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EIGENVALUES OF THE TRUNCATED HELMHOLTZ SOLUTION
OPERATOR UNDER STRONG TRAPPING\ast 

JEFFREY GALKOWSKI\dagger , PIERRE MARCHAND\ddagger , AND EUAN A. SPENCE\ddagger 

Abstract. For the Helmholtz equation posed in the exterior of a Dirichlet obstacle, we prove
that if there exists a family of quasimodes (as is the case when the exterior of the obstacle has stable
trapped rays), then there exist near-zero eigenvalues of the standard variational formulation of the
exterior Dirichlet problem (recall that this formulation involves truncating the exterior domain and
applying the exterior Dirichlet-to-Neumann map on the truncation boundary). Our motivation for
proving this result is that (a) the finite-element method for computing approximations to solutions
of the Helmholtz equation is based on the standard variational formulation, and (b) the location of
eigenvalues, and especially near-zero ones, plays a key role in understanding how iterative solvers such
as the generalized minimum residual method (GMRES) behave when used to solve linear systems,
in particular those arising from the finite-element method. The result proved in this paper is thus
the first step towards rigorously understanding how GMRES behaves when applied to discretizations
of high-frequency Helmholtz problems under strong trapping (the subject of the companion paper
[P. Marchand et al., Adv. Comput. Math., to appear]).
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1. Introduction.

1.1. Preliminary definitions. Let \Omega  - \subset \BbbR d, d \geq 2, be a bounded open set
such that its open complement \Omega + := \BbbR d \setminus \Omega  - is connected. Let \Gamma D := \partial \Omega  - , where
the subscript D stands for ``Dirichlet."" Let \Omega 1 be another bounded open set with
a connected open complement and such that conv(\Omega  - ) \Subset \Omega 1, where conv denotes
the convex hull and \Subset denotes compact containment. Let \Omega tr := \Omega 1 \setminus \Omega  - , and let
\Gamma tr := \partial \Omega 1, where the subscript tr stands for ``truncated."" We assume throughout
that \Gamma D and \Gamma tr are both C\infty . Let \gamma D0 and \gamma tr0 denote the Dirichlet traces on \Gamma D and
\Gamma tr, respectively, and let \gamma D1 and \gamma tr1 denote the respective Neumann traces, where the
normal vector points out of \Omega tr on both \Gamma D and \Gamma tr. Let

H1
0,D(\Omega tr) :=

\bigl\{ 
v \in H1(\Omega tr) : \gamma 

D
0 v = 0

\bigr\} 
.

Let \scrD (k) : H1/2(\Gamma tr) \rightarrow H - 1/2(\Gamma tr) be the Dirichlet-to-Neumann map for the
equation \Delta u + k2u = 0 posed in the exterior of \Omega 1 with the Sommerfeld radiation
condition

(1.1)
\partial u

\partial r
(x) - iku(x) = o

\biggl( 
1

r(d - 1)/2

\biggr) 
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as r := | x| \rightarrow \infty , uniformly in \widehat x := x/r. We say that a function satisfying (1.1)
is k-outgoing. When \Gamma tr = \partial BR, for some R > 0, the definition of \scrD (k) in terms
of Hankel functions and polar coordinates (when d = 2)/spherical polar coordinates
(when d = 3) is given in, e.g., [39, equations 3.7 and 3.10].

Definition 1.1 (eigenvalues of the truncated exterior Dirichlet problem). We
say that \mu \ell is an eigenvalue of the truncated exterior Dirichlet problem at frequency
k\ell > 0, with corresponding eigenfunction u\ell , if u\ell \in H1

0,D(\Omega tr) \setminus \{ 0\} and \mu \ell \in \BbbC 
satisfies

(\Delta + k2\ell )u\ell = \mu \ell u\ell in \Omega tr and \gamma tr1 u\ell = \scrD (k\ell )(\gamma 
tr
0 u\ell ).

Definition 1.2 (quasimodes). A family of quasimodes of quality \epsilon (k) is a se-
quence \{ (u\ell , k\ell )\} \infty \ell =1 \subset H2(\Omega tr) \cap H1

0,D(\Omega tr)\times \BbbR such that the frequencies k\ell \rightarrow \infty as
\ell \rightarrow \infty and there is a compact subset \scrK \Subset \Omega 1 such that, for all \ell , supp u\ell \subset \scrK ,\bigm\| \bigm\| (\Delta + k2\ell )u\ell 

\bigm\| \bigm\| 
L2(\Omega tr)

\leq \epsilon (k\ell ) and \| u\ell \| L2(\Omega tr)
= 1.

