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Abstract 34 

The state of intermediate hyperglycemia is indicative of elevated risk of developing 35 

type 2 diabetes1. However, the current definition of prediabetes neither reflects 36 

subphenotypes of pathophysiology of type 2 diabetes nor is it predictive of future 37 

metabolic trajectories. We used partitioning on variables derived from oral glucose 38 

tolerance tests, MRI measured body fat distribution, liver fat content, and genetic risk 39 

in a cohort of extensively phenotyped individuals who are at increased risk for type 2 40 

diabetes2,3 to identify six distinct clusters of subphenotypes. Three of the identified 41 

subphenotypes have increased glycemia (clusters 3, 5 and 6), but only individuals in 42 

clusters 5 and 3 have immanent diabetes risks. By contrast, those in cluster 6 have 43 

moderate risk of type 2 diabetes, but an increased risk of kidney disease and all-cause 44 

mortality. Findings were replicated in an independent cohort using simple 45 

anthropomorphic and glycemic constructs4. This proof-of-concept study demonstrates 46 

that pathophysiological heterogeneity exists before diagnosis of type 2 diabetes and 47 

highlights a group of individuals who have an increased risk of complications without 48 

rapid progression to overt type 2 diabetes.  49 

 50 

 51 

  52 
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Introduction 53 

Type 2 diabetes occurs when insulin secretion from pancreatic beta-cells cannot 54 

sufficiently be increased to compensate for insulin resistance. Causes of beta-cell 55 

dysfunction and insulin resistance are heterogeneous, as are individual trajectories of 56 

hyperglycemia and subsequent manifestation of diabetes complications5. The currently 57 

used binary definition of type 2 diabetes is based solely on blood glucose and cannot 58 

differentiate between patients with mild or more aggressive disease, the latter of which 59 

is prone to early development of complications. In addition to blood glucose, new 60 

proposed diabetes classifications6,7 introduced additional variables, such as insulin 61 

secretion and insulin sensitivity, to sub-classify the type 2 diabetes spectrum with the 62 

primary aim of a better prediction of metabolic dysfunction and complications.  63 

The development of type 2 diabetes is a slow process, and its manifestation is 64 

preceded by a phase of prediabetes which often remains undiagnosed. Some diabetes 65 

complications, such as the unexpectedly frequent early diabetic kidney disease in the 66 

newly identified severe insulin resistant diabetes cluster6, might require preventive 67 

actions prior to the clinical manifestation of type 2 diabetes. The assessment of insulin 68 

secretion and insulin sensitivity could be hindered by secondary gluco-lipotoxicity, 69 

once diabetes has developed and glucose levels are continuously elevated8. 70 

Determination of prediabetes subphenotypes prior to the manifestation of diabetes 71 

could improve detection of individuals at risk for diabetes and complications.  72 

Using accurate measurements of insulin sensitivity and insulin secretion based on oral 73 

glucose tolerance test (OGTT)-derived variables, as well as variables linked to 74 

diabetes pathogenesis, we describe a novel subphenotyping approach of metabolic risk 75 

before diabetes manifestation. Variables include HDL-cholesterol, which has been 76 

causally linked to type 2 diabetes9, MR-imaging-derived measures of metabolically 77 

unfavorable and favorable fat compartments10 and liver fat content measured with 1H-78 

MR-spectroscopy. To assess genetic liability, we also incorporated a type 2 diabetes 79 

polygenic risk score11 as partitioning variable. The clusters identified by the 80 

sophisticated phenotypes in the TUEF/TULIP cohort were replicated using simpler 81 

markers of similar anthropometric and glycemic constructs in a large prospective 82 

occupational cohort (the Whitehall II study)4. Our results suggest that stratification of 83 
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populations at increased risk for type 2 diabetes using simple clinical features could 84 

allow for precise and efficient prevention strategies individuals at increased risk of 85 

developing type 2 diabetes. 86 

  87 
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Results  88 

Initial clustering and identification of the subphenotypes was done using data from a 89 

subset of participants (n=899) from the Tuebingen Family study and Tuebingen 90 

Lifestyle Program (TUEF/TULIP) study. Analysis was performed on data for 91 

participants who had no missing values for the preselected phenotyping variables: 92 

glucose challenge; insulin sensitivity; insulin secretion; HDL-cholesterol; liver fat 93 

content; subcutaneous fat volume; visceral fat volume; and a polygenic risk score for 94 

type 2 diabetes risk  The clustering was replicated in the Whitehall II cohort (n=6810) 95 

using conceptually similar variables: glycemia during glucose challenge, insulin 96 

sensitivity, insulin secretion, fasting insulin, fasting triglycerides, waist circumference, 97 

hip circumference, BMI and HDL-cholesterol (Extended Data 1; see Methods).  98 

We identified six clusters with distinctive patterns of the variables in the TUEF/TULIP 99 

study (Figure 1.A,B), which were replicated in the Whitehall II cohort (Figure 1 C,D). 100 

Cluster characteristics and comparisons are shown in Table 1, Suppl.Table 1-3 and key 101 

features of the clusters are reported in Extended Data  2.  102 

 103 

There was a cluster-specific enrichment of the diabetes-related genetic 104 

variant rs10830963 in MTNR1B (ANOVA p=0.02 after Benjamini-Hochberg 105 

correction for multiple testing, Suppl.Table 4). Participants in cluster 3 had higher 106 

frequency of the diabetes-associated G allele compared with those in cluster 1 107 

(uncorrected p=0.00036 for cluster 3 relative to cluster 1). Using the 108 

pathophysiological classification of diabetes-related genetic variants proposed by 109 

Udler et al12, we found differences within the beta-cell group (uncorrected p=0.001, 110 

p=0.007 after Benjamini-Hochberg correction, Figure 2.A). Pairwise comparisons 111 

showed significant differences between cluster 6 and each of clusters 1, 2 and 3 112 

(ANOVA with Tukey’s post-hoc test p<0.05), suggesting a lower abundance of beta-113 

cell function related risk alleles in cluster 6.  114 

 115 

In the longitudinal analysis, all participants with available data were followed for the 116 

development of diabetes, nephropathy, cardiovascular endpoints and all-cause 117 

mortality (Figure 3). The proportional hazards assessment in Whitehall II is shown in 118 

Suppl.Table 5. Diabetes incidence was the highest in cluster 5, followed by cluster 3 in 119 
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both the TUEF/TULIP and Whitehall-II cohorts. Mean follow-up was 4.1 and 16.3 120 

years, respectively. In TUEF/TULIP, participants in cluster 6 did not demonstrate an 121 

increased risk for diabetes (Figure 3.A). The diabetes-risk of cluster 6 was only 122 

moderately elevated in Whitehall II (HR 2.22[CI:1.7-2.89] compared with cluster 1.  123 

