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Abstract

The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed
representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological
recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint
position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli,
raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or
are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and
temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of
naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and
magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of
kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle
activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence
that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to
movement production.
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Introduction
Mounting evidence supports the encoding of movements in M1
based on kinematics and synergistic muscle activation, rather
than the anatomy of the peripheral musculature (Overduin
et al. 2012, 2015). Measurements from individual M1 neurons in
non-human primates reveal the encoding of multiple kinematic
features, such as speed, direction, and position in the same cells
in a time-varying manner (Fu et al. 1995). The same neuronal

populations have been shown to encode instantaneous features
during motor execution, as well as the target kinematic end point
and upcoming movement trajectory (Churchland and Shenoy
2007; Hatsopoulos et al. 2007; Aflalo and Graziano 2006; Saleh
et al. 2012).

In the human brain, evidence of neuronal tuning to multi-
ple kinematic features has been reported during the produc-
tion of intended movements from M1 microelectrode recordings
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made in tetraplegic patients (Truccolo et al. 2008). The encod-
ing of kinematic features of hand movements in M1 has also
been supported by human imaging studies (Dayan et al. 2007;
Kadmon Harpaz et al. 2014, 2019). Patterns of functional mag-
netic resonance imaging (fMRI) activity in sensorimotor cortex
have been shown to mirror the relative differences in the final
joint configuration across a range of prehensile movements (Leo
et al. 2016). Similarly, the representational structure of fMRI
activity in M1 during finger flexion is consistent with patterns
of finger couse during naturalistic hand movements (Ejaz et al.
2015).

However, the functional relevance of kinematic encoding in
M1 to human motor control remains a fundamental unknown.
As well as their role in motor output, M1 neurons exhibit rapid
and integrative responses to somatosensory signals (Hatsopou-
los and Suminski 2011; Pruszynski et al. 2011). Kinematic infor-
mation is inextricably linked to proprioceptive and tactile sig-
nals: specific patterns of movement are associated with specific
patterns of sensory feedback. Are kinematic motor representa-
tions reported in human M1 functionally relevant in the process
of top-down motor control, or an epiphenomenon generated by
bottom-up sensory feedback during human movement produc-
tion?

We addressed this question using a spatiotemporal multivari-
ate representational similarity analysis (RSA) to ask where in the
human brain and when during movement production are the
kinematics of human hand movements encoded? This approach
combined high-field fMRI and magnetoencephalography (MEG)
data with kinematic data glove recordings made during a broad
repertoire of prehensile and nonprehensile hand movements.
Probing recordings of human brain activity with high spatial
resolution from fMRI and high temporal resolution from MEG
offered a powerful means to identify the location and timing of
kinematic information encoding. Together this information was
used to dissociate the relevance of kinematic information in M1
to top-down or bottom-up processes in motor control, as well as
the relevance of alternative muscle-based or ethological action
based models.

Materials and Methods
Methods Summary

A total of 10 right-handed participants performed a range of 26
prehensile and nonprehensile hand movements (Elliott and Con-
nolly 1984; Jones and Lederman 2006) (Table 1, Supplementary
Video S1) in two fMRI sessions (1.5 h total fMRI data per partic-
ipant), two MEG sessions (1.5 h total MEG data per participant),
and a behavioral testing session (35 min kinematic data record-
ing per participant). In each session, participants wore a right-
handed 14-channel fiber optic data glove; kinematic data were
recorded throughout all sessions. Electromyography (EMG) data
were acquired during MEG sessions to validate the movement
onset measures calculated from the data glove.

To probe the spatial and temporal correspondence between
patterns of brain activity and hand kinematics, data glove record-
ings were used to construct a kinematic model quantifying the
similarity of the kinematic signals measured during each of the
26 movements (Fig. 1, top row, Supplementary Figure S2). The
kinematic model quantified the distance between the displace-
ment measures for each movement pair across the 14 channels
(Pearson’s correlation), subject to a Fisher Z-transformation and
averaged across the 14 recording channels. The resulting kine-

Table 1. Outline of the 26 hand movements used in the motor task.
Instructional videos presented in Supplementary Video S1

Hand movements

Abduct fingers Pinch: thumb and little finger
Cylinder grip Pinch: thumb and index finger
Hook grip Pinch: thumb and middle finger
Spherical grip Pinch: thumb and ring finger
Index finger flexion (45◦) Ring finger flexion (45◦)
Index finger flexion (90◦) Ring finger flexion (90◦)
Index & middle finger flexion

(90◦)
Ring and little finger flexion (90◦)

Index finger and thumb roll Rock fingers
Little finger flexion (45◦) Squeeze: thumb and fingers
Little finger flexion (90◦) Abduct thumb
Middle finger flexion (45◦) Extend thumb
Middle finger flexion (90◦) Flex thumb
Middle & ring finger flexion (90◦) Twiddle: thumb and index finger

matic model exhibits strong split-half and intersession consis-
tency within participant (Supplementary Figure S1). In both the
spatial and temporal RSA, the kinematic model was investigated
alongside two other models. A muscle-based model was con-
structed from high-density EMG recordings (15 channels) made
in an independent cohort of 10 participants performing the same
range of hand movements (Fig. 1, bottom row). An additional
ethological action model classified movements into precision
prehensile, power prehensile, and nonprehensile, based on the
notion of ethological maps in primate M1 (Elliott and Connolly
1984; Graziano 2016) (Supplementary Figure S18). A group aver-
age kinematic and muscle model were subject to nonclassical
multidimensional scaling for visualization of the relative dissim-
ilarity of each movement across three dimensions (3D Graphics
1 and 2). An equivalent analyses in two dimensions using videos
illustrating the various movements is also presented for the
group average kinematic model (SupplementaryVideo S2).

Participants and Experimental Design

All data were acquired according to the local university research
ethics committee approval in line with the Declaration of
Helsinki (Cardiff University School of Psychology Research
Ethics Committee: EC.17.03.14.4874 and EC.17.04.11.4885) All
participants provided written informed consent and met local
MRI and MEG safety criteria.

A total of 10 right-handed participants were recruited in the
main study (age range:22–30; mean age: 24.0; Age SD: 2.8; 5
females). Participants were not currently taking any psychoactive
medications, and were right-handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971). No participants had a
history of any disorder affecting tactile sensory or motor function
or any history of neurological illness. Each participant undertook
five experimental sessions: two MRI scan sessions, two MEG
recording sessions, and one behavioral testing session. All partic-
ipants undertook the behavioral testing session first; the subse-
quent order of the fMRI and MEG sessions was counterbalanced,
leaving a minimum of 2 weeks between any one MRI and MEG
session to minimize the effects of magnetic noise on the MEG
signal (Gross et al. 2013). The datasets generated and analyzed
during the current study are available from the corresponding
author on reasonable request.
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Figure 1. Spatial and temporal evidence for distinct encoding of kinematic- and muscle-based information in human motor cortex. Group average kinematic and muscle

models of hand movement were used in a spatiotemporal RSA. Top row: fMRI data show that kinematic information was encoded consistently in of primary motor cortex

across all 10 participants with a consistent peak in Brodmann areas 4 and 3a; complementary MEG data revealed temporal encoding of kinematic information (blue

box) around the point of movement onset in the broadband signal, further decomposition of which revealed encoding prior to movement onset (green line) in the beta

frequency, from −210 to −90 ms. The group average muscle model (bottom row) showed consistent spatial encoding in more rostral regions of Brodmann area 4 of

primary motor cortex across participants, as well as postcentral regions of Brodmann areas 3b; a temporal searchlight using the muscle model revealed evidence

of encoding much later in the cycle of movement around 735–795 ms after movement onset in the broadband signal; further decomposition revealed this encoding

of the muscle model originated in the gamma frequency. An ethological action model in line with recent primate studies (Graziano, 2016) was investigated and is

presented in Supplementary Figure S18. Full MEG analysis are presented in Fig. 3. Green line—movement onset defined by the data glove; blue regions—significant

peaks in representational similarity between MEG data and the motor model; dashed line—correlation noise ceiling. EMG onset violin plots based on data presented in

Supplementary Figure S10. Both matrices are presented based on the results of hierarchical clustering conducted on the kinematic matrix for ease of comparison. Both

model matrices are reproduced in a larger format in Supplementary Figure S2 using their own respective hierarchical clustering outputs.