Remark 1.3. By [5, Theorem 2], we can assume that there exist S1, S2 > 0 such
that \epsilon (k) \geq S1 exp( - S2k).

Definition 1.4 (quasimodes with multiplicity). Let \{ (u\ell , k\ell )\} \infty \ell =1 be a quasi-
mode with quality \epsilon (k), and let \{ (mj , k

 - 
j , k

+
j )\} \infty j=1 \subset \BbbN \times \BbbR 2 be such that k - j \rightarrow \infty and

k - j \leq k+j . Define

\scrW j :=
\bigl\{ 
\ell : k\ell \in [k - j , k

+
j ]
\bigr\} 
.

We say that u\ell has multiplicity mj in the window [k - j , k
+
j ] if

| \scrW j | = mj , | \langle u\ell 1 , u\ell 2\rangle L2(\Omega tr)| \leq \epsilon (k - j ) for \ell 1 \not = \ell 2, \ell 1, \ell 2 \in \scrW j .

We assume throughout that the quality, \epsilon (k), of a quasimode is a decreasing
function of k; this can always be arranged by replacing \epsilon (k) by \~\epsilon (k) := sup\~k\geq k \epsilon (

\~k).

We use the notation that A = \scrO (k - \infty ) as k \rightarrow \infty if, given N > 0, there exist CN

and k0 such that | A| \leq CNk
 - N for all k \geq k0, i.e., A decreases superalgebraically in

k.

1.2. The main results.

Theorem 1.5 (from quasimodes to eigenvalues). Let \alpha > 3(d + 1)/2. Suppose
there exists a family of quasimodes of quality \epsilon (k) with

\epsilon (k) \ll k1 - \alpha .

Then there exists k0 > 0 (depending on \alpha ) such that if \ell is such that k\ell \geq k0, then
there exists an eigenvalue of the truncated exterior Dirichlet problem at frequency k\ell 
satisfying

| \mu \ell | \leq k\alpha \ell \epsilon (k\ell ).

We now give three specific cases when the assumptions of Theorem 1.5 hold. The
first two cases are via the quasimode constructions of [4, Theorem 2.8, equations 2.20
and 2.21] and [7, Theorem 1] for obstacles whose exteriors support elliptic-trapped
rays. The third case is via the ``resonances to quasimodes"" result of [44, Theorem
1]; recall that the resonances of the exterior Dirichlet problem are the poles of the
meromorphic continuation of the solution operator from Im k \geq 0 to Im k < 0; see,
e.g., [15, Theorem 4.4. and Definition 4.6].
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Lemma 1.6 (specific cases when the assumptions of Theorem 1.5 hold).
(i) Let d = 2. Given a1 > a2 > 0, let

(1.2) E :=

\Biggl\{ 
(x1, x2) :

\biggl( 
x1
a1

\biggr) 2

+

\biggl( 
x2
a2

\biggr) 2

< 1

\Biggr\} 
.

If \Gamma D coincides with the boundary of E in the neighborhoods of the points (0,\pm a2),
and if \Omega + contains the convex hull of these neighborhoods, then the assumptions of
Theorem 1.5 hold with

\epsilon (k) = exp( - C1k)

for some C1 > 0 (independent of k).1

(ii) Suppose d \geq 2, \Gamma D \in C\infty , and \Omega + contains an elliptic-trapped ray such that
(a) \Gamma D is analytic in a neighborhood of the ray, and (b) the ray satisfies the stability
condition [7, (H1)]. If q > 11/2 when d = 2 and q > 2d + 1 when d \geq 3, then the
assumptions of Theorem 1.5 hold with

\epsilon (k) = exp( - C2k
1/q)

for some C2 > 0 (independent of k).
(iii) Suppose there exists a sequence of resonances \{ \lambda \ell \} \infty \ell =1 of the exterior Dirichlet

problem with

(1.3) 0 \leq  - Im\lambda \ell = \scrO 
\bigl( 
| \lambda \ell |  - \infty \bigr) and Re\lambda \ell \rightarrow \infty as \ell \rightarrow \infty .

