.42) and (2.44). It appears that as the current

width grows, the coastal layer depth hw decreases to zero and the expelled

fluid separates from the coast. Separation is explicitly excluded from the

58



present model by the assumption that the expelled fluid lies in 0 < y < w.

Preliminary results from adapting the model to remove this restriction

suggest that the fluid tries separates in the source region, as discussed for

separated flow out of a basin by Helfrich et al. [1999] and Gill [1977], as well

as for laboratory experiments in Horner-Devine et al. [2006]. Separation in

the source region modifies the outflow profile Q(x) and thus alters the

problem beyond the scope considered here.

If for a given Q0 and Ro the solution starts to separate (hw = 0), the

initial-value problem is halted and the parameter pair is included in region

three. It appears that the boundary between solutions which grow and

those which separate is sharp in terms of Ro – if the Rossby number is

increased beyond some critical value of Ro ≈ 0.4 then all unsteady flows

eventually separate from the wall.

2.4 Discussion

Numerical and theoretical results for coastal outflows have been discussed

using a semi-geostrophic model that allows for large variations in Rossby

number by adjusting the depth of the outer buoyant ocean layer. For

positive PVa (when the depth of the buoyant layer is greater than the

potential vorticity depth of the river water) a full theory has been developed

based on numerically computed Riemann invariants, while for negative PVa

an asymptotic theory for solutions that are steady across the source region

is derived. The speed ratio a, which measures the relative strengths of

Kelvin wave-flow and image vorticity, is a useful guide to determining the

behaviour of the outflow. However, for moderate and larger Rossby number,

solutions depend on both Ro and the total mass flux Q0 independently.

Diagrams describing the behaviour of the solutions for a given Q0 and Ro

are presented for positive PVa in figure 2.8, and for negative PVa in figure

2.14.

For positive PVa, the range of possible behaviours is the same as in the

quasi-geostrophic limit of JSM. All currents flow exclusively downstream,

are steady across the source region, and are led by a rarefaction that either

joins smoothly to the wall or develops a shock in finite time. A key feature

here, however, is that the Kelvin wave that propagates ahead of the expelled

fluid does so at a finite speed. The speed of the fluid within the Kelvin wave,

Unose, is found to be greater when the depth of the outer layer is shallower.

The propagation speed of the Kelvin wave is given as VKW in (2.41), while

the propagation speed of the expelled fluid can be computed from (2.39)

using the maximum values of w and U just behind the shock. The ability
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to measure the fluid and propagation speeds of these two waves separately

is a key feature of this model, and the way that these quantities vary with

the parameters, along with the range of behaviours observed, highlights the

importance of vortical turning in determining how the outflow behaves. It

is also important to note that most experiments on outflows use colouring

to identify the expelled fluid, and thus tend to report on disturbances

only within this coloured region, leaving laboratory investigation of the

Kelvin wave in the outflow problem as an avenue for future work. Once

the Kelvin wave has passed a station x the qualitative behaviour at that

station is much the same as in the QG limit. This result supports the use

of a coastal boundary condition to model the passage of the Kelvin wave

in the following chapters.

For negative PVa, steady and growing solutions exist as in the quasi-

geostrophic limit, with steady solutions occurring in cases where the

vortical flow is stronger than the Kelvin wave-driven flow. However, for

large Ro (shallow oceanic layers) sufficiently strong forcing can cause the

flow to separate from the wall – a phenomenon that has previously been

noticed when studying related flows and one that remains to be explored

further in the present context. The steady solutions obtained here are

critically controlled at the downstream edge of the source: the phase-

speed of all long-wave disturbances is positive in x > 1, so the flow here

is supercritical, while in x < 1 long-wave disturbances can propagate in

either direction and the flow is subcritical. All fluid first heads upstream

along the wall, before a portion of it recirculates and re-crosses the source

region. This creates an anti-cyclonic circulation within and upstream of the

river mouth, as in the density driven solutions of McCreary et al. [1997], the

numerical results of Isobe [2005] and the laboratory experiments of Thomas

and Linden [2007] and Avicola and Huq [2003a]. That similar qualitative

behaviours are observed here as in the experiments supports an analogy

between PV jumps and density fronts previously alluded to in McCreary

et al. [1997], and possibly suggests that both mechanisms contribute to the

behaviour of real plumes.

The photograph of the Elwha river after dam removal (figure 1.1)

bears a striking similarity to solutions with positive PVa (figures 2.2,

2.3). Although the outflow after dam removal involved the expulsion of

sediment-laden river water (and so differs from the homogeneous-density

model considered here) it is evident that there was a strong downstream

transport of river water, with a qualitatively similar shape to the positive

PVa solutions of §2.2. A comprehensive survey of Juan de Fuca (the strait

into which the Elwha runs) was conducted between 1975-1980 and shows
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that prevailing currents and tides carry surface water towards the sea,

i.e. leftwards out of the river mouth [Cannon, 1978, Holbrook et al., 1980,

Holbrook and Halpern, 1982]. Although rightward ambient flow does occur,

it is comparatively rare and weak and is thus unlikely to be the sole cause

of the rightward turning in figure 1.1. Further Curran et al. [2008] presents

data which suggests that the outflow after dam removal satisfies the criteria

for a surface-advected plume [Yankovsky and Chapman, 1997] and so the

behaviour of the outflow should not be affected by topography.

Horner-Devine et al. [2006] study experimentally the injection of fluid

into a rotating annulus of uniform, denser fluid. Their results are therefore

most comparable to our model with small H (large negative PVa). Indeed,

they find a bulge in the source region and a thinning current that

propagates downstream. Figure 2.15 makes a quantitative comparison of

dimensional u∗ from our model with that from their experiments, in an

off-shore transect that intersects the bulge centre (the green dashed line

in figure 2.10(a)). Non-dimensionalising their experimental values gives a

mass flux Q0 = 0.53, and so our model predicts unsteady flow in the source

region for all H. JSM show that in the QG limit, the growth of the current

width ∂w/∂t is proportional to 1/t for unsteady solutions, and so the flow

is approximately steady at large t. The best comparison between our theory

and the results of Horner-Devine et al. [2006] is therefore made by taking

the smallest H for which the flow remains attached to the coast sufficiently

long to become approximately steady. The choice of H = 0.4 allows the

numerical integration to run until t = 80, and tests with other values of

H show that the quantitative behaviour is remarkably unaffected. In the

experimental result (solid curve) the flow within the bulge is bi-directional,

with fluid closer to the wall travelling upstream under the influence of image

vorticity – something that is only possible when the source fluid has lower

PV than the oceanic fluid. There is excellent agreement between the wall

velocity of the model and the near-wall velocity observed in the experiment,

and both the predicted and the observed velocities increase until they

reach a maximum value at a similar off-shore co-ordinate (which occurs

at the PV jump in our results, and the edge of the bulge in the laboratory

experiment) before decaying to zero. As H → 0, a → ∞ and the vortical

length-scale LV → 0, so we expect that vortical effects will only be felt

close to the wall. Indeed the agreement between the present model and the

experiment is best closer to the coast and the largest discrepancies occur

further offshore, where the differences in set-up between the experiment

and the model are more significant.

The present model focuses on the role of PVa in determining plume
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Figure 2.15: Comparison between numerical results from the present model with
H = 0.4, Q0 = 0.53 (red, dashed) and laboratory experiment VB6 from Horner-
Devine et al. [2006] (black, solid). The dimensional along-shore velocity u∗ is
shown as a function of the off-shore co-ordinate y∗. The transect is taken at the
mid-point between the downstream edge of the source and the upstream edge of
the expelled fluid, and so intersects the centre of the bulge, at the time t = 30.
The horizontal dashed line gives w at this value of x and t.

behaviour by assuming that the expelled fluid and the buoyant ocean layer

have the same density. This is rarely, if ever, true in an ocean setting

where horizontal buoyancy gradients also play a role in the formation and

propagation of coastal currents, and so direct applicability of the model

to a real ocean is limited. On the other hand, the two mechanisms of

image vorticity and Kelvin-wave driven flow described in this work are still

present, and in the limit of weak horizontal stratification it is possible that

they are the dominant dynamical factors. Further discussion of how the

present model relates to the real oceans, including the important effects of

topography and outlet geometry, is given in §3.5.
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Chapter 3

Vortex competition in

coastal outflows

In this chapter we return to the quasi-geostrophic model, and investigate

the role played by spatial variability of outflow vorticity in determining the

behaviour of the plume. That is, we extend JSM’s model to an outflow with

spatially-varying (but still piecewise-uniform) PV. In particular we choose

the outflow profile to be ‘competitive’, i.e. it consists of regions of positive

and negative vorticity arranged so that image vorticity drives a tendency

for fluid emerging from each region to turn and propagate into the other.

We show that for such outflows plume behaviour can be categorised by

the net vorticity flux through the river mouth (the integral of vorticity

times velocity across the source region). We show that if this integral is

positive the cyclonic region dominates, and all of the expelled fluid turns to

the right on leaving the source (the coastal current mode). If the cyclonic

and anticyclonic contributions cancel, as in the laboratory experiments of

Avicola and Huq [2003a,b], then the flow is unstable in the source region

and a bulge may form downstream of the river mouth. The importance

of spatially-varying vorticity has been discussed previously in numerical

and laboratory studies (for example, Avicola and Huq [2003b], Huq [2009],

Chen [2014]) and the present work supports this discussion by making using

of the analytical results that are available in the idealised long-wave QG

model.

Section 3.1 describes the quasi-geostrophic model, and determines

63



Ambient ocean

layer, PVa = 0

Low PV fluid, 

PVa = ΠR

High PV fluid,

PVa = 1

y = w2(x,t)
y = w1(x,t)

-ww w

y

xxs /Lv/Lv

Figure 3.1: Fluid is expelled from a coastal source located at |x| < W/LV, y = 0.
The ocean fluid in y ≥ 0 initially consists of an upper, active layer (with the same
density as the outflow) on top of a deep, denser, inactive layer. The source vorticity
is positive in x < xS , and negative in x > xS . Variables are non-dimensional, with
the relevant scales defined below.

the range of parameters for a competitive outflow. §3.2 presents steady

solutions to the long-wave limit of the model, and derives a necessary

and sufficient condition for the existence of the coastal current mode. The

present model is similar to that employed by Kubokawa [1991], in which

part of the outflow has negative PVa and part has the same PV as the upper

ocean layer, and §3.2.1.2 presents their results in terms of net vorticity flux.

The full QG equations are solved numerically in §3.3, and the unsteady

features of these results are discussed in §3.4. Section 3.5 discusses the

relevance of these results to real outflows.

3.1 Model and governing equations

Consider flow relative to a frame rotating about a vertical axis Oz at

constant angular speed f/2 > 0. Suppose that there is a straight, vertical

coast at y = 0 and consider flow in y ≥ 0 only, with Ox directed along the

coast. Initially the ocean in y > 0 is still, with a buoyant upper layer of

uniform depth H lying on top of an infinitely deep, dense layer. At time

t = 0 a source in the coast located at |x| < W starts emitting fluid of the

same density as the buoyant layer at a rate US = Q0HS per unit time, where

HS is a measure of the source depth and so Q0 is the outflow area flux. If

|H −HS | is sufficiently small then the flow is geostrophic everywhere and

the motion is governed by the quasi-geostrophic equation for conservation

of PV, formulated in terms of h(x, y, t), which measures the departure of

the depth interface from the initial value H. Quasi-geostrophic dynamics

apply when the source Rossby number RoS is small, where recall from

§1.1 that RoS = US/(fW ). We may take Us = 1m s−1 and f ≈ 10−4s−1
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as representative values, while for a wide river and W ≈ 10km, which

gives Ro = 1. Thus nonlinear advection (non-quasi-geostrophic dynamics)

may be important in many river plumes (although Münchow and Garvine

[1993b] estimate RoS = 0.1 at the mouth of the Delaware river). Further

discussion of how the restriction to quasi-geostrophy may affect the present

model is given in §6.

Under these assumptions, the source vorticity profile can be expressed

in terms of the outflow velocity and PVa, which can be chosen in such

a way that the outflow is competitive. One simple way to do this is to

let the PVa take two values: Π0 > 0 in −W < x < x∗S , and ΠR
0 < 0

in x∗S < x < W , where x∗S is the location of the dividing streamline in

the outflow at which the sign of the vorticity changes. Fluid that exits

the outflow to the left of x∗S has positive vorticity, and will be referred

to as HPVF (high potential-vorticity fluid). The HPVF competes with

fluid that exits to the right of x∗S and has negative vorticity (LPVF, low

potential-vorticity fluid). The choice of piecewise-constant PVa allows for

accurate and efficient numerical simulations of the flow using the method

of contour dynamics with surgery [Dritschel, 1989], and also facilitates

the analytical results that follow. A similar model with piecewise constant

vorticity was used by Stern and Whitehead [1990] to study the flow of

a jet around a corner in a non-rotating environment. A schematic of the

situation described above is shown in figure 3.1.

Following JSM, horizontal lengths are non-dimensionalised on the

source-vortex scale LV = (Q0/Π0)1/2, speeds on Q0/LV and t on the

advective time L2
V/Q0 = (Π0)−1. The governing equation is therefore

∇2ψ − ψ/a2 =


0 in the ambient

1 in HPVF

ΠR in LPVF.

(3.1)

Here, ψ = g′h/fQ0 is a streamfunction that is related to the non-

dimensional velocity by (u, v) = (−ψy, ψx), and ΠR = ΠR
0 /Π0. The

parameter a = LR/LV is the non-dimensional Rossby radius, and is

discussed in more detail in §1.4. The choice of LV for horizontal length-scale

is a natural one for the study of vortical effects, as it ensures that the width

of the vortically-drive current remains O(1), while the Kelvin-wave decay

scale changes with a. Later we will take the long-wave limit of (3.1) and

require that LV/W � 1, although the numerical simulations that follow

show that this has little qualitative effect on the results.

The source is impulsively switched on at t = 0, with the outflow
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velocity given by a specified profile Q′(x), which we assume to be positive

throughout the source region (i.e. there is no inflow). The boundary

condition at the coast is therefore

v(x, 0, t) =

0, |x| > W/LV

Q′(x), |x| < W/LV.
(3.2)

Integrating (3.2) shows that the coastal interface displacement is set for all

time as

ψ(x, 0, t) = Q(x), (3.3)

with Q(x) = 1 for x > W/LV and Q(x) = 0 for x < −W/LV. Thus the

boundary condition (3.3) represents the signature of the Kelvin wave in

the QG limit. When the Rossby number is finite (as in §2), the Kelvin

wave propagates along the coast ahead of any frontal waves and sets

the boundary condition for the vortical flow behind it. In the QG limit,

the Kelvin wave travels at effectively infinite speed, setting the boundary

condition (3.3) at t = 0+ and for all time [Hermann et al., 1989]. Thus the

role of the coastal Kelvin wave is to set up a steady geostrophic background

flow that interacts with vortical effects. Below, for brevity, we will refer to

this simply as the ‘Kelvin-wave flow’. Although here we restrict ourselves

to steady mass efflux profiles, the extension to unsteady profiles Q(x, t)

follows immediately and is considered by both Kubokawa [1991] and, for

the uniform-PV case, in Southwick et al. [2017].

The relative vorticity is given by ζ = ∇2ψ, so from (3.1) and (3.3) the

source vorticity profile is completely specified as

ζ(x, 0, t) = ζS(Q) =

1 +Q/a2 0 < Q < Q+

ΠR +Q/a2 Q+ < Q < 1,
(3.4)

where Q+ = Q(xs) is the fraction of the outflow occupied by the HPVF.

Note that ζS is a function of Q with x appearing parametrically in (3.4),

so that many of the results below do not depend on the choice of outflow

profile Q(x).

Equation (3.4) shows that the source vorticity in the HPVF is always

positive. Some of the LPVF will have negative vorticity if ΠR +Q+/a
2 < 0,

and all of the LPVF has negative vorticity if ΠR + 1/a2 < 0. Therefore

the entire outflow is competitive if and only if ΠR < −1/a2. Figure 3.2

illustrates two vorticity profiles: in (a) the whole outflow is competitive,

while in (b) the non-competitive region of the LPVF where ζS > 0 is

shown dotted.
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Figure 3.2: Two examples of the source vorticity profile, ζS(Q), with a = 1
and Q+ = 0.5. (a) ΠR = −2 > 1/a2, so that the outflow is competitive. (b)
ΠR = −0.8 < −1/a2 so that the outflow is competitive for Q < 0.8.

3.2 The coastal current mode

JSM show that if the source vorticity is positive everywhere no bulge forms

and all of the outflow travels downstream in a steady, constant-width

coastal current. Kubokawa [1991] finds that this ‘coastal current mode’

occurs if Q+ is greater than a critical value QC, which is a function of ΠR

and a. In this section we present solutions that fully describe the coastal

current mode in the long-wave limit of the present model, and show that

the critical ratio can be interpreted in terms of a simple condition on the

source vorticity.

3.2.1 The steady long-wave equations

The field equation (3.1) can be solved analytically in the long-wave limit,

where disturbances to the interface occur on scales that are much larger in

the x-direction than in the y-direction. Formally, this limit requires that

the source is wide compared to the chosen length-scale LV, however we are

guided by JSM who find that their long-wave theory captures the essential

dynamics even in the limiting case where the outflow is modelled as a

point source. Therefore let ε = LV/W be small and introduce X = εx

and T = εt, so that the source region is |X| < 1. Suppose additionally

that the boundaries that mark the PV jumps do not overturn, so there

are single-valued functions y = w1(X,T ) and y = w2(X,T ) that denote

the boundaries between LPVF and HPVF, and between HPVF and the

ambient ocean layer respectively. In the coastal current mode, the existence

of single-valued functions to describe the location of the PV jumps implies
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that w2 ≥ w1. Under these assumptions, the field equation (3.1) becomes,

at leading order,

ψyy − ψ/a2 =


0 y > w2

1 w1 < y < w2

ΠR 0 < y < w1.

(3.5)

We may now consider (3.5) as the governing equation for the plume in

coastal current mode and revert to using the variables x and t. Treating

w1 and w2 as fixed, equation (3.5) may be solved subject to the coastal

boundary condition (3.3), the far-field condition

∇ψ → 0 as y →∞, (3.6)

and continuity of ψ and u at y = w1 and y = w2. We may write ψ as:

ψ0 = Qee
−y/a y > w2,

ψ+ =− a2 + a2 cosh [(y − w2)/a] +Qee
−y/a w1 < y < w2,

ψ− =− a2ΠR +A cosh [(y − w1)/a]

+B sinh [(y − w1)/a] 0 < y < w1, (3.7)

where the far-field condition (3.6) and continuity at y = w2 have already

been applied. The remaining coefficients A, B and Qe are to be determined

by continuity conditions at w1 and the coastal boundary condition (3.3).

The function Qe is the net flux of ocean fluid at any station x.

For the particular case when the outflow is in coastal current mode,

A, B and Qe can be determined analytically. Since all of the river water

travels downstream, ψ takes the values Q+ and zero on y = w1 and w2

respectively. The unique solution in the ambient is therefore ψ0 ≡ 0 so

that Qe = 0 and the ambient layer is stagnant. The flow in −1 < x < xS

is unaffected by the region of LPVF, so the solution is exactly the same as

for the positive-PVa outflows of JSM. That is, w1 = 0 and

cosh (w2/a) = 1 +Q/a2. (3.8)

Downstream of xS , the condition ψ(w1) = Q+ is applied to (3.7):

Q+ + a2 = a2 cosh [(w2 − w1)/a], (3.9)

Q+ + a2ΠR = A, (3.10)

so that the width of the HPVF, w2 − w1, is constant. The along-shore

velocity u is continuous at y = w1 so that from (3.7),

B = a2 sinh [(w1 − w2)/a]. (3.11)
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Figure 3.3: Steady long-wave profiles in the source region. The solid curve shows
w2, the boundary of the river plume, and the dashed curve is w1, the location of
the PV jump within the current. (a) a = 0.8, Q+ = 0.7, ΠR = −2, (b) a = 1.5,
Q+ = 0.5, ΠR = −1.44.

The coastal boundary condition (3.3) can then be written in terms of w1

alone:

Q+ a2ΠR = (Q+ + a2ΠR) cosh (w1/a) +
√

(2a2Q+ +Q2
+) sinh (w1/a).

(3.12)

Equation (3.12) only has physically meaningful solutions for certain values

of the parameters a, Q+ and ΠR, and it is these conditions that determine

whether the coastal current mode is possible. We will discuss these

conditions and their physical meaning presently, but first note that if the

conditions are met the solution in the source region is given by

w1

a
= log

F (Q)

F (Q+)
, (3.13)

for

F (Q) = a2ΠR +Q+
√
Q2 + 2a2(ΠR(Q−Q+) +Q+),

where the positive root to the quadratic equation (3.12) is chosen as the

only physically relevant solution. This expression is valid in the source

region, and gives the offshore location of the internal PV jump as a function

of Q. The boundary of the outflow plume, w2, can be found through (3.9).

Downstream of the source, Q ≡ 1 and the coastal current has constant

width.

Figure 3.3 shows two examples of steady long-wave profiles in the source

region, plotted as a function of Q. In both cases, the dashed curve is w1
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Figure 3.4: The width of the coastal current, as a function of a, for the special case
where the source vorticity profile is antisymmetric. The dashed curve shows the
width of the interior PV jump.

from (3.13), and the solid curve is the plume boundary w2. Figure 3.3(b)

has Q+ = 0.5 and ΠR = −1 − 1/a2, with these parameter values chosen

so that the source vorticity profile is antisymmetric about x = 0 and

the ratio of HPVF to LPVF is 1:1. This is the source vorticity profile

described in the experiments of Horner-Devine et al. [2006], and consists of

a cyclone and anticyclone of equal and opposite strength. Figure 3.4 shows

wD
A , the width of the coastal current downstream of the source region for

the antisymmetric vorticity profile, plotted as a function of a. As a increases

the image effect becomes stronger relative to the Kelvin-wave driven flow,

and the profile approaches the vorticity-dominated limit of Johnson and

McDonald [2006], where the current width is equal to twice the vortex-

length LV.

As noted above, the coastal current mode is only possible under certain

conditions. We now derive these conditions by considering the parameter

range in which (3.13) is valid.