Motor Task and Kinematic Data Acquisition

During all sessions participants were engaged in a motor task
involving the production of a range of 26 hand movements
(Table 1, Supplementary Video S1) with the right hand while
wearing a fiber-optic kinematic data glove (Data Glove 14
Ultra; Fifth Dimension Technologies: 5DT, Orlando, FL, USA).
Kinematic data were acquired across 14 independent fiber-optic
channels (one proximal and one distal sensor per digit, plus
one sensor between each digit pair) at 60 Hz. Flexion, extension,
pitch, and roll cause deformation in the fiber optic channels,
impacting the transmission of fiber optic signals and generating
a quantifiable signal change. The behavioral task using the data
glove was implemented in PsychoPy (Version 1.84.20) (Peirce,
2007, 2009) using the Python Computer Graphics Kit (CGkit: cgkit.
sourceforge.net) SDK wrapper for the 5DT data glove.

Each recording session was divided into task runs; each task
run was composed of blocks of a specific movement; each block
comprised individual movement trials; details of the number of
runs, blocks, and trials are specified for MEG and fMRI sessions,
respectively, below. Instructions were presented on a screen in
the testing environment. Each task run contained one block
of each of the 26 movement types, ordered using a random-
without-replacement selection method. Progressive determina-
tion effects were minimized by maximizing the range of different
conditions in each run; presenting all 26 movements once per
run (Blais, 2008). At the beginning of each movement block, par-
ticipants were shown a 3 s video of the movement to be produced
(Supplementary Video S1). Participants were cued to produce the

movement in question in each subsequent movement trial of the
block by an expanding and contracting horizontal bar. In each
movement trial, the bar began at a fully contracted width, colored
red, indicating that the hand should be static and in a resting
flat position. The bar subsequently turned green and began to
expand symmetrically at its left and right flanks. Once it reached
its maximal width, the bar began to contract back to its original
width. Once the bar reached its original contracted width, it
turned red, signifying the end of the movement trial. Participants
were instructed to pace their movements to coincide with the
period of expansion and contraction of the green bar, such that
their hand assumed a flat position at the beginning and end of
each trial, corresponding to the time that the static red bar was
presented. The motor task was conducted in a behavioral testing
lab, in the MRI scanner, and in the MEG scanner, as detailed
below.

None of the grasping tasks in this study engaged participants
with real objects; previous work has differentiated motor activity
with or without real objects in anterior intraparietal sulcus, but
not primary motor cortex: as such an object-free study design
seemed appropriate for a study focusing on M1 (Freud et al. 2018).

Kinematic Recording Session

During the behavioral testing session participants performed
five runs of the motor task. Participants were seated at a desk
with their right forearm supported on a memory foam mount,
while wearing the data glove. Participants viewed instructions
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presented on a 14 inch laptop display. Each movement block
comprised a 3 s video of the movement to be produced, a 1 s
preparation period and 8 subsequent movement trials; each
comprising 1.6 s of movement (green expanding/contracting bar),
followed by a 0.8 s rest period (red static bar). The transition of
the bar from red to green was defined as the go signal. A break
period of up to 15 s was permitted between each movement
block; participants advanced the task with a keypress using their
left hand. Excluding break periods each task run was 10 min and
3.2 s in duration. The five task runs yielded 33 min and 16.8 s of
kinematic data recording per participant.

Kinematic Movement Model

For each participant, kinematic data from the behavioral, MRI,
and MEG sessions were each processed in parallel. This yielded
a separate kinematic model from each session type for each
participant. These models were used in subsequent multivariate
fMRI and MEG analysis; they captured the kinematic similarities
and differences of the 26 distinct movements under study.

Initially the kinematic data from each session and each move-
ment block were epoched into individual movement trials using
the time of onset of the green bars and averaged. The resulting
14 channels of data represented the average pattern of displace-
ment of the hand during a movement trial for a given movement,
termed the kinematics of the movement: the motion of the hand
without reference to the forces that produce this motion. In order
to compare this signature of kinematic activity for each possible
pairing of the 26 movements, the activity pattern of each of the 14
recording channels was correlated channel-wise using Pearson’s
correlation coefficient, subject to the Fisher Z-transformation,
and the resulting values were averaged across channels to yield
a single measure of the similarity of kinematics across each
movement pair. The resulting value was transformed back into a
Pearson’s r-value and used to construct a 1-r dissimilarity matrix
for each movement pair.

The kinematic dissimilarity matrices were averaged across
task runs to yield an average fMRI, MEG, and behavioral
kinematic model for the group. The split-half consistency
and intersession consistency of these models is outlined in
Supplementary Figure S1. A grand average across all sessions
and participants was computed and subjected to hierarchical
clustering; this resulting clustering was applied to visualiza-
tions of the kinematic model and the muscle model (Fig. 1).
Clustering for the group average muscle model is presented in
Supplementary Figure S2. All analyses used the group average
muscle and kinematic models.

Muscle Model

An independent EMG dataset was acquired in order to construct a
model of movement dissimilarity on the basis of muscle activity
in the hand. An independent cohort of 10 participants (age range:
20–30; mean age: 25.1; age SD: 3.57; 5 female) undertook a more
detailed EMG recording than was feasible during the MEG ses-
sion, while performing the same 26 hand movements. EMG data
were acquired using a Biosemi Active 2 system with a 32 channel
headbox (Biosemi B.V. Amsterdam). Muscle activity was recorded
using touchproof flat active electrodes. Electrodes 1–15 were
placed as labelled in Supplementary Figure S16 closely matched
to previously published montages (Ejaz et al. 2015; Leo et al.
2016), namely, first dorsal interosseus (FDI), dorsal interosseus
muscles, abductor digiti minimi (ADM), abductor pollicis brevis

(APB), adductor pollicis, lumbrical muscles, flexor carpi ulnaris,
flexor carpi radialis, flexor digitorum superficialis and flexor
digitorum profundus, flexor pollicis longus. Electrode 16 was
used to rereference the EMG data in subsequent analysis and
was placed on the lateral bony protrusion of the elbow. There
were also Common mode sense (CMS) and Driven Right Leg (DRL)
electrodes, which served as a ground/reference during recording
in the Biosemi software; they were placed on the dorsal aspect of
the wrist. The EMG data were recorded at 2048 Hz.