Cluster 3 and 5 showed hazard ratios of 3.45[CI:2.76-4.31] and 6.62[CI:5.06-8.67], 124 

respectively, compared with cluster 1, (Figure 3.C, Suppl.Table 5). By contrast, cluster 125 

2 had a significantly lower risk of developing diabetes in the Whitehall II cohort 126 

compared with cluster 1 (HR 0.4[CI:0.33-0.47]). Current smoking was a risk factor for 127 

diabetes in Whitehall II, but did not affect the risk of diabetes for participants in 128 

clusters 3, 5 and 6 (Suppl.Table 6).  129 

In Whitehall II, there were 201 participants with incident diabetes and a defined 130 

Ahqlvist diabetes classification6. Relatively few participants developed diabetes in the 131 

metabolically healthy clusters (cluster 1: 48 of 817 [5.9%], cluster 2: 62 of 2552 132 

[2.4%], cluster 4: 14 of 314 [4.5%], out of those eligible for computation of the 133 

Ahlqvist-classes). Of these participants, most (34 of 48 [70.8%], 59 of 62 [95.2%] and 134 

12 of 14 [85.7%], respectively) transitioned into mild diabetes classes according to the 135 

Ahlqvist-classification (mild obesity-related diabetes [MOD] and mild age-related 136 

diabetes [MARD]). 13 of 23 participants (57%) in cluster 6 (13 of 23 [57%]) 137 

developed severe insulin resistant diabetes (SIRD, Suppl.Table 7 and Extended Data 138 

3).  139 

We used two approaches to compare our multivariable clustering with glucose-based 140 

stratification alone. We first tested cumulative diabetes risk for the Hulman classes13 141 

that are computed from the glucose course during an OGTT (Extended Data 4). Next, 142 

we stratified the baseline AUC glucose of Whitehall II into 5 quintiles, (Extended Data 143 

5). In head-to-head comparisons, the cumulative diabetes risk of the high risk clusters 144 

3 and 5 together was higher than that of Hulman-classes 3 and 4 together (p=0.04, 145 

TUEF/TULIP) and also higher than that of the top 2 AUC glucose quintiles (p<0.0001, 146 

Whitehall II, both log-rank tests). Thus, our cluster-based approach was superior to 147 

both of these approaches in delineating groups with high cumulative risk for 148 

development of diabetes. 149 

 150 
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The overall difference in the Kaplan-Meier curves for microalbuminuria did not reach 151 

statistical significance in TUEF/TULIP (mean follow-up 4.3 years, number of 152 

events=71, plog-rank, uncorrected=0.061, Figure 3.B). In the proportional hazard assessment, 153 

cluster 6 showed a significantly higher risk for microalbuminuria compared with 154 

cluster 1 (p=0.01).  Results were similar but not significant for the Whitehall II 155 

participants with available baseline urine measurements (n=316, number of events=58, 156 

uncorrected p=0.058) when adjusting for baseline urinary albumin-to-creatinine ratio. 157 

In Whitehall II, participants in cluster 6 had a significantly higher risk for stage 3 158 

chronic kidney disease or worse than cluster 1 (uncorrected p=0.0003, mean follow-up 159 

18.2 years, number of events 1387, Figure 3.D, Extended Data 6). Individuals in the 160 

diabetes susceptible clusters 3 and 5 also demonstrated higher risks for chronic kidney 161 

disease relative to cluster 1 in Whitehall II (uncorrected p=0.004 and p=0.02, 162 

respectively, Suppl.Table 5). The fully adjusted model also controlled for smoking, 163 

cholesterol and triglycerides is shown in Suppl.Table 8. Given that participants in 164 

cluster 6 had elevated visceral fat, we hypothesized that this could be associated with 165 

fat in the renal sinuses, which is a risk factor for exercise-induced microalbuminuria14. 166 

TUEF/TULIP participants in cluster 6 had the most renal sinus fat compared with 167 

other clusters (p<0.05 for all pairwise comparisons, Tukey’s post-hoc test, Figure 2.B, 168 

N=199). It was higher than in cluster 5 after adjusting for potential confounders 169 

(Suppl.Table 9.A-D).  170 

 171 

In the TUEF/TULIP cohort, we used carotid intima media thickness (IMT) as a proxy 172 

for cardiovascular end-points due to a lack of a register-based assessment of clinical 173 

events. IMT was associated with cluster membership (F=14.55, degrees of freedom=5, 174 

p<0.001). Each of clusters 3, 5 and 6 had higher IMT values than each of clusters 1, 2 175 

or 4 (Extended Data 7 and Suppl.Table 1, p<0.002). After adjustment for sex, age, age² 176 

and BMI, cluster 3 and 5 had higher IMT than cluster 1 (p<0.03). In the Whitehall II 177 

cohort, we evaluated the incidence of coronary heart disease (CHD, mean follow-up 178 

17.2 years, 800 events, see Figure 2.E). As a combined vascular endpoint, we also 179 

investigated the incidence of CHD and stroke (mean follow-up 22.9 years, 1040 180 

events, Suppl.Table 5). In the proportional hazard assessment, the elevated 181 

cardiovascular risk in cluster 5 was not independent from sex, age and BMI, but 182 
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consistently lower in cluster 2 compared with cluster 1, also after adjustments 183 

(Suppl.Table 5). Compared with cluster 1 in Whitehall II, all-cause mortality was by 184 

about 40% higher for cluster 6 (Figure 3.F), while cluster 2 had a lower mortality rate, 185 

even after adjustments for covariates (Suppl.Table 5). The elevated mortality risk in 186 

cluster 6 (relative to cluster 1) was not affected by adjustment for smoking and lipids 187 

(full model in Suppl.Table 10). 188 

 189 

 190 

 191 

  192 
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Discussion 193 

The applied variable-based partitioning of individuals without type 2 diabetes yielded 194 

groups differing in risk for type 2 diabetes and its complications. We validated these 195 

findings using simple measures of the same pathophysiological constructs in a large 196 

occupational cohort. 197 

Cluster 5 was identified as the subpopulation of the highest risk of type 2 diabetes, 198 

renal and vascular disease and all-cause mortality. Individuals in this cluster had 199 

obesity, insulin resistance, high levels of fatty liver and low insulin secretion. Cluster 6 200 

represented an insulin resistant phenotype, in which participants had high amounts of 201 

visceral fat, but less liver fat and higher insulin secretion compared with cluster 5. 202 