3.2.1.1 Competitive outflows

For the moment, let us restrict ourselves to the case where the entire outflow

is competitive, so that ΠR < −1/a2. With this condition imposed, (3.13)

is valid provided F (1) is real-valued, or

Q+ > QC =
ΠR + 1/2a2

ΠR − 1
. (3.14)

Thus, as in Kubokawa [1991] we find that the fraction of the outflow

occupied by the HPVF must exceed a critical value QC in order for a

steady coastal current to form. Outflows dominated by vorticity (either

with large a or large |ΠR|) require more HPVF, and a stronger cyclonic

vortex, in order to form a coastal current.

The physical meaning of (3.14) can be seen by re-writing the equation

in terms of source vorticity. From (3.4), ζS can be written as a function

70



of Q (equivalently the streamfunction ψ) and integrated across the source

region: ∫ 1

0
ζS dQ = Q+ +

1

2a2
+ ΠR(1−Q+), (3.15)

which is positive exactly when Q+ > QC. That is, the coastal current mode

occurs if and only if the net contribution of the source vorticity is positive.

Since ζS dQ = ζSv dx, equation (3.15) gives the net vorticity flux out of

the source. The first two terms of (3.15) are positive, and correspond to

the downstream flow generated by the cyclonic part of the outflow and

the Kelvin wave respectively (since the second term is the only one that

depends on the Rossby radius a, and vanishes in the vorticity dominated

limit of a → ∞). For a steady current to form, the sum of these two

must be greater in magnitude than the third term, which is negative and

corresponds to the upstream flow generated by the anticyclonic part of the

outflow.

3.2.1.2 Other outflows

The integral condition (3.15) suggests that previous results about coastal

current formation in a QG system should be re-analysed with source

vorticity in mind. In JSM, the outflow has uniform PVa, Π. They find that

if Π = 1 (and so ζS > 0 everywhere) then the coastal current mode always

occurs, while if Π = −1 the coastal current mode is impossible, although

other steady solutions may occur. The second case differs from our set-up

since the anticyclonic portion of the outflow is on the left and there is no

competition between vortices, resulting in upstream propagation even in

steady flow.

In Kubokawa [1991], the outflow is split between fluid with zero PVa on

the left of the source and LPVF on the right. If a > 1 then all of the LPVF

has negative vorticity and so the outflow is competitive. In our notation,

the vorticity integral becomes,∫ 1

0
ζS dQ =

∫ 1

0

Q

a2
dQ+

∫ 1

Q0

dQ, (3.16)

where Q0 is the fraction of the outflow that has zero PVa. Equation (3.16)

is positive if Q0 > 1 + 1/2a2, which agrees with the condition for coastal

current formation given in (3.3a) of Kubokawa [1991].

Finally let us now consider the case where only a portion of the outflow

is competitive, and the source vorticity is positive at the downstream

edge (as in figure 3.2(b)). This situation occurs in the present model if

Q+ < |a2ΠR| < 1, in which case the competitive region is 0 < Q < |a2ΠR|.
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One can show that (3.13) is valid and the coastal current mode occurs if

and only if ∫ |a2ΠR|

0
ζS dQ > 0, (3.17)

so that the critical fraction is QC = (aΠR)2/2(1−ΠR).

To summarise the results of this section, we have shown that for a

competitive outflow the coastal current mode occurs if and only if the

source vorticity profile satisfies an integral condition of the form (3.15).

In fact, there is a simple physical interpretation of this constraint. The

element ζδQ represents the total amount of vorticity contained in a patch of

infinitesimal area δQ with uniform vorticity ζ. Equation (3.15) shows that

the plume behaves just as the sum of all of these infinitesimal patches, and

turns to the right if its ‘total vorticity’ is positive, as if it were a cyclonic

vortex of finite area. Equivalently, the coastal current mode exists if and

only if the net vorticity flux from the source is positive. Non-competitive

regions of the outflow do not interfere in this process and so are not counted,

although of course they still influence the plume strucutre. The general

nature of this condition suggests that it might have wider applicability,

and an extension to O(1) Rossby number is briefly discussed in appendix

B. We also emphasise that the integral condition (3.15) does not depend

on the specific outflow profile, but only on the relative strengths of the

cyclonic and anticyclonic parts.

3.3 Numerical results

The full equations (3.1) (without the long-wave approximation) can be

solved using the method of contour dynamics with surgery, which gives fast

and accurate results for problems involving piecewise-constant potential

vorticity [Dritschel, 1989]. In this case, the velocity field u = (u, v) can be

written as

u(x, t) = −
∑
k

Πk

∫
Ck

K0 (|x− xk|/a) dxk. (3.18)

The kernel K0 is the modified Bessel function of the second kind of

order zero, which is the appropriate Green’s function for the Helmholtz

equation (3.1). The sum is taken over all contours Ck, where each contour

is parameterised by some xk and the jump in potential vorticity between

contours is given by Πk. Once the velocity field for the (discretised) contours

has been computed numerically, each contour is advected using a standard

4th-order Runge-Kutta scheme. Since the computational speed of this

algorithm increases with the square of the number of discretisation points,
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Dritschel [1989] further employs ‘surgery’, where small filaments (which do

not contribute much to the dynamics) are systematically removed from

the main contour. After each advective step, the discrete contours are

re-noded in such a way that the resolution is proportional to the local

curvature. For our particular problem involving a fixed boundary, we must

modify (3.18) to account for contributions from image contours, as well

as from the source itself. The contribution from each of these terms is

analysed in more detail for a uniform PV outflow in Southwick et al. [2017].

Below, we present results from an initial-value problem where the source

is impulsively switched on at t = 0, and the outflow has a uniform velocity

profile Q′(x) = 1/2. Simulations must begin with an initial contour, for

which we use a thin half-ellipse lying in the source region. Results are

insensitive to the choice of initial contour, provided it is sufficiently smooth

and covers the entire source.

Figure 3.5 shows a contour dynamic (CD) run for a competitive outflow

in coastal current mode. The parameters are: a = 0.8, Q+ = 0.7 and

ΠR = −2, and results are shown at, from top to bottom, t = 15, 30, 45.

The half-width of the outflow is 3, so the long-wave parameter ε = 1/3.

The plume is shaded, with the LPVF hatched darker. Red dashed curves

in the source region show the steady long-wave profiles from §3.2, which

are in excellent agreement with the numerical results. The coastal current

develops quickly: it is almost entirely set-up by t = 15 and by t = 45

has extended to x = 15. At all times the plume is led by a rarefaction

consisting only of LPVF, the shape of which is derived below in §3.4.1 and

plotted as a dashed red line. Between the rarefaction and the steady current

there is an eruption of fluid from the coastal current into the ocean. The

eruption initially grows offshore, before later curling up into an eddy that

propagates downstream. In (b) and (c), the plume boundary can no longer

be written as a single-valued function of x and the analytical results break

down. However the cause of the eruption and its initial development can

be be qualitatively understood through long-wave theory, and this is done

in §3.4.2. The volume of fluid contained within the eruption increases, and

eventually the eruption is strong enough that it retains all of the HPVF

(and some of the LPVF) that leaves the source after a certain time. Far

away from the site of the eruption the plume is unaffected, so the coastal

current and rarefaction are stable features of the plume’s evolution.

Figure 3.6 shows a CD run that tests the applicability of the long-wave

theory to the full QG problem by using a narrow source. The parameters

are the same as for figure 3.5(b), but with ε = 2. The overall plume

shape appears to be largely unaffected by using a larger value of ε, and
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Figure 3.5: Contour dynamic results for a competitive QG outflow in coastal current
mode. The speed ratio a = 0.8, the fraction of the outflow that has positive
vorticity is Q+ = 0.7 and the PV anomaly of the negative vorticity region is
ΠR = −2. The half-width of the outflow is 3, and results are shown at, from top
to bottom, t = 15, 30, 45. In this and all subsequent figures showing contour
dynamics the river plume is shaded, and the LPVF is hatched. Vertical dashed
lines mark the source region and xS , the point where the source vorticity changes
sign. The red dashed lines in the source show the steady long-wave solutions from
§3.2, and those at the head of the plume in (a) and (b) show the rarefaction
computed in §3.4.1.
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Figure 3.6: As in figure 3.5(b) but for a narrow source with half-width 0.5.

the analytic results still match the numerics very well.

Figure 3.7 shows a CD run for an outflow with an antisymmetric
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Figure 3.7: As in figure 3.5, but for an antisymmetric outflow vorticity profile. The
parameters are: a = 1, Q+ = 0.5, ΠR = −2 and the flow is shown at t = 20, 50,
60. Dotted blue curves in (c) show numerically computed steady solutions to the
full problem.

vorticity profile. The net contribution from the source vorticity is zero,

and the condition (3.14) is at equality. The steady profile predicted by

the long-wave theory is only in partial agreement with the numerics, and

no constant-width current occurs. For this set of parameters, the flow

immediately downstream of the source is quasi-steady, and there is a bulge

of LPVF which appears trapped to the coast. At the head of the plume

the rarefaction and the speed of propagation are well-captured by the long-

wave theory, but nonlinear, non-periodic waves develop between the head

and the bulge at later times. The antisymmetric source vorticity profile

is closest to the experiments of Horner-Devine et al. [2006], where the

outflow introduces an equal amount of positive and negative vorticity,

so it is interesting that this is the only vorticity profile for which we

observe a quasi-steady bulge downstream of the source, as is commonly

seen in laboratory experiments. Figure 3.8 plots the vorticity contours

at t = 40. The bulge has strong negative vorticity, and there is a thin
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Figure 3.8: Vorticity contours for the antisymmetric outflow at t = 40. Black
contours show ζ = 0.

layer of positive vorticity around the outside. This structure is in good

qualitative agreement with previous experimental results (c.f. figure 2 of

Horner-Devine et al. [2006]). We note that the steep sections of the plume

boundary (for example, at x ≈ 7 in figure 3.7(a)) are in fact transient

features that quickly either erupt into filaments or dissipate, and in general

the plume boundary (excluding filaments) does not have steep gradients

∂w/∂x.

To investigate the extent to which the long-wave approximation is

responsible for discrepancies between theory and numerics, we ran two

further experiments using the same antisymmetric outflow profile. First

we conducted another CD run (not shown) with ε = 0.1. The quasi-

steady bulge is still present, although the steady profile agrees with the

numerical results over more of the source region. We also used the iterative

method described in Southwick et al. [2017] to numerically compute steady

solutions to the full problem (i.e. without the long-wave approximation).

These are shown as dotted blue curves in (c) and confirm that steady

solutions to the full problem do exist. The stability of these solutions is

discussed in the following section.

Figure 3.9 shows CD results for a competitive outflow that doesn’t meet

the vorticity integral condition (3.15), and so by the long-wave theory the

coastal current mode is not possible. At early times fluid is directed mainly

offshore (figure 3.9(a)), causing the rarefaction to narrow and eventually

pinch off from the bulk. The combined effect of the Kelvin-wave flow and

the image of the HPVF is not sufficient to overcome the anticyclonic part

of the outflow, and the plume detaches from the coast (as in Stern and

Whitehead [1990]). A similar cycle of pinch-off and re-attachment was

observed by Horner-Devine et al. [2006] (their figure 14) in experiments

with a low density contrast between the outflow and the ambient.
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Figure 3.9: As in figure 3.5, but for an outflow where the net contribution of the
source vorticity is negative. The parameters are: a = 1.5, Q+ = 0.3, ΠR = −1 and
the flow is shown at t = 20, 40, 60.

3.4 Unsteady flow features

In this section, we use properties of the time-dependent long-wave equa-

tions to give a qualitative explanation for the eruptions seen in the CD

results, as well as a description of the rarefaction at the plume nose. The

general form of the variable coefficients in the streamfunction (3.7) is

A = a2(ΠR − 1) + a2 cosh [(w1 − w2)/a] +Qee
−w1/a,

B = a2 sinh [(w1 − w2)/a]−Qee
−w1/a,

Qe = Q+ a2ΠR − a2
(
cosh (w2/a) + (ΠR − 1) cosh (w1/a)

)
.

The interface locations w1 and w2 can be found using the kinematic

boundary condition

v =
∂wi

∂t
+ u

∂wi

∂x
on y = wi(x, t), (3.19)
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for i = 1, 2. Using the fact that ψ is a streamfunction, this becomes

∂wi

∂t
=
∂ψ

∂x
+
∂ψ

∂y

∂wi

∂x
=
∂

∂x
ψ(x,wi(x, t)), (3.20)

where

ψ(x,w1) = −a2 + a2 cosh [(w1 − w2)/a] +Qee
−w1/a, (3.21)

ψ(x,w2) = Qe. (3.22)

The pair of equations (3.20) give a first-order, nonlinear hyperbolic system

that is forced in the source region by the outflow velocity Q′(x). In both the

rarefaction and the initial development of the eruption, the system reduces

to a single equation with a well-defined wave-speed that allows for a simple

interpretation of the CD results.

3.4.1 Leading rarefaction

For all parameter values, there is a region of the plume close to the nose that

consists only of LPVF (the ‘head’ region). Here there is no layer of HPVF

between the LPVF and the ambient ocean so we may define w = w2 = w1.

The system (3.20) reduces to a single equation for w:

∂w

∂t
+ CR(w)

∂w

∂x
= 0, (3.23)

where the wave-speed in the head region is

CR(w) =
(

1/a+ aΠR(1− e−w/a)
)

e−w/a. (3.24)

At early stages the downstream plume has ∂w/∂x < 0, so a self-similar

rarefaction develops if C ′R(w) < 0 and small values of w travel faster than

larger values. In fact CR is a decreasing function for relevant values of w

(i.e. between zero and the width of the coastal current) so that, as in the

negative PV outflows of JSM and §2, a rarefaction always forms. The nose

of the plume moves at speed CR(0) = 1/a, which is just the speed of the

Kelvin-wave flow. At any time t, the rarefaction shape is given by

x− 1 = CR(w)(t− tc(w)), (3.25)

where tc(w) is the time at which the characteristic carrying that value

of w emerges from the source region. JSM show that, for the special

case of a uniform outflow velocity Q′(x) = 1/2, the crossing time

tc = 2a(exp (w/a) − 1), and so (3.25) becomes an implicit equation for

w. The rarefaction solution is plotted as a red dashed line in figures 3.5

- 3.9. There is good agreement in the head region, and the nose always
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propagates at the predicted speed 1/a. Note that the preceding discussion

does not require the outflow to be in coastal current mode, and indeed the

long-wave theory is accurate near the nose even for the unsteady plume

shown in figure 3.9.

3.4.2 Eruption from the coastal current

The long-wave theory can also be used to explain eruptions of coastal

fluid into the ambient. Although eruptions are seen in all CD runs, they

have different characteristics that broadly coincide with whether the net

contribution of the source vorticity is positive, zero or negative. For

outflows that have net positive source vorticity, the eruption propagates

downstream and ejects a filament of river water into the ocean. In figure 3.7,

where the source vorticity is antisymmetric, the eruption is bounded and a

bulge of LPVF is retained near the source. Finally, if the net contribution

from the source vorticity is negative and outflows are not in coastal current

mode, then the eruption occurs within the source region. During the early

stages of eruption (for example in figure 3.5(a)) w1 and w2 are displaced

by approximately the same amount, so as a first approximation we may

consider the characteristic equations (3.20) with w2 = w1 + w0, where the

constant w0 is given by the steady profile (3.9) as

w0 = a acosh
(
1 +Q+/a

2
)
. (3.26)

With this substitution, the wave-speed is

CE(w1) =
1

a

(
1 + a2ΠR(1− e−w1/a)

+(
√
Q+(2a2 +Q+)−Q+)e−w1/a

)
e−w1/a, (3.27)

which is similar to (3.24) apart from an extra term due to interaction

between LPVF and HPVF. Since values of w1 are conserved along curves

moving at speed dx/ dt = CE(w1), the initial movement of the eruption is

downstream if CE is positive. For antisymmetric outflows where Q+ = 1/2

and ΠR = −1− 1/a2, the wave-speed CE vanishes at the downstream edge

of the source causing disturbances to become trapped. A similar situation

is discussed in Johnson and Clarke [1999] in the context of hydraulic

control, where they show that a vanishing wave-speed leads to a build up

of momentum and prevents steady long-wave profiles from being realised

in the CD simulations. This can be understood by considering a small

perturbation δ(x, t) to the steady flow wS
1 . To first order, the kinematic

boundary condition (3.20) becomes

δt =
[
ψ(wS

1 )− CE(wS
1 )δ
]
x

= −
(
CE(wS

1 )δ
)
x
, (3.28)
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Figure 3.10: (a) The long-wave speed (3.27) during the early stages of an eruption.
The solid line uses the same parameters as the coastal current mode of figure
3.5; and the dashed line uses the same as the antisymmetric profile of figure 3.7.
Circles mark the downstream width of the steady profile. (b) The slope of CE at
the downstream width wD

1,A for antisymmetric profiles, as a function of a.

using the fact that in steady flow ψ(wS
1 ) = Q+ is constant. Multiplying

(3.28) by CE shows that the perturbation momentum CEδ is conserved

and so as CE → 0 the amplitude δ becomes arbitrarily large. Therefore, in

an outflow where the net contribution of the source vorticity is zero, the

steady long-wave profiles of §3.2 are unstable to small perturbations and

so will never be seen in the initial value problem.

Figure 3.10(a) shows two representative examples of CE(w1) corre-

sponding to the CD runs presented in §3.3, with the coastal current mode of

figure 3.5 shown as a solid curve and the antisymmetric outflow of figure 3.7

as a dashed curve. The maximum width of wS
1 is marked with a circle. Both

curves have a negative gradient, so any perturbation to steady flow will

steepen on the upstream side as smaller values of w1 move faster. However

note that for the antisymmetric profile the curve flattens as w1 increases,

so ∂w1/∂x remains O(1) and the eruption in figure 3.7 is bounded. On the

other hand the solid curve corresponding to figure 3.5 is positive at the

downstream edge and has a steeper gradient, so the eruption propagates

downstream and is relatively strong, as is discussed in Stern [1986]. To

further examine bulge formation in antisymmetric outflows, figure 3.10(b)

plots the slope of CE at the downstream edge of the source. As a increases

and vorticity becomes more dominant, |C ′E(w1,A)| is larger and nonlinear

wave steepening is stronger, so that the eruption is no longer bounded.

Thus, in the QG model, it seems that quasi-steady bulges can only exist

in antisymmetric outflows where vortical effects are relatively weak.
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We briefly consider the behaviour of the outflow in figure 3.9, where

the net contribution from the source vorticity is negative and the coastal

current mode is not possible. Instead, the profile given by equation (3.13)

is only valid over part of the source region, with the radical vanishing and

F (Q) becoming complex at Q = 0.73. Differentiating (3.13) gives

∂w1

∂x
=

a Q′(x)√
(Q2 + 2a2(ΠR(Q−Q+) +Q+))

, (3.29)

so that the loss of the steady solution is associated with an infinite gradient

in the profile and, as in Stern [1986], a strong eruption of coastal fluid that

here detaches completely from the coast.

3.5 Discussion

Numerical and theoretical results for coastal outflows have been discussed

in terms of a quasi-geostrophic model which allows for complete control over

the source vorticity profile by specifying the PV distribution of the expelled

fluid. This is the key feature of the model, as it gives insight into the

relationship between the vorticity of the outflow and the resulting plume

structure. In particular, we are interested in the case of a ‘competitive

outflow’, where negative vorticity is on the right of the source and positive

vorticity is on the left, as in this situation the image effect imparts

a tendency for cyclones and anticyclones to pass through each other.

Analytical steady solutions to the long-wave equations have been derived,

and it is shown in §3.2 that the coastal current mode is only possible if the

net contribution of the source vorticity (the integral of ζ with respect to

the streamfunction ψ over competitive regions of the outflow) is positive. It

is encouraging that the results from Kubokawa [1991] agree with our, more

general, condition on the outflow. Kubokawa’s results do not depend on

the long-wave approximation and so this suggests that the source vorticity

condition is applicable even when ε = O(1).

The numerical results of §3.3 confirm that when the region of cyclonic

vorticity is dominant all fluid turns to the right after leaving the source

(figure 3.5) and a stable coastal current develops. The plume nose consists

entirely of LPVF and propagates at the speed of the Kelvin-wave driven

flow, Q0/LR (where Q0 is the area flux of the outflow). The head of

the intrusion is a self-similar rarefaction, which can be described by

long-wave theory. If the net contribution of source vorticity is negative,

the anticyclonic region is dominant and the coastal current mode is not

possible. The plume cannot remain attached, and separates from the
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coast as it leaves the source (figure 3.9). The transition case, where the

cyclonic and anticyclonic contributions cancel, is closest to the laboratory

experiments of Avicola and Huq [2003b] and Horner-Devine et al. [2006].

A steady long-wave profile exists but it is unstable to small perturbations

and, depending on the value of a, the plume can develop a quasi-steady

bulge just downstream of the source (figure 3.7). The bulge forms due to the

accumulation of short-wave energy, and appears to reduce the downstream

transport of LPVF. It is notable that these features are only seen in runs

where the net vorticity is zero.

3.5.1 Oceanographic context

Avicola and Huq [2003b] and Chen [2014] show that fluid from the right-

hand side of the outflow tends to gather in the bulge, so that both the

sign and the distribution of source vorticity play a role in the initial

development of the plume and therefore contribute to the overall structure.

In situ measurements of plume vorticity are rare, particularly in the source

region, although there is much evidence that where bulges exist they are

anticyclonic (for example figure 5 of Chant et al. [2008]). The work in this

chapter has therefore been guided by laboratory plumes and, despite the

simplicity of the model, has reproduced many of their qualitative features,

with a bulge core that consists of negative vorticity and a thin layer of

positive vorticity at the plume boundary and in the coastal current (figure

3.8). While laboratory outflows can be assumed to be competitive, the

same may not always be true in the real oceans. For example, Münchow

and Garvine [1993b] show that the source velocity profile of the Delaware

river features landward flow on the left-hand side of the estuary, so that

the vorticity is cyclonic throughout. (The Delaware plume forms a coastal

current, which is consistent with a cyclonic outflow.)