The EMG recording sessions mirrored the design and setup
of the kinematic recording session outlined above and were
informed by previous fMRI kinematics studies (Ejaz et al. 2015;
Leo et al. 2016). Five runs were recorded in total, each contain-
ing 26 trials (one for each of the movements). The EMG data
were processed using Fieldtrip (Oostenveld et al. 2011). EMG data
were rereferenced to electrode 16, rectified and subjected to a
band-pass filter (20 Hz and 1000 Hz); and epoched relative to
earliest measured muscle onset in any EMG channel using an
adaptive threshold (activity duration threshold: 200 ms; 5 ms
window smoothing was applied) (Hooman Sedghamiz: Matlab
File Exchange: Automatic Activity Detection in Noisy Signals
using Hilbert Transform). This resulted in individual trials of 2.0 s
in duration. These trials were baselined using the fixation cross
window at the start of each trial. EMG trial data were then subject
to multivariate noise normalization by weighting channels in
trial by the error covariance across the different channels in order
to more accurately quantify the true differences between the
muscle activity across different movements (Walther et al. 2016;
Guggenmos et al. 2018). As in the construction of the kinematic
model, the activity pattern of each of the EMG recording channels
was correlated channel-wise using Pearson’s correlation coeffi-
cient, subject to the Fisher Z—transformation, and the resulting
values were averaged across channels to yield a single measure
of the similarity of kinematics across each movement pair. The
resulting value was transformed back into a Pearson’s r-value and
used to construct a 1-r dissimilarity matrix for each movement
pair. A group average muscle model calculated across all 10
participants’ data was generated and used to probe the spatial
and temporal encoding of muscle based dissimilarities in the
brain using fMRI and MEG (Fig. 1 and Supplementary Figure S2).

Ethological Action Movement Model

An alternative ethological action based model was constructed
on more recent evidence of ethological maps in primate
M1 (Graziano 2016), and therefore categorized movements
on the basis of their specific action, namely prehensile
movements, subcategorized into precision grip, power grip,
and nonprehensile movements (Jones and Lederman 2006)
(Supplementary Figure S18). The ethological action model was
subjected to hierarchical clustering for visualization.

MRI Data Acquisition

MR data were acquired using a Siemens 7T Magnetom sys-
tem (Siemens ealthcare, Erlangen, Germany) with a 32-channel
head coil. Blood oxygenation level dependent (BOLD) fMRI was
acquired with a T2∗-weighted multi-slice gradient echo pla-
nar imaging (EPI). True axial slices were positioned for optimal
coverage of the left and right anatomical hand knob (Yousry
et al. 1997) (TR/TE: 1500/25 ms, resolution: 1.2 mm isotropic, 22
axial slices, flip angle: 90◦; GRAPPA factor: 2; anterior-posterior
phase-encoding direction; 391 measurements). Magnetization
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prepared rapid gradient echo (MPRAGE) structural MRI data were
acquired to facilitate BOLD EPI slice placement and for cortical
surface reconstruction (TR/TE: 2200/2.82 ms, isotropic resolution:
1.0 mm, GRAPPA factor = 2). An additional gradient echo BOLD EPI
acquisition of 4 volumes was acquired using posterior-anterior
phase-encoding direction for distortion correction.

fMRI Behavioral Task

During the fMRI acquisitions, participants performed a total of 10
runs of the motor task (5 runs per MRI session). Participants were
laid supine with their right forearm supported against their right
hip and their elbow supported by a foam pad, while wearing the
data glove. Participants viewed instructions via a mirror mounted
on the transmit coil and a projector screen mounted at the end
of the bore. Each movement block comprised of a 3 s instruction
screen (“Prepare to Move”), a 3 s video of the movement to be
produced, and a 1 s further instruction screen (“Move”), followed
by 5 movement trials, each comprising 1.6 s of movement (green
expanding/contracting bar), followed by a 0.4 s rest period (red
static bar). Each movement block was 17 s. In addition to the
movement blocks, 8 rest blocks were included in each task run;
rest blocks were of equivalent duration to movement blocks and
comprised of a 3 s instruction screen (“Rest”), a 3 s video of a
static resting hand, and a 1 s further instruction screen (“Rest”),
followed by the same period of expanding and contracting bar
visual stimuli as the fMRI movement blocks. Rest blocks were
positioned randomly in each run, excluding self-adjacency.

Structural MRI Data Preprocessing

MPRAGE data were subject to reorientation, bias-field correction
and brain extraction using the FMRIB Software Library (FSL)
fsl_anat tool (Zhang et al. 2001; Smith, 2002; Jenkinson et al. 2012)
prior to cortical surface reconstruction using FreeSurfer Version
5.3.0 (Dale et al. 1999; Fischl et al. 2001).

fMRI Data Analysis

fMRI Preprocessing and General Linear Modeling

fMRI data were subject to standard preprocessing, including
motion correction with MCFLIRT (Jenkinson et al. 2002), brain
extraction using BET (Smith, 2002), and high pass temporal fil-
tering (100 s threshold). fMRI data were not subject to spatial
smoothing. All fMRI data were subject to manual independent
components analysis denoising (Griffanti et al. 2017). Distor-
tion correction was undertaken using FSL Topup to estimate
a fieldmap image for use in FSL FUGUE (Glasser et al. 2013).
Undistorted BOLD EPI data were coregistered with structural
MPRAGE data using Boundary-Based-Registration from FMRIB’s
Linear Registration Tool implemented in epi_reg (Jenkinson and
Smith 2001; Jenkinson et al. 2002; Greve and Fischl 2009). Example
fMRI timeseries from a single voxel located in the anatomical
hand knob is presented for four participants on a single session
in Supplementary Figure S15.

For each participant and each fMRI run, fMRI data were ana-
lyzed using a first-level general linear modeling (GLM) approach
implemented in FSL FEAT (Jenkinson et al. 2012) using the FMRIB
Improved Linear Model to estimate time series autocorrelation
and prewhiten each voxel. Each of the 26 movements was
modeled with a separate boxcar regressor with gamma-HRF
convolution and its temporal derivative, giving a total of 52

regressors. Parameter estimates were calculated, contrasting
each movement type against the rest condition; these voxel-
wise maps and an estimate of the residuals from the GLM were
resampled into the respective participants’ structural space and
used in subsequent RSA.

fMRI Multivariate Noise Normalization

In order to account for the spatial structure of the noise inherent
to fMRI data, spatial prewhitening of the parameter estimates
from each participant and each fMRI task run was conducted.
The residuals (R) from the first-level GLM analysis provided an
estimate of data not fit by the model regressors across voxels
(V) and time (T), from which a V × V covariance matrix (ε̂) can
estimate the noise structure across voxels (Equation (1)) (Walther
et al. 2016):

�̂ = 1
T

RTR (1)

The noise covariance structure was combined with the voxel-
wise parameter estimates (P) for a given movement type (k)
to generate a spatially prewhitened parameter estimate (P/←

k :
Equation (2)):

P∗
k = Pk�̂

− 1
2 (2)

fMRI Surface-Based Searchlight RSA

A surface-based RSA searchlight approach was used to iden-
tify regions in which the multivariate pattern of BOLD activity
mirrored the kinematic and categorical models. This surface-
based analysis constrained the voxels under consideration in
each searchlight to the gray matter and prevented the issue of
sampling of voxels that span a sulcus in a single searchlight,
which is inherent to volumetric approaches (Oosterhof et al.
2011). A searchlight was constructed at the centre of each vertex
within the individual participants’ anatomical cortical surface
region corresponding to the field of view of their task fMRI data
(Supplementary Figure S7). Each searchlight had a diameter of
10 mm. The region of interest of each searchlight was projected
from two-dimensional surface to three-dimensional volumetric
space using the Connectome Workbench Tool (Glasser et al. 2013),
masked by a FMRIB Automatic Segmentation Tool gray matter
map (Zhang et al. 2001) and a mask excluding voxels spanning
across sulci in the FreeSurfer reconstruction to improve spa-
tial specificity. Spatially prewhitened parameter estimates were
extracted from the resulting volumetric region corresponding to
each searchlight.