Then there exists a family of quasimodes of quality \epsilon (k) = \scrO (k - \infty ), and thus the
assumptions of Theorem 1.5 hold.

Remark 1.7 (resonances \Leftarrow \Rightarrow quasimodes \Leftarrow \Rightarrow eigenvalues). Part (iii) of
Lemma 1.6 is the ``resonances to quasimodes"" result of [44, Theorem 1]. The converse
implication, i.e., that a family of quasimodes of quality \epsilon (k) = \scrO (k - \infty ) implies a
sequence of resonances satisfying (1.3), was proved in [47, 43] (following [45, 46]); see
also [15, Theorem 7.6]. Therefore, the ``quasimodes to eigenvalues"" result of Theorem
1.5 is equivalent to a ``resonances to eigenvalues"" result. In fact, in Appendix A we
show that the existence of \scrO (k - \infty ) eigenvalues implies the existence of quasimodes
of quality \scrO (k - \infty ). We therefore have that resonances \Leftarrow \Rightarrow quasimodes \Leftarrow \Rightarrow 
eigenvalues.

With \{ \mu j(k)\} j the set of eigenvalues, counting multiplicities, of the truncated
exterior Dirichlet problem at frequency k (with \mu j(k) depending continuously on k
for each j), let

(1.4) \scrE (\varepsilon 1, \varepsilon 0, k - , k+) :=
\Bigl\{ 
j : \mu j(k) \in ( - 2\varepsilon 1, 2\varepsilon 1) - i(0, 2\varepsilon 0) for some k \in [k - , k+]

\Bigr\} 
;

| \scrE | is therefore the counting function of the eigenvalues, \mu j(k), that pass through a
rectangle next to zero in \mu as k varies in the interval [k - , k+]; see Figure 1.2

1In [4, Theorem 2.8], \Omega + is assumed to contain the whole ellipse E. However, inspecting the proof,
we see that the result remains unchanged if E is replaced with the convex hull of the neighborhoods
of (0,\pm a2). Indeed, the idea of the proof is to consider a family of eigenfunctions of the ellipse
localizing around the periodic orbit \{ (0, x2) : | x2| \leq a2\} .

2In Figure 1, we have drawn the paths of the eigenvalues as arbitrary curves. We see later
in Figure 7 an example where the paths appear to be horizontal lines; this is consistent with the
intuition that eigenvalues should be shifted resonances.
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Re\mu 

Im\mu 

 - 2\varepsilon 0(k)

2\varepsilon 1(k)

\mu 1(k - )

\mu 1(k+)

\mu 2(k - )

\mu 2(k+)

\mu 3(k - )

\mu 3(k+)

\mu 4(k - )

\mu 4(k+)

Fig. 1. Paths of the eigenvalues, \mu j , of the truncated problem are shown as functions of
k \in [k - , k+]. Those eigenvalues shown in green correspond to members of the box \scrE defined by (1.4)
(shaded), while the eigenvalue in blue is not in \scrE . (Color is available online only.)

Theorem 1.8 (from quasimodes to eigenvalues, with multiplicities). Let k - j , k
+
j

\rightarrow \infty such that there exists C > 0 satisfying k - j \leq k+j \leq Ck - j . Suppose there exists a

family of quasimodes of quality \epsilon (k) \ll k - (5d+3)/2 and multiplicity mj in the window
[k - j , k

+
j ] (in the sense of Definition 1.4). If \epsilon 0(k) is such that, for some S > 0,

\epsilon 0(k) \leq Sk - (d+1)/2 for all k and \epsilon 0(k) \gg k2d+1\epsilon (k) as k \rightarrow \infty ,

then there exists k0 > 0 such that if k - j \geq k0, then\bigm| \bigm| \bigm| \scrE \Bigl( (k - j )(d+1)/2\epsilon 0(k
 - 
j ) , \epsilon 0(k

 - 
j ) , k

 - 
j , k

+
j

\Bigr) \bigm| \bigm| \bigm| \geq mj .

Observe that if k+j = k - j , then (up to algebraic powers of k) Theorem 1.8 reduces
to Theorem 1.5, except that now multiplicities are counted; therefore, the ``quasimodes
to eigenvalues"" result holds with multiplicities (just as the ``quasimodes to resonances""
result of [43] includes multiplicities).

The ideas used in the proofs of Theorems 1.5 and 1.8 are discussed in section 1.5
below.