In the present model, the coast is a vertical wall and so topography

has no effect on the behaviour of the plume. In the real oceans, the slope

of the continental shelf plays a role in determining whether a bulge forms

or not. Yankovsky and Chapman [1997] shows that plumes are ‘surface-

advected’ (and hence little-affected by topography) when 2WV f/g′ > Hs,

where V is a scale for the outflow velocity. In bottom-advected plumes,

i.e. those that do not satisfy this inequality, topography induces further

stretching of fluid columns and thus increases transport to the coastal

current. Vorticity generated by topographic stretching increases the net

vorticity of the outflow and could in principle be incorporated into the

right-hand side of (3.15), although this would be complicated by the fact
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that the contribution from topographic stretching depends on the off-shore

location of the plume boundary. As in most numerical and laboratory

studies, we have modelled the river mouth as a rectangular opening normal

to the coast. Garvine [2001] and Avicola and Huq [2003b] explore the effect

of varying the geometry of the inlet, and find that bulge formation can be

suppressed by angling the inlet so that fluid is directed downstream, or

by increasing the radius of curvature at the inlet corners. Both of these

results can be understood by considering the plume path as an inertial

circle which is able to remain attached to the coast when guided to do so

by the geometry. However this inertial framework ignores vortex effects and

predicts that a gyre will always form when the corners of the river mouth

are sharp. The QG model is in the alternative limit, where the inertial

radius V/f is small compared to the chosen length-scale and vorticity

dynamics are dominant. A more nuanced theoretical treatment of the

problem, which includes contributions from both inertia and vorticity, is

an important avenue for future work.
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Chapter 4

The potential-vorticity

dynamics of coastal fronts

This chapter studies the propagation of free, long waves on a potential

vorticity front in the presence of a vertical coast, using a uniform-PV, QG

model introduced by Pratt and Stern [1986]. PV fronts have been used to

model the centre-line of a thin ocean jet [Nycander et al., 1993, Cushman-

Roisin et al., 1993], as well as Western Boundary Currents such as the Gulf

Stream [Pratt et al., 1991, Sasaki and Schneider, 2011a]. We also have in

mind topographic PV gradients, and this will be explored further in the

following chapter. Although Pratt and Stern developed the present model

in a general form that includes a coast, the specific examples that they

present are mostly concerned with free fronts (i.e. those without a coast) in

which the only wave is the Rossby wave. The purpose here is to highlight

how waves on PV fronts are affected by coastal dynamics; i.e. Kelvin-

wave flow and image vorticity (see §4.1.1 for a further discussion of how

the present model relates to Pratt and Stern’s). We show that the richest

behaviour, which includes compound-wave structures and kink solitons,

occurs in the regime where vortical effects are dominant. We further extend

Pratt and Stern’s work by using a recently-developed analytical technique

known as ‘dispersive shock-fitting’ [El, 2005] to classify and interpret the

behaviour of the model when first-order dispersive effects are included.

The dynamics of the resulting equation are similar to those of the modified

KdV, a connection that has previously been noted in theoretical studies
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Figure 4.1: A coastal current occupies the region 0 < y < Y (x, t). The current
has uniform potential vorticity, q = Π, and the ambient upper layer has uniform
potential vorticity q = 0. Both the current and the upper layer lie above a deep,
inactive, denser layer. Variables are non-dimensional, with the relevant scales
defined below.

of free fronts [Nycander et al., 1993]. Contour-dynamic simulations show

that the dispersive long-wave theory captures the behaviour of the full

quasi-geostrophic system to a high degree of accuracy.

Section 4.1 develops the mathematical model and the governing equa-

tions in the long-wave limit; §§4.2, 4.3 discuss the leading-order and first-

order long-wave equations respectively, including the application of the

dispersive shock-fitting algorithm in §4.3; §4.4 presents numerical results

to both the long-wave and full quasi-geostrophic equations, and considers

dispersive compound-wave structures, and §4.5 discusses applications of

the model, and compares results with previous studies.

4.1 Model and governing equations

Consider flow in the half-space y > 0, with a vertical, impermeable wall

at y = 0. The flow is described by a Cartesian co-ordinate system Oxyz,

which is fixed in a frame of reference that rotates at speed f/2 > 0 about

the vertical axis Oz. The flow consists of an upper layer of density ρ1,

lying below a rigid top at z = 0 and above an inactive, infinitely-deep

layer of density ρ2, with ρ1 < ρ2 and the difference sufficiently small that

the Boussinesq approximation applies. The perturbation of the interface

about the mean depth H is denoted h(x, y, t). A schematic of this set-up

is shown in figure 4.1. If h � H, then the flow can be described by the

quasi-geostrophic equation for the conservation of potential vorticity:

D

Dt

(
∇2ψ − 1

L2
R

ψ

)
= 0. (4.1)
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Here, LR =
√

(g′H)/f is the Rossby radius of deformation for the upper

layer, g′ is the reduced gravity, and the streamfunction ψ = g′h/f is related

to the velocity by (u, v) = (−ψy, ψx). The conserved quantity in (4.1) is q,

the quasi-geostrophic PV (i.e. the perturbation potential vorticity due to

the departure from the mean value f/H, multiplied by H). In the present

model q is taken to be piecewise constant, with q = Π0 in the coastal

current and q = 0 in the ambient fluid. The front that separates the coastal

current from the ambient is a material contour Γ(t), knowledge of which is

sufficient to determine the entire flow-field at that time.

The no-flux boundary condition at y = 0 requires that

ψ(x, 0, t) = Q0 (4.2a)

is constant, while in the far-field the fluid is stationary:

ψ → 0 as y →∞. (4.2b)

Thus the net flux in the upper layer is Q0H. If Q0 > 0, the net flux is

rightwards (facing seawards) and the interface is deeper at the coast than

far offshore, as in an outflow plume. Although in the remainder of this

chapter we assume that Q0 > 0, the alternative setting with a net leftward

flux and a shallower interface at the coast may be obtained through the

transformation

ψ → −ψ, x→ −x, Π→ −Π. (4.3)

The interaction between coastal currents with Q0 < 0 and shelf waves is

the topic of §5. The third possibility with Q0 = 0 is not considered here

but is discussed briefly in Pratt and Stern [1986]. As in §3 the boundary

condition (4.2a) with Q0 > 0 also represents the signature of the Kelvin

wave in the QG limit, which we will refer to simply as the ‘Kelvin-wave

flow’.

We will briefly assess the relevance of the quasi-geostrophic limit to

the present problem (although note that the interaction between coastal

phenomenon and Rossby-wave dynamics that is fundamental to this work

also applies in the full shallow-water equations [Nycander et al., 1993]).

For the quasi-geostrophic limit to apply, we require that h � H, Ro � 1

and consequently L is not orders of magnitude larger than LR, where L is

the chosen length scale for the problem. The first of these restricts us to

currents where the displacement of the upper layer from its mean value

is on the order of metres. Below we will non-dimensionalise horizontal

lengths with LV, so that the length-scale restriction imposes a = O(1).

Following the estimates given in §1.4 this requires that the velocity scale

U is O(0.1− 1m s−1), which is reasonable for most coastal currents.
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4.1.1 Scaling of horizontal lengths

As pictured in figure 4.1, the problem of a coastal PV front has four relevant

horizontal length-scales. These are: LR, the Rossby radius of deformation;

Y∞, the mean distance of the PV front from the coast; λ, the typical

wavelength of a frontal meander; and LV = (Q0/|Π0|)1/2, which is the so-

called vortical length-scale. The latter of these is the appropriate scaling

for a current of flux Q0 and relative vorticity |Π0| in two-dimensional

flow [Johnson and McDonald, 2006]. The quasi-geostrophic model used

for numerical simulations below assumes that all four lengths are of order

unity, while the long-wave limit in which the analysis is performed formally

requires

λ� (Y∞, LR, LV), (4.4)

with Y∞, LR and LV all of the same order. By contrast, the free-front

problem (i.e. without a coast) considered by Pratt [1988] and Nycander

et al. [1993] assumes that

Y∞ � λ� (LR, LV). (4.5)

Thus the present model explores a different asymptotic regime to that

considered by Pratt [1988] and Nycander et al. [1993], one in which

Y∞ ∼ LR and coastal effects enter at leading order. Some examples of

PV fronts in the real oceans that may fall into this regime include the flow

down Barrow Canyon [Pickart et al., 2005], the Kuroshio south of Japan

[Tsujino et al., 2006], and the Western Arctic shelfbreak jet [Spall et al.,

2008]. Further discussion of the oceanographic context for this model is

given in §§4.5-6.

Horizontal lengths are non-dimensionalised on LV. This introduces

the non-dimensional Rossby radius a = LR/LV, which measures the

relative strengths of the Kelvin-wave flow and image vorticity and plays

an important role in what follows. When a < 1 the flow is Kelvin-wave

dominated, while a > 1 corresponds to vorticity-dominated flow. The

parameter Q0, which represents the net flux in the upper layer, can be

scaled out by replacing ψ with Q0ψ. Speeds are non-dimensionalised by

Q0/LV, and time t on the advective scale L2
V/Q0. With these choices, the

natural scaling for Π0 is Q0/L
2
V = |Π0| so that the non-dimensional PV in

the coastal current is q = sign (Π0), which we will denote Π. We therefore

categorise the coastal current according to the sign of its PV anomaly

(PVa), with Π = 1 (positive PVa) meaning that the coastal current is

of higher PV than the ambient and Π = −1 (negative PVa) meaning

that the coastal current has lower PV. In currents with positive PVa, the
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image effect reinforces the Kelvin-wave driven flow, while in currents with

negative PVa the two effects oppose each other. In the analysis below we

assume that Γ(t) does not overturn, and so we may introduce y = Y (x, t)

as the location of the PV front. With these scalings and this assumption,

the governing equation is:

∇2ψ − ψ/a2 =

0 y > Y (x, t),

Π 0 < y < Y (x, t).
(4.6)

Thus the model contains two free parameters: the non-dimensional Rossby

radius a, which is assumed to be O(1), and Π = ±1 which indicates the sign

of the PV gradient. The system (4.6) is closed by the kinematic boundary

condition,
D

Dt
(y − Y ) = 0 at y = Y, (4.7a)

or, using the fact that ψ is a streamfunction,

Yt = [ψ(x, Y (x, t))]x , (4.7b)

so that all of the dynamics can be described by a scalar equation (4.7b) for

Y (x, t).

4.1.2 The long-wave limit

The fully nonlinear, free-boundary problem (4.1) can be solved numerically

using the method of contour dynamics [Dritschel, 1988]. This is done

below in §4.4.4, where dispersive shock-waves (DSWs) and compound-

wave structures are shown to occur in simulations where the initial frontal

displacement Y (x, 0) is a smoothed step (although DSWs can arise from

a wide variety of initial conditions – see figure 5 of Pratt [1988]). In order

to analyse these structures, we will now assume that the flow is slowly-

varying in the along-shore direction. That is, we formally re-scale x and t

by ε = λ−1, where λ � 1 is a typical wavelength for the front. As we will

see later, the long-wave theory accurately predicts the behaviour of the full

system even for the most extreme case of the Riemann problem, where the

initial condition is discontinuous. We expand ψ as a power-series in ε:

ψ(X, y, T ) = ψ0 + ε2ψ1 +O(ε4), (4.8)

where X = εx and T = εt are the long-wave variables. The field equation

for the leading-order term ψ0 is

ψ0
yy − (1/a2)ψ0 =

0 y > Y (X,T ),

Π 0 < y < Y (X,T ),
(4.9)
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which is to be solved subject to the boundary conditions (4.2) and the

requirement that ψ and u are continuous at the front y = Y . The solution

is

ψ0(X, y, T ) =


(1 + a2Π)e−y/a − a2Π

2

[
e(Y−y)/a + e−(y+Y )/a

]
y > Y,

−a2Π + (1 + a2Π)e−y/a

+
a2Π

2

[
e(y−Y )/a − e−(y+Y )/a

]
0 < y < Y.

(4.10)

The ratio y/a that appears in (4.10) and elsewhere is, in dimensional terms,

y∗/LR where y∗ is the dimensional co-ordinate. Thus as usual the Rossby

radius LR is the intrinsic decay scale in the problem. At Y (X,T ) we have

ψ0(X,Y, T ) = Qe(X,T ) = −a
2

2
Π + (1 + a2Π)e−Y/a − a2

2
Πe−2Y/a, (4.11)

where Qe(X,T ) gives the net transport of ocean fluid at any station X,

and thus 1 − Qe is the transport in the coastal current. Note that (4.7b)

is written in flux form so that, in the language of scalar conservation laws,

−Qe is the flux function for the long-wave equation.

The evolution of the front is governed by the kinematic boundary

condition (4.7) which, using (4.11), is:

YT +

[(
1

a
+ aΠ

)
e−Y/a − aΠe−2Y/a

]
YX = 0. (4.12)

Equation (4.12) is an unforced nonlinear wave equation that governs

the leading-order behaviour of long waves on a coastal PV front. By

analogy with open-channel flow, we call this the ‘hydraulic limit’ [Pratt

and Whitehead, 2008]. In general, smooth initial conditions may develop

shocks at finite time, so that the long-wave assumption no longer holds.

This is resolved by introducing a next-order, dispersive correction to the

field equation (4.9). The hydraulic limit is discussed further in §4.2.

4.1.3 Dispersive effects

At the next order in ε, the field equation is

ψ1
yy − (1/a2)ψ1 = −ψ0

XX . (4.13)

The solution to (4.13) that satisfies the far-field condition (4.2b) and the

boundary condition ψ1(X, 0, T ) = 0 may be written

ψ1(X, y, T ) =



(ay
2

[
Qee

Y/a
]
XX

+A
)

e−y/a y > Y,

−a
3y

4
Π
[
e−Y/a

]
XX

(
ey/a + e−y/a

)
+B sinh (y/a) 0 < y < Y,

(4.14)
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where A(X,T ) and B(X,T ) are determined by continuity of ψ1 and u1 at

y = Y to be

B(X,T ) =
a2

2

[
Qee

Y/a
]
XX

e−2Y/a +
a4

4
Π

(
1 +

2Y

a
+ e−2Y/a

)[
e−Y/a

]
XX

=
a

2
Πe−Y/a

(
Y Y 2

X − a(a+ Y )YXX

)
, (4.15)

A(X,T ) =
a

2
Π
(
aY YXX cosh (Y/a) +

(
Y Y 2

X − a2YXX

)
sinh (Y/a)

)
.

(4.16)

Thus the dispersive correction to (4.11) is (c.f. §2.2.2 in Johnson et al.

[2017]):

ψ1(X,Y, T ) =
−a3

4
ΠYXX +

(
a2

2
ΠY YXX +

a3

4
ΠYXX −

a

2
ΠY Y 2

X

)
e−2Y/a,

(4.17)

and the kinematic boundary condition governing the evolution of the PV

front is

Yt + [(1/a+ aΠ) exp (−Y/a)− aΠ exp (−2Y/a)]Yx +
a3

4
ΠYxxx

−Π

((
Y − a

2

)
(Yx)3 +

a3

4
Yxxx +

a2

2
Y Yxxx − 2aY YxYxx

)
e−2Y/a = 0,

(4.18)

where for convenience we have returned to the original variables x and t.

The study of the third-order, dispersive, nonlinear wave equation (4.18) is

the main focus of this chapter. The fact that ε does not appear explicitly

in these equations is typical [Johnson and Clarke, 1999], although formally

(4.18) requires that variations in x are slow. In practice, however, we find

that the dispersive long-wave equation captures much of the behaviour of

the full problem (4.1). This is shown below in §4.4.4.

Multiplying (4.18) through by Y , one obtains the following conservation

law, which will be necessary later for the treatment of the Riemann

problem:(
Y 2

2

)
t

+

[
a2Π

4
(2Y + a)e−2Y/a − (Y + a)(1 + a2Π)e−Y/a

]
x

+
a3Π

8

[
(Y 2

x − 2Y Yxx)

((
1 +

2Y

a

)
e−2Y/a − 1

)
+

(
2Y

a
Yx

)2

e−2Y/a

]
x

= 0. (4.19)

Note that the square-bracketed terms in (4.19) are grouped according

to whether they are derived from ψ0 or ψ1— that is, according to their

asymptotic order in ε.
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4.2 The hydraulic equation

Here, we discuss solutions to the hydraulic equation (4.12) using the partic-

ular example of the Riemann problem. The classification and description of

the range of behaviours should be viewed as a paradigm for the evolution

of the front from more general initial conditions.

In the hydraulic limit, the evolution of the front is governed by the

nonlinear wave equation (4.12). Values of Y are conserved on characteristic

curves satisfying dx/dt = C(Y ), where the long-wave speed C(Y ) is given

by

C(Y ) =

(
1

a
+ aΠ

)
e−Y/a − aΠe−2Y/a. (4.20)

Note that C(Y ) is negative if

Y < Y1 = a log

(
a2

a2 + Π

)
, (4.21)

where Y1 > 0 only if a > 1 and Π = −1. Thus disturbances can only

propagate upstream if the current has negative PVa and image vorticity

dominates the Kelvin-wave flow.

As in Pratt and Stern [1986], long-wave disturbances to a free front are

stationary (C(Y ) → 0 as Y → ∞). Therefore C(Y ) has no contribution

from vortex induction, and in the hydraulic limit the only relevant effects

are the Kelvin-wave flow and image vorticity. When a > 1 the long-wave

speed C(Y ) is non-monotonic, with a turning point at

Y2 = a log

(
2a2

a2 + Π

)
, (4.22)

which is thus also the inflection point for the flux function Qe. Compound-

wave structures (shock-rarefactions) are therefore possible when a > 1, and

the vortically-dominated regime contains the richest behaviour.

4.2.1 The Riemann problem for the hydraulic equation

In the Riemann problem, the initial conditions are given by the step

Y (x, 0) =

Y− x < 0,

Y+ x > 0.
(4.23)

First, suppose that the interval of the initial step does not contain Y2.

The step is resolved by a ‘simple-wave structure’; that is, a shock or a

rarefaction. If C(Y+) > C(Y−), characteristic curves separate and the space
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between them in the (x, t)-plane is filled by an expansion fan (rarefaction).

The rarefaction is given by

x

t
= C(Y ) for C− <

x

t
< C+, (4.24)

where we have defined C± = C(Y±). The rarefaction connects smoothly to

the far-field solution Y = Y±.

If the initial step (4.23) has C+ < C−, characteristic curves collide and

a shock forms. The speed of the shock, Vs, is given by the Rankine-Hugoniot

condition for (4.7b):

Vs(Y+, Y−) =
Qe(Y−)−Qe(Y+)

Y+ − Y−
. (4.25)

Characteristic curves must transfer information into the shock from both

sides, so that Vs is required to satisfy the ‘entropy’ condition

C+ ≤ Vs ≤ C−. (4.26)

The geometric interpretation of this restriction is that Vs is the slope of

the chord connecting Qe(Y±) and, since C(Y ) = −Q′e(Y ), the entropy

condition requires that the chord does not intersect the graph of Qe. The

entropy condition is satisfied if Qe is convex over the interval containing Y±,

i.e. the interval does not contain Y2. If the entropy condition is not satisfied,

then the initial step is resolved through a compound shock-rarefaction in

which the two far-field states Y± are connected through an intermediate

value YM . The details of this depend on which of the inequalities in (4.26)

fails to hold.

1. If Vs > C−, a shock connects Y+ to YM , where YM is chosen so that

Vs(Y+, YM ) = C(YM ). Since C(YM ) > C−, these two levels may be

connected by a rarefaction.

2. If Vs < C+, the shock connects Y− to YM , where Vs(YM , Y−) = C(YM ).

A rarefaction connects YM and Y+.

Initial steps where C+ > C− but Y2 lies within the interval containing Y±

are resolved similarly.

Figure 4.2 shows a numerical simulation of the hydraulic equation

(4.12) with a = 1.25, Π = −1 and an initial step chosen so that the

entropy condition (4.26) is not satisfied. Starting from a smoothed step,

the equation is integrated from t = 0 using the Lax–Wendroff method with

Neumann boundary conditions at either end of the computational domain.

The solution Y is plotted at t = 1000 as the solid curve in figure 4.2(b).

The dashed curve shows the initial step, translated in x by 1000Vs for
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Figure 4.2: A compound-wave solution to the Riemann problem in the hydraulic
limit. The parameters are a = 1.25, Π = −1, and the initial step goes from
Y− = 0.8 to Y+ = 4.5. (a): The flux function Qe(Y ). Open dots show Y±, and
the filled dot is YM . The dashed line is the chord joining Y− to YM , and the
dotted line is the chord joining Y− to Y+, which intersects the curve and does not
satisfy the entropy condition (4.26). (b): The location of the front, Y , at t = 1000
(solid curve) and the initial condition (dashed curve) translated in x for ease of
comparison.

ease of comparison. The shock-rarefaction structure is clear, with the front

steepening for Y < YM and relaxing to a rarefaction for Y > YM , where

YM = 3.85 is given by the horizontal dotted line. The geometric viewpoint

is illustrated in figure 4.2(a), which shows the flux function Qe(Y ). The

dotted line represents a shock propagating at Vs(Y+, Y−), and intersects

the curve Qe(Y ) at Y ≈ 3.5. This shock would therefore fail to satisfy

the entropy condition (4.26). Instead the solution develops a shock that

joins Y− with the intermediate value YM , chosen so that the shock speed

Vs(YM , Y−) (dashed line in (a)) is tangential to Qe at YM . Thus, YM is the

maximum off-shore distance of a front that can connect to Y− = 0.8 via a

shock.

Figure 4.3 shows the classification diagram for the resolution of an

initial step in terms of the parameters Y+ and Y−. Shaded regions of the

diagram correspond to initial steps that are resolved by a shock, white

regions to steps that are resolved by a rarefaction, and striped regions
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Figure 4.3: Diagram showing the resolution of the Riemann problem for (a) a = 2,
Π = 1 and (b) a = 1.25, Π = −1. In both cases, the dashed lines mark Y2. Shaded
regions show where the initial step is resolved by a shock, white regions correspond
to a rarefaction, and striped regions to a shock-rarefaction.

to a shock-rarefaction. Dashed lines show Y2, the inflection point for Qe,

which divides the classification diagram into four quadrants. Note that the

quadrant with Y± < Y2 displays the opposite behaviour to the quadrant

with Y± > Y2. The qualitative structure of the classification diagram is

the same for any a > 1, although we note that as a → 1+, Y2 → ∞ if

Π = −1, but Y2 → 0 if Π = 1. If a < 1 the flow is dominated by the Kelvin

wave, which is stronger at the coast and so shocks occur when Y+ > Y−.