About half of the participants in cluster 6 had prediabetes on enrollment in the 203 

TUEF/TULIP study. However, mean glycemia (AUC glucose) was lower than in 204 

cluster 5, and the risk of type 2 diabetes was considered to be moderate. Nonetheless, 205 

participants in cluster 6 had high risk for microalbuminuria and chronic kidney 206 

disease. Cardiovascular risk was not elevated in this cluster; however, overall 207 

mortality was about 40% higher than in the reference cluster 1 even after adjustment 208 

for confounders. Thus, clusters 5 and 6 both constitute obese, high-risk subpopulations 209 

with different glycemic, renal, cardiovascular and all-cause mortality risk profiles. 210 

Glucose does not seem to be the major driver of clinical events in cluster 6. Previous 211 

observations of an association of insulin resistance with diabetic nephropathy15–17 212 

highlight insulin resistance as a probable underlying factor. The discrepancy between 213 

moderate type 2 diabetes and high nephropathy risk for cluster 6 is not dependent from 214 

baseline blood pressure. However, individuals in cluster 6 had elevated renal sinus fat, 215 

which could contribute to manifestation of nephropathy. We previously showed an 216 

association between renal sinus fat and exercise-induced albuminuria in a cross-217 

sectional cohort and an association of microalbuminuria with renal sinus fat in 218 

individuals with non-alcoholic fatty liver disease14,18. In renal sinus fat and renal cell 219 

co-culture experiments, the combination of renal sinus fat and Fetuin-A induced 220 

inflammation indicate a combination of an insulin resistant metabolic milieu and 221 

adverse fat accumulation as a likely cause of organ damage18. This finding is 222 

consistent with the phenotypes of insulin resistance, moderately high liver fat and high 223 
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renal sinus fat in cluster 6. Cluster 6, in which participants had moderate or delayed 224 

risk of diabetes, showed a relatively low genetic risk for type 2 diabetes and a low 225 

abundance of genetic variants from the beta-cell class in the Udler classification12. 226 

This result implies an effective compensation of insulin resistance through excellent 227 

beta-cell function. We speculate that hyperinsulinemia associated with the 228 

combination of good beta-cell function and insulin resistance contributes to renal 229 

disease and mortality19–21. Smoking was a risk factor both for diabetes and chronic 230 

kidney disease22–24, but did not explain the differences among clusters.  231 

Contrast to the three high-risk clusters 3, 5 and 6, cluster 4 comprises participants with 232 

obesity but low glycemic deterioration.  Phenotypic traits of individuals in this cluster 233 

are compatible with the concept of metabolically healthy obesity25. Cluster 4 was also 234 

associated with lower risk of type 2 diabetes, independently from sex, age, and BMI. 235 

Individuals in this cluster had body fat predominantly stored in subcutaneous rather 236 

than visceral depots, a pattern known to be metabolically more favorable26.   237 

In cluster 3, the partitioning identified a phenotype characterized by elevated genetic 238 

risk and low insulin secretion, which might explain the high diabetes incidence seen in 239 

this group. The moderately elevated visceral fat compartment correlates with 240 

pancreatic fat, which has been associated with disturbed insulin secretion in a 241 

prediabetic environment18,27,28. Cluster 3 with a disposition index as low as cluster 5, 242 

but higher insulin sensitivity could correspond to beta-cell dysfunction subphenotypes 243 

identified in previous studies6,7,29. Cluster 3 had high IMT, independent from sex, age 244 

and BMI. Increased cardiovascular risk was not replicated for this cluster in Whitehall 245 

II, but individuals in this cluster had a moderately elevated risk of chronic kidney 246 

disease.  247 

 248 

Our clustering approach is not designed to provide definitive subphenotypes for 249 

individual patients in a clinical setting; however, the approach can be helpful for 250 

characterizing the metabolic heterogeneity prior to clinical manifestation of type 2 251 

diabetes. The identification of such subphenotypes suggests some potential therapeutic 252 

implications. Individuals in cluster 5 are at imminent risk for diabetes and could 253 

benefit from high intensity dietary and/or lifestyle interventions aimed at weight loss 254 

and liver fat reduction. Individuals with the characteristics of cluster 3 might benefit 255 
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from a standard aerobic exercise and dietary caloric restriction via reduction of 256 

visceral fat. Although clusters 3 and 5 have elevated genetic risk as non-modifiable 257 

risk factor, genetic predisposition might be protective against development of type 2 258 

diabetes for individuals with a cluster 6 phenotype. This group could be easily 259 

overlooked when risk-stratification focuses on established diabetes-related glycemic 260 

cut-offs. Insulin resistance with or without prevalent prediabetes associates with renal 261 

disease and elevated mortality in cluster 6, which should motivate consideration of 262 

preventive measures even with low glycemic progression.  263 

Our subphenotyping was performed in persons who did not yet suffer from diabetes, 264 

but who are at potentially increased risk, as demonstrated by the newly diagnosed 265 

cases in the follow-up period. The classification emerges partly from variables that 266 

require an OGTT. OGTT-derived glycemic traits can reasonably assess insulin 267 

sensitivity and secretion, particularly in the absence of diabetes. An elegant metabolic 268 

clustering of glycemic courses during OGTT has been proposed by Hulman et al13. We 269 

have applied an alternative approach with a broad set of variables in addition to 270 

OGTT. Our data complement other clustering approaches targeting the 271 

disentanglement of the heterogeneity of adult-onset diabetes6,7,12. We show that cluster 272 

6 most strongly connects to the SIRD cluster of the Ahlqvist-classification6,30. Cluster 273 