fMRI Cross-Validated Distance Measures

Within each searchlight the similarity between each of the spa-
tially prewhitened voxel-wise parameter estimates correspond-
ing to each of the 26 different movement types was calcu-
lated using a cross-validated approach to avoid the possibil-
ity of overfitting the data (Diedrichsen and Kriegeskorte 2017;
Haynes, 2015). In each iteration, the parameter estimate maps
from one fMRI task run was assigned to fold A and the parameter
estimate maps from the remaining nine task fMRI runs were
assigned to fold B; squared Euclidean distances were calcu-
lated between all possible pairs of the 26 movement parameter
estimate maps across these two-folds (Equation (3)). Distance
measures were calculated across all possible pairs of cross-
validation folds and averaged (Walther et al. 2016). The use of
spatially prewhitened parameter estimate combined with the
cross-validation approach yielded cross-validated Mahalanobis
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Figure 2. Kinematic and muscle models show evidence of distinct spatial encoding in primary motor cortex. (A) Outline of supra-threshold RSA results presented in

Fig. 1 reveal overlapping but distinct encoding of muscle and kinematic information, with muscle information encoding in more rostral regions of Brodmann areas 4

and 6, while kinematic information is encoded in more caudal regions of primary motor cortex, including Brodmann areas 4 and 3a. (B) A Wilcoxon signed-rank test

calculated on Spearman’s ρ values across the muscle and kinematic spatial searchlights revealed a region at the border of Brodmann areas 4 and 3a in which kinematic

information showed significantly greater encoding than the muscle model (Statistical maps subject to FDR correction α = 0.05).

distance representational dissimilarity matrices (RDMs) compar-
ing each of the activation patterns across all possible pairings
of the 26 movements. For example, calculation of the distance
between movement k and movement l in one iteration:

d2
Crossvalidated Mahalanobis

(
P∗

k, P∗
l

) = (
P∗

k − P∗
l

)
A

(
P∗

k − P∗
l

)T
B (3)

.

The correspondence between the fMRI-derived RDM in each
searchlight and the candidate group average kinematic, mus-
cle, and ethological models was assessed using a Spearman’s
rank correlation, with the resulting ρ (rho) value plotted in each
searchlight’s central vertex on the cortical surface. Spearman’s
ρ was selected because it is rank based, and therefore does
not require assumptions regarding the distributions of the input
variables: this allows for the comparison of models derived from
different source data. For statistical inference, a fixed effects
randomization test (Nili et al. 2014) was applied on the individual
participant level: correlations using 10 000 condition-label ran-
domizations were undertaken in each searchlight. From each of
the permutations, the spatial peak ρ-value (rho) was extracted
from across the cortical surface, forming a maximum accuracy
distribution from which an omnibus threshold (α = 0.01) was
extracted. The resulting thresholded ρ-value surface maps for
each participant were resampled onto the Human Connectome
Project 32k surface (S1200.L.pial.MSMAll.32k_fs_LR.surf.gii), bina-
rized and used to form a heatmap corresponding to the spatial
distribution of each model fit across participants. In light of
the interest in contrasting the kinematic and muscle models, a
comparison of the corresponding unthresholded Spearman’s ρ

cortical surface maps was undertaken using a Wilcoxon signed-
rank test (one-sided), subject to FDR correction (α = 0.05) (Fig. 2).

fMRI Motion Considerations

Variability in the magnitude of fMRI motion across different
movement conditions has the potential to influence the
observed pattern of results. The potential for noise induced by
participant motion was mitigated in a number of ways. First, all

data were subject to ICA denoising to remove any characteristic
motion artifacts (Griffanti et al. 2017). Second, the multivariate
analysis of fMRI data employed herein used spatial prewhitening
of the parameter estimates to account for voxel-wise variability
in order to not down-weight voxels with high error variance
and to account for noise covariance between voxels (Walther
et al. 2016). Finally, DVARS values were calculated for each fMRI
timeseries (D: temporal derivative of time courses, VARS: root
mean squares variance over voxels). These values quantify
for each frame of an fMRI acquisition the magnitude of signal
intensity change in volume N compared with volume N-1, as per
the following formula:

DV ARS(ΔI)i =
√〈

[Ii
( →

x
) − Ii−1

→
x ]2

〉
(4)

where Ii is image intensity at locus -!x on frame i; angle brack-
ets denote the spatial average over the whole brain (Power et
al. 2012). DVARS are able to quantify corruption of fMRI acqu-
sition due to head motion. DVARS values were extracted for
volumes corresponding to each of the 26 hand movements for
all participants; the resulting distribution of DVARS values is
presented in Supplementary Figure S13. The profiles of very lim-
ited motion across participants during each session of around
10 min in duration also demonstrate high quality data acquisi-
tion (Supplementary Figure S14).

MEG Data Acquisition

MEG signals were measured continuously at 1200 Hz during the
motor task using a whole-head 275-channel axial gradiometer
CTF MEG system (CTF, Vancouver, Canada) located inside a
magnetically shielded room. An additional 29 reference channels
were recorded for noise cancelation purposes and the primary
sensors were analyzed as synthetic third-order gradiometers
(Vrba and Robinson 2001). Three electromagnetic coils were
placed on three fiduciary locations (nasion, left and right
preauricular) and their position relative to the MEG sensors
were recorded continuously during each experimental block.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa009/5815556 by guest on 14 January 2021

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
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The head surface and fiducial locations were digitized using an
ANT Xensor digitizer (ANT Neuro, Enschede, Netherlands) prior
to the MEG recording.

MEG Behavioral Task

During the MEG data acquisitions participants performed a total
of 10 runs of the motor task (5 runs per MEG session). Partici-
pants were sitting upright with their right forearm and elbow
supported on a foam armrest, while wearing the data glove.
Participants viewed instructions on a back-projected screen in
front of them from a projector mounted outside the shielded
room. Each movement block comprised of a 2 s period with a
central fixation cross, a 3 s video of the movement to be pro-
duced, and a 1 s instruction screen (“Prepare to Move”) followed
by five movement trials, each comprising 1.6 s of movement
(green expanding/contracting bar), followed by a 0.8 s rest period
(red static bar). Each movement block was 18 s. The order of
movement blocks was randomized within each task run; each
movement was presented once per task run.

Data Glove Movement Onset Detection: MEG Sessions

The 14 channels of data glove recordings collected during
the MEG sessions were synchronized with the MEG acquisi-
tions. Epoched data glove recordings were subject to onset
segmentation using an adaptive threshold (activity duration
threshold: 200 ms, no smoothing) (Hooman Sedghamiz: Matlab
File Exchange: Automatic Activity Detection in Noisy Signals
using Hilbert Transform.). A conservative estimate of movement
onset was derived by taking the earliest signal onset detected
across the 14 data glove channels for each movement trial
(Supplementary Figure S9). The resulting movement onset time
was used to epoch MEG data in further analysis.

MEG Data Analysis

MEG Preprocessing

Each participant’s head shape was digitized using Xensor dig-
itizer software (ANT software BV, Enschede, The Netherlands).
All MEG analysis was conducted using the Fieldtrip toolbox for
EEG/MEG-analysis (Oostenveld et al. 2011) (Donders Institute for
Brain, Cognition and Behaviour, Radboud University Nijmegen,
The Netherlands. See http://www.ru.nl/neuroimaging/fieldtrip).
Coregistration was performed in a two stage process: first the
fiducial locations were marked on the T1 structural for that
participant; the head digitization data was then used to align the
data with the MRI, subject to manual adjustment. Alignment was
undertaken independently for data from the two MEG sessions.