Figure 4.3 also shows that shock-rarefactions require |Y+−Y−| to be finite.

Indeed if one takes the weakly nonlinear limit of (4.18), with Y = Y∞+ ∆

and |∆| � 1, the resulting equation is the KdV equation unless Y∞ = Y2,

in which case (at next order in ∆) one obtains the modified KdV. Thus

compound-wave structures are necessarily a finite-amplitude effect.

Although we have focused on the Riemann problem, the classification

diagrams in figure 4.3 can be used to interpret a wide range of initial

conditions Y (x, 0). By considering the sign of ∂Y/∂x, one may place the

initial condition just above or below the line Y+ = Y− and then, by

considering the value of Y , identify which regions of the front will steepen

into a shock, and which regions will lengthen into a rarefaction. Any front

that crosses Y = Y2 will form a compound-wave structure. If the flow

remains smooth and Qe is convex, then adding higher-order terms to the

hydraulic equation (4.12) makes little difference, and so figure 4.3 is also

useful for understanding the behaviour of some fronts in the full QG system
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(4.1). However in the case of a front that steepens, the gradient ∂Y/∂x

increases and so higher-order dispersive terms become important.

4.3 The dispersive equation

Here, we consider the dispersive equation (4.18). We first discuss travelling

wave solutions, including the special cases of solitons, kinks and intrusions.

These serve as a preliminary to applying El’s technique of ‘dispersive shock-

fitting’ [El, 2005], which allows the Riemann problem to be classified.

4.3.1 Travelling-wave solutions to the dispersive equation

When higher-order dispersive terms are added to the hydraulic equation

(4.12), shocks no longer form. Instead, wave-steepening leads to ‘dispersive

shock waves’ (DSWs; also called undular bores in the context of water

waves) which are a canonical and important structure in nonlinear disper-

sive wave dynamics [Hoefer and Ablowitz, 2009]. For the purposes of this

work we need only note that a DSW is an expanding, slowly-modulated

waveform, with a linear wave-train at one end and a solitary wave at the

other. Thus to understand shock resolution in the dispersive equation it is

necessary to understand the behaviour of both linear waves and solitary

waves, which motivates the following, more general, discussion of travelling-

wave solutions to (4.18).

First, we write (4.18) in potential form:

(Y ′)2 =
2

a2

a3e−2Y/a − 4a(Π + a2)e−Y/a + 2ΠsY 2 + αY + E

a− (a+ 2Y )e−2Y/a
,

=
2

a2

V(Y ; s, α,E)

G(Y )
. (4.27)

Here, primes (′) denote differentiation with respect to the moving co-

ordinate ξ = x − st, s is the speed of the travelling wave and α and E

are constants of integration (with E the ‘energy’ of the orbit). Note that

G ≥ 0, so that travelling wave solutions exist whenever V ≥ 0 and we may

often ignore G in our analysis.

Figure 4.4 shows four representative examples of (4.27). Figure 4.4(a)

shows the general case, where the numerator V has four roots. Double roots

of V at Y = Y∞ correspond to linear or solitary waves propagating on the

background Y∞ depending on whether they are maxima or minima of V
respectively. Figure 4.4(b) shows a solitary wave of depression propagating

on the background Y∞ = 1.5. There are two special configurations of V: if

V has two double roots then the travelling wave is a so-called kink soliton,

96



0 1 2

−4

−2

0

2

4

·10−3

0 1 2

−4

−2

0

2

4

·10−2

0 1 2 3 4 5

0

0.2

0.4

Y

0 0.1 0.2 0.3
0

0.01

0.02

Y

P
o
te
n
ti
al

fu
n
ct
io
n
2V
/
a
2
G

(a) General (b) Solitary wave

(c) Kink soliton (d) Intrusion

Figure 4.4: Configurations of the potential function (4.27). (a) The general case,
(b) Solitary wave case with a local minimum, (c) Kink with two double roots, (d)
Intrusion. In each case, travelling waves exist in the shaded region.

as in figure 4.4(c), while if V(0) ≥ 0 and there exists a double root in Y > 0,

as in figure 4.4(d), then the solution is a model for a coastal intrusion (i.e.

a constant-width current with a ‘nose’). These special cases are discussed

below in §4.3.1.3.

4.3.1.1 Linear waves

Consider a small disturbance proportional to exp [i(kx− ωt)], propagating

on a background Y∞. By making this ansatz in (4.18) we obtain the

dispersion relation

ω = C(Y∞)k − a2

4
ΠG(Y∞)k3, (4.28a)

and the phase speed

cP =
ω

k
= C(Y∞)− a2

4
ΠG(Y∞)k2, (4.28b)

which corresponds to advection by the background flow and a dispersive

term with sign −Π. In §4.5, we compare (4.28) with other dispersion

relations that have previously been derived for long frontal waves.
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4.3.1.2 Solitary waves

The potential equation (4.27) admits solitary-wave solutions for certain

values of the parameters s, α and E. It is convenient to ignore G, and seek

the range of speeds s for which solitary waves exist.

Thus, consider a solitary wave propagating on the background Y∞.

Then V(Y∞) = 0 and V ′(Y∞) = 0, which sets E and α as functions of Y∞

and s in (4.27). Further, V(Y∞) must be a local minimum. This requires

s > C(Y∞) when Π = 1,

s < C(Y∞) when Π = −1, (4.29)

which, as expected, sets the minimum (maximum) speed for solitary waves

on a current with positive (negative) PVa to be the long-wave speed C(Y∞).

A solitary wave of depression occurs if V has a root, say YS, in [0, Y∞). Thus

a depression wave occurs if, in addition to (4.29), V(0) ≤ 0 or

s < s0 when Π = 1,

s > s0 when Π = −1, (4.30a)

where we have introduced the critical speed

s0 = Y −2
∞

[
2a+

3a3Π

2
− 2(1 + a2Π)(a+ Y∞)e−Y∞/a

+
a2Π

2
(a+ 2Y∞)e−2Y∞/a

]
. (4.30b)

The amplitude of the wave is Y∞ − YS. A solitary wave that travels close

to speed s0 extends from Y∞ to Y = 0+. For s beyond s0, V(0) > 0 and,

provided there is no other root in [0, Y∞), the corresponding travelling-wave

solution extends to the coast and can be used to model a coastal intrusion,

as in figure 4.4(d).

Next, note that a solitary wave of elevation occurs if V has a root YS

in (Y∞,∞). As Y → ∞, V ∼ sΠY 2, so that a sufficient condition for

an elevation wave is Πs < 0. However elevation waves may also exist for

Πs > 0, provided YS exists. The limiting case for the existence of the

additional root occurs when V ′(YS) = 0, so that V has two double roots

and the corresponding travelling-wave solution is a kink soliton. Given a,

Π and Y∞, we seek a pair (sK , YK) such that V (YK) = V ′(YK) = 0, with

YK > Y∞. The kink soliton connects the phase-plane equilibria Y∞ and

YK , and travels at speed sK . Since the kink is the limiting case of an

elevation wave, YK is an upper bound on the soliton amplitude and sK

is the maximum (minimum) speed for a solitary wave of elevation on a

current with positive (negative) PVa.
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Figure 4.5: Possible solitary wave speeds s, as a function of the background Y∞. The
solid, dashed and dotted curves are C, s0 and sK respectively. Waves of elevation
exist in regions marked E, and waves of depression exist in regions marked D. The
parameters a and Π are chosen so that each plot shows a different regime. (a)
Π = 1, a = 0.5, (b) Π = 1, a = 1.5, (c) Π = −1, a = 0.5, (d) Π = −1, a = 1.5.

By combining all of the above, we may determine the range of allowed

solitary wave-speeds s as a function of Π, a and the background state Y∞.

We find that there are four regimes, depending on the value of Π and a. An

example of each regime is shown in figure 4.5, where the limiting values C,

s0 and sK are plotted as functions of Y∞ as the solid, dashed and dotted

curves respectively. Depression waves exist in regions of the (s, Y∞)-plane

marked D, and elevation waves exist in regions marked E. The solitary

waves are of vanishing amplitude close to the solid curve C(Y∞), and reach

maximum amplitude at the dashed or dotted curve (or at s = 0 in the case

of figure 4.5(c), where the solitary wave has infinite amplitude). For small

a, the curves s0 and C do not intersect and only one type of solitary wave

is possible (figure 4.5 (a) and (c)). For a sufficiently large, the two curves

intersect and so both elevation and depression waves (as well as kinks)

exist, with depression waves existing for Y∞ > Y2 (figure 4.5 (b) or (d)).

The intersection between s0 and C occurs for the first time when a = 1

if Π = 1, and when a = 2/
√

3 if Π = −1. (The critical value of a when

Π = −1 can be determined by considering the sign of s0−C for large Y∞.)

99



4.3.1.3 Special cases

We now discuss the two special cases mentioned above: the kink soliton and

the coastal intrusion. Kink solitons require that V has two double roots,

say Y∞ and YK , which correspond to the two far-field states connected by

the travelling wave. It turns out that this configuration is only possible

if a is sufficiently large (a > 1 when Π = 1, and a > 2/
√

3 when

Π = −1). The propagation speed sK(Y∞) is plotted as a dotted curve

in figure 4.5(b) and (d). We find that sK(Y∞) has a turning point at Y2,

the turning point for the long-wave speed C(Y ). Each sK is associated

with two background states, one on either side of Y2, and the kink soliton

connects these two states. Thus the kink is a result of the non-convexity of

the flux function Qe, as in the modified KdV equation. Kink solitons are of

particular interest because they are travelling-wave solutions that connect

two different far-field states, and thus are analogous to shock-wave solutions

to the hydraulic equation. However, sK does not lie between C(Y∞) and

C(YK), so the propagation speed does not satisfy the entropy condition

(4.26). The kink soliton is therefore sometimes referred to as a non-classical

or under-compressive shock wave [El et al., 2017]. Kinks will later be shown

to play an important role in the Riemann problem when the initial step

crosses Y2.

Figure 4.6 shows the kink soliton solution propagating on the back-

ground Y∞ = 0.7 with Π = −1 and a = 1.5, which are the values used for

the potential function in figure 4.4(c). The phase portrait for travelling-

wave solutions propagating at speed sK = −0.076 is shown in figure 4.6(a).

There are saddle points at Y∞ and YK = 4.37, and a centre at Y ≈ 2.

The kink soliton is represented by the heteroclinic orbit connecting the

two saddle points, which is shown dashed. Closed orbits inside the dashed

curve correspond to lower-energy periodic waves. Figure 4.6(b) shows a

numerical solution to the dispersive long-wave equation (4.18) when the

kink soliton is used as an initial condition (solid curve). The dashed and

dash-dotted curves show the solution at t = 500 and t = 1 000 respectively,

and confirm that the kink propagates at constant speed sK .

Here and elsewhere numerical results are obtained using a pseudo-

spectral method, where the equation is Fourier-transformed in x and then

advanced in time using an adaptive fourth-order Runge–Kutta scheme.

The domain is truncated at some large value of x, and a corresponding

step down from YK to Y∞ is introduced to enforce the periodicity required

by the spectral method. The domain is taken large enough so that the

two steps do not interfere with each other. The equation is solved using
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Figure 4.6: Kink soliton connecting Y∞ = 0.7 and YK = 4.41, with a = 1.5, Π = −1.
(a) The phase portrait with s = sK = −0.076. The dashed curve is the kink orbit,
with curves inside corresponding to periodic waves. (b) Propagation of the kink
soliton in the equation (4.18). The solid, dashed and dash-dotted curves show the
solution at t = 0, 500, 1 000 respectively.

the long-wave co-ordinates X and T , but results are plotted in the original

co-ordinates x and t. In all results shown, the long-wave parameter ε = 0.1.

If the condition (4.30) is not satisfied, the corresponding travelling-wave

solution reaches Y = 0 and may be joined to a constant-width current to

give a model for a coastal intrusion of permanent form. Letting Y → 0 in

(4.27) we see that the nose of the intrusion meets the coast at right angles

unless V has a double root at zero; that is, unless the intrusion is a kink

soliton with background Y∞ = 0. In this case, the front meets the coast

with

(Y ′)2 =
2Π(asK − 1)

a2
. (4.31)

Such an intrusion is shown in figure 4.7, for Π = 1 and a = 1.05, which

are the values used for figure 4.4(d). The phase portrait in figure 4.7(a)

has a saddle point at YK = 0.101, but since G(0) is infinite, the double

root in V does not lead to a saddle point at Y = 0. Figure 4.7(b) shows

the evolution of the intrusion at t = 0, 500, 1 000 (solid, dashed and dash-

dotted curves respectively). We performed other numerical experiments

(not shown) using a solitary wave intrusion that meets the coast at right-
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Figure 4.7: Coastal intrusion of permanent form, with a = 1.05 and Π = 1. (a)
The phase portrait with s = sK = 0.95. The dashed curve is the intrusion orbit,
with the curve inside corresponding to a periodic travelling wave. (b) Propagation
of the intrusion, with the solution shown at t = 0, 500, 1 000 (solid, dashed and
dash-dotted curves respectively).

angles. The infinite gradient at Y = 0 led to a build-up of spurious short

waves, which quickly grew and disturbed the intrusion.

The intrusion of a PV front is discussed at length for a dam-break

scenario in Stern and Helfrich [2002]. The authors seek similarity solutions

to the long-wave equations and hence the intrusion is always a rarefaction, a

result that is supported by numerical and laboratory experiments. Johnson

et al. [2017] also find that PV intrusions driven by a uniform source either

rarefy or form shocks. Thus although intrusions of permanent form are

valid solutions to the long-wave QG equations, it is not clear what initial

conditions would give rise to one.

4.3.2 The Riemann problem for the dispersive equation

El’s technique of dispersive shock-fitting is based on the GP [Gurevich and

Pitaevskii, 1973] approach to solving the Riemann problem for the KdV

equation, but generalised to deal with a wider class of (non-integrable)

equations. The key idea in the GP approach is that the Whitham equations
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(i.e. the period-averaged equations) governing the modulation of the DSW

can be matched naturally to the hydraulic equation in the far field.

Provided that the equation under consideration satisfies certain conditions,

El’s technique allows one to obtain the propagation speeds of the DSW

edges, the wavenumber at the linear edge and the conjugate wavenumber

(i.e. the inverse half-width) and amplitude at the soliton edge. El [2005]

gives a full explanation of the theory and the derivation of the necessary

conditions, and Kamchatnov [2019] and Maiden et al. [2020] adapt El’s

technique to other initial conditions.

4.3.2.1 Applicability of El’s technique

For El’s technique to apply, the dispersive equation (4.18) must satisfy the

following conditions:

1. It admits a dispersionless (hydraulic) limit obtained by introducing

the slow variables X = εx and T = εt. By construction, this is true.

2. The linear dispersion relation ω(k) is real-valued. This was shown in

(4.28a).

3. It possesses at least two conservation laws. This is required so that the

Whitham system of averaged conservation laws can be formulated in

principal, although El’s technique is designed to avoid this. These may

be taken as the kinematic boundary condition (4.7b) and equation

(4.19).

4. It supports periodic travelling-wave solutions, parameterised by three

independent variables. These can be taken to be the constants of

integration s, α and E in the potential (4.27). The potential function

must have at least three real zeros (in general (4.27) has four, as in

figure 4.4(a)), and must exhibit quadratic behaviour in the linear and

solitary-wave limits. This condition allows the Whitham equations to

be matched with the hydraulic equation at the edges of the DSW.

The necessary quadratic behaviour is shown below.

5. The Whitham system corresponding to the two averaged conservation

laws plus the wavenumber conservation law kt + ωx = 0 is hyper-

bolic. Hyperbolicity cannot be checked without directly solving the

Whitham system so this condition should be verified by, for example,

comparison of theoretical results with numerical simulations. How-

ever, non-convexity of the flux function Qe implies that (4.18) is not

genuinely nonlinear (the characteristic velocity C is not monotonic),

and in many cases this leads to non-strict hyperbolicity [El et al.,
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2017]. The compound-wave structures discussed in §4.2.1 carry over

to the Whitham equations, and lead to richer behaviour than in the

simple-wave case, where the solution is a DSW. El’s technique should

therefore only be applied to initial steps that do not straddle Y2,

so that the flux function is convex. The effects of non-convexity are

discussed in §4.4.2.

It remains to show that the potential function (4.27) displays quadratic

behaviour in the linear and solitary-wave limits. Essentially, we would like

to show that in these limits

2

a2

V(Y ; s, α,E)

G(Y )
∼ (Y − Y∞)2Φ(Y ), (4.32)

where Y∞ is the solitary or linear-wave background, and Φ(Y ) = O(1)

for |Y − Y∞| � 1. In both limits, α and E may be written as functions

of s and Y∞, so may be taken as fixed. Unless Y∞ � 1 and the front is

close to the coast, G = O(1) and it is sufficient to check the behaviour of

V(Y ; s, Y∞). Since Y∞ is a double root of V, the potential function displays

the quadratic behaviour (4.32) provided V ′′(Y∞) is non-zero, i.e. by (4.29)

s is sufficiently far from the long-wave speed C(Y∞).

4.3.2.2 Dispersive shock-fitting

With these caveats about non-convexity and distance from the coast in

mind, El’s technique proceeds as follows. The wavenumber and conjugate

wavenumber at the linear and solitary-wave edges of the DSW are found

by solving the ordinary differential-equations (ODEs)

dk

dY
=

∂ω/∂Y

C(Y )− ∂ω/∂k ,

dk̃

dY
=

∂ω̃/∂Y

C(Y )− ∂ω̃/∂k̃
. (4.33)

Here, k̃ is the conjugate wavenumber and ω̃ = −iω(Y, ik̃) is the conjugate

dispersion relation for solitary waves. The fact that the solitary-wave

propagation speed can be described by linear-wave dynamics can be

seen by considering the exponential tail. If the tail is proportional to

exp (k̃x− ω̃t) then it obeys a linear dispersion relation ω̃ as defined above,

with propagation speed s = ω̃/k̃ [Kamchatnov, 2019]. The ODEs (4.33)

are derived in El [2005] using the ansatz k = k(Y ) in the wavenumber

conservation law, combined with the hydraulic equation (4.12) which is

assumed to apply at the edge of the DSW. The general solutions to (4.33)
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are

k2(Y ) =
8Π

3a2G(Y )2/3

∫ Y C ′(ξ)

G(ξ)1/3
dξ,

k̃2(Y ) =
−8Π

3a2G(Y )2/3

∫ Y C ′(ξ)

G(ξ)1/3
dξ. (4.34)

To connect (4.34) with the far-field solution, we apply the boundary

conditions k = 0 at the soliton edge of the DSW, and k̃ = 0 at the linear-

wave end. Then we may obtain k± and k̃∓, the wavenumber and conjugate

wavenumber at the leading/trailing edge of the DSW, by evaluating (4.34)

at Y±. Bearing in mind the form of the dispersion relation (4.28a) and the

restriction on soliton speed (4.29) it is clear that DSWs have solitary waves

on the right when Π = 1, and on the left when Π = −1. Thus if Π = 1 we

have

k2
− =

8

3a2G(Y−)2/3

∫ Y−

Y+

C ′(Y )

G(Y )1/3
dY,

k̃2
+ =

8

3a2G(Y+)2/3

∫ Y−

Y+

C ′(Y )

G(Y )1/3
dY, (4.35a)

for the trailing linear and leading solitary wavenumbers, while if Π = −1

we have

k2
+ =

8

3a2G(Y+)2/3

∫ Y−

Y+

C ′(Y )

G(Y )1/3
dY,

k̃2
− =

8

3a2G(Y−)2/3

∫ Y−

Y+

C ′(Y )

G(Y )1/3
dY, (4.35b)

for the trailing solitary and leading linear wavenumbers. Note that since

El’s method is restricted to initial steps that do not cross Y2, C ′(Y ) is single-

signed and (4.35) is real provided Y± are taken from the shaded region

in figure 4.3, i.e. provided that the corresponding step in the hydraulic

equation leads to a shock rather than a rarefaction.

The propagation speeds of the solitary and linear-wave ends of the DSW

are

s± =
ω̃(Y±, k̃±)

k̃±
, s∓ =

∂ω

∂k

∣∣∣∣
Y∓,k∓

, (4.36)

when Π = ±1. Finally, the following inequalities must be verified:

s− < C−, s+ > C+, s+ > s−. (4.37)

The first two of these conditions are analogous to the entropy condition

(4.26), and ensure that characteristics from the external, hydraulic solution

transfer information into the DSW. In fact, they are trivially satisfied by
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Figure 4.8: Numerical solution to the Riemann problem for the dispersive equation
(4.18). The parameters are a = 0.9, Π = 1 and the smoothed initial step is from
Y− = 3.5 to Y+ = 4. The solution is shown at t = 30 000. Dotted lines correspond
to theoretical predictions from §4.3.2.2.

(4.36). The third condition checks that the DSW has positive width. We

must also check that the solitary wave speed given by El’s technique is valid

according to the discussion of §4.3.1.2, where we identify the background

Y∞ with Y± when Π = ±1.

4.4 Numerical results

Here, we present numerical solutions to the dispersive long-wave equation

(4.18) and the full QG equation (4.1). The former are compared with

predictions for propagation speed and solitary-wave amplitude that were

derived in §4.3.2.2 using El’s technique, while the QG equations are used

to test the validity of the long-wave approximation.

4.4.1 Verification of El’s technique

We begin with numerical simulations of the dispersive equation. All

computations are carried out using the pseudo-spectral method described

in §4.3.1.3, and use ε = 0.1.

Figure 4.8 shows the result for a current with positive PVa and a = 0.9.

The Riemann problem is initialised with a smoothed step from Y− = 3.5

to Y+ = 4, and the solution is shown at t = 30 000. From §4.3.2.2 currents

with positive PVa are led by a solitary wave, and from figure 4.5 the only
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initial step is from Y− = 1.5 to Y+ = 1.8 and the solution is shown at t = 30 000.

solitary waves that exist when a < 1 and Π = 1 are depression waves. We

thus expect the step to be resolved by a DSW− (a depression DSW) with

the solitary-wave end on the right. This is clearly visible in figure 4.8, along

with the slowly-modulated internal structure of the DSW. Dotted lines

show predictions from El’s technique. The horizontal line at Y = YS and the

vertical line at x = s+t show good agreement between theory and numerics

at the solitary-wave edge of the DSW. The left two vertical lines are at

x = s−t± π/k− and therefore span one wavelength at the trailing edge of

the DSW. The numerical solution has a small-amplitude wave of the correct

wavelength at x = s−t but, as is typical in simulations of such problems,

the amplitude is clearly non-zero for x < s−t. The amplitude discrepancy

is likely due to higher order (numerical) dispersive effects [Congy et al.,

2019]. The integration in figure 4.8 was continued until t = 50 000. At

the point at which the integration was halted, the minimum value of Y

was still decreasing, but at a rate of O(10−6) so that the DSW was, for

all intents and purposes, fully developed. The minimum value of Y and

the mean propagation speed of the leading solitary wave agree with the

theoretical predictions for YS and s+ to three decimal places.