Remark 1.9. The reason why both the constant \alpha in Theorem 1.5 and the expo-
nent in the bound on the quality in Theorem 1.8 depend on d is because the right-hand
side of the bound (1.15) below on the solution operator of the truncated problem de-
pends on d, which in turn comes from the fact that the trace-class norm of compactly
supported pseudodifferential operators depends on d.

1.3. Numerical experiments illustrating the main results.
Description of the obstacles \Omega  - . In this section, \Omega  - is one of the two ``horseshoe-

shaped"" 2-d domains shown in Figure 2. We define the small cavity as the region
between the two elliptic arcs

(cos(t), 0.5 sin(t)), t \in [ - \phi 0, \phi 0], and (1.3 cos(t), 0.6 sin(t)), t \in [ - \phi 1, \phi 1],

with \phi 0 = 7\pi /10 and \phi 1 = arccos

\biggl( 
1

1.3
cos(\phi 0)

\biggr) 
;

this corresponds to the interior of the solid lines in Figure 2. We define the large cavity
as the region between the two arcs now with \phi 0 = 9\pi /10. (Note that our small cavity
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cos( 3\pi 
10
)

cos( \pi 
10
)

x

y

0.5

0.6

1.3

1

Fig. 2. The two obstacles \Omega  - considered in the numerical experiments.

is the same as the cavity considered in the numerical experiments in [4, section IV].)
Recall that Theorems 1.5 and 1.8 require \Gamma D to be smooth, and thus these results do
not strictly apply to the small and large cavities; however, they do apply to smoothed
versions of these.

For both the small and the large cavities, \Gamma D coincides with the boundary of the
ellipse E (1.2) with a1 = 1 and a2 = 0.5 in the neighborhood of its minor axis. Part
(i) of Lemma 1.6 (i.e., the results of [4]) then implies that there exist quasimodes with
exponentially small quality.

We choose these particular \Omega  - because we can compute the frequencies k\ell in the
quasimode. Indeed, the functions u\ell in the quasimode construction in [4] are based
on the family of eigenfunctions of the ellipse localizing around the periodic orbit
\{ (0, x2) : | x2| \leq a2\} ; when the eigenfunctions are sufficiently localized, the eigenfunc-
tions multiplied by a suitable cut-off function form a quasimode, with frequencies k\ell 
equal to the square roots of eigenvalues of the ellipse. By separation of variables,
k\ell can be expressed as the solution of a multiparametric spectral problem involving
Mathieu functions; see see [4, Appendix A] and [38, Appendix E].

When giving specific values of k\ell below, we use the notation from [4, Appendix
A] and [38, Appendix E] that kem,n and kom,n are the frequencies associated with the
eigenfunctions of the ellipse that are even/odd, respectively, in the angular variable,
with m zeros in the radial direction (other than at the center or the boundary) and
n zeros in the angular variable in the interval [0, \pi ).

Plots of the eigenvalues and eigenfunctions. Figures 3 and 4 plot the near-zero
eigenvalues of the truncated exterior Dirichlet problem for the small and large cavities,
respectively, at frequencies corresponding to eigenvalues of the ellipse. Figures 5 and 6
plot the corresponding eigenfunctions. In all these figures, \Gamma tr = \partial B(0, 2).

Figure 4 shows that the large cavity has an eigenvalue very close to zero at each
of the four frequencies considered, qualitatively illustrating Theorem 1.5. In contrast,
Figure 3 shows that the small cavity only has an eigenvalue very close to zero at the
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Fig. 3. The eigenvalues of the truncated exterior Dirichlet problem (Definition 1.1) near the
origin when \Gamma D is equal to the small cavity. The eigenvalues are plotted at several frequencies, k,
corresponding to eigenvalues of the ellipse. In each plot, the origin is marked with a black dot, and
the eigenvalues are shown as green circles. (Color is available online only.)

frequencies ke1,0 and ke3,0 (top right and bottom left in the figures) and not at ke0,3 and
ko2,4 (top left and bottom right). The reason for this is clear from the plots of the
eigenfunctions of the truncated exterior Dirichlet problem: looking at Figure 5, we
see that at ke0,3 and ko2,4 the eigenfunctions are not well localized around the minor
axis of the ellipse to be inside the small cavity---in the top left and bottom right of
Figure 5, we see them ``leaking out"" of the small cavity. However, looking at Figure 6,
we see that the corresponding eigenfunctions are localized sufficiently to be inside the
large cavity and thus generate an eigenvalue very close to zero. In these plots, the
eigenfunctions are normalized so that their L2(\Omega tr) norm equals one.