6 and SIRD bear similarities, such as an elevated risk of nephropathy in the absence of 274 

marked glucose elevation. Thus, accumulating data indicate that the pathogenesis of 275 

kidney damage in type 2 diabetes appears to be different from that of type 1 diabetes, 276 

with only a minor contribution of glycaemia in prediabetes and type 2 diabetes. Of 277 

note, by contrast with the Ahlqvist-classification, our work analyzed screen-detected 278 

diabetes cases as outcomes during the follow-up periods. These cases probably have 279 

milder phenotypes than clinically detected type 2 diabetes cases.  280 

Our results are demonstrated in two independent study groups: a cohort by design 281 

enriched in diabetes-prone persons and a UK occupational cohort. This most likely 282 

contributes to the observed differences between the Kaplan-Meier plots in the two 283 

cohorts, especially for diabetes incidence. Given the lack of ethnic diversity of the 284 

investigated populations leveraged in our study, our findings might only be applicable 285 

to white European populations. We also acknowledge the limitations of the 286 

partitioning approach: there is uncertainty with regard to variable selection, the 287 
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optimal number of clusters and whether these approaches are inferior to conventional 288 

predictions from multivariable modeling29. Additional specific limitations of our work 289 

are the different feature variable set and the moderate reassignment rate (63%) of the 290 

original clusters to the feature set of Whitehall II. Given the sophisticated nature of the 291 

variables in TUEF/TULIP cohort, the clinical utility of these features for metabolic 292 

classification could be limited. Further, in the TUEF/TULIP cohort, only about half of 293 

the population was available for follow-up visits. This high attrition rate could lead to 294 

a potential underestimation of the risk for diabetes and nephropathy in TUEF/TULIP 295 

cohort. A final limitation is that the nephropathy models in Whitehall II are not 296 

adjusted for baseline eGFR due to a lack of baseline measurements and the absolute 297 

risks being low. 298 

In summary, we show the feasibility of multi-variable subphenotyping in individuals 299 

without diabetes to disentangle metabolic heterogeneity prior to diagnosis of type 2 300 

diabetes. The metabolic clusters identified here associate with future complications 301 

related to prediabetes, insulin resistance, future risk of type 2 diabetes and mortality. 302 

These subphenotypes likely reflect key pathologic features potentially underlying 303 

different fates of metabolic complications but are not aimed at classifying single 304 

patients in clinical practice; however, with further development and validation, such 305 

approaches could guide prevention and treatment strategies for cardiovascular and 306 

renal disease as well as type 2 diabetes.  307 
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Figure legends 427 

Figure 1. Distribution of the cluster feature variables 428 

Partitioning of participants into 6 clusters along 8 variables in the TUEF/TULIP 429 

(N=899, Panel a, b) and 9 variables in the Whitehall-II cohort (N=6810, Panel c, d). 430 

Panel a and c show the number of participants in each cluster with colors indicating 431 

glycemic categories (NGT = normal glucose tolerance, IFG = impaired fasting 432 

glycaemia, IGT = impaired glucose tolerance, IFG+IGT concomitant impaired fasting 433 

glycaemia and impaired glucose tolerance). Panel b and d show the medoids (the 434 

representative subject, TUEF/TULIP) or the medians (Whitehall-II) of each cluster 435 

with the corresponding standardized level (Z-scores) of the feature variables. Clusters 436 

in the Whitehall-II cohort were identified using Euclidean distances from the median 437 

values of the proxy variables in TUEF/TULIP that have also been assessed in 438 

Whitehall-II. For the radar-charts (b, d), the Z-scores of insulin sensitivity, insulin 439 

secretion and HDL were directionally flipped (-1*Z-score) to yield polygon areas 440 

related to adverse variable effects. 441 

  442 
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Figure 2. Characteristics potentially contributing to cluster pathomechanism 443 

a, Mean pathway-specific genetic scores according to Udler et al across the 6 clusters 444 

of this work. Genetic scores (n=899 risk scores of individuals in TUEF/TULIP for 445 

each of the 5 specific pathways) were transformed to Z-scores to eliminate differences 446 

in absolute levels due to the differing number of genetic variants in each genetic 447 

pathway. Boxes (hinges) denote the 25th and 75th percentiles with an additional 448 

horizontal line indicating the median. Whiskers show the highest and lowest data 449 

points excluding outliers (defined as at least 1.5×interquartile range below the lower or 450 

above the upper hinge). Outliers are shown as individual data points. Differences were 451 

tested with one-way ANOVA. 452 

b, Distribution of renal sinus fat (ratio of sinus fat to kidney area, mean of left and 453 

right) for n=520 individuals with MRI-assessed renal sinus fat in TUEF/TULIP) across 454 

clusters (p=1.25×10-26 with one-way ANOVA). Pairwise tests for cluster 6 with 455 

Tukey’s test yielded the following p-values: p5-6 =0.02, p3-6=0.049, p6-others <1×10-14.  456 

 457 

 458 

  459 
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Figure 3. Cluster-specific outcomes 460 

Kaplan-Meier curves showing cluster-specific probability of not developing diabetes 461 

(a, c), nephropathy (c, d) in the TUEF/TULIP and Whitehall-II cohorts, respectively. 462 

Cumulative probability of coronary heart disease (CHD, e) and overall mortality (f) 463 

are shown for the Whitehall II cohort. For diabetes incidence: n=421, mean follow-up 464 

4.1 years, number of diabetes events = 40 in TUEF/TULIP and n=6643, mean follow-465 

up 16.3 years, number of diabetes events = 828 in Whitehall II. For microalbuminuria 466 

incidence: n=388, mean follow-up 4.3 years, number of microalbuminuria events = 71 467 

in TUEF/TULIP. In Whitehall II n=5182 mean follow-up 18.2 years with 1387 Stage 3 468 

chronic kidney disease or worse (estimated glomerular filtration rate < 60 469 

ml/min/1.73m2) incidences. For CHD, n=6537, mean follow-up 17.2 years, 800 470 

events. For all-cause-mortality, n=6803, mean follow-up 21.1 years, 825 deaths. All p-471 

values were computed with two-sided log-rank tests. 472 

 473 

  474 
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Table 1 476 

Cluster characteristics of the TUEF/TULIP cohort after stratification for the 6 clusters. P-values were computed with one-way ANOVA 477 

for continuous variables and two-sided chi-squared tests for categorical variables. 478 
  

 1 2 3 4 5 6  p-value 

 Low risk Very low 

risk 

Beta-cell 

failure 

Low risk 

obese 

High risk 

insulin 

resistant 

fatty liver 

High risk 

visceral fat 

nephropathy 

 

 

n 173 154 146 153 91 182   

sex = male (%) 64 (37.0)  59 (38.3)  65 (44.5)  56 (36.6)  35 ( 38.5)  67 (36.8)   0.72 

age (mean (SD)) 39.05 

(12.55) 

41.75 

(13.29) 

52.26 

(12.11) 

40.14 

(11.85) 

49.74 

(11.81) 

47.38 (12.64)  
8.7×10-27 

BMI (kg/m2) (mean (SD)) 26.82 

(3.16) 

23.45 

(3.32) 

29.15 

(4.01) 

31.54 

(3.67) 

34.45 

(5.11) 

34.94 (4.90)  
1.6×10-135 

waist circumference (cm) (mean 

(SD)) 