Data from each movement type were epoched from the 10
task runs and concatenated into a new dataset containing 10
blocks, each containing 5 movement trials. The fixation cross
and movement trials were epoched from the overall block. The
movement trials were defined relative to the data glove defined
movement onset time (movement trial time: 2 s; preonset time:
0.5 s, postonset time: 1.5 s). The fixation cross period was used
as a baseline for the 5 movement trials within each movement
block. A high pass filter of 1 Hz and a low pass filter of 100 Hz were
applied. MEG analyses were conducted across four frequency
bands: alpha (7–14 Hz), beta (15–30 Hz) and gamma (30–100 Hz),
and broad band (7–100 Hz). All of the movement trials for a
given movement type were concatenated across the 10 task runs,
creating a dataset comprising 50 repeats of a movement. At this

point, the data was visually inspected and those trials containing
artefacts were removed from further analysis up to a maximum
of 10 trials, such that the minimum number of movements trials
per movement included in further analysis was 40.

MEG Source Reconstruction

In order to reconstruct oscillatory activity at brain locations
directly comparable across participants, the individual anatom-
ical MRI was nonlinearly warped to the MNI MRI template. The
MNI template was divided into a 10 mm isotropic grid and the
inverse of the previously calculated nonlinear warp was used
to warp the template grid into the anatomical space of each
participant. Sensor leadfields were calculated using a semireal-
istic volume conduction model based on the individual anatomy
(Nolte, 2003). The temporal evolution of source activation at each
location in the brain was estimated using a linearly constrained
minimum variance (LCMV) beam-former algorithm (Veen et al.
1997) with the optimal dipole orientation at each voxel estimated
using singular value decomposition. Virtual sensors were then
reconstructed from all 3294 voxels by multiplying the sensor
level data by the corresponding set of optimized weights. At
this stage, data were subject to multivariate noise normalization
(Guggenmos et al. 2018; Ledoit and Wolf 2004), we calculated
the error covariance matrix at sensor level and then used this
combined with the filters from the LCMV to create the virtual
sensor data. This means that sensors with more noise would
be down-weighted compared to those with less noise. At this
stage, the data were also down-sampled to 600 Hz to reduce
computational cost.

MEG Temporal RSA

The MEG data were split to produce 10 partitions and then aver-
aged within each partition to perform a cross-validated represen-
tational similarity analysis to avoid the possibility of overfitting
the data (Diedrichsen and Kriegeskorte 2017; Haynes, 2015). RSA
was performed across time using a sliding time window with a
width of 20 ms and a time step of 5 ms creating 396 time windows
across 2 s of the movement trial (0.5 s rest, 1.5 s movement).
After selecting virtual sensors within the left hemisphere motor
region of the AAL atlas (Tzourio-Mazoyer et al. 2002) (Precentral
L, 31 sources; Supplementary Figure S8), the frequency-filtered
MEG signal measured during each movement type was compared
using a cross-validated approach within each time width. In each
iteration, the signals from one MEG data partition were assigned
to fold A, and the signals from the remaining nine partitions were
assigned to fold B; squared Euclidean distances were calculated
between all possible pairs of the 26 signals across the two-
folds and averaged (Walther et al. 2016). The use of multivariate
noise normalization to account for spatial autocorrelation in
the MEG signal yielded subject-wise cross-validated Mahalanobis
distance RDMs comparing the alpha-, beta-, or gamma-band
signal in the motor Region of Interest (ROI) across all possible
pairings of the 26 movements (Guggenmos et al. 2018).

Participant-level motor ROI RDMs were averaged in order to
perform a fixed-effects analysis. The correspondence between
the MEG-derived RDMs and the candidate group average kine-
matic, muscle, and ethological models across time was assessed
using a Spearman’s rank correlation, with the resulting ρ (rho)
values plotted for each time window. As in the fMRI analysis,
a rank-based correlation was used to allow for the comparison
of models originating from different source data without mak-
ing assumptions about the distribution of values within these
models. In light of the interest in contrasting the kinematic and
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muscle models, these were each assessed in a partial correlation
to discount the contribution of the other. Randomization testing
was used for statistical inference (Nichols and Holmes 2002),
whereby candidate model RDMs were shuffled 1000 times and
time-resolved correlation coefficients were recomputed in order
to estimate an empirical null distribution. P-values were calcu-
lated using a cluster thresholding approach across time. To cor-
rect for multiple comparisons, the cluster-forming threshold was
set to P < 0.01 and clusters in the correlation time-courses corre-
sponding to each candidate model were thresholded against the
maximal cluster distribution (α = 0.001).

To assess the maximal correlation possible with our data,
each participant’s RDM was correlated with the average cross-
subject RDM; the correlations were then averaged to obtain an
upper bound of the noise ceiling (Nili et al. 2014).

MEG: Action Observation Analysis

MEG data from the period of action observation during the
instruction video preceding each movement block were epoched
using the same approach as the MEG data recorded during
movement. The fixation cross and action observation trials were
epoched from the overall block. The action observation trial was
defined relative to the video stimulus onset time (preonset time:
0.5 s, postonset time: 3.0 s). The fixation cross period was used
as a baseline for the action observation period. Temporal RSAs
were conducted using the same approach as the MEG movement
data, as described above.

MEG Motion Considerations

MEG analysis included multivariate noise normalization to
account partially for the effects of motion, where each channel
is normalized by an estimate of error covariance across different
sensors; this process has been demonstrated to substantially
improve multivariate analyses of MEG data (Guggenmos et al.
2018). Motion parameters for all MEG acquisitions were extracted
and analyzed to rule out the possibility of excessive head motion
as a potential driving force behind any observed patterns of
brain activity. Rotational and translational displacement for
each participant and each experimental session are presented in
Supplementary Figure S11. In addition, the motion parameters
during each movement block were extracted and the resulting
distribution is presented across the 26 different movement
types (Supplementary Figure S12). The profiles of motion across
participants demonstrate a high quality data acquisition.

Electromyography with MEG

EMG data were acquired simultaneously with MEG data. Three
surface EMG electrodes were attached to the right hand under-
neath the data glove, positioned on APB, FDI, and ADM. The area
under the electrodes was exfoliated and cleaned with alcohol
prior to data acquisition. EMG signals were recorded at 1200 Hz.

EMG data were initially subject to a bandpass filter (20–
1000 Hz) and a notch filter (50 Hz). EMG data were epoched
and baselined alongside the MEG data. Epoched EMG data were
subject to manual artifact rejection. Signals from the three elec-
trodes during each epoch were independently subject to a Hilbert
transform and smoothing (5 ms smoothing window) prior to
activity onset segmentation using an adaptive threshold (activity
duration threshold: 200 ms) (Hooman Sedghamiz: Matlab File
Exchange: Automatic Activity Detection in Noisy Signals using
Hilbert Transform). A conservative estimate of muscle activity
onset was derived by taking the earliest signal onset detected

across the three EMG channels for each movement trial; any trial
in which the onset estimate from the EMG and data glove activity
recorded during MEG showed a discrepancy of >±100 ms was
excluded. Due to constraints of electrode placement alongside
the kinematic data glove, measures of activity onset were not
robustly measured in all participants. EMG onset data are pre-
sented in order to validate the data glove measures of movement
onset, which have been used to epoch the MEG data (Fig. 1 and
Supplementary Figure S10).

Results
We first used high-resolution fMRI data to perform a cross-
validated cortical surface-based searchlight RSA to find evidence
for the spatial encoding of kinematic information during
movement. In each participant and each cortical searchlight,
the unsmoothed pattern of fMRI activity during movement was
used to construct a RDM (Nili et al. 2014). The RDM was compared
to group average kinematic or muscle models (3D graphics 1
and 2), and a theoretical ethological action model, resulting in
representational similarity cortical surface maps of Spearman’s
ρ values for each participant and model. Spearman’s ρ surface
maps for each model were subject to an omnibus threshold
(α = 0.01) and used to construct a cross-participant heatmap.
This analysis assessed where the relative dissimilarities in the
kinematic, muscle and ethological actions across the different
hand movements were mirrored by the relative differences in
the pattern of fMRI activity elicited by performing the same
movements.