Figure 7 plots the trajectories of the near-zero eigenvalues as functions of k for
both the small cavity (left plot) and the large cavity (right plot) for k \in (2.5, 12.5),
with the spectra computed every 0.025. For Figure 7, \Gamma tr = \partial B(0, 1.5); this change
(compared to \Gamma tr = \partial B(0, 2) for the earlier figures) is to reduce the cost of each
eigenvalue solve because each of the two plots in Figure 7 requires 400 such solves.
Since we use the exact (up to discretization error) Dirichlet-to-Neumann map on \Gamma tr,
we expect there to be no difference between choosing \Gamma tr = \partial B(0, 1.5) and \Gamma tr =
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Fig. 4. The eigenvalues of the truncated exterior Dirichlet problem (Definition 1.1) near the
origin when \Gamma D is equal to the large cavity. The eigenvalues are plotted at several frequencies, k,
corresponding to eigenvalues of the ellipse. In each plot, the origin is marked with a black dot, and
the eigenvalues are shown as green circles. (Color is available online only.)

\partial B(0, 2) (in particular, Figures 3 and 4 are unchanged when \Gamma tr is changed from
\partial B(0, 2) to \partial B(0, 1.5)).

The eigenvalues that enter the red rectangle in Figure 7 are colored green; these
are members of \scrE (0.2, 0.05, 2.5, 12.5), where \scrE is defined by (1.4). Similar to the
eigenvalues plots in Figures 3 and 4, Figure 7 shows that the large cavity has more
near-zero eigenvalues for the range of k considered than the small cavity. This is
expected since a larger number of the eigenfunctions of the ellipse are localized in the
large cavity than in the small cavity.

How the eigenvalues and eigenfunctions were computed. Definition 1.1 (of the
eigenvalues of the truncated Dirichlet problem) implies that if \mu \ell is an eigenvalue at
frequency k\ell , and with corresponding eigenfunction u\ell , then

(1.5) a(u\ell , v) = \mu \ell (u\ell , v)L2(\Omega tr) for all v \in H1
0,D(\Omega tr),

where the sesquilinear form a(\cdot , \cdot ) is that appearing in the standard variational (i.e., weak)
formulation of the Helmholtz exterior Dirichlet problem.
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(a) ko
0,3 = 9.17017539835808 (b) ke

1,0 = 9.977120156613617

(c) ke
3,0 = 22.526496854613104 (d) ko

2,4 = 22.6811692253925

Fig. 5. Absolute value of the eigenfunction of the truncated exterior Dirichlet problem associated
with the smallest eigenvalue for the small cavity.

Definition 1.10 (variational formulation of Helmholtz exterior Dirichlet prob-
lem). Given k > 0, \Omega  - as above, and F \in (H1

0,D(\Omega tr))
\ast , let u \in H1

0,D(\Omega tr) be the
solution of the following variational problem:

(1.6) find u \in H1
0,D(\Omega tr) such that a(u, v) = F (v) for all v \in H1

0,D(\Omega tr),

where

a(u, v) :=

\int 
\Omega tr

\Bigl( 
\nabla u \cdot \nabla v  - k2uv

\Bigr) 
 - 
\bigl\langle 
\scrD (k)(\gamma tr0 u), \gamma 

tr
0 v
\bigr\rangle 
\Gamma tr
,(1.7)

where \langle \cdot , \cdot \rangle \Gamma tr
denotes the duality pairing on \Gamma tr that is linear in the first argument

and antilinear in the second.

The figures above were created by solving the eigenvalue problem (1.5) using the
finite-element method with continuous piecewise-linear elements (i.e., the polynomial
degree, p, equals one) and meshwidth h equal to (2\pi /30)k - 3/2. The Dirichlet-to-
Neumann map, \scrD (k), in a(\cdot , \cdot ) was computed using boundary integral equations---see
Appendix B for details. The accuracy, uniform in frequency, of the finite-element
method applied the variational problem (1.6) with p = 1 and hk3/2 sufficiently small
has been known empirically for a long time and was recently proved in [34] for the
case when the Dirichlet-to-Neumann map is realized exactly.