88.44 

(9.63) 

80.58 

(9.80) 

97.11 

(11.21) 

99.14 

(10.59) 

108.17 

(12.88) 

107.86 (12.34)  
1×10-111 

hip circumference (cm) (mean 

(SD)) 

101.62 

(7.71) 

95.66 

(8.01) 

105.80 

(13.25) 

112.61 

(9.01) 

115.17 

(11.02) 

117.06 (10.58)  
3.1×10-89 

total adipose tissue MRI (liter) 

(mean (SD)) 

27.71 

(6.42) 

20.75 

(7.63) 

33.27 

(9.98) 

42.34 

(9.31) 

46.20 

(12.07) 

48.28 (12.00)  
4.4×10-142 

sq adipose tissue MRI (liter) (mean 

(SD)) 

8.78 (3.13) 5.96 (3.50) 10.95 

(4.33) 

15.02 

(4.79) 

16.72 

(5.75) 

18.13 (6.19)  
1.6×10-111 

visceral adipose tissue MRI (liter) 

(mean (SD)) 

2.40 (1.48) 1.77 (1.21) 4.16 

(1.92) 

3.75 (1.97) 5.73 

(2.34) 

5.64 (2.44)  
1.9×10-87 

sq to visceral adipose ratio (mean 

(SD)) 

5.16 (3.13) 4.63 (2.84) 3.38 

(2.18) 

5.38 (3.18) 3.33 

(1.56) 

3.78 (1.95)  
5×10-15 

visceral adipose % of total (mean 

(SD)) 

0.09 (0.06) 0.09 (0.06) 0.13 

(0.06) 

0.09 (0.06) 0.13 

(0.05) 

0.12 (0.06)  
5.9×10-17 

liver fat content (mean (SD)) 3.34 (3.25) 2.16 (2.90) 5.10 

(3.72) 

3.61 (3.51) 20.79 

(5.73) 

9.88 (5.49)  
5.2×10-193 

fatty-liver disease (%) = yes (%) 28 (16.2)  8 ( 5.2)  51 (34.9)  26 (17.0)  91 

(100.0)  

137 (75.3)   
3.1×10-82 

renal sinus fat (mean of r&l, %) 5.20 (3.80) 5.77 (4.23) 9.42 7.15 (4.52) 10.02 12.07 (6.08)  1.3×10-26 
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(mean (SD)) (4.75) (4.87) 

systolic blood pressure (mmHg) 

(mean (SD)) 

126.26 

(14.15) 

123.36 

(15.81) 

135.73 

(18.59) 

126.32 

(15.43) 

143.66 

(19.34) 

137.86 (17.06)  
6.3×10-29 

diastolic blood pressure (mmHg) 

(mean (SD)) 

80.25 

(10.64) 

78.52 

(11.09) 

84.93 

(12.07) 

81.16 

(10.14) 

92.57 

(13.62) 

87.47 (12.07)  
2.5×10-24 

heart rate (mean (SD)) 69.35 

(10.00) 

67.47 

(10.85) 

69.29 

(9.91) 

68.13 

(10.76) 

75.39 

(12.26) 

72.26 (9.64)  
1.9×10-08 

fasting glucose (mmol/l) (mean 

(SD)) 

5.12 (0.44) 5.04 (0.50) 5.64 

(0.55) 

5.14 (0.41) 5.93 

(0.58) 

5.48 (0.50)  
1.6×10-56 

post-challenge glucose (mmol/l) 

(mean (SD)) 

6.12 (1.09) 5.99 (1.26) 7.87 

(1.38) 

5.72 (0.86) 8.31 

(1.54) 

7.10 (1.38)  
1.2×10-80 

glycaemic category (%)        2.3×10-68 

NGT 139 (80.3)  126 (81.8)  36 (24.7)  131 (85.6)  12 ( 13.2)  85 (46.7)    

IFG 24 (13.9)  17 (11.0)  41 (28.1)  20 (13.1)  20 (22.0)  46 (25.3)    

IGT 8 (4.6)  10 (6.5)  36 (24.7)  1 (0.7)  14 (15.4)  29 (15.9)    

IFG+IGT 2 (1.2)  1 (0.6)  33 (22.6)  1 (0.7)  45 (49.5)  22 (12.1)    

GAD antibody = TRUE (%) 5 (3.2)  4 (2.8)  3 (2.5)  5 (3.7)  2 (2.6)  9 (5.7)   0.7 

glycated haemoglobin (mmol/mol) 

(mean (SD)) 

35.67 

(4.47) 

36.77 

(4.03) 

38.95 

(6.37) 

35.80 

(3.95) 

40.06 

(3.60) 

38.23 (3.86)  
3.1×10-19 

triglycerides (mmol/l) (mean (SD)) 1.26 (0.57) 0.87 (0.35) 1.59 

(1.17) 

1.16 (0.63) 2.04 

(1.13) 

1.57 (0.79)  
2.3×10-30 

insulin sensitivity (Matsuda) (mean 

(SD)) 

14.54 

(6.07) 

24.33 

(9.08) 

11.52 

(5.39) 

17.63 

(7.16) 

5.99 

(3.01) 

7.46 (3.78)  
5.3×10-128 

fasting insulin (pmol/l) (mean 

(SD)) 

51.97 

(22.02) 

32.34 

(14.35) 

54.89 

(25.73) 

48.55 

(22.18) 

113.98 

(64.09) 

99.81 (48.55)  
5.5×10-93 

insulinogenic index (mean (SD)) 184.24 

(274.80) 

100.61 

(139.56) 

69.84 

(37.14) 

153.66 

(136.01) 

125.06 

(69.77) 

191.29 

(136.68) 

 
1.9×10-13 

disposition index (mean (SD)) 2804.28 

(6133.07) 

2485.30 

(5193.75) 

701.59 

(293.53) 

2475.65 

(2227.36) 

653.97 

(357.25) 

1270.95 

(979.49) 

 
1.5×10-09 

C-reactive protein (mg/dl) (mean 

(SD)) 

0.20 (0.34) 0.12 (0.25) 0.21 

(0.34) 

0.29 (0.32) 0.49 

(0.47) 

0.39 (0.42)  
2×10-18 

cholesterol (mmol/l) (mean (SD)) 4.91 (0.95) 4.88 (0.87) 5.27 

(1.02) 

4.82 (0.98) 5.34 

(0.93) 

5.14 (0.93)  
2.2×10-06 

LDL (mmol/l) (mean (SD)) 3.04 (0.89) 2.73 (0.78) 3.22 

(0.85) 