For the kinematic model, the searchlight revealed a strong
and very consistent representational similarity in the contralat-
eral precentral region of the anatomical hand-knob (Yousry
et al. 1997) across participants (Fig. 1, top row). Specifically,
the fMRI searchlight results revealed the consistent encoding
of the kinematic information in Brodmann area 4 during the
production of hand movements across participants (Table 2)
(Glasser et al. 2016). This means that the same differences
we observed in the kinematics of our 26 movements were
also observed in differences in the patterns of BOLD activity
measured in caudal M1 during movement production.

Inspection of the single-subject cortical searchlight results for
the kinematic model highlights the consistent and spatially lim-
ited correspondence of the kinematic model and fMRI data at the
level of individual participants in contralateral M1 (Fig. 2A). In the
contralateral hemisphere, the peak spatial overlap in the encod-
ing of kinematic information across participants was observed
in Brodmann areas 4 and 3a; other regions to reach significance
at the level of individual participant searchlight analyses, but
were not observed consistently across the entire group, include
Brodmann area 3a, Brodmann areas 2, 3b, and Brodmann area
(Supplementary Figure S3). A highly comparable result was also
observed using the group average kinematic model constructed
from the data glove recordings made in the behavioral test-
ing session (Supplementary Figure S19), highlighting the appli-
cability of this result to real-world hand use in an upright sit-
ting position. No such consistent representational similarity was
observed in the corresponding searchlight of movement-related
activity in the ipsilateral hemisphere at the group level; however,
at the level of individual participants, significant encoding was
observed in greater than three participants included Brodmann
areas 4, 3a, and 6 (Fig. 2B and Supplementary Figure S19B).

Equivalent spatial searchlight analyses for the muscle model
also revealed supra-threshold activity consistent with encoding
in the precentral region of the anatomical hand knob (Fig. 1,
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Table 2. Outline of peak anatomical correspondence between movement models and fMRI calculated using across participant cortical heatmaps

Model Peak heatmap overlap (Participants) Peak vertex Anatomical location

Kinematic 10 8053/5378 Brodmann area 4
Muscle 10 5070 Brodmann area 4

8015/8044 Brodmann area 3b
Ethological 8 8070 Area 3b

Peak regions calculated as centre of gravity of areas of peak overlap; peaks separated by a minimum of 20 mm. Vertex positions and anatomical definitions are based
on HCP S1200 32k release (Glasser et al. 2016).

bottom row). The muscle model shared representational struc-
ture with patterns of brain activity in more rostral and ventral
regions compared with the kinematic model, including both
areas of Brodmann areas 4 and 6, as well as areas of Brodmann
area 3b. This pattern showed less spatial consistency across
participants (Figure 1 and Supplementary S6). This means that
differences in the pattern of muscle activity measured across
different movements were mirrored by differences in the asso-
ciated patterns of BOLD activity in rostral M1 during movement
production.

In light of the interest in contrasting the kinematic and mus-
cle models (Leo et al. 2016), a Wilcoxon signed-rank test (one-
sided) was used to compare the vertex-wise ρ maps of these
two models, which demonstrated the superior fit of the group
average kinematic model in comparison to the group average
muscle model in a localized region principally corresponding to
Brodmann areas 4 and 3a (Nili et al. 2014) (Fig. 2).

The ethological action model (Supplementary Figure S18A)
revealed more limited evidence of consistent cortical encoding
across participants, centered on somatosensory cortex in the
postcentral gyrus; specifically, Brodmann area 3b (Supplemen-
tary Figure S18B).

High field fMRI data analyzed at the level of individual sub-
jects offered detailed spatial resolution, revealing distinct encod-
ing of kinematic and muscle information in different areas of the
hand knob region of M1.

However, fMRI offers relatively poor temporal resolution to
understand the point in time at which the kinematic and muscle
models match the pattern of brain activity in M1. The boundary
between motor and somatosensory cortex is increasingly blurred
by evidence of sensory processing in M1 (Hatsopoulos and
Suminski 2011) and motor modulation of sensory afferents (Lee
et al. 2008). The encoding of muscle and kinematic information
observed from patterns of fMRI activity may result from top-
down control of motor function, or from bottom-up propriocep-
tive information passed back to M1 and S1. In order to dissociate
the driving force behind the spatial model fit observed in the
fMRI data, a temporal RSA of MEG data was used to identify
the point during movement preparation or execution at which
kinematic and muscle information is encoded in the M1.

A cross-validated fixed-effects RSA was applied, comparing
a group average of the kinematic and muscle models to
the pattern of alpha (7–14 Hz), beta (15–30 Hz), gamma (30–
100 Hz) and broad (5-100 Hz) band MEG brain activity in M1
(Supplementary Figure S8) in 20 ms sliding windows during
movement preparation and execution. The ethological action
model was assessed in equivalent analyses. In light of the
interest in contrasting the group average kinematic and muscle
models, these models were assessed using a Spearman’s
correlation, as well as in a partial correlation to discount the
contribution of the other (Supplementary Figure S21).

Temporal MEG searchlight analysis revealed distinct temporal
encoding of the kinematic and muscle models in the alpha,

beta, and gamma frequencies. The kinematic model showed
significant encoding in the alpha band immediately after move-
ment onset (55–135 ms). In the beta band, the kinematic model
mirrored the pattern of brain activity in a significant peak from
before movement onset (−210 to −90 ms). This means that the
same differences that we observe in the kinematics of the 26
different movements under study are also observed in the oscil-
latory activity of motor cortex up to 200 ms before these move-
ments even begin. Specifically, before a movement is initiated,
information about the upcoming kinematics is encoded in the
beta oscillations recorded from primary motor cortex. In contrast,
the muscle model showed significant encoding in neural activity
substantially after movement initiation, which originated from
a temporal correspondence with information encoded in the
gamma band (735 to 795 ms relative to movement onset) (Fig. 3).
This means that over 700 ms after movements were initiated,
differences in the pattern of high frequency oscillations in motor
cortex mirrored differences in muscle activity across the 26
different movements.

An analogous MEG temporal searchlight analysis dur-
ing action observation revealed evidence of a correspon-
dence between the kinematic model and brain activity dur-
ing the movement videos preceding each movement block
(Supplementary Figure S4). During action observation a corre-
spondence between the MEG signal and kinematic model was
observed from 220–255 to 890–955 ms in the alpha band, 705–
735 ms in the beta band, and 545–560 ms in the gamma band,
relative to stimulus onset. No peaks in any frequency band were
observed for the muscle model or the ethological action model
during the period of action observation.

Discussion
Taken together, the MEG and fMRI results presented here strongly
implicate the distinct spatial and temporal encoding of kine-
matic and muscle information in M1. Specifically, fMRI data
suggest that kinematic information is represented more caudally
in M1, in Brodmann areas 4 and 3a. Complementary MEG data
suggested that kinematic information is encoded prior to and
immediately following movement onset in oscillatory neuronal
activity in alpha and beta frequencies (Fig. 3). In other words,
the relative differences in the kinematic structure of a range of
different hand movements is encoded in M1 up to 210 ms before
the onset of movement can be detected in the hand.

In contrast, the muscle-based movement model was encoded
in more rostral regions of M1, including Brodmann areas 4 and
6 (Figs. 1 and 3). Temporally, the muscle model was encoded
much later in the cycle of movement, starting at 735 ms after
movement onset in the gamma frequency (Fig. 3).