Figure 4.9 shows a current with negative PVa and a = 2, with the

initial step connecting Y− = 1.5 and Y+ = 1.8. As predicted for currents

with negative PVa, the DSW has a solitary wave on the left. Only elevation

waves exist for the background Y∞ = Y− < Y2, so the step is resolved by

a DSW+ (elevation DSW). The solution is shown at t = 30 000, and
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Figure 4.10: As figure 4.8, but for an initial step that crosses the inflection point
Y2. The parameters are a = 2, Π = 1 and the solution is shown at t = 50 000. (a)
Initial step down from Y− = 1.2 to Y+ = 0.6, (b) initial step up from Y− = 0.6
to Y+ = 1.2. In both cases, the step is resolved by a compound-wave structure
involving a kink soliton (see text).

the integration was continued until t = 50 000. Again, the solitary-wave

amplitude and propagation speed agree with theoretical predictions to

three decimal places while at the linear end of the DSW there is good

agreement in wavenumber k+ and, as above, small waves in x > s+t.

4.4.2 Effects of non-convexity

If the initial step crosses the inflection point Y2 the flux function Qe is non-

convex, so the hydraulic limit is not genuinely nonlinear and El’s technique

cannot be directly applied. In this case, numerical results show that the

Riemann problem is resolved by a compound-wave structure, as discussed

for the modified KdV equation in El et al. [2017] and the Miyata–Camassa–

Choi equations in Esler and Pearce [2011].

Figure 4.10 shows two examples of compound-wave structures in a

current with a = 2 and Π = 1. In both cases, the initial step is resolved by a

combination of a kink soliton and a simple wave (DSW or rarefaction), with
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an expanding constant-width region that connects the two. For currents

with positive PVa, the kink is faster than any solitary wave or rarefaction

and so must be on the right. Thus in both cases the kink connects Y+ to

the (uniquely determined) intermediate value YK . The right-most vertical

line gives the predicted location of the kink, x = sKt. As in Esler and

Pearce [2011], it seems that the simple-wave structure can be understood

by applying El’s technique to the ‘secondary’ Riemann problem with an

initial step from Y− to YK . In figure 4.10(a), where YK > Y− > Y2, we would

expect this secondary step to be resolved by a DSW−. This is indeed the

case, and El’s technique captures the amplitude and speed at the leading

edge of the DSW, as well as the wavenumber at the trailing edge. In

figure 4.10(b), Y− < YK < Y2 so that the secondary step is resolved by

a rarefaction over the region C(Y−) < x/t < C(YK).

Note that, in both cases shown in figure 4.10, the step ‘splits’ into

a steadily-propagating kink, which crosses the inflection point, and a

secondary, simple-wave structure that lies within the convex region of

the flux function. Thus the kink can be thought of as removing the non-

convexity from the initial step. For the present equation the kink soliton

exists provided the background state (here Y+) is less than some critical

value (see the termination of the dotted curve sK in figure 4.5(b) and (d)).

It is not clear how the initial step should be resolved if Y+ is greater than

the critical value. Numerical simulations suggest that the solution passes

through Y = 0, which is clearly unphysical. El et al. [2017] introduce a

new type of DSW, the so-called contact DSW, to resolve the Riemann

problem in the modified KdV for steps where the kink does not exist, but

the treatment of this case appears to involve solving the Whitham system

and so is not pursued here. It is notable that, unlike for the modified KdV,

the existence of the kink in the present model does not depend on the sign

of the dispersion.

4.4.3 Classification of the dispersive Riemann problem

Figure 4.11 classifies the resolution of the initial step Y± for the particular

choice of parameters a = 2, Π = 1 (figure 4.11(a)) and a = 1.5,

Π = −1 (figure 4.11(b)). Hatched regions of the diagram show where

the initial step cannot be classified using El’s technique. We have labelled

the diagram following the notation of El et al. [2017], whereby K, R and

DSW± correspond to kinks, rarefactions and DSWs of elevation/depression

respectively. Compound-wave structures are denoted by a vertical bar (|)
and should be read from left to right so that, for example, K|DSW+ means
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Figure 4.11: Diagram showing the resolution of the dispersive Riemann problem
for (a) a = 2, Π = 1, and (b) a = 1.5, Π = −1. Labels correspond to kinks,
rarefactions and dispersive shock waves, with the superscript DSW± signifying
elevation or depression solitary waves. The hatched regions of the diagram cannot
be classified using El’s technique.
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that the initial step is resolved by a kink from Y− to YK , and a DSW with

a solitary wave of elevation connecting YK to Y+. As discussed in §4.3.2.2,

DSWs that form on currents with positive PVa have solitary waves on the

right, while those on negative-PVa currents have solitary waves on the left.

As in the hydraulic classification diagram in figure 4.3, for vortically-

dominated currents with a > 1 the Y± parameter space is split into four

quadrants by the inflection point Y2. Kelvin-wave dominated flows with

a < 1 behave like the top-right (bottom-left) quadrant when the current

has positive (negative) PVa, and so in both cases the step is resolved by a

DSW when Y+ > Y−. Steps that cross Y2 are resolved by compound-wave

structures like those in figure 4.10. If the step is such that a kink soliton

exists then this leads (trails) the transition region for currents with positive

(negative) PVa and connects the far-field states via the intermediate level

YK . The kink creates a secondary step, which is resolved by a simple-

wave structure connecting YK to Y− when Π = 1, and YK to Y+ when

Π = −1. For example, consider a step in the upper-left quadrant of figure

4.11(a). The kink soliton connects Y+ < Y2 to a unique YK > Y2, and

then the secondary step from YK to Y− > Y2 is resolved by a rarefaction if

Y− > YK (the region labelled R|K) or by a DSW− if Y− < YK (the region

labelled DSW−|K). Thus the dividing line in the upper-left quadrant is

Y− = YK(Y+). If the kink soliton does not exist then numerical simulations

suggest that Y tries to pass through the coast. We did not investigate

the behaviour of the front any further in this case, and so this region has

not been classified (rectangular hatched region with Y+ > 2.2 in figure

4.11(a)). Finally, we note that El’s technique does not always produce a

valid solution. That is, the value of s predicted by (4.36) can lie outside

the permitted range of solitary-wave speeds. This seems to only occur for

larger initial steps (or secondary steps) that result in a depression DSW,

and these regions are hatched in figure 4.11. Numerical simulations show

that the step is still resolved by an expanding modulated wave-train.

4.4.4 The full problem

The fully nonlinear free-boundary QG system (4.1) can be solved numer-

ically to a high level of accuracy using the method of contour dynamics

with surgery [Dritschel, 1988]. We performed several simulations based on

the adaptation of Dritschel’s algorithm discussed in §3.3.

Figure 4.12 shows three contour dynamic simulations initialised using

a smoothed step. Figure 4.12(a) shows a run using the same parameters

as figure 4.8, with the solution plotted at t = 650. The initial step has
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Figure 4.12: Contour dynamic simulations of the Riemann problem in the full
QG system (4.1). Dotted lines show predictions of DSW parameters from El’s
technique, and heavy dashed curves show the DSW envelope from the dispersive
long-wave equation in (a) and (b), and kink and rarefaction profiles in (b) and (c).
The parameters in (a) are the same as in figure 4.8 (DSW−), with the solution
shown at t = 650. In (b), a = 2 and Π = 1 with the initial step from Y− = 0.6
to Y+ = 1.5 (DSW+|K). The solution is shown at t = 1150. In (c), a = 2 and
Π = −1 with the initial step from Y− = 4 to Y+ = 0.3 (K|R). The solution is
shown at t = 750.
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clearly begun to evolve into a DSW−, with the leading edge located

at approximately s+t (vertical dotted line). The dashed curves give the

envelope of the solution to the dispersive equation at t = 650, and show

that agreement with the long-wave theory is better at the solitary-wave

end than at the linear end, supporting the hypothesis that higher-order

dispersive effects are important here. The lateral extent of the DSW is also

much greater than predicted by the long-wave theory, where El’s technique

gives s−t = 4. The contour dynamics algorithm places more resolution in

regions of higher curvature, so that the presence of many small-amplitude

waves (and the longer extent of the DSW) means that integrating the full

QG equations for the same length of time as the dispersive equations is

prohibitively expensive. As the long-wave theory predicts that the DSW

develops over tens of thousands of time units, we were not able to continue

any of our simulations for long enough to observe whether the leading

solitary wave reaches the predicted amplitude YS. However, the amplitude

of the wave was still increasing when integration was stopped.

Figure 4.12(b) shows a run with a = 2 and Π = 1, with the solution

plotted at t = 1150. As predicted by the long-wave theory the initial step

evolves into a DSW+|K, where the kink soliton connects YK = 0.46 to

Y+ = 1.5. Both the kink and solitary-wave amplitude are captured well

by the long-wave theory (horizontal dotted lines), as is the propagation

speed sK (vertical dotted line). The DSW envelope from the dispersive

equation again shows better agreement at the solitary wave end, and the

kink profile computed by solving the potential form (4.27) matches the QG

solution almost perfectly (right-most dashed curve). Thus the long-wave

theory accurately predicts the existence and form of steadily-propagating

kink solitons in the full QG system. Note that the small-amplitude ripples

in x > 900 are a numerical artefact that arises due to the finite length of

the contour.

Figure 4.12(c) shows an example of a kink-rarefaction with a = 2 and

Π = −1, with the solution plotted at t = 750. Again there is excellent

agreement between contour dynamics and the long-wave predictions for

the shape and speed of the kink and rarefaction (dashed curves above

and below YK = 0.7 respectively). The effect of higher-order terms that

are absent from the dispersive equation (4.18) is to smooth the transition

between the two simple-wave structures, as can be seen at the trailing end

of the rarefaction near x = −50. The wave-train in x > 150 is a transient

remnant of the initial start-up and does not affect the kink-rarefaction.

In all of the cases presented here, the long-time behaviour of the full QG

system closely follows the long-wave theory. That this holds for the most
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stringent test of the Riemann problem, where the initial condition violates

the long-wave assumption, reflects the fact that the initial tendency of

the frontal displacement—whether to lengthen or steepen—is due to the

interaction between Kelvin-wave flow and vorticity dynamics, which does

not rely on the assumption of a slowly-varying current. Once a disturbance

has begun to develop, its intrinsic length-scale increases and the long-wave

theory becomes an appropriate model [Esler and Pearce, 2011, p. 5].

4.5 Discussion

A fully nonlinear, dispersive long-wave model has been used to study the

dynamics of PV fronts near a vertical coast in the QG limit. The model

is the same as that developed by Pratt and Stern [1986], but the focus

here is on fronts that are sufficiently close to the coast that they feel the

effects of the Kelvin-wave flow and image vorticity. When vortical effects

are dominant, the flux function in the leading-order long-wave (hydraulic)

equation is non-convex and compound-wave structures (shock-rarefactions)

exist. An example of this is shown in figure 4.2, and the qualitative

behaviour of unforced long waves is completely described in figure 4.3.

When higher-order dispersive terms are added to the hydraulic equation,

shocks are replaced by dispersive shock waves. We have used El’s technique

of dispersive shock-fitting [El, 2005] to find certain key parameters of

DSWs that arise from an initial step, namely the propagation speed and

wavenumber at either end of the DSW. El’s technique is valid only for

initial steps that do not cross the inflection point Y2, but we find that in

fact it can also be used to describe ‘secondary’ DSWs arising as part of

a compound-wave structure (see figure 4.10). In the dispersive equation,

these compound-wave structures combine either DSWs or rarefactions with

a kink soliton. The Riemann problem for the dispersive equation is partially

classified in figure 4.11. Section 4.4.4 compares the dispersive long-wave

theory with contour dynamic simulations of the full QG system, and shows

that the long-wave theory describes the long-time evolution of the Riemann

problem well.

The influence of the coastal boundary on the propagation of long waves

becomes apparent on considering the linear wave-speed (4.28). In general,

the phase speed of a long linear wave on a PV front is

c = Ak2 −B, (4.38)
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for some dimensional constants A and B. In the present model, these are

AW = −L
3
RΠ0H

4
+
L2

RΠ0H

4
(LR + 2Y∞) e−2Y∞/LR ,

BW = LRΠ0H
(

e−2Y∞/LR − e−Y∞/LR

)
− Q0

LR

e−Y∞/LR . (4.39)

A similar equation for a free front in the full shallow-water equations has

been derived separately by Cushman-Roisin et al. [1993] and Nycander

et al. [1993], but with A and B given by

AF =

√
(g′h2)3 −√(g′h1)3

6f2
0

,

BF =
g′2(h1 + h2)β

2f2
0

. (4.40)

Here, the Coriolis parameter f = f0 + βy is allowed to vary with latitude,

and the front connects two far-field states of depth h1 and h2. In the

quasi-geostrophic limit h1 → h2, AF reduces to the constant term in AW.

Comparing (4.39) and (4.40) shows the effect of the coastal boundary on

frontal waves, and the difference between the asymptotic regimes (4.4) and

(4.5). When the ratio Y∞/LR is order unity, the coastal boundary decreases

the magnitude of the dispersive term A significantly through the addition

of the exponential term in AW, which is driven by the image effect. The

boundary also gives rise to a background flow B that is otherwise absent

when β = 0, and contains contributions from both the Kelvin-wave driven

flow and image vorticity. The treatment of boundary-influenced PV fronts

in the full shallow-water equations is an important avenue for future work.

As discussed in §4.3.2.2, the dispersion relation ω(k) for linear waves

can be transformed into a conjugate dispersion relation ω̃(k̃) for solitary

waves by assuming that the solitary wave has an exponential tail. In (4.38),

this amounts to replacing

A→ −A, k → k̃, (4.41)

where k̃ is the conjugate wavenumber, or inverse half-width, of the

solitary wave. The propagation of finite-amplitude waves can therefore be

understood using the same framework as linear dynamics. This result may

be of interest to researchers who wish to obtain dispersion relations for

meanders in a Western boundary current, as was done for the Gulf Stream

in Lee and Cornillon [1996] and for the Kuroshio Extension in Tracey et al.

[2012]. We also note that Pratt and Stern [1986] model the evolution of

Gulf Stream meanders starting from a ‘top-hat’ frontal profile, which in

the present model could be treated analytically using the adaptation of

El’s technique described in Maiden et al. [2020].
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Chapter 5

Hydraulic control of

continental shelf waves

This chapter is concerned with barotropic coastal-trapped waves (continen-

tal shelf waves, CSWs) generated when a boundary-intensified geostrophic

current interacts with an order-one change in shelf width. We extend

the coastal front model of the previous chapter to include an idealised

continental shelf (a constant-height step of variable offshore extent), which

is similar to the rigid-lid channel model studied by Haynes et al. [1993] and

Johnson and Clarke [1999]. Recently, Zhang and Lentz [2017] showed that

alongshore variation in the continental shelf profile can lead to hydraulic

control of coastal-trapped waves when the background flow opposes the

direction of phase propagation (see figure 1.3). Here we use the idealised

long-wave model to explore the parameter space in greater detail, identify

the necessary conditions for control, and analyse the transition from

hydraulically-controlled flow to the far-field state including the leading-

order effects of dispersion. Contour-dynamic simulations again show that

the dispersive long-wave theory captures much of the behaviour of the full

quasi-geostrophic system. In the present model the dynamics are driven

by the PV jump at the edge of the step and the Burger number S = 0.

Martell and Allen [1979] study hydraulic control in a similar model, but

their analysis is restricted to small deviations in shelf width. The alternative

limit, where S � 1 and the controlling mode is the internal Kelvin wave, is

explored in the uniform-PV models of Gill and Schumann [1979] and Dale
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and Barth [2001].

Section 5.1 develops the model and governing equations, §§5.2-5.3

analyse the hydraulic and long-wave dispersive equations respectively,

including conditions for critical control and the form of the transition

between controlled and far-field flow. In the dispersive equation, some

transitions are resolved by a DSW and these are analysed in §5.3 using

dispersive shock-fitting. Section 5.4 compares theoretical results with

numerical simulations of both the dispersive long-wave equation and the

full QG system. Discussion and oceanographic context are given in §5.5.

5.1 Model and governing equations

The equation for QG PV conservation over variable topography b(x, y) is

D

Dt

(
∇2ψ − ψ

L2
R

+
fb

H

)
= 0, (5.1)

where LR =
√
gH/f is the Rossby radius of deformation, ψ is the QG

streamfunction and H is the mean fluid depth far from the shelf. In

contrast to previous chapters the present model is barotropic, although

the exact same results apply when a lighter, infinitely-deep, quiescent layer

is included in z > H (for example, as a 11
2 -layer atmospheric model). An

important difference from previous chapters is thatH is now the depth scale

for the ocean rather than the active upper layer (say 1000m as opposed to

10m, with LR correspondingly larger).

Fluid occupies the half-plane y > 0, with a vertical coast at y = 0 and

a flat continental shelf of width Yh(x) which we write

b =

Π0H/f 0 < y < Yh(x),

0 y > Yh(x),
(5.2)

for some Π0 > 0. The extension to include a linear continental slope is

conceptually straightforward but will not be considered here. We will focus

on the case where the shelf-width Yh is a slowly-varying function of x, and

is constant apart from a localised perturbation around x = 0. That is,

Yh(x) = Y0 − f(x), where f(x) → 0 as |x| → ∞ and has its maximum

magnitude, ∆, at the origin. In all numerical simulations that follow we

will use the particular choice f(x) = ∆ sech (x/W )2, where W is a non-

dimensional parameter that measures the width of the topographic forcing

region and in the long-wave limit required for the analysis is formally large

compared to LR. We place no restriction on the magnitude of ∆. Figure

5.1 shows a schematic of the flow and identifies the geometric parameters.
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Figure 5.1: A flat continental shelf occupies the region 0 < y < Yh(x), with a
vertical coast at y = 0. The model ocean is barotropic, with two regions of uniform
PV separated by an interface at y = Y (x, t). Motion is driven by a coastal-
intensified background current, in this case from right to left. (a) Side view. (b)
Plan view; the dashed curve is Yh and the solid curve is Y .

We will consider the initial-value problem where the fluid starts at rest,

so that the initial distribution of PV is

q =

Π0 0 < y < Yh(x)

0 Yh(x) < y.
(5.3)

The PV gradient is therefore entirely due to the topography rather than

any internal variation of vorticity. With no background flow, ψ ≡ 0 and the

steady state (5.3) persists for all time. Thus consider a background flow

which starts impulsively at t = 0, and displaces the PV interface to some

y = Y (x, t). This situation can be written compactly as

∇2ψ − ψ

L2
R

+ Π0 (H(Yh − y)−H(Y − y)) = 0, (5.4)

where H is the Heaviside function. The PV interface Y (x, t) evolves

according to the kinematic boundary condition

∂Y

∂t
=

d

dx
ψ(x, Y (x, t), t), (5.5)

so that given a closed expression for ψ(x, Y, t) the entire flow field can

be tracked by solving the scalar equation (5.5). In writing (5.5) we have

assumed that the interface is at all times a single-valued function of x. This

assumption will later be verified through numerical simulations of the full

QG system (5.1).

For simplicity we shall restrict discussion to a background flow profile

that is monotonically decaying with offshore distance. The appropriate
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boundary conditions are

ψ = Q0 on y = 0, (5.6a)

ψ → 0 as y →∞, (5.6b)

along with the requirement that ψ and u = −ψy are continuous everywhere.

In many oceanographic applications it may be more suitable to choose a

background flow that is intensified at the shelf-break, and (5.6a) should be

modified accordingly. Note that the system (5.1) and boundary conditions

(5.6) are symmetric under the following transformation

ψ → −ψ, x→ −x, b→ −b, Q0 → −Q0, (5.7)

so that the problem is equivalent to that of a trench of depth b against a

vertical wall.

We non-dimensionalise ψ with |Q0| and horizontal lengths with

LR. While in previous chapters we have scaled horizontal lengths on

LV =
√

(|Q0|/Π0) in order to study vortical effects, here the ratio of the

shelf width to Rossby radius is also important and so we have chosen to

scale on LR, noting that LR is very large in the barotropic model and

thus the non-dimensional parameter a = LR/LV (which appears now in

the forcing term rather than the exponent) is expected to satisfy a� 1 in

the real oceans. The choice of LR as a horizontal length scale also turns

out to drastically simplify the analysis that follows. With this scaling, the

boundary condition (5.6a) becomes ψ = Q = ±1 depending on whether the

basic flow is to the right (Q = +1) or the left (Q = −1). For the analytic

work below, we also introduce the long-wave co-ordinate X = x/W and

slow time T = t/W .

5.1.1 The long-wave limit

Expanding ψ in terms of ε = 1/W , the field equation (5.4) becomes at

leading order

∂2ψ0

∂y2
− ψ0 + a2 (H(Yh − y)−H(Y − y)) = 0. (5.8)

The solution to (5.8) depends on whether the PV front is on the shelf

(Y < Yh) or off the shelf (Y > Yh). For the case where the front is on the

shelf,

ψ0(x, y, t) =


Qe−y + a2 sinh (y)

(
e−Y − e−Yh

)
, 0 < y < Y,

Qe−y + a2
[
1− sinh (y)e−Yh − cosh (Y )e−y

]
, Y < y < Yh,

Qe−y + a2 (cosh (Yh)− cosh (Y )) e−y, y > Yh,

(5.9)
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while when the front is off the shelf,

ψ0(x, y, t) =


Qe−y + a2 sinh (y)

(
e−Y − e−Yh

)
, 0 < y < Yh,

Qe−y + a2
[
−1 + sinh (y)e−Y + cosh (Yh)e−y

]
, Yh < y < Y,

Qe−y + a2 (cosh (Yh)− cosh (Y )) e−y, y > Y,

(5.10)

upon enforcing continuity of ψ and u at y = Y and Y = Yh, as well as

the boundary conditions (5.6). We introduce the index j = sign (Yh − Y )

to differentiate between the two cases, and write

ψ0(x, Y, t) = Qe−Y +
a2

2

[
e−(Y +Yh) − e−2Y + j

(
1− ej(Y−Yh)

)]
= Qe(Y, Yh),

(5.11)

where Q−Qe is the net along-shore flux of shelf water.