2.97 (0.82) 3.41 

(0.84) 

3.15 (0.80)  
2.1×10-09 

HDL (mmol/l) (mean (SD)) 1.34 (0.28) 1.69 (0.36) 1.32 

(0.29) 

1.27 (0.29) 1.18 

(0.27) 

1.28 (0.30)  
2.8×10-45 
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aspartate-aminotransferase (U/l) 

(mean (SD)) 

22.38 

(6.98) 

22.79 

(7.91) 

22.52 

(7.03) 

22.14 

(6.97) 

32.73 

(14.50) 

25.18 (9.94)  
3.8×10-21 

alanine-aminotransferase (U/l) 

(mean (SD)) 

24.95 

(13.39) 

22.41 

(10.12) 

25.42 

(10.48) 

26.34 

(15.06) 

48.47 

(34.70) 

34.24 (18.43)  
3×10-32 

gamma-glutamyl transferase (U/l) 

(mean (SD)) 

22.82 

(19.52) 

18.24 

(15.11) 

28.49 

(26.08) 

21.48 

(14.03) 

39.82 

(34.49) 

33.90 (26.46)  
8×10-16 

serum creatinine (mg/dl) (mean 

(SD)) 

0.83 (0.18) 0.81 (0.17) 0.82 

(0.18) 

0.82 (0.15) 0.78 

(0.15) 

0.79 (0.17)  
0.18 

urinary albumin-creatinine ratio 

(mean (SD)) 

17.31 

(35.16) 

18.46 

(28.62) 

16.05 

(14.97) 

17.58 

(30.75) 

24.11 

(45.77) 

16.51 (16.75)  
0.53 

carotid intima media thickness 

(mm) (mean (SD)) 

0.52 (0.12) 0.53 (0.10) 0.63 

(0.13) 

0.54 (0.12) 0.64 

(0.12) 

0.60 (0.12)  
2.8×10-13 

polygenic risk score (mean (SD)) -0.09 

(0.97) 

0.15 (0.91) 0.24 

(0.92) 

-0.17 

(0.91) 

0.11 

(0.81) 

-0.07 (1.01)  
0.00057 

family history of diabetes (%)        0.0084 

a_no family history 64 (38.1)  58 (39.5)  42 (29.6)  64 (42.7)  27 (31.0)  72 (41.1)    

b_second degree relative 37 (22.0)  35 (23.8)  22 (15.5)  38 (25.3)  15 (17.2)  29 (16.6)    

c_first degree relative 67 (39.9)  54 (36.7)  78 (54.9)  48 (32.0)  45 (51.7)  74 (42.3)    

ever smoked = yes (%) 86 (49.7)  65 (42.2)  82 (56.2)  81 (52.9)  45 (49.5)  113 (62.1)   0.011 
 

current smoking = yes (%) 16 (9.9)  8 (5.7)  15 (11.0)  12 (8.5)  2 (2.4)  18 (10.7)   0.16 
 

cholesterol lowering medication = 

yes (%) 
6 ( 3.5)  0 ( 0.0)  8 ( 5.5)  2 ( 1.3)  1 ( 1.1)  6 ( 3.3) 

 0.038 
 

antihypertensive medication = yes 

(%) 

10 (5.8)  3 (1.9)  21 (14.4)  2 (1.3)  25 (27.5)  44 (24.2)   3.6×10-17 
 

 479 

 480 
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Methods  481 

 482 

TUEF/TULIP cohort 483 

Prediabetes subphenotyping was initially performed on a complete cases subset of 484 

participants of the Tuebingen Family study and Tuebingen Lifestyle Program 485 

(TUEF/TULIP)2,3, who had no missing values for the preselected phenotyping 486 

variables (N=899, baseline characteristics for this and the whole cohort are shown in 487 

the Suppl.Table 11). Participants were recruited from 2003 through 2018. Recruitment 488 

was mostly performed via newspaper announcements and e-mail bulletins. The studies 489 

have been designed to phenotype individuals at increased risk of diabetes. Eligibility 490 

criteria for inclusion comprised either a history of prediabetes, a family history of 491 

diabetes, a BMI greater than 27 kg/m2 or a history of gestational diabetes2. Participants 492 

underwent a frequently sampled OGTT and received MR-tomography-based 493 

measurement of body fat distribution and 1H-MR-spectroscopy-based measurements 494 

of hepatic fat content. Follow-up data was available for individuals who responded to 495 

invitations to follow-up appointments or participated in follow-up studies. The follow-496 

up measurements were comparable to the initial assessments. Glycemic traits (fasting 497 

glucose, OGTT or HbA1c) were available for 421 participants, whereas urine sample 498 

during follow-up, for the determination of microalbuminuria, was available for 388 499 

participants. The study protocol was approved by the Ethics Committee of the 500 

University of Tübingen (422/2002). All participants gave written informed consent.  501 

 502 

Whitehall II cohort 503 

Data from the occupational Whitehall II cohort were accessed by a data sharing 504 

agreement. Details of the study have been described elsewhere4. In brief, the study was 505 

established to explore the relationship between socio-economic status, stress and 506 

cardiovascular disease. All London-based civil servants aged 33-55 years were invited 507 

in 1985-1988 and 10.308 (73%) participated. Since then, 5 further clinical 508 

examinations have taken place that are available for data sharing at approximately 5-509 

year intervals (phases 3,5, 7, 9 and 11). The study was approved by the Joint 510 

UCL/UCLH Committees on the Ethics of Human Research (Committee Alpha). For 511 

the current analysis, the baseline was defined as the first available fasting OGTT (>=8 512 
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hours of fasting for morning and >=5 hours of fasting after a light fat-free breakfast 513 

eaten before 8 am for afternoon OGTTs).  Participants with prevalent or incident 514 

diabetes at baseline and those with non-white ethnicities were excluded. From the 515 