These results present strong new evidence in our understand-
ing of movement encoding in M1. They suggest that kinematic
features of movements are encoded immediately prior to and
during the initiation of a movement, consistent with a role
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Figure 3. MEG temporal RSA searchlight in motor cortex reveals distinct encoding of kinematic and muscle information. Temporal MEG searchlight analysis of the

broadband MEG signal revealed encoding of kinematic information around the time of movement onset (5–120 ms), contrasted against much later encoding of muscle

information 735–785 ms after movement onset. Decomposition of the MEG signal into alpha, beta, and gamma frequencies revealed distinct encoding of the group

average kinematic and muscle models across bands. The kinematic model showed significant encoding in the alpha band after movement onset (55–135 ms) and the

beta band prior to movement onset (−210 to −90 ms). In contrast, the muscle model showed significant encoding in the gamma band substantially after movement

onset (735–795 ms). Green line—movement onset defined by the data glove; blue regions—significant peaks in representational similarity between MEG data and the

model (1000 shuffled permutations of candidate model RDMs; cluster-forming threshold: P < 0.01; maximal cluster distribution (α = 001); dashed line—correlation noise

ceiling.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa009/5815556 by guest on 14 January 2021



Spatial and temporal encoding of kinematics Kolasinski et al. 11

for this organization’s structure in top-down motor control. In
contrast, brain activity that mirrors EMG recordings of muscle
activity was observed much later after movement onset in more
anterior regions of motor cortex; suggestive of a role in bottom
up signaling later during movement production.

The observation of distinct rostral and caudal representa-
tional structures in human M1 is in keeping with an extensive
primate literature reporting markedly distinct connectivity pro-
files along this axis of M1 in non-human primates. Specifically,
retrograde labelling studies have reported that the evolutionarily
newer caudal region of M1 contains a very high density of cortico-
motorneuronal cells (CM cells): those which make monosynaptic
connections with motoneurons and are associated with highly
skilled movements. In contrast, the evolutionarily older rostral
M1 contains few, if any, CM cells, relying instead on integrative
processes mediated via connections to interneurons in the spinal
intermediate zone (Rathelot and Strick 2009).

The observed kinematic information encoding in caudal M1
is in keeping with the notion of this cortical region containing
CM cells that facilitate specific muscle synergies (Cheney and
Fetz 1985). The evolutionary development of this caudal M1
region has been specifically associated with the rise of manual
dexterity in non-human primates: for example, the existence of
large populations of CM cells with monosynaptic connections
to motoneurons in the ventral horn of the spinal cord is a
hallmark of the ability for independent finger use in the cebus
monkey when compared to the squirrel monkey, which has a
similar hand structure, but lacks direct cortico-motoneuronal
projections (Bortoff and Strick 1993). These direct connections via
CM cells are not present at birth, but rather develop during early
life, and mirror patterns of enhanced dexterous function during
infancy and childhood (Olivier et al. 1997).

In contrast to encoding of kinematic information in caudal
M1, we observed encoding of muscle information in more rostral
regions of M1 (Fig. 2). Lacking CM cells, rostral M1 has been asso-
ciated with movement via pattern generators or motor primitives
via connections to spinal interneurons. In cats, which exhibit
only a rostral M1, electrical stimulation to motor cortex elicits
movements restricted to very precise muscular anatomy (Nieoul-
lon and Rispal-Padel 1976), rather than the patterns of complex
movement observed in similar studies of non-human primates
(Graziano, 2016). In addition, the inputs to rostral M1 differ from
caudal M1: neurons responsive to deep muscle or joint sensory
input are concentrated in rostral M1, while cutaneous sensory
inputs are concentrated in caudal M1 (Rathelot and Strick 2006;
Tanji and Wise 1981; Picard and Smith 1992).

Our results provide functional evidence for organizational
and temporal differences in the previously described ros-
tral and caudal divisions of M1. Caudal M1, with its direct
motoneuronal projections, here showed evidence of encoding
movement kinematics, prior to and immediately following
movement onset, during the production hand movements.
Rostral M1, with its strong deep muscle/joint sensory inputs,
showed evidence for the encoding of muscle-based information
derived from EMG recordings, which occurred 735–795 ms after
movement onset, strongly consistent with bottom-up sensory
signaling from deep joint and muscle receptors. This spatial
and temporal dissociation of functional organization in M1
provides a unique insight into the cortical control of dexterous
movements.

Information contained in the kinematic model showed tem-
porally distinct correspondence to information contained in the
alpha and beta bands of the MEG data. From 210 to 90 ms
before movement is detected, the representational structure in

the M1 beta band corresponds significantly to the representa-
tional similarity of the kinematics of the upcoming movement.
In other words, even before a movement begins, beta oscillatory
brain activity already differs depending on the kinematics of the
upcoming movement.

Beta oscillations are observed at rest; it is well established
that beta activity is suppressed immediately prior to and during
movement: movement-related beta desynchronisation (MRBD),
and then rebounds following movement cessation: postmove-
ment beta rebound (Pfurtscheller and Lopes da Silva 1999). The
magnitude of the reduction in beta-band power observed prior
to movement onset in motor cortex has been shown previously
to relate to the degree of uncertainty in the upcoming move-
ment (Tzagarakis et al. 2010) or action anticipation (Denis et
al. 2017). Previous comparisons of beta desychronisation made
across kinematic and kinetic tasks concur: the strength of MRBD
is correlated with the physical kinematic displacement of a given
hand movement rather than the magnitude of muscle contrac-
tion (Nakayashiki et al. 2014). Similar patterns of desynchroni-
sation are observed in alpha band activity, where ERD in M1
corresponds to increased activation in the region (Pfurtscheller
and Lopes da Silva 1999), with postmotion event related synchro-
nization in M1 (Ohara et al. 2000). The postmovement peak in
kinematic information encoding in the alpha band was observed
early after movement onset, during a window of time in which
the magnitude of ERD continues to increase after movement has
begun (Babiloni et al. 1999). Here we demonstrate that there is a
link between information contained in the beta frequency in M1
before movement onset and the subsequent kinematics of hand
movements (Figs. 1 and 3), suggesting that the encoding of an
upcoming motor command in beta oscillatory activity is based on
the kinematic outcome of the planned movement (Nakayashiki
et al. 2014; Engel and Fries 2010).

The observed concurrence between the group average muscle
model and patterns of brain activity measured by MEG occurred
sometime after movement onset (735–795 ms, Fig. 3). An increase
in the amplitude of gamma oscillations has previously been
reported during motor execution: movement-related gamma
synchronization (Cheyne et al. 2008; Nowak et al. 2018). Increased
gamma frequency power is correlated with the size of a given
movement, but their strength does not persist during isometric
contraction. However, increases in gamma power in M1 are
not observed in passive movement conditions, suggesting that
gamma activity is not directly associated with muscle activity
alone, but rather muscle activity associated with limb movement
and the associated sensory feedback (Muthukumaraswamy,
2010).

Hand kinematics have previously been investigated in the
context of human fMRI. Relative differences in target joint posi-
tion at the end of a hand movement have been shown previously
to mirror the relative differences in the fMRI signal in a broad
region of sensorimotor cortex (Leo et al. 2016).

Additional work considering unidigit and multidigit flexion
has demonstrated that patterns of M1 fMRI activity associated
with such movements are better explained by kinematic models
of digit couse than by competing muscle-based models (Ejaz
et al. 2015). In the present study, we have used MEG and 7 T BOLD
fMRI to fundamentally extend on these findings. Specifically in
the context of fMRI, high spatial resolution fMRI data enabled us
to reveal a spatial dissociation in muscle and kinematic infor-
mation encoding in M1 along the rostro-caudal axis (Fig. 2). We
have been able to pinpoint a region of caudal Brodmann area
4 in which kinematic information shows significantly greater
encoding than muscle information (Yousry et al. 1997). Taken

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/1/1/tgaa009/5815556 by guest on 14 January 2021



12 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

alongside evidence from MEG for a temporal dissociation of
kinematic and muscle information during the movement cycle,
these data strongly implicate kinematic organization structure
in top-down control of hand movements.