Since computing the Dirichlet-to-Neumann map is relatively expensive, in prac-
tice one often approximates it using a perfectly matched layer (PML) or an absorb-
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(a) ko
0,3 = 9.17017539835808 (b) ke

1,0 = 9.977120156613617

(c) ke
3,0 = 22.526496854613104 (d) ko

2,4 = 22.6811692253925

Fig. 6. Absolute value of the eigenfunction of the truncated exterior Dirichlet problem associated
with the smallest eigenvalue for the large cavity.
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Fig. 7. Paths of the eigenvalues for k \in (2.5, 12.5) for the small cavity (left) and the large
cavity (right). The eigenvalues that enter the red rectangle are colored green. (Color is available
online only.)

ing boundary condition (such as the impedance boundary condition). The plots of
the eigenfunctions and near-zero eigenvalues of the corresponding truncated exterior
Dirichlet problems are very similar to those above; this too is expected since the
quasimode is supported in a neighborhood of the obstacle.
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1.4. Implications of the main results for numerical analysis of the
Helmholtz exterior Dirichlet problem. Theorems 1.5 and 1.8 are the first step to-
wards rigorously understanding how iterative solvers such as the generalized minimum
residual method (GMRES) behave when applied to discretizations of high-frequency
Helmholtz problems under strong trapping (the subject of the companion paper [38]).
We now explain this in more detail.

As we saw in (1.5), the eigenvalues of truncated exterior Dirichlet problem (in
the sense of Definition 1.1) correspond to eigenvalues of the sesquilinear form of the
standard variational formulation (Definition 1.10). The standard variational formu-
lation is the basis of the finite-element method for computing approximations to the
solution of the variational problem (1.6). Indeed, the finite-element method consists
of choosing a piecewise-polynomial subspace of H1

0,D(\Omega tr) and solving the variational
problem (1.6) in this subspace.

A very popular way of solving the linear systems resulting from the finite-element
method applied to the Helmholtz scattering problems is via iterative solvers such as
GMRES [42]; this choice is made because the linear systems are (i) large and (ii)
non-self-adjoint. Regarding (i), the systems are large since the number of degrees of
freedom must be \gtrsim kd to resolve the oscillations in the solution; see, e.g., the literature
review in [34, section 1.1]. Regarding (ii), the non-self-adjointness of the linear systems
arises directly from the non-self-adjointness of the underlying Helmholtz scattering
problem; GMRES is applicable to such systems, unlike the conjugate gradient method.

There is currently large research interest in understanding how iterative methods
behave when applied to Helmholtz linear systems and in designing good precondition-
ers for these linear systems; see the literature reviews [19, 21, 25], [27, section 1.3].

The location of eigenvalues, especially near-zero ones, is crucial in understand-
ing the behavior of iterative methods. In the Helmholtz context, eigenvalue analyses
of iterative methods applied to nontrapping problems include, for finite-element dis-
cretizations, [17, 16, 20, 49, 21, 51, 11, 37] and, for boundary-element discretizations,
[10, 12, 8].

The paper [38] analyzes GMRES applied to discretizations of Helmholtz problems
with strong trapping, using the ``cluster plus outliers"" GMRES convergence theory
from [6] (with this idea arising in the context of the conjugate gradient method [32] and
used subsequently in, e.g., [18]). The paper [38] obtains bounds on how the number
of GMRES iterations depends on the frequency under various assumptions about the
eigenvalues. In particular, Theorem 1.5 rigorously justifies [38, Observation O2(b)] for
the standard variational formulation of the truncated exterior Dirichlet problem. We
highlight that, although the results in [38] are about unpreconditioned systems, they
give insight into the design of preconditioners. Indeed, a successful preconditioner
for Helmholtz problems with strong trapping will need to specifically deal with the
near-zero eigenvalues created by trapping. Theorems 1.5 and 1.8 give information
about the location and multiplicities of these eigenvalues, and [38] shows how these
locations and multiplicities affect GMRES.

1.5. The ideas behind the proof of Theorem 1.5.
Semiclassical notation. Instead of working with the parameter k and being inter-

ested in the large-k limit, the semiclassical literature usually works with a parameter
h := k - 1 and is interested in the small-h limit. So that we can easily recall results
from this literature, we also work with the small parameter k - 1, but to avoid a no-
tational clash with the meshwidth of the finite-element method, we let \hbar := k - 1 (the
notation \hbar comes from the fact that the semiclassical parameter is sometimes related
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to Planck's constant, which is written as 2\pi \hbar ; see, e.g., [52, section 1.2]). Theorem
1.5 is then restated in semiclassical notation as Theorem 2.2 below.