6916 available baseline OGTTs, 6810 were complete cases in regards of the used 516 

clustering variables und underwent cluster assignments. The cohort characteristics are 517 

reported in Suppl.Table 12. 518 

 519 

Variable selection and de novo clustering in TUEF/TULIP  520 

We aimed to identify subphenotypes that reflect differences in pathophysiological 521 

processes in the natural history of type 2 diabetes. The main paradigm of type 2 522 

diabetes pathogenesis is an insufficient compensatory increase of insulin secretion in 523 

response to insulin resistance31. Therefore, insulin sensitivity and insulin secretion are 524 

key variables6,7. We used OGTT-based indices of insulin sensitivity (Matsuda-index)32 525 

and insulin secretion (AUC0-30 C-peptide/AUC0-30 glucose) that correlate well with 526 

gold-standard measures and are preferable to static measurements obtained in the 527 

fasting state33,34. Glycaemia was quantified in the partitioning procedure as AUC0-120 528 

glucose. Furthermore, we aimed to capture diverse etiologies of insulin resistance by 529 

accounting for visceral and subcutaneous adipose tissue volume (VAT and SCAT), 530 

that have distinct metabolic characteristics35. We especially focused on elevated liver 531 

fat content, as it is strongly associated with insulin resistance36. HDL-cholesterol 532 

levels have been long known as explanatory variables of the metabolic syndrome and 533 

insulin resistance37. Moreover, causal inference from large genomic datasets provides 534 

evidence not only for a genetic correlation of HDL-cholesterol levels with type 2 535 

diabetes, but also for a causal link between HDL-cholesterol levels and type 2 536 

diabetes9. We also added a genome-wide polygenic risk score (PRS) to the analysis to 537 

better differentiate between genetically determined beta-cell dysfunction and 538 

environmentally determined beta-cell dysfunction. The correlation of the clustering 539 

variables is reported in Suppl.Table 13.  540 

For computation of the PRS, we used the LDpred algorithm of Vilhjalmson et al.38 on 541 

a combination of BMI-adjusted effect sizes and p-values from a meta-analysis in 542 

~900.000 European individuals and genotypes11. After quality control, exclusion of 543 

multi-allelic and low-frequency variants, we combined 484.788 variants from the two 544 
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datasets, yielding an estimated genome-wide SNP-heritability of 0.069. Of the top 94 545 

diabetes-related genetic variants shown in the latest large-scale genome-wide 546 

association study11, 63 were genotyped in TUEF/TULIP. The association of cluster-547 

assignment with the genotype was tested separately for each variant using ANOVA to 548 

analyze the enrichment of certain genotypes in clusters. A further genetic-549 

pathophysiologic classification of clusters was performed according to data from 550 

Udler et al12. Here, we computed the genetic risk score for every individual and every 551 

genetic class (beta-cell, proinsulin, obesity, lipodystrophy and liver/lipid) taking only 552 

weights >= 0.75 into account, as described in the original publication. The 553 

classification of glucose response curves according to Hulman et al (Hulman-classes) 554 

was performed with the corresponding web-calculator from 5-point OGTT glucose 555 

values in the TUEF/TULIP study13. 556 

Cluster assignment in the Whitehall II cohort  557 

For assigning participants in the Whitehall II cohort to clusters established in 558 

TUEF/TULIP, we used proxy variables. Since liver fat, visceral adipose tissue and 559 

subcutaneous adipose tissue were not available in the Whitehall II cohort, and only 560 

two-point OGTTs were performed, other anthropometric variables and analytes were 561 

employed instead of these variables. Variables were selected based on statistical 562 

consideration (correlation) and pathophysiologic (theoretical) connection to the 563 

original trait (e.g. liver fat – fasting triglycerides, fasting insulin and waist 564 

circumference). Transaminase activity was not available during the early phases of the 565 

Whitehall II study. The final variable set was selected upon the highest agreement in 566 

re-identification of the original cluster assignments using the new proxy variables in 567 

TUEF.  The variables used in Whitehall II comprised glycemia during glucose 568 

challenge, insulin sensitivity32, Stumvoll’s first phase insulin secretion index using 569 

insulin and glucose levels at fasting and at 120 min during OGTT39, fasting insulin, 570 

fasting triglycerides, waist circumference, hip circumference, BMI and HDL-571 

cholesterol. The median values of these variables in TUEF/TULIP were used to assign 572 

participants to clusters in Whitehall II (Extended data 1) by taking the nearest 573 

neighbors of the 6 cluster-centers based upon Euclidean distances. Since Whitehall-II 574 

used a restricted CVD-focused genotyping platform with only 48000 markers and the 575 

release of full-scale genotyping data was not readily available, we decided to omit the 576 
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genetic risk score from the re-assignment procedure. Despite these limitations, 577 

successful re-assignment of the clusters was achieved in 63% of the original TUEF 578 

cohort. 579 

OGTT and laboratory analysis 580 

All participants of TUEF/TULIP received a 75-g glucose solution (Accu-Check 581 

Dextro, Roche) at 8 a.m. following an overnight fast. Venous blood was obtained 582 

through an indwelling venous catheter before and 30, 60, 90 and 120 minutes after 583 

glucose ingestion. In the Whitehall II cohort, the OGTT procedure has been described 584 

earlier. In short, venous blood samples were collected after an overnight fast in the 585 

morning (≥8 hours of fasting) or in the afternoon after no more than a light fat-free 586 

breakfast eaten before 08.00 h (≥5 hours of fasting) followed by a standard 75g OGTT 587 

with a venous blood sample taken 2 hours after ingestion of the glucose solution.  588 

Glucose was analyzed in the Whitehall II study using an YSI glucose analyser (Yellow 589 

Springs Instruments). Glucose values were measured in TUEF/TULIP directly using a 590 

bedside glucose analyzer (YSI, Yellow Springs, CO or Biosen C-line, EKF-diagnostic, 591 

Barleben). In TUEF/TULIP, all other obtained blood samples were put on ice, the 592 

serum was centrifuged within 2 hours. Plasma insulin and C-peptide were determined 593 

by an immunoassay with the ADVIA Centaur XP Immunoassay System and HDL was 594 

measured using the ADVIA XPT clinical chemical analyser (all from Siemens 595 

Healthineers, Eschborn, Germany), while triglycerides were measured with standard 596 

colorimetric methods using a Bayer analyzer. In Whitehall II, insulin was measured 597 

with an in-house human insulin RIA and later with a DAKO ELISA kit (DAKO 598 

Cytomatin Ltd, Ely, UK). Serum creatinine was measured using a kinetic colorimetric 599 

(Jaffe) method on a Roche “P” Modular system (phase 9) and on a COBAS 8000 600 

system (phase 11). Lipid measurements were described previously40 . HbA1c 601 

measurements were performed using Tosoh glycohemoglobin analyzers in both studies 602 

(Tosoh Bioscience Tokyo Japan). 603 

Body fat distribution, liver fat content and renal sinus fat 604 

Body fat distribution variables, i.e., VAT and SCAT, were determined by whole-body 605 