The fMRI spatial searchlight analysis did not reveal evidence
of consistent encoding of kinematic information in ipsilateral
M1 across participants (Supplementary Figure S3). Previous fMRI
studies provide evidence for the activation of ipsilateral M1 dur-
ing the production of individual unidigit movements (Diedrich-
sen et al. 2013; Berlot et al. 2018) but not multidigit sequences
of unidigit movements (Yokoi et al. 2018). The present study
considered a broad array of naturalistic hand movements, engag-
ing a wide variety of hand kinematics, involving simultaneous
and/or sequential movement of different digits. It is possible
that unlike sequences of unidigit movement, these more com-
plex movements do not drive the circuits of ipsilateral M1 as
unidigit movements do (Diedrichsen et al. 2013; Berlot et al.
2018).

Previous studies have made direct comparisons between
muscle-based models and kinematic models, arguing for the
latter as an organizing principle in the encoding of hand
movements (Ejaz et al. 2015; Leo et al. 2016). As with previous
studies, the present findings do not rule out the existence
of muscle representations in M1, but rather support the
existence of highly organized muscle representations structured
around movement kinematics rather than muscle anatomy.
The assertion perhaps explains the fractures and repetitions
observed in muscle representations during the search for an M1
body map (Lemon, 1988).

Data glove recordings were used to accurately define the
point of movement onset in order to epoch MEG trials rela-
tive to this point. This approach enabled us to make precise
and accurate statements regarding the nature of information
encoding in sensorimotor cortex before and after movement
began. The onset signals measured from data glove recordings
were validated against more limited concurrent EMG recordings
during MEG. Onset detection from EMG showed broadly later
onset detection times when compared against data glove record-
ings. The data glove recordings potentially provided a slightly
more conservative (i.e. earlier) estimate of movement detection
because of the limited muscle coverage feasible with surface
EMG electrodes. In any case, even using the more conserva-
tive movement onset detection times from the data glove, we
observe the encoding of kinematic information over 200 ms
prior to movement, supporting the notion that the kinematics
of an upcoming movement are relevant in motor execution
in M1.

The ethological action model reported less consistent pat-
terns of fMRI encoding, centered on the postcentral gyrus, con-
sistent with activation in S1 (Supplementary Figure S18). The
ethological action model also did not reveal any significant peak
in the temporal representational analysis. It is possible that while
at a coarse level, ethological maps exist in the primate cortex,
the concept of ethological organization does not extend down
to the fine-grain level of individual encoding of human hand
movements; in other words, the broad motor reportoire of the
human hand may not be encoded on the basis of the functional
role of each movement. However, in the case of the primate, the
coarser division of movements based on the functional role of the
entire upper limb, including the hand (e.g. feeding and reaching),
may play a role in the way the cortex is organized (Graziano
et al. 2002). The observed patterns of postcentral activity may
alternatively result from selective disinhibition of S1 by M1 dur-
ing motor activity, though such direct cortico-cortical signaling

remains speculative in the human brain (Lee et al. 2008, 2013;
Choi et al. 2018).

Analysis of the action observation period of the MEG
data preceding each movement block also provided some
support for the kinematic encoding of information in M1
(Supplementary Figure S4). Previous MEG data acquired during
action observation have demonstrated characteristic changes
in M1 activity comparable to action execution (Hari et al. 1998).
Analyses of event-related desynchronisation (ERD) in M1 during
action observation have suggested a peak change in the mu
frequency as the observed movement evolves (Tani et al. 2018).
These observations are potentially consistent with the pattern
of kinematic model fit observed in the alpha and beta band MEG
data during action observation, when the trajectory of movement
has become clear (Supplementary Figure S4). Additional work
considering the encoding of kinematic information in oscillatory
alpha band activity in M1 suggests that the observation of
stimuli consistent with biological motion is sufficient to induce
ERD in this frequency band (Meirovitch et al. 2015), potentially
consistent with the notion that during observation of biological
motion, M1 may encode kinematic information. Given the focus
of the present study on movement production, the infrequent
and brief exposure of participants to action observation stimuli
during the fMRI experiment did not provide sufficient data
to make firm inferences regarding the spatial encoding of
kinematic information while movements were observed. Based
on existing meta-analyses, one would expect that such kinematic
information could be encoded across a broad network of brain
regions known to exhibit motor mirror properties (Molenberghs
et al. 2012).

The data presented in this study rely on complementary
information acquired from BOLD fMRI and MEG, though the remit
of this work does not extend to fusion of the two modalities.
BOLD fMRI provides only an indirect measure of neuronal activity
based on haemodynamic changes associated with the execution
of a given task (Jezzard et al. 2001), which can be resolved with
a relatively high degree of spatial specificity with 7 T imaging.
In contrast, MEG reflects a more direct, temporally rich, measure
of neuronal activity. While the origins of the measured signals
differ, compelling recent evidence provides noncoincidental data
to support the notion of shared information across MEG and
fMRI measures of brain activity across a wide range of frequency
bands (Hipp and Siegel 2015); similar correspondences have been
reported from invasive electrocorticography data (Siero et al.
2014). However, the spatial component of MEG data must be
inferred from mathematical modeling. Despite advances in the
context of MEG source localization, this feature of MEG analysis
limits the spatial specificity of the measured signals, which
integrate information across relatively large tissue volumes in
comparison with fMRI (Hall et al. 2014). It is therefore not possible
to definitely colocalize the signals from MEG and fMRI data. Thus,
the motor cortex MEG signal used in the temporal multivariate
searchlight analysis could have been influenced by signals from
adjacent somatosensory cortex; mu-rhythm activity has been
shown to associate with sensorimotor BOLD activity (Yin et al.
2016). However, previous data from comparative MEG/fMRI stud-
ies has suggested a broad association of the sensorimotor alpha
frequency signal with the BOLD activity in the postcentral gyrus,
and the beta frequency with BOLD activity in the precentral
gyrus (Salmelin and Hari 1994; Salmelin et al. 1995; Cheyne
et al. 2003; Ritter et al. 2009), a similar gradient has been sup-
ported broadly by intracortical recordings from non-human pri-
mates (Jasper and Penfield, 1949; Rougeul et al. 1979). Here, we
observe a premovement encoding of kinematic information in
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the beta frequency, and a similar peak immediately after move-
ment onset in the alpha frequency (Fig. 3). It is therefore possible
to speculate that the beta frequency encoding is more likely to
represent precentral activity in motor cortex, which would again
support the conclusion that kinematic information is involved in
the top-down control of dexterous movement.

In this work, we apply a rich multimodal design with mul-
tivariate analysis to provide evidence for spatial and tempo-
ral dissociations of kinematic and muscle-based information in
human M1 during hand movement. Mounting evidence for the
encoding of complex kinematic information in M1 from this and
other work continues to blur the boundary between primary
somatosensory and primary motor cortex: even M1 neurons have
been shown to rapidly consolidate sensory torque information
across multiple joints (Pruszynski et al. 2011). The notion of
kinematic representation in M1 immediately prior to movement
initiation is compatible with recent evidence of the tight inte-
gration of information across the central sulcus (Arce-McShane
et al. 2016), whereby S1 encodes the current body state, while
M1 encodes the kinematics necessary to achieve the intended
body state. Such a system of motor control would see kinematic
information encoded prior to movement onset as a prediction for
the future sensory inputs expected by S1 when a movement has
been achieved (Adams et al. 2013).

Supplementary Material
Supplementary material is available at Cerebral Cortex
Communications online.
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