In the hydraulic limit the kinematic boundary condition (5.5) becomes

∂Y

∂t
+ C(Y, Yh)

∂Y

∂x
=
a2

2

(
ej(Y−Yh) − e−(Y +Yh)

) ∂Yh
∂x

, (5.12)

a forced nonlinear wave equation with long-wave speed

C(Y, Yh) = −∂ψ
0

∂y

∣∣∣∣
y=Y

= Qe−Y +
a2

2

[
e−(Y +Yh) − 2e−2Y + ej(Y−Yh)

]
.

(5.13)

As in previous chapters we have reverted to using x and t for ease of

notation. From left to right, the terms in (5.13) can be identified as

the relative contributions of: background flow, image vorticity due the

shelfbreak, image vorticity due to the PV front, and stretching/squashing

generated by off- or on-shelf movement of the front. Much of the qualitative

behaviour of the hydraulic equation can be understood through C. In

particular if Y > Yh then C is not a monotonic function of Y , with a

unique maximum at

Y = Y2 = − log

(
Q+ a2 cosh (Yh)

2a2

)
. (5.14)

Thus the flux function Qe may be non-convex when the front is off-shelf.

Note that Y2 > Yh only when Q < a2 and

Yh < Y2,M = log

(√
(1 + 3a4)−Q

a2

)
. (5.15)

Thus when Q = 1 and the background current is in the same direction as

CTW phase propagation, compound-wave structures exist when the flow

121



is dominated by vorticity (a > 1), as in §4. However when Q = −1 and the

background current opposes CTW propagation compound-wave structures

exist for all a, provided the shelfbreak Yh is sufficiently close to the coast.

Note also that CY is discontinuous at the shelfbreak and, for the case where

Q = −1, changes sign if Yh > Y2,M. Thus compound-wave solutions can

also occur in the Riemann problem when the front crosses the shelfbreak;

although this situation does not arise in the initial-value problem (5.3).

5.1.2 Dispersive effects

At next order in ε, the streamfunction correction ψ1(x, y, t) satisfies

∂2ψ1

∂y2
− ψ1 = −∂

2ψ0

∂x2
, (5.16)

which is to be solved subject to continuity of ψ1 and u1 at Y and Yh, and

no normal flow at the coast. After some algebra, we find:

ψ1(x, Y, t) =− a2

4
Y ′′ +

a2

4
e−2Y

(
Y ′′ − 2Y (Y ′2 − Y ′′)

)
+
a2

4
e−(Y +Yh)

(
Y (Y ′2h − Y ′′h ) + YhY

′2
h − Y ′′h (1 + Yh)

)
+
a2

4
ej(Y−Yh)

(
Y (Y ′2h − jY ′′h )− YhY ′2h + Y ′′h (1 + jYh)

)
,

(5.17)

where primes (′) denote differentiation with respect to x. Note that outside

the region of topographic forcing, Yh is constant and (5.17) reverts to (4.17).

The conservation law corresponding to (4.19) is(
Y 2

2

)
t

+
[
Q(Y + 1)e−Y

]
x

+

[
a2

2

(
(Y + 1)e−(Y +Yh) −

(
Y +

1

2

)
e−2Y + (1− jY )ej(Y−Yh)

)]
x

+

[
a2

2
Y 2Y 2

x e−2Y +
a2

8
(Y 2

x − 2Y Yxx)
(
−1 + (1 + 2Y )e−2Y

)]
x

= 0.

(5.18)

5.2 The hydraulic equation

Here, we classify the different behaviours of the hydraulic initial-value

problem (5.12) in terms of ∆, the shelfbreak perturbation magnitude,

and F , a Froude number which is defined below. In addition to the usual

steady subcritical, supercritical and critically controlled regimes [Pratt and
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Figure 5.2: Contours of the hydraulic function Qe(Y, Yh), for Q = −1 and
a = 0.8795. Steady solutions must lie on a single contour. The dashed lines are
Y = Yh and Yh = 1, and dotted lines show critical values of ∆ at which the solution
changes type when Y0 = 1. Red dashed curves show examples of supercritical and
critically-controlled solutions.

Whitehead, 2008] there is a fourth, unsteady, response that we call an

‘offshore plume’.

5.2.1 Steady solutions

Steady solutions to the hydraulic equation (5.12) satisfy

Qe(Y, Yh) = Ψ, (5.19)

for some constant Ψ. Contours of Qe for the particular choice of parameters

Q = −1 and a = 0.8795 are shown in figure 5.2. For a given value of Ψ

and Yh, there are up to two possible values of Y that satisfy (5.19). Steady

solutions must lie on a single contour, and the highlighted (red dashed)

contours show examples of the steady solutions selected by the initial-value

problem when Y0 = 1, for two different values of ∆.

For small ∆ < ∆cr the flow evolves to become steady in the forcing

region, and the steady state is entirely sub- or supercritical. Transient

disturbances thus propagate away from the forcing region in one direction

only and the initial condition Y = Y0 persists on the other side so that

Ψ = Qe(Y0, Y0) = −e−Y0 . (5.20)
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The right-most dashed contour in figure 5.2 shows an example of steady

supercritical flow when Y0 = 1 and ∆ = 0.025. The solution starts

at (Yh, Y ) = (1, 1) and follows the contour (5.20) to the maximum

perturbation Yh = 0.975, before retracing the path to (1, 1). The solution

is therefore symmetric about the origin and the front is off-shelf (Y > Yh)

throughout.

If ∆ > ∆cr is sufficiently large then the contour through (Y0, Y0) does

not extend to the maximum displacement Yh = Y0 −∆ (which we denote

Y∆) and instead the steady solution selects the unique contour that satisfies

C(Y, Y∆) = 0. (5.21)

The long-wave speed vanishes at the maximum topographic displacement,

which is thus a control point for the flow [Pratt and Whitehead, 2008]. An

example with ∆ = 0.05 is shown as the left-most highlighted contour in

figure 5.2. The solution traces the entire contour, so that Y is monotonic

and asymmetric as a function of Yh. Note that Y 6= Y0 when Yh = Y0 so that

critically controlled flow alters the far-field state both up- and downstream

and information propagates away from the shelfbreak perturbation in both

directions.

Now, for a small perturbation of the far-field state Y = Yh = Y0,

C ∼ Qe−Y0 − a2

2
e−2Y0 +

a2

2
. (5.22)

Equation (5.22) vanishes when F = 1, where

F =
−Q

a2 sinh (Y0)
(5.23)

is the Froude number for this problem. The condition F = 1 can only be

satisfied if Q = −1 and thus hydraulic control is only possible when the

background current opposes CTW propagation. One can also show that

control only occurs when the perturbation is a localised narrowing in shelf

width (∆ > 0) as follows. In order for disturbances to propagate away from

the forcing region, the critically-controlled solution must have C > 0 for

large positive x and C < 0 for large negative x. Since C is dominated by

the the term due to the front moving on- or off the shelf, we can conclude

that Y > Yh for large positive x (vortex stretching generates C > 0) and

Y < Yh for large negative x, so that Yx > 0 in controlled flow. Writing the

steady version of (5.12) as

∂Y

∂x
=

Y ′h(x)

C(Y, Yh)

∂Qe

∂Yh
, (5.24)
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and noting that ∂Qe/∂Yh is always positive, we see that in critically-

controlled flow C and Y ′h(x) have the same sign. That is, Y ′h(x) > 0 for

x positive and the perturbation must be a local decrease in shelf width.

From now on we will restrict our attention to ∆ > 0 and Q = −1 and

describe x > 0 as ‘upstream’. Critically-controlled flows are subcritical

(C > 0, F < 1) upstream of the shelfbreak perturbation and supercritical

(C < 0, F > 1) downstream. In completely supercritical flow with C < 0

everywhere, Y ′h(x) and Yx have opposite signs and the front is displaced off

the shelf (see figure 5.2), while in subcritical flow the front is on the shelf.

Haynes et al. [1993] and Johnson and Clarke [1999] study the related

problem of hydraulically-controlled flow in a stepped channel, and show

that several other types of controlled solutions can occur. The fact that

these do not appear in the present geometry suggests that they rely on an

opposing wall to support their existence, as can be deduced by figure 2 of

Johnson and Clarke [1999].

5.2.2 Offshore plumes

Assuming that the front is off-shelf at the control point, solving the

criticality condition (5.21) gives

Y = − log

(−1

a2
+ cosh (Y∆)

)
. (5.25)

This is the locus of turning points in the hydraulic contours of figure 5.2.

For a < 1, the control point Y →∞ as Y∆ → acosh (1/a2) and the critical

solution is no longer valid. Thus for ∆ > ∆0 = Y0 − acosh (1/a2) the

contour through (Y0, Y0) does not reach Y∆, but there is no contour which

has a turning point at Y = Y∆ and so the solution never becomes steady

in the source region. Instead, the flow develops into an ever-expanding ‘off-

shore plume’ similar to the growing solutions for coastal outflow plumes

discussed in Johnson et al. [2017] and §2. As in Johnson et al. [2017],

offshore plumes only exist when a < 1 and the flow induced by vortex

stretching as shelf water crosses the shelfbreak is not sufficient to overcome

the background current. Instead, the incoming flow is directed principally

off shore, and Y grows indefinitely in the forcing region. Note however

that due to the definition of LR as the barotropic radius of deformation,

a is likely to be large in the real ocean. Offshore plumes are nonetheless

an interesting feature of the present model, having no equivalent in free-

surface hydraulic flow which always becomes steady. They are somewhat

related to the ‘supercritical leap’ of Haynes et al. [1993] in that the flow
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attains two different supercritical states on either side of the topographic

forcing region.

Numerical simulations performed using the same scheme as in §4

show that at large times the shape of the front in the source region is

approximately constant. Thus we can obtain an approximate description

of the offshore plume through the ansatz

Y (x, t) = Yp(x) + g(t). (5.26)

Ignoring terms proportional to exp (−2Y ) in (5.12) and only considering

regions where Y > Yh we have

Y∆ =
[
(1− a2 cosh (Yh))Yx + a2 sinh (Yh)Y ′h(x)

]
e−Y . (5.27)

Substituting (5.26) gives the separable equation

eg(t)g′(t) =
[
(1− a2 cosh (Yh))Y ′p(x) + a2 sinh (Yh)Y ′h(x)

]
e−Yp(x), (5.28)

where the left-hand side is a function of t alone and the right-hand side is

a function of x and so both are equal to α, a constant. Solving each side

separately we find

g(t) = log (t− t0) + logα, (5.29a)

and, via the substitution h(x) = exp (Yp)/(−1 + a2 cosh (Yh)),

Yp(x) = log
[
(−1 + a2 cosh (Yh))/(x− x0)

]
− logα, (5.29b)

so that the asymptotic evolution of the plume at late times is

Y (x, t) = log
[
(−1 + a2 cosh (Yh))(t− t0)/(x− x0)

]
. (5.30)

The solution must be bounded, so the numerator and denominator vanish

at the same point and x0 can be found by solving the equation

Yh(x0) = acosh (1/a2), (5.31)

that is, Yh(x0) = Y0 −∆0.

Figure 5.3 shows an offshore plume at t = 15000. Contours of the

streamfunction are plotted in (a), and show that there is a slow, broad

recirculation of shelf water in the region of topographic forcing. The edge

of the plume is shown as a thick black curve, and agrees well with the

asymptotic solution (red dashed curve) in x > x0. Figure 5.3(b) shows

the magnitude of the alongshelf flux of shelf water. In x > 130 the flow is

undisturbed and the flux of shelf water is 1− exp (−Y0), while in x < −20

the flux is 1− a2/2 (bottom dotted line) which is the asymptotic value of

Qe as Y →∞. Note that the choice of ∆ = 0.7 is somewhat unrealistic, but

that by (5.25) off-shore plumes develop whenever ∆ > Y0 − acosh (1/a2).
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Figure 5.3: Offshore-plume solution to the hydraulic initial-value problem (5.12).
(a) Contours of the streamfunction ψ0 at t = 15000 (dash-dotted, contour interval
is 0.15). The thick black curve is the frontal position Y , the red dashed curve is the
asymptotic solution (5.30) and the black dashed curve is the topography Yh(x).
(b) The magnitude of the alongshore flux of shelf water. The net flux is from right
to left. Parameters are Y0 = 0.8, ∆ = 0.7, a = 0.9895 and w = 5.

5.2.3 Conditions for critical control

In order to identify the regions of parameter space where the flow is

critically controlled, it is convenient to discuss the problem in the (∆, F )-

plane. Given the far-field shelf-width Y0 we seek the range of Froude

numbers,

F−(∆) < F < F+(∆),

for which critical flow occurs. The curves F± mark the transition from

critical to non-critical flow, and are derived by simultaneously solving the

criticality condition (5.21) and the condition for steady, non-critical flow

(5.20). These boundaries can also be posed in terms of the parameter a.

We derive expressions for F± by treating Qe and C as polynomials in
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Z = exp (−Y ).

First, suppose that the flow is critical. If the front lies off the shelf

at the maximum constriction, then solving the criticality condition gives

(5.25). We call this kind of flow, where the front is off-shelf at the control

point Y∆, off-shelf controlled. In the alternative situation, where the flow

is on-shelf controlled, Y is found by solving the following cubic equation in

Z,

−a2Z3 +

(
a2

2
e−Y∆ − 1

)
Z2 +

a2

2
e−Y∆ = 0, (5.32)

which has at most one root in Z > 0. (The cubic polynomial f(Z) defined

by (5.32) is positive when Z = 0, and either Z = 0 is a local minimum or

f ′(Z) < 0 for all Z > 0.) The transition between (5.25) and (5.32) occurs

when

Y∆ = Y1 = log

(
1 +
√

1 + a4

a2

)
, (5.33)

with off-shelf control occurring for Y∆ < Y1.

To find the boundaries F±(∆), we solve the criticality condition (5.21)

and the condition for non-critical steady flow (5.20) simultaneously. For

each pair (Y0, Y∆) this gives two values of a (equivalently the Froude

number F ) at which the flow transitions from being non-critical to critical.

For off-shelf control,

a2 = 2
Z3

∆ − 2Z0Z
2
∆ + Z∆ − 2Z2

∆ [2Z0(cosh (Y0)− cosh (Y∆))]1/2

(Z2
∆ − 1)2

, (5.34a)

where we have introduced Z∆ = exp (−Y∆) and Z0 = exp (−Y0). For fixed

Y0, equation (5.34a) is used to give the supercritical boundary for controlled

flow, F+(∆). For on-shelf control,

a2 =
2 (Z0 − Z)

(1− Z2)(Z∆/Z − 1)
, (5.34b)

where Y is given by the solution to (5.32). This gives the subcritical

boundary F−(∆).

For sufficiently wide shelves (Z0 < 1/2), the supercritical boundary

F+(∆) is non-monotonic with a maximum at ∆0. Offshore plumes occur

when ∆ > ∆0 and FG(∆) < F < Fmax, where

Fmax =
1

1− Z2
0

, (5.35a)

FG(∆) =
cosh (Y0 −∆)

sinh (Y0)
. (5.35b)

Figure 5.4 summarises the above discussion through representative

examples of how the (∆, F )-plane is divided for (a) a shelf where Z0 > 1/2
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Figure 5.4: Regions of the (∆, F )-plane where the flow is critically controlled. (a)
The maximum shelf-width is Y0 = 0.5. The flow is critically controlled when F
lies between the solid curves F±(∆). (b) Y0 = 1. The dashed curve is FG(∆), and
offshore plumes occur when FG < F < Fmax.

and offshore plumes do not exist, and (b) a shelf with Z0 < 1/2. Solid

curves show the boundaries of the regions of non-critical flow, and the

dashed curve in (b) is FG(∆), the boundary between critically-controlled

flow and offshore plumes. For shelves where offshore plumes do not occur,

the maximum Froude number for critically-controlled solutions is

Fmax =
4Z0

1 + Z0

, (5.36)

which occurs at ∆ = Y0.

5.2.4 Transition to the far field solution

Outside the region of topographic forcing, the hydraulically-controlled flow

displaces the PV front Y from its initial position Y0 to a new, constant,

location that we denote Yu/d for x > 0 and x < 0 respectively. By the

heuristic arguments of §5.2.1 we expect that controlled solutions are off-

shelf upstream and on-shelf downstream, so that Yu > Y0 and Yd < Y0. If

the flow is off-shelf controlled then

e−Yu = − 1

a2
+ cosh (Y0)

−
[
(cosh (Y0)− cosh (Y∆))

(
cosh (Y0) + cosh (Y∆)− 2

a2

)]1/2

.

(5.37)
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Figure 5.5: Adjusted frontal position in controlled flow (a) downstream and (b)
upstream of the topographic perturbation, for Y0 = 0.8 and various values of
Froude number F and topographic perturbation magnitude ∆. Shown are the
analytic solutions (curves) and numerical solutions to the dispersive long-wave
equation (symbols). The solid curves and circles are for shelves with ∆ = 0.05,
dashed curves and squares with ∆ = 0.1 and dash-dot curves and triangles with
∆ = 0.25.

To obtain Yu in on-shelf controlled flow, or Yd in either case, requires the

solution of at least one cubic equation and yields an expression that is too

complex to include here. The dependence of Yu/d on F and ∆, for the case

where Y0 = 0.8, is shown in figure 5.5. Increasing F moves the front offshore

both downstream and upstream of the topographic perturbation, while

increasing ∆ leads to a more extreme displacement of the front relative to

the shelfbreak (further offshore upstream, further onshore downstream).

The transition between the topographically-influenced state Yu/d and

the undisturbed far-field value Y0 may be accomplished in one of three ways,

depending on the value of the long-wave speed C(Y, Y0) on either side of

the transition. The three possible transitions are: shock, rarefaction, and

shock-rarefaction. A shock that connects Y0 to a value Y propagates at

speed

V (Y ) =
Qe(Y, Y0)−Qe(Y0, Y0)

Y0 − Y
. (5.38)

First, consider the downstream transition. As noted above, Yd < Y0

and so C is a monotonic increasing function of Y . Thus the downstream

transition is always resolved by a shock, with speed V (Yd) < 0. Next,
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consider the upstream transition. For Y > Y0, C has a maximum at Y = Y2

(given by (5.14) with Yh = Y0). If Yu < Y2, C is monotonic increasing

and the transition is again resolved by a shock with speed V (Yu). Since

Yu > Y0 and V > 0, rearranging (5.38) shows that Qe(Yu) < Qe(Y0)

and the transport of shelf water in the controlled solution is reduced

compared to the far-field background flow. Thus critical flow ‘blocks’

the background current by reducing the flow of shelf water towards the

topographic perturbation (figure 5.3 shows that the same occurs in off-

shore plumes).

If Y0 > Y2 then C is monotonic decreasing and the transition is resolved

by a rarefaction. This occurs when

F < FR =
1− 3Z2

0

1− Z2
0

, (5.39)

so that, for F sufficiently small and Z0 < 1/
√

3, critically-controlled

flow is resolved upstream by a rarefaction. In the remaining case, where

Y0 < Y2 < Yu, C has an interior maximum within the transition and there

are three possibilities:

1. C(Y0, Y0) > C(Yu, Y0). A simple-wave rarefaction cannot connect Yu

and Y0 because C has an interior extremum, so the transition is

resolved by a shock-rarefaction.

2. C(Y0, Y0) < C(Yu, Y0) and V (Yu) satisfies the Lax entropy condition

C(Y0, Y0) < V (Yu) < C(Yu, Y0).

The transition is resolved by a simple shock.

3. C(Y0, Y0) < C(Yu, Y0) and V (Yu) > C(Yu, Y0). In this case, char-

acteristic curves collide but a simple shock does not satisfy the Lax

entropy condition so the transition is resolved by a shock-rarefaction.

The intermediate value of Y at which the shock joins the rarefaction

can be computed as in §4.2.

The boundary that determines whether the transition is resolved by a

shock or a shock-rarefaction can be determined numerically by checking the

conditions above. Figure 5.6 shows representative examples of each type of

solution, all with Y0 = 0.8. The solutions are presented in (∆, F )-space in

(a), following figure 5.4. The horizontal dotted line is FR, and the dotted

curve is the boundary between critical flows that are resolved upstream

by a shock, and those resolved by a shock-rarefaction. An example of each

type of solution is shown in (b)-(g). Subplots (d), (e) and (g) are critically
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Subplot Type F ∆ a t

(b) Supercritical 1.4 0.4 0.9 500
(c) Offshore plume 1.2 0.6 0.97 2 000
(d) Shock 0.9 0.1 1.12 1 200
(e) Shock-rarefaction 0.9 0.4 1.12 1 200
(f) Subcritical 0.2 0.1 2.37 40
(g) Rarefaction 0.2 0.5 2.37 200

Table 5.1: Details of the different initial value problems displayed in figure 5.6. In
all cases Y0 = 0.8.

controlled, and are all resolved downstream by a shock (not visible in (d)

or (e)). Subplot (c) shows an offshore plume, and subplots (b) and (f) are

super- and sub-critical flows respectively. The parameters for each run are

summarised in table 5.1.

5.3 The dispersive equation

5.3.1 Steady solutions

The dispersive evolution equation may be solved numerically using the

same method as in §4.3, employed here with an artificial damping term

at the edge of the domain to allow for longer integration times. As

in the outflow problem of Johnson et al. [2017], the dispersive initial-

value problem selects a different controlled solution to that predicted by

hydraulic theory. Figure 5.5 shows that this discrepancy is generally small.

In all cases, the difference between the hydraulic values of Yu/d and those

computed by the spectral method is less than 10% (in most cases it is

much less) so that the hydraulic predictions may be used in the analysis

of dispersive shock-waves below. However, the differences between the

hydraulic and dispersive steady solutions can be resolved by modifying

the criticality condition (5.21) to account for the effects of dispersion. The

steady dispersive equation is

ψ0 + ε2ψ1 = Ψ, (5.40)

for some constant Ψ, where ε = 1/W is the long-wave parameter.