T1-weighted MRI as described earlier41. Liver fat content was measured by volume 606 

selective 1H-MR spectroscopy42. Renal sinus fat was measured with manual 607 

segmentation from MR image slices specifically in cluster 5 and 6 using a method 608 
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described previously14. The operator performing the segmentation (JM) was not aware 609 

of the cluster assignments. The procedure could not be completed in 6 participants 610 

(2% missing) due to breathing artefacts in the images. Renal sinus fat data for clusters 611 

1 to 4 were partly available from segmentations for previous projects (mean data 612 

availability 40% over cluster 1 to 4).  613 

Outcomes 614 

For detection of incident diabetes, either of the following was used: clinically 615 

ascertained diabetes (from patient history, or by the use of a diabetes-medication), an 616 

elevated fasting glucose (>=7 mmol/l), post-challenge glucose (>=11.1. mmol/l, or 617 

HbA1c (48 mmol/mol or 6.5%) in both cohorts. To assess the Ahlqvist-classification6 618 

for the subtypes of diabetes in Whitehall II, we used insulin-based HOMA2-indices, 619 

because C-peptide was not measured. GAD measurements were not available. HbA1c 620 

assessment had been introduced beginning with Phase 7. Cluster assignment was 621 

performed using the lowest Euclidean distances from the published cluster centers in 622 

the All New Diabetes in Scania (ANDIS) cohort after scaling the variables for the 623 

means and SDs of the ANDIS cohort. Microalbuminuria was assessed in 624 

TUEF/TULIP upon the first occurrence from morning spot urine using the albumin-to-625 

creatinine ratio (ACR). Measurements with excessive leukocyturia (175 measurements 626 

out of 3218) were excluded from this analysis. Microalbuminuria was established with 627 

an ACR>=30 mg/g creatinine. Carotid intima-media thickness (IMT), which is 628 

associated with future cardiovascular and cerebrovascular events43, was determined by 629 

a high-resolution ultrasound of the left and right common carotid artery. A trained 630 

physician who was unaware of the clinical and laboratory variables of the participants 631 

performed B-mode ultrasound imaging using a linear ultrasound transducer (10-13 632 

MHz; AU5 Harmonic, ESAOTE BIOMEDICA, Hallbergmoos, Germany). IMT was 633 

specified according to the European Mannheim carotid intima-media thickness 634 

consensus criteria44. To ascertain renal disease, we used estimated glomerular filtration 635 

rate calculated using the CKD-EPI creatinine equation45. Serum creatinine was 636 

available from phase 9. Only participants with at least one eGFR value went into these 637 

analyses. Stages of chronic kidney disease were ascertained with the Kidney Disease: 638 

Improving Global Outcomes (KDIGO) classification46. Ascertainment of coronary 639 

heart disease and mortality in Whitehall-II has been described earlier47. In brief, 640 
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incident CHD was defined as CHD death, nonfatal CHD and typical angina 641 

ascertained from clinical records, without self-reported cases from the Rose angina 642 

questionnaire. The cases were ascertained from participants' general practitioners, 643 

information extracted from hospital medical records by study nurses, or data from the 644 

NHS Hospital Episode Statistics (HES) and death register databases obtained after 645 

linking the participants' unique NHS identification numbers to this national database. 646 

Mortality data until June 2015 was drawn from the British National Mortality Register 647 

(National Health Service [NHS] Central Register) using each participants’ NHS 648 

identification number. 649 

Statistical analysis 650 

Statistical analyses were performed using R version 3.4.348. In the clustering analysis, 651 

distances were computed as Gower-distances using standardized variables (scaled to a 652 

mean of 0 and SD of 1). Participants with outlier variables (absolute standardized 653 

levels >= 5) were excluded from the clustering procedure. To find the optimal cluster 654 

count, we evaluated the dendogram and silhouette-widths. The clustering procedure 655 

was performed with the partitioning around medoids (pam) method in the R-package 656 

“cluster”, which is a more robust version of k-means clustering49. Using repeated 657 

subsetting with the clusterboot function from the fpc package, the mean Jaccard-658 

similarity measure was 0.74 across all clusters.50 To further validate the stability of 659 

clusters, we iterated the clustering procedure for each of the 429 participants who had 660 

repeated measurements comprising all clustering variables (mean number of 661 

measurements 2.6±0.9, follow-up duration 4.2±3.6 years, also see Extended Data 8). 662 

We assessed the per-participant agreement of the generated 1112 cluster assignments 663 

using interrater reliabilities. The ICC2k value for cluster agreement was 0.72 (CI 0.68 664 

– 0.76). Detailed reports on means and SDs of the clustering variables in both cohorts 665 

and the cluster medians are provided in Suppl.Tables 14-15. 666 

Cluster means were compared using ANOVA. Specific outcomes were compared 667 

using ANCOVA adjusting for covariates such as sex, age and BMI. Post-hoc 668 

comparisons were performed using Tukey’s honest significant differences procedure. 669 

Endpoints related to diabetes complications were analyzed in the follow-up data of 670 

both cohorts using survival analysis and proportional hazard models. Differences in 671 

cumulative risks for reaching endpoints were tested with log-rank tests. When not 672 
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indicated otherwise, the uncorrected p-value of a specific cluster’s risk relative to 673 

cluster 1 is provided in the proportional hazard analysis. Given the relatively low 674 

number of outcomes in TUEF/TULIP (40 for diabetes and 71 for microalbuminuria), 675 

assessment of proportional hazards adjusted for potential confounders was performed 676 

in the Whitehall II cohort only. Proportional hazards assumptions were tested by 677 

visualization of the Schoenfeld-residuals. The performed statistical tests were two-678 

sided. 679 

  680 
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Data availability 681 

For TUEF/TULIP, all requests for data and materials will be promptly reviewed by the 682 

Data Access Steering Committee of the Institute of Diabetes and Metabolic Research, 683 

Tübingen to verify if the request is subject to any intellectual property or 684 

confidentiality obligations. Individual level data may be subject to confidentiality. Any 685 

data and materials that can be shared will be released via a Material Transfer 686 

Agreement. Data access to individual-level data of the Whitehall II study is subject to 687 

a separate data sharing agreement according to the data sharing policy of Whitehall II. 688 

This policy conforms to the MRC Policy on Research Data Sharing. More details can 689 

be found on the Whitehall II webpage: https://www.ucl.ac.uk/epidemiology-health-690 

care/research/epidemiology-and-public-health/research/whitehall-ii/data-sharing. 691 

Code availability 692 

The R code used to generate all results of this manuscript is available upon request.  693 

Requests will be reviewed by the Data Access Steering Committee of the Institute of 694 

Diabetes and Metabolic Research, Tübingen. 695 
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