Differentiating (5.40) with respect to x gives

ψ0
x + ε2ψ1

x + Y ′(x)
(
ψ0
Y + ε2ψ1

Y

)
= 0, (5.41)

where ψx vanishes at x = 0 for symmetric topography (as can be seen by

direct computation using (5.17)). Anticipating that Y ′(0) is non-zero in
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critical flow, the criticality condition for the dispersive equation is

C0 + ε2C1

∣∣∣∣
x=0

= 0, (5.42)

where C1 = −ψ1
Y can be computed from (5.17) using

(Y ′′)Y = Y ′′′/Y ′, (Y ′)2
Y = 2Y ′′.

Note that C1 depends on Y ′′h , so the dispersive critical solution depends on

the curvature of the topography at x = 0 as well as the magnitude of the

constriction.

The steady solution selected by the dispersive equation, and indeed in

contour dynamic (CD) simulations of the full QG problem, satisfies (5.42).

However following Johnson and Clarke [1999] it is simpler to solve the

steady equation (5.40) without consideration of (5.42), and verify criticality

afterwards. Numerical solutions of (5.40) are computed by truncating the

domain at x = ±L for large L, and initially estimating Y (L) as the

hydraulic value Yu. This gives an initial guess for Ψ = ψ0(Yu, Y0). Equation

(5.40) is then integrated from x = L to x = 0 with the boundary conditions

Y (L) = Yu and Y ′(L) = 0, in order to give the subcritical flow and

determine Y (0). Since Ψ is known, the supercritical flow in x < 0 may be

found by solving (5.40) as a boundary-value problem using the known value

of Y (0) and the boundary condition Y ′(−L) = 0. The combined solution

is necessarily continuous at the origin, but in general Y ′ is discontinuous.

The value of Y (L) (and hence Ψ) is iterated on using Newton’s method

until Y ′(0) is continuous. By (5.17), this also enforces continuity of Y ′′(0).

Figure 5.7 shows an example where the upstream hydraulic and dispersive

states differ by 2%. The red dashed curve is the critical dispersive solution,

while the black curves show numerical integrations of the full QG problem

(solid curve) and the long-wave dispersive equation (dash-dotted curve) at

t = 1000. The hydraulic steady solution is shown dotted for comparison.

Apart from the presence of small-amplitude waves upstream in the time-

dependent solutions all three curves with finite ε are identical, confirming

that first-order dispersive effects are sufficient to capture the quantitative

behaviour of the QG equation.

5.3.2 Transition to the far-field

In the full QG system, dispersion prevents shocks from forming. Instead,

transitions between controlled flow and the far-field solution are resolved

by a slowly modulated wave-train which can be accurately modelled

by dispersive long-wave theory. In particular we may use dispersive
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Figure 5.7: Dispersive critically-controlled solution with Y0 = 0.8, ∆ = 0.1, F = 0.8
and ε = 0.2. The solid and dash-dotted black curves show the solution at t = 1000
for the full QG and dispersive long-wave equations respectively, and the dashed
red curve is the numerically computed steady dispersive solution. The critical
hydraulic solution is shown dotted for comparison.

shock-fitting to extract the key parameters of the wavetrain under the

assumption that it is a fully-formed DSW. The same technique also

identifies the range of parameters for which transitions are resolved by

‘partial DSWs’, expanding modulated wave-trains which remain attached

to the topographic perturbation much like the standing lee waves of Martell

and Allen [1979] and Zhang and Lentz [2017].

5.3.2.1 Travelling wave solutions

We will first set out some basic properties of travelling wave solutions

to the dispersive equation, applicable outside the forcing region where

Yh ≡ Y0 is constant. The dispersion relation for linear waves of wavenumber

k propagating on a background Y∞ is

ω = C(Y∞, Y0)k − G(Y∞)k3, (5.43)

where

G(Y ) =
a2

4

[
1− e−2Y (1 + 2Y )

]
(5.44)

is always positive (c.f. equation (4.28)). The soliton dispersion relation

[Kamchatnov, 2019] is

ω̃ = C(Y∞, Y0)k̃ + G(Y∞)k̃3, (5.45)
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for k̃ the half-width of the solitary wave. Comparing soliton and linear

phase speeds shows that DSWs are always oriented with linear waves on

the left-hand side. In potential form, the dispersive long-wave equation is

G(Y )(Y ′)2 = a2e−2Y + 2(2− a2e−Y0)e−Y − 2a2ej(Y−Y0)

+ 4a2 min (Y, Y0) + 2sY 2 + αY + E

= V(Y, Y0; s, α,E). (5.46)

Here primes (′) denote differentiation with respect to the moving co-

ordinate ξ = x − st, s is the speed of the travelling wave and α and E

are constants of integration. The behaviour of travelling-wave solutions is

determined by the number and type of roots of the function V, with solitary

waves requiring that Y∞ is a local minimum of V. The potential function

(5.46) can be analysed in much the same way as was done in §4.3.

5.3.2.2 Compound-wave transitions

When the upstream transition crosses the inflexion point Y2, kink solitons

appear on the right-hand side of the transition and connect Y0 < Y2 to a

conjugate state YK > Y2. Given a and Y0 we seek the pair (sK, YK) such

that V(YK) = V ′(YK) = 0, with α and E determined by the requirement

that Y0 = Y∞ is also a double-root of V. The compound-wave structure is

completed by a secondary transition from YK to Yu. Since YK , Yu > Y2, C

is monotonic decreasing over this range and transitions with YK < Yu are

resolved by a rarefaction-kink (denoted R|K). Similarly, transitions with

YK > Yu are resolved by a depression DSW-kink (DSW−|K).

A representative example of each type of compound-wave transition is

shown in figure 5.8. In (a), the transition is resolved by a rarefaction-kink.

The kink is at x ≈ 300, and is connected to the rarefaction by a plateau

at Y = YK (horizontal dotted line). In (b), the kink connects to Yu via

a DSW−. For this set of parameters, the difference between YK and Yu is

small so a zoom of this transition is shown in (c), where the upper and

lower horizontal dotted lines show YK and Yu respectively.

5.3.2.3 Dispersive shock-fitting

Following the same arguments as in §4, the Riemann problem in the

dispersive long-wave equation is amenable to analysis via dispersive shock-

fitting. Assuming that the time taken for the controlled solution to be

established over the topography is much less than that required for the full

development of a DSW, the same procedure may in principle be used to
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Figure 5.8: Compound-wave transitions in the dispersive equation. In both cases,
Y0 = 1 and ε = 0.1. (a) The upstream transition is resolved by a R|K. The
horizontal dotted line shows YK . (b) The upstream transition is resolved by a
DSW−|K. Horizontal dotted lines in the inset (c) show the hydraulic upstream
state Yu and kink level YK . Symbols in (a) and (b) correspond to figure 5.9(a),
which shows the location of the solutions in the (∆, F ) plane. Full details are given
in table 5.2.

Subplot Type F ∆ a ε t

5.8(a) R|K 1 0.25 0.93 0.1 10 000
5.8(b) DSW−|K 0.96 0.15 0.91 0.1 16 000
5.9(b) Upstream attached 1 0.05 0.92 0.2 10 000
5.9(c) Both detached 0.9 0.05 0.97 0.1 4 500
5.9(d) Downstream attached 0.75 0.03 1.07 0.2 2 500

Table 5.2: Details of the initial value problems displayed in figures 5.8 and 5.9. In
all cases Y0 = 1.

predict the key parameters of DSWs that arise from transitions between

critical and far-field flow in the present initial-value problem [El et al.,

2009]. However we will show below that the downstream solitary wave

speed has a local minimum at F = Fcr, so that for F < Fcr the downstream

wave-train cannot be described using dispersive shock-fitting.

DSWs develop upstream when the hydraulic equation predicts that

the transition will be resolved by a simple shock. Thus for a given set of

parameters {Y0, Y∆, F} we apply El’s technique with Y− = Yu and Y+ = Y0,
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where Yu > Y0 so that the leading solitary wave is one of elevation. The

trailing linear and leading solitary wavenumbers are

k2
u =

2

3G(Yu)2/3

∫ Yu

Y0

C ′(Y )

G(Y )1/3
dY, (5.47a)

k̃2
u =

2

3G(Y0)2/3

∫ Yu

Y0

C ′(Y )

G(Y )1/3
dY, (5.47b)

and the propagation speeds of the upstream DSW edges are

su =
∂ω

∂k

∣∣∣∣
Yu, ku

, s̃u =
ω̃(Y0, k̃u)

k̃u
(5.48)

respectively. In some cases, su < 0 so that the linear end of the DSW is

predicted to enter the region of topographic forcing. Numerical simulations

show that in this case the upstream transition is resolved by a partial DSW,

which remains attached to the topography and continuously generates

waves at the upstream edge of the forcing region. Partial DSWs also occur

in free-surface flow over an obstacle, as was shown for the Su-Gardner

(dispersive shallow-water) equations by El et al. [2009]. When the upstream

transitions is resolved by a DSW−|K we may apply El’s technique to a

secondary Riemann problem with Y− = Yu and Y+ = YK .

Assuming that the downstream transition is resolved by a DSW, we

have

k2
d =

2

3G(Y0)2/3

∫ Y0

Yd

C ′(Y )

G(Y )1/3
dY, (5.49a)

k̃2
d =

2

3G(Yd)2/3

∫ Y0

Yd

C ′(Y )

G(Y )1/3
dY, (5.49b)

and the corresponding speeds

sd =
∂ω

∂k

∣∣∣∣
Y0, kd

, s̃d =
ω̃(Yd, k̃d)

k̃d
. (5.50)

The downstream DSW is again one of elevation, with the linear waves

on the left. If s̃d > 0, the downstream DSW remains attached to the

topographic perturbation and waves are continuously generated at the

downstream edge of the forcing region.

Figure 5.9 shows a representative example of each type of simple-wave

transition (attached downstream DSW, attached upstream DSW, both

DSWs detached). The boundaries that divide (∆, F )-space are plotted as

dash-dotted curves in (a), which shows that over most of the parameter

space both DSWs are detached from the topographic feature as in (c).

If F is sufficiently large the upstream DSW can remain attached to the

138



−500 −250 0 250 500
0.7

1

1.3

1.6

−500 −250 0 250 500

0.8

1

1.2

x

−800 −400 0 400 800

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

∆

F

(a)
(b)

(c)

(d)

Figure 5.9: As in figure 5.6, but for the dispersive equation and with Y0 = 1.
The upper and lower dash-dotted curves in (a) mark the boundaries where
the upstream and downstream DSWs, respectively, detach from the topography.
Dotted curves mark where the upstream transition changes type, from DSW+ to
DSW−|K (left-most dotted curve) and then to R|K (right-most dotted curve –
see figure 5.8). Examples of attached and detached DSWs are shown in (b)-(d).
Symbols correspond to the location of the solution in (∆, F )-space, and full details
are given in table 5.2.

topography as the background current is too strong to allow it to propagate

away. An example of this is shown in (b). There is only a small region

of parameter space where the downstream DSW remains attached to the

topographic feature and in all cases the downstream wave-train spreads

much faster than the upstream one, reflecting the fact that the background

current and vortex squashing effects reinforce each other in the downstream

controlled state. An example of a solution with an attached downstream

DSW is shown in (d).

5.4 Comparison with numerical results

5.4.1 The dispersive long-wave equation

Figures 5.10-5.11 compare theoretical predictions for kink and solitary wave

speed and amplitude with values extracted from numerical integrations of

the dispersive long-wave equation. Due to the difficulties in resolving the
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Figure 5.10: Solitary wave parameters in the upstream DSW, with Y0 = 0.8 and
ε = 0.2. Black curves show the analytical predictions for (a) the speed of the
leading solitary wave and (b) the value of Y at the peak of the wave. Curves and
symbols are as in figure 5.5, with red curves and inverted triangles (O) showing
the speed and amplitude of the kink soliton.

linear end of the DSW in numerical simulations, and thus of systematically

identifying that end of the wave-train, no attempt was made to validate

El’s technique for the linear wavenumber and group velocity. In all of the

data presented here Y0 = 0.8 and ε = 0.2, while F was varied across the full

critical range for each ∆ to validate the theory for all types of transition.

Figure 5.10 shows the key parameters of the leading solitary wave in

the upstream transition. The speed and amplitude are shown in (a) and (b)

respectively, and agreement between theory and numerics is in general very

good. The upstream solitary wave speed depends only weakly on ∆, and

for all ∆ larger values of F correspond to slower, larger-amplitude solitons.

The red curve in (a) shows the kink speed sK, which is an upper bound

on the solitary wave speed. For ∆ = 0.1 (dashed curve) and F < 0.7, El’s

technique predicts an invalid solution with s̃u > sK and thus amplitude

predictions are only shown for F > 0.7. For ∆ = 0.25 (dash-dotted curve)

all of the upstream transitions considered here are resolved by compound-

wave solutions. The inverted triangles (O) in (a) show the kink speed, while
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Figure 5.11: As in figure 5.10, but for the downstream solitary wave.

those in (b) show the kink amplitude for transitions which are resolved

by a DSW−|K. No attempt was made to systematically identify YK in

transitions resolved by a R|K (those with F < 0.9).

Figure 5.11 shows (a) the speed and (b) the amplitude of the leading

soliton in the downstream transition. For ∆ = 0.05 and 0.1 (solid curve and

circles, dashed curve and squares respectively) agreement between theory

and numerics is reasonable. Dispersive shock-fitting describes the DSW

in the limit t → ∞, and at the time when integration was stopped the

amplitude of the downstream solitary wave was increasing slowly. It is

expected that longer integrations would reduce the error in (b) in cases

where the amplitude is less than the predicted value. However in some cases

the amplitude is greater than the predicted value, and indeed the numerical

results for ∆ = 0.25 (dash-dot curve and triangles) are qualitatively

different from the theory. This may be due to the apparent minima in

s̃d at F = Fcr(∆) seen in both the theory and numerics in (a). El et al.

[2006] analyse the modulation equations for the Su-Gardner system and

show that a minimum in s as a function of the initial jump amplitude

in the Riemann problem corresponds to linear degeneracy in the Whitham

system. Numerical simulations show that the DSW terminates at the point
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of degeneracy, and the linear end is replaced by a finite-amplitude wavefront

(their figure 7). As the initial jump amplitude increases beyond the critical

value (which corresponds to F < Fcr in figure 5.11(a)) the terminal point

of the DSW moves closer to the solitary-wave end. The parameters (5.47)-

(5.50) are derived assuming that the DSW is fully formed, and thus El’s

technique cannot formally be applied when F < Fcr.

5.4.2 Quasi-geostrophic equations

Figure 5.12 compares CD simulations of the full QG problem with

predictions from the dispersive long-wave model for critically-controlled

flow. Red dashed curves show the dispersive controlled solution computed

as in §5.3.1, which agrees excellently with the solution to the full problem

over the forcing region. The horizontal dotted line in (a) is the amplitude

prediction for the upstream leading solitary wave, and is greater than the

maximum amplitude obtained in the CD simulation. In fact in the CD

simulation the amplitude of the leading wave reaches a maximum value

around t = 200 and then decreases slowly from there, suggesting that

higher-order dispersion smooths the upstream transition and reduces the

amplitude of the solitary wave. The maximum peak observed in the CD

simulation is 1.089, while dispersive shock-fitting predicts an amplitude

of 1.099. Thus the discrepancies are small enough that dispersive shock-

fitting may be used to estimate the speed of the leading solitary wave—

the analytical prediction is s̃u = 0.128 while the average speed of the

leading peak over 200 < t < 900 in the CD simulation is 0.120. For the

parameters used in (a) s̃d > 0 so that the downstream DSW is attached

to the topography, and indeed the CD simulation shows that a modulated

wave-train develops on the downstream side of the forcing region but does

not propagate away. Long-wave theory may be used to predict the size of

the largest wave: the stationary solitary wave on the background Y∞ = Yd

has its crest at Y s
d = 1.25, while at t = 900 in the CD integrations the crest

of the largest wave is at Y = 1.26.

In (b), both DSWs are detached from the topography. However for

this set of parameters F < Fcr so that the downstream DSW is partially

degenerate and its properties cannot be predicted using dispersive shock-

fitting. Indeed, the amplitude of the leading wave in the downstream

DSW is greater than the prediction obtained using El’s technique (bottom

horizontal dotted line). The theory again appears to underpredict the

amplitude of the leading wave upstream (upper dotted line), although in

this case the amplitude was still increasing when the integration was halted
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Figure 5.12: Contour dynamic simulations showing critically-controlled flow in the
full QG problem. In (a), the downstream DSW is attached to the topography, in
(c) the upstream DSW is attached, and in (b) and (d) both DSWs are detached.
Red dashed curves show the dispersive controlled solution, black dashed curves
show the topography, and black dotted lines show the solitary-wave amplitude
predictions from dispersive shock-fitting. Full details are given in table 5.3.
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Figure 5.13: Contour dynamic simulation in the offshore plume regime. (a)
Snapshots of the solution in the source region, every 200 time units starting from
t = 100. (b) The solution at t = 900. Full details are given in table 5.3.

at t = 1000. The analytical prediction for the speed is s̃u = 0.129 while

in the CD simulation s = 0.127 when averaged over 750 < t < 1000. In

(c), the upstream DSW is attached to the topography. Here, F > Fcr and

the dispersive long-wave theory accurately predicts the amplitude of the

solitary wave that leads the downstream DSW.

Figure 5.12(d) shows a simulation with ε = 1 and thus is a check on the

validity of the long-wave theory. At this extreme value of ε the dispersive

long-wave theory does not accurately predict the adjusted values Yu/d, but

the difference is still less than 5%. In fact the contour dynamic simulation

lies between the hydraulic and dispersive long-wave predictions in the

source region, which suggests that the departure from hydraulic theory

is not a monotonic function of ε. However the qualitative behaviour is

much the same, with a monotonic steady solution across the source region

and dispersive wave-trains up- and downstream. The difference between

the dispersive controlled solution and that selected by the CD simulation

is greater upstream, and correspondingly the prediction for Y s
u is better

than that for Y s
d . Further CD simulations (not shown) suggest that the

dispersive long-wave theory provides an accurate quantitative description

of the QG system up to ε ≈ 0.5.

Figure 5.13 shows a contour dynamic simulation in the offshore plume
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Subplot Type F Y0 ∆ a ε t

5.12(a) Downstream attached 0.75 1 0.03 1.07 0.2 900
5.12(b) Both detached 0.8 0.8 0.1 1.19 0.2 700
5.12(c) Upstream attached 0.92 0.8 0.15 1.11 0.33 1900
5.12(d) Both detached 0.8 0.7 0.1 1.2 1 700
5.13(b) Offshore plume 1.1 1 0.3 0.88 0.2 900

Table 5.3: Details of the initial value problems displayed in figures 5.12 and 5.13.

regime, where neither the controlled nor the supercritical solution exist and

the shelf water is directed offshore. The growing behaviour is highlighted

in (a), which shows snapshots of the solution in the source region, taken

every 200 time units starting from t = 100. Since the flow is unsteady the

downstream state Yd is not well-defined and the modulated wavetrain that

forms in the transition to far-field flow is irregular. A filament is ejected at

early times, and the wavetrain is not ordered by amplitude, as seen in (b)

where the full solution is shown at t = 900.

5.5 Discussion

A fully-nonlinear, dispersive long-wave model has been used to study

hydraulic control of barotropic topographic Rossby waves. This model

therefore complements previous works by Gill [1977] and Dale and Barth

[2001] by exploring control by coastal-trapped waves in the limit of small

S , and extends the rigid-lid channel-flow model of Haynes et al. [1993] to

a coastal setup. Section 5.2 classifies the behaviour of the hydraulic (non-

dispersive long-wave) equation and derives conditions for critical control

in terms of Y0, the far-field width of the shelfbreak; ∆, the maximum

magnitude of the shelfbreak perturbation; and the Froude number F , which

is a function of Y0, the strength of the background flow, and the depth of

the shelf. The downstream transition between the controlled state and the

far-field flow is always resolved by a shock, while the upstream transition

may be resolved by a shock, a rarefaction, or a compound-wave shock-

rarefaction. Figure 5.6 gives an example of each type of resolution, and

shows how the (∆, F )-plane is divided when Y0 = 0.8. In §5.3.2 we use

dispersive shock-fitting to analyse the dispersive long-wave equation, and

show that shocks are replaced by modulated wave-trains which remain

attached to the topography when F is near the boundary for critical flow.

Figure 5.10 shows that the theory accurately describes upstream DSWs,

whereas figure 5.11 shows that the downstream solitary wave speed can
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have a turning point when plotted as a function of F . In this case the

downstream wave-train is not a fully-developed DSW, and the assumptions

required for dispersive shock-fitting to be applicable do not hold. Figure

5.12 confirms that this behaviour also occurs in the full QG system, and

that the dispersive long-wave theory accurately predicts the solution in the

forcing region and upstream at large times.

The present model is too simple to make quantitative comparisons with

real CSWs. A sloping shelf and a more realistic background current can

be incorporated following the discussion of §5.1, while other factors such

as stratification, external forcing and dissipation will of course also be

important in the real ocean. However, some of the qualitative features that

are noted here merit further investigation. First and most important is to

understand the regimes in which CTWs exert hydraulic control in the real

ocean. Zhang and Lentz [2017] and Sald́ıas and Allen [2020] both present

numerical simulations of CTWs in a configuration very similar to that

used here, albeit with sloping topography and a background flow driven by

(constant) wind forcing. While Zhang and Lentz [2017] report steady flow

when the background current opposes CTW propagation, and a response

consistent with an arrested CTW, Sald́ıas and Allen [2020] find that their

simulations never become steady in the forcing region and instead develop

a meandering wave-train upstream. The reason for this difference is not

clear, although Sald́ıas and Allen [2020] estimate that the Froude number

for the first three CTW modes in their model is 2, 0.2 and 0.1 respectively

so that they may be outside the range in which hydraulic control occurs.

Another interesting question concerns the formation of attached and

detached DSWs. Figure 1.3 shows that the downstream DSW in Zhang

and Lentz [2017] remains attached to the topography, while the present

model suggests that this only occurs when the flow is very close to the

subcritical boundary. Attached DSWs continually generate waves at one

edge of the forcing region, and thus would be easier to identify and analyse

in more complex models than detached DSWs, which may quickly degrade

due to diabatic effects. Finally, in the present model some solutions on

very wide shelves (Y0/LR > log (2)) never become steady and instead

develop ever-growing offshore plumes (§5.2.2 and figure 5.13). While it

is true that a sudden decrease in shelf width can induce the separation

of a Western Boundary Current (as happens to the Gulf Stream at Cape

Hatteras [Tansley and Marshall, 2000]), the situation is more complicated

than in the present model. In a flat-bottomed ocean columns of fluid that

cross the shelfbreak can continue to move offshore easily, whereas in an

ocean with a sloping bottom the proclivity of depth-integrated flow to
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follow isobaths limits exchange between the shelf and open ocean. Columns

of fluid must instead separate from the bottom as they cross the shelfbreak,

and thus the dynamics differ from the barotropic model employed here.
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Chapter 6

Conclusions and future work

This thesis presents idealised models of three coastal flows. The focus is on

understanding how vortex effects (image vorticity and Rossby waves driven

by a jump in PV) interact with a background coastal-intensified current.

In all cases theoretical predictions have been verified using numerical

simulations In particular, we employ contour dynamics in chapters 3-5 to

test the validity of the long-wave approximation which is required for the

analysis.

In chapter 2 we use a long-wave, 11
2 -layer shallow-water model to study

the behaviour of river plumes. As in the QG model introduced by Johnson

et al. [2017], the qualitative behaviour of the plume depends critically on

whether columns of fluid stretch or squash as they emerge from the river

mouth, and the relative strengths of the vorticity-driven dynamics to the

alongshore flow set up by the internal Kelvin wave. We derive a complete

theory for outflows with positive PVa by matching steady solutions in the

source region with similarity solutions downstream, and show that at all

times the outflow plume is led by a finite-amplitude Kelvin wave which sets

the coastal boundary condition for the plume behind. This justifies the use

of such a boundary condition in the quasi-geostrophic models employed

in later chapters, where the Kelvin wave propagates at infinite speed.

When the outflow has negative PVa, the resulting plume is bidirectional

and may either grow indefinitely, become steady in the source region, or

attempt to separate from the coast. Chapter 3 extends the QG model to

include outflows with non-uniform (but still piecewise-constant) PV, and

shows that the sign and distribution of source vorticity can be used to
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understand the behaviour of the plume. When the integral of vorticity

across competitive regions of the source is positive, all of the expelled fluid

turns to the right and the outflow operates in coastal current mode. If the

net contribution of source vorticity is zero—as is often assumed to be the

case in laboratory and numerical experiments—a quasi-steady anticyclonic

gyre may form downstream of the source mouth.

Chapter 4 looks at the behaviour of long, dispersive waves on a PV

front, and how those waves are influenced by the presence of a coastal

boundary. At leading order, propagation of long waves is entirely driven by

coastal effects (image vorticity and the background current), and the richest

dynamics are found in the regime where vortical effects are dominant. We

explore the range of behaviours for the front using the canonical example

of the Riemann problem, which in the dispersive equation is analysed by

considering the corresponding potential function and using the method of

dispersive shock-fitting. The flux function for this problem is non-convex

when vortical effects are sufficiently strong, so that in some cases the

initial step is resolved by a compound-wave structure (a combination of a

kink soliton and a rarefaction or dispersive shock-wave). Contour dynamic

simulations show that the dispersive long-wave theory provides quantitative

predictions for the long-time behaviour of the full QG system, even though

the initial condition involves a rapid transition.

In chapter 5 the coastal-front model is extended to include a flat

continental shelf of variable width. The PV front is initially aligned with

the shelfbreak and is displaced by a coastal-intensified background current.

When the background current opposes the direction of coastal-trapped

wave propagation and the shelfbreak perturbation is a local decrease in

width, the flow can become critically controlled. We derive the conditions

for critical control, and show how the transition between controlled and far-

field flow depends on the Froude number and magnitude of the shelfbreak

perturbation. The upstream transition can be resolved by a compound-

wave structure, while the downstream transition is always resolved by a

shock. When first-order dispersive effects are included in the model these

shocks are replaced by DSWs, which remain attached to the perturbation

when the incoming flow is close to the boundary between critical and non-

critical.

We will now discuss the limitations of the models used in this thesis,

as well as some ideas for future work.
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6.1 The vorticity dynamics of coastal outflows

The idealised model employed here seeks to explain how vorticity dynamics

affect plume behaviour, rather than provide quantitative predictions of

plume properties (although see figure 2.15). It is important to consider

how factors omitted by the model may affect the results, and how the

model can be used by researchers wishing to conduct further investigation.

The most obvious difference between the present work and other outflow

models is that here the expelled fluid has the same density as the upper

ocean layer. Outcropping of density surfaces is prohibited in the QG limit,

and the semi-geostrophic model is singular when H = 0 so that the initial-

value problem with no outer layer is ill-posed. A similar situation occurs

in the rotating dam break problem when the channel in front of the dam

is initially dry. This is resolved by Helfrich et al. [1999], who find that

analytic results can be obtained by smoothing the transition region so that

the depth of the fluid is continuous. The presence of a finite-depth outer

layer in the model used here means that the effects of buoyancy gradients

and mixing are ignored. While these surely contribute to plume behaviour,

in the limit of weak horizontal stratification vorticity and Kelvin-wave

dynamics may be dominant. This could be tested in numerical simulations

or a laboratory setting by adjusting the density contrast ∆ρ between the

expelled and ocean fluid. When there is no buoyancy gradient (∆ρ = 0)

the present model should accurately describe the behaviour of the outflow

plume. It would be interesting to see at what value of ∆ρ qualitative

differences emerge, and whether any real outflows fall into the low-gradient

regime where the present model could be applied quantitatively. Another

major difference between our results and those of most other studies is that

bulges are comparatively rare here. These two differences may be related:

Yankovsky [2000] presents numerical results which suggest that bulges are

an effect of finite ∆ρ (their figures 2 and 3), and we show in §3 that when the

outer layer is shallow the plume tries to separate from the coast upstream

of the source, which could indicate that the model is attempting to form a

round bulge typical of numerical plumes.

One possible extension to the present model would be to allow exchange

between the expelled and ocean fluid at the plume boundary. Garvine [1981]

parameterises this cross-front mixing in a shallow-water model by taking a

long-wave limit in which the mass and momentum balance in the (finite-

width) frontal region are replaced by jump conditions across a density

interface. Mixing (or any other dissipative process) homogenises PV, and

thus, in the real oceans, the Rossby-wave component of the dynamics
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would decrease over time as the PV jump decays so that the flow becomes

Kelvin wave-dominated at late times. A background current, tides, or a

variable-strength outflow can be incorporated into the semi-geostrophic

model following Southwick et al. [2017] and are likely to affect plume

behaviour in a similar way as for the QG model discussed there. Piecewise-

constant topography can be included in the QG model (as in §5) and is

likely to enhance downstream propagation of the plume through additional

vortex stretching (see An and McDonald [2004] and the discussion of §3.5).

We hope that the discussion of vortical effects presented here is also

relevant for the more general problem of the separation of a coastal current,

for example in flow through a sea strait or around a cape, in which buoyancy

gradients are likely to be of secondary importance. Whitehead and Miller

[1979] and Bormans and Garrett [1989] discuss flow through the Strait

of Gibraltar, where a surface current of Atlantic water flows eastward

through the strait and separates from the coast to form an anticyclonic

gyre in the Alboran sea. Bormans and Garrett [1989] suggest that the

flow turns through an inertial circle, and thus separates when the inertial

radius U/f is greater than the radius of curvature at the corner of the

strait. A similar inertial theory is developed for bulge formation in the

outflow context by Avicola and Huq [2003b]. As discussed in §3.5, in

the QG limit advective terms are omitted and thus the inertial radius

is assumed to be small. The results of that chapter, where the current

turns at a right angle and remains attached to the coast provided the

cyclonic component of vorticity is dominant, are therefore consistent with

the inertial approach. Advective terms are included in the semi-geostrophic

model, but separation is implicitly forbidden by the particular formulation

of the governing hyperbolic system. Klinger [1994] studies steady flow

around a curved coastline in the semi-geostrophic limit, and shows that

rc, the maximum radius of curvature for which the flow separates from the

coast, depends on the upstream properties of the current. Klinger finds that

rc is proportional to U/f , but the relationship is sensitive to the definition

of the velocity scale U . One way to clarify the above results would be to

perform a detailed numerical study of the full shallow-water equations,

where the Rossby number is varied systematically in order to control the

relative contributions of vortical effects and advection.

6.2 Coastal potential-vorticity fronts

There are a number of interesting questions that could be addressed within

the modelling framework used here. One could study coastal fronts in
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the shallow-water equations, and compare the linear dispersion relation

with the expression for a free front, which was derived in Nycander et al.

[1993] and Cushman-Roisin et al. [1993]. The phase speed would still have

the (quadratic) dependence on k given by (4.38), and presumably any

additional terms in the coefficients would decay off-shore like some power of

exp (−y/LR). This would allow for the study of waves on a density front by

taking the limit h1 → 0, and β-plane dynamics could also be incorporated.

The purpose of doing this would be to identify the parameter regimes in

which different mechanisms are dominant, and thus understand what drives

the meandering behaviour of PV fronts in the real oceans. As discussed in

§4.5 finite-amplitude meanders on a PV front such as the Gulf Stream may

be better modelled as solitary waves. The shallow-water soliton phase speed

can easily be computed from ω, and it would be interesting to compare

these predictions with observations of, for example, Kuroshio Extension

meanders [Tracey et al., 2012]. Thin-jet theory has recently been shown to

be a useful way of understanding the variability of the Kuroshio Extension

and the Gulf Stream [Sasaki and Schneider, 2011a,b] and it is possible that

other currents could be described using the coastal version presented here.

However it is likely that time-dependent analysis of coastal fronts

in the shallow water equations would be restricted to finding the dis-

persion relation. The path equation for a shallow-water free front is

formulated in an intrinsic co-ordinate system (along-jet and cross-jet), and

although Cushman-Roisin et al. [1997] have derived a steady model for thin

barotropic jets over small bottom topography, it seems that the assumption

of steady flow is necessary to make analytical progress in the presence

of a fixed boundary. Casting the equations in the intrinsic co-ordinate

system also allows one to study certain multi-valued solutions (breathers, or

envelope solitons) analytically [Ralph and Pratt, 1994] although it should

be noted that some of these structures violate the thin-jet assumption.

Persistent multi-valued solutions were not observed in any of the contour

dynamic simulations conducted in §4, but may well occur in other initial-

value problems. Again it would be interesting to unify the free-front and

coastal models and identify why breathers appear not to occur in the

coastal regime.

The present model does not include buoyancy gradients or eddy diffu-

sion. While the former may be of secondary importance in certain boundary

currents, including eddies would qualitatively change the dynamics. In fact

the original study of Pratt and Stern [1986] aimed to investigate whether

vortical effects alone could lead to eddy pinch-off. The analytical results of

Ralph and Pratt [1994], and the contour-dynamic simulations conducted
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here, suggest that such a situation rarely occurs and instead eddy pinch-

off is a purely diffusive process, which therefore alters the PV of the jet

and limits the applicability of the present model. Diabatic processes are

also likely to prevent the fine structure of DSWs from being realised in the

real oceans, as PV would certainly not be conserved over the timescales

required for a DSW to form. However it would be interesting to perform

similar numerical experiments to those of §4 and Pratt and Stern [1986] in

an eddy-resolving model, to see whether there is a length- or time-scale over

which purely dispersive effects can be observed. In parameter regimes where

dispersion acts over shorter timescales than diffusion, vorticity dynamics

could be used to model the initial folding of a front, before diffusive eddy

pinch-off takes over.

Finally, it is not clear why El’s technique breaks down for certain initial

steps (the shaded areas in figure 4.11). Those in the upper-right quadrants

are of particular interest; the initial step does not straddle the inflexion

point and numerical simulations show that it is resolved by a modulated

wave-train. Of the conditions that must be satisfied for El’s technique to

apply, the one that is least certain is hyperbolicity. Why this should fail

along the particular curve marked in figure 4.11 is not clear. It would be

helpful to find a simpler equation in which the same breakdown occurs, and

for which the Whitham system could be studied directly, to identify the

cause of the breakdown and the properties of the structure that resolves

the initial-value problem in the shaded region.

6.3 Hydraulic control of continental shelf waves

As discussed in §5.5, it is not clear whether hydraulic control by coastal-

trapped waves is a common phenomenon in the real oceans. The results

of Zhang and Lentz [2017] are encouraging: the Hövmoller diagram

reproduced in figure 1.3 shows that information propagates away from the

valley in both directions, and that this only occurs when the background

flow opposes CTW propagation. Further, figure 14 of Zhang and Lentz

[2017] shows that cross-shelf profiles of the SSH, bottom pressure and

alongshore velocity from their numerical simulations all agree well with

shapes predicted by a linear CTW model. Zhang and Lentz performed

several numerical simulations where the strength of the wind forcing was

varied systematically, but it seems that in all of these they observed control

by the same mode. By contrast, Sald́ıas and Allen [2020] did not observe

controlled flow in any of their numerical simulations. By exploring a wider

range of flow speeds in a numerical model, one could potentially identify
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the boundaries for critical flow, as well as boundaries at which control

changes between different modes. An improved understanding of hydraulic

control could lead to a better parameterisation of boundary currents in

global ocean models. The controlled flows in §5 decrease the transport of

the background flow by recirculating some of the shelf water. This suggests

that the parameterisation of such currents may need to account for large

variations in shelf width that could significantly alter their structure and

transport.

Perhaps the most restrictive assumption of the present model is that, in

common with most theoretical studies of hydraulic control, it eliminates all

but one mode. The extension of control theory to continuous PV and several

modes would be a very important result, although Hughes [1985] shows that

analytically identifying the controlling mode for a given geometry is likely

to be difficult. One possibility is to follow Mitsudera and Grimshaw [1990]

and Zhang and Lentz [2017] and identify the controlling mode as that

with the phase speed which is nearest to the (negative of the) background

flow velocity. This suggests that control may in fact be more common in

models with several modes, as there is a wider range of phase speeds that

can become arrested. Grimshaw [1987] shows that the controlling mode is

resonant, and thus if that mode has a non-zero coefficient initially it will

grow to dominate the response at later times. However, in general mode-

mode interactions may limit growth of resonant terms at higher modes,

and thus control is likely to be restricted to the first few modes. Indeed,

mode-1 resonant CSWs (defined as having small group velocity) have been

observed off the coasts of Scotland [Gordon and Huthnance, 1987] and

Antarctica [Wåhlin et al., 2016].

The agreement between the dispersive long-wave theory and numerical

simulations is not as good as for the coastal front model. In particular,

the theoretical prediction for the downstream solitary wave amplitude can

have a qualitatively different dependence on F as that observed in the

numerical results (figure 5.11(a), dash-dotted curves and triangles). We

have suggested that this is due to a turning point in the observed solitary

wave speed, but a more detailed investigation of the equation is needed

to confirm this. The numerical results appear to show a DSW forming

downstream, but it is not clear what the equivalent for a finite-amplitude

wave-front is for a DSW that is degenerate at the solitary wave end, or

indeed whether the minimum in s̃ does correspond to degeneracy of the

Whitham system. Finding an equation that displays this behaviour and has

an integrable structure could lead to further developments in the theory of

dispersive shock waves.
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Appendix A

Riemann invariants of the

semi-geostrophic model

A.1 Expressions for λ and αC/R

The governing equations (2.15) and (2.16) are diagonalised and hence recast

in the form

∂

∂t

(
U

w

)
+

1

a+ b

c+ b
(
U +

√
H
)

d

c− a
(
U +

√
H
)

d

 ∂

∂x

(
U

w

)
=
Q′(x)

a+ b

(
1

1

)
(A.1)

where

a = −1 +H + coshw +
√
H sinhw,

b = (H − 1) (−1 + coshw) +
(√

H coshw + sinhw
)
U,

c =
(√

H coshw + sinhw
)(

1 + U sinhw + coshw
(
−1 +H +

√
HU

))
,

d =
(

(H − 1) sinhw + U
(

coshw +
√
H sinhw

))
×
(

1 + U sinhw + coshw
(
−1 +H +

√
HU

))
,

which leads to the eigenvalues

λ± =
1

2(a+ b)

(
c+ d+ b(U +

√
H)

±
√

(−4d(a+ b)(U +
√
H) + (c+ d+ b(U +

√
H))2)

)
. (A.2)
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Outside of the source region, the right side of (A.1) is homogenous and

so there exist left eigenvectors k± such that

kT
±

(
∂

∂t

(
U

w

)
+ λ±

∂

∂x

(
U

w

))
= 0, (A.3)

or,

k±,1
dU

dt
+ k±,2

dw

dt
= 0 on

dx

dt
= λ±, (A.4)

or
dU

dw
= −k±,2

k±,1
on

dx

dt
= λ±. (A.5)

These are the ODEs that determine the Riemann invariants as described

in (2.34). The eigenvectors k can always be chosen so that k±,2 = 1, in

which case

dU

dw
= − d

λ±(a+ b)

(
µ± + d

µ± − d

)
= αC/R,

µ± = c+ b(U +
√
H) (A.6)

±
√

(−4d(a+ b)(U +
√
H) + (c+ d+ b(U +

√
H))2) (A.7)

A.2 Values of λ in various limits

Note that

a+ b = (
√
H coshw + sinhw)(

√
H + U) (A.8)

which is positive, subject to the observation that w and U are non-negative

in all solutions here. Thus, from (A.2), we can define λC = λ+ and λR = λ−

with λC ≥ λR always, and from now on it is only necessary to consider the

numerator when checking the sign of λC/R.

Further, taking w = 0 gives the following:

[a, b, c, d] = [H,
√
HU,H(U +

√
H),
√
HU(U +

√
H)] (A.9)

so that the numerator in (A.2) simplifies to

(2U
√
H +H)(U +

√
H)±H(

√
H + U) = (2U +

√
H ±H)(

√
H + U),

which gives λR = U and λC = U +
√
H. Thus when additionally U = 0,

λR = 0 and λC =
√
H.

The repetition of terms in the numerator of λC/R shows that λC/R = 0

only when

−4d(a+ b)(U +
√
H) = 0 (A.10)
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with λR = 0 if c + d + b(U +
√
H) > 0 and λC = 0 otherwise. Equation

(A.10) is satisfied only if d = 0, or equivalently if one of

(H − 1 +
√
HU) sinhw + U coshw = 0,

(H − 1 +
√
HU) coshw + U sinhw = −1,

holds. But, from (2.9) and (2.11) this requires that either uw = 0 or hw = 0.

The latter is forbidden in the model used here, and setting uw = 0 gives

c+ d+ b(U +
√
H) = (

√
H coshw + sinhw)(U +

√
H)2

which is always positive. Hence λC is never zero, and since λC is positive

when t = 0 it must remain so for t > 0. Further, λR = 0 for t > 0 is

equivalent to uw = 0, a constraint which is physical only if H < 1. Thus,

λR cannot change sign in outflows with positive PVa. Expanding for small

w and U gives

λR ∼ U + (H − 1)w as U → 0, w → 0 (A.11)

so that λR > 0 initially, and hence always, when H > 1.
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Appendix B

Vortex competition in the

semi-geostrophic model

§2 discusses the outflow problem for O(1) Rossby number using a semi-

geostrophic (long-wave) model with uniform PV. Here we consider the

equivalent set-up for a competitive outflow, and show that the coastal

current mode is only possible if the net contribution from the source

vorticity is positive.

The governing equations for semi-geostrophic flow are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v = −∂h

∂x
,

u = −∂h
∂y
,

∂h

∂t
+
∂

∂x
(uh) +

∂

∂y
(vh) = 0, (B.1)

where, following §2, x has been non-dimensionalised with W , y with LR,

u and v with
√
g′HS and

√
g′HS(LR/W ) respectively, h with HS and t

with W/
√
g′HS . The long-wave parameter is LR/W and is assumed to be

small (note that the long-wave parameter is LV/W in the QG model).

The potential vorticity q is piecewise constant, and takes non-dimensional

values 1/H, 1, and qR in the ambient ocean, the HPVF and the LPVF

respectively. The presence of an ambient ocean-layer with H > 1 is a

necessary requirement in this model for the plume to have ζ > 0 at y = w2.
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From conservation of PV and continuity of h and u, the layer-depth h is

h =

1 + (H − 1) cosh (y − w2) w1 < y < w2

1
qR

+A cosh [
√
qR(y − w1)] +B sinh [

√
qR(y − w1)] y < w1,

(B.2)

where

A =
qR − 1

qR
+ (H − 1) cosh (w1 − w2),

B =(H − 1) sinh (w1 − w2)/
√
qR.

As in the QG model, the ambient ocean is undisturbed. The interface

widths w1 and w2 are determined by the flux conditions

Q0 =

∫ w2

0
uh dy =

h2
S −H2

2
, (B.3)

Q+ =

∫ w2

w1

uh dy =
h2

1 −H2

2
, (B.4)

where Q0 is the non-dimensional volume flux of the outflow, and hS and

h1 are the layer-depths at the coast and w1 respectively. The expressions

for w1 and w2 are complicated, but can be found computationally using

symbolic manipulation. For a given Q0 and H we test values of Q+ and

qR to numerically determine the region of the parameter space where w1 is

valid and so the coastal current mode is possible. For the particular case

of Q0 = 1.5, H = 2, the region of the parameter space where a coastal

current is possible is shown shaded in figure B.1.

We then compute the source vorticity integral analytically.∫
source

ζS dQ =

∫ Q0

0
qhS − 1 dQ

= −Q0 +

∫ Q+

0
hS dQ+ qR

∫ Q0

Q+

hS dQ

= −Q0 −
H3

3
+

1− qR
3

(
H2 + 2Q+

)3/2
+
qR

3

(
H2 + 2Q0

)3/2
,

(B.5)

where the last step has made use of (B.3). The region to the right of the

dashed line in figure B.1 shows where the net contribution is positive. There

is good agreement between these two regions, so again it seems that the

coastal current mode can occur if and only if the net contribution of source

vorticity is positive.
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Figure B.1: Numerically computed region of the (Q+, q
R) parameter space for which

the coastal current mode exists (shaded grey). The integrated source vorticity is
positive to the right of the dashed line. The outflow parameters are Q0 = 1.5 and
H = 2.
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