The solution operator of the truncated problem. LetR\Omega tr
(\lambda , z) : L2(\Omega tr) \rightarrow L2(\Omega tr)

be the solution operator for the truncated problem

(1.8)

\left\{     
( - \hbar 2\Delta  - \lambda 2  - z)u = f in \Omega tr,

\gamma D0 u = 0,

\gamma tr1 u = \scrD (\lambda /\hbar )\gamma tr0 u;

that is, R\Omega tr
(\lambda , z) satisfies\left\{     

( - \hbar 2\Delta  - \lambda 2  - z)R\Omega tr(\lambda , z)f = f in \Omega tr,

\gamma D0 R\Omega tr(\lambda , z)f = 0,

\gamma tr1 R\Omega tr(\lambda , z)f = \scrD (\lambda /\hbar )\gamma D0 R\Omega tr(\lambda , z)f.

Note that, at this point, it is not clear that the problem (1.8) is well posed and that
the family of operators R\Omega tr

(\lambda , z) is well defined. We address this in Lemma 1.11
below.

We study R\Omega tr
(\lambda , z) by relating it to the solution operator of a more standard

scattering problem. Namely, let V \in L\infty (\Omega +) with suppV \Subset \BbbR d, and consider the
problem

(1.9)

\left\{     
( - \hbar 2\Delta  - \lambda 2 + V )u = f on \Omega +,

\gamma D0 u = 0,

u is \lambda /\hbar outgoing.

By, e.g., [15, Chapter 4], the inverse of (1.9) is a meromorphic family of operators
(for \lambda \in \BbbC when d is odd or \lambda in the logarithmic cover of \BbbC \setminus \{ 0\} when d is even)
RV (\lambda ) : L

2
comp(\Omega +) \rightarrow L2

loc(\Omega +) with finite-rank poles satisfying

(1.10)

\left\{     
( - \hbar 2\Delta  - \lambda 2 + V )RV (\lambda )f = f in \Omega ,

\gamma D0 RV (\lambda )f = 0,

RV (\lambda )f is \lambda /\hbar outgoing.

Observe that, although both R\Omega tr(\lambda , z) and RV (\lambda ) depend on \hbar , we omit this depen-
dence in the notation to keep expressions compact.

The following two lemmas (proved in section 2.2) relate R\Omega tr
(\lambda , z) and RV (\lambda ) and

then characterize the eigenvalues of the truncated exterior Dirichlet problem as poles
of R\Omega tr

(\lambda , z) as a function of z.
We use three indicator functions: 1\Omega tr denotes the function in L\infty (\Omega +) that is one

on \Omega tr and zero otherwise, 1res\Omega tr
denotes the restriction operator L2(\Omega +) \rightarrow L2(\Omega tr),

and 1ext\Omega tr
denotes the extension-by-zero operator L2(\Omega tr) \rightarrow L2(\Omega +).

Lemma 1.11. Define

(1.11) R(\lambda , z) := RV (\lambda ) with V (z) =  - z1\Omega tr .

Then

(1.12) R\Omega tr
(\lambda , z) = 1res\Omega tr

R(\lambda , z)1ext\Omega tr
,

and thus R\Omega tr
(\lambda , z) is a meromorphic family of operators in \lambda for \lambda \in \BbbC when d is

odd and \lambda in the logarithmic cover of \BbbC \setminus \{ 0\} when d is even.
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Lemma 1.12. For \lambda \in \BbbR \setminus \{ 0\} , z \mapsto \rightarrow R(\lambda , z) is a meromorphic family of operators
L2
comp(\Omega +) \rightarrow L2

loc(\Omega +) with finite rank poles.

Corollary 1.13. If zj is a pole of z \mapsto \rightarrow R\Omega tr
(1, z), then \mu \ell :=  - \hbar  - 2

j zj is an
eigenvalue of the truncated exterior Dirichlet problem (in the sense of Definition 1.1).

The key point is that we are interested in R\Omega tr(\lambda , z) as a meromorphic family
in the variable z, in contrast to the more familiar study of RV (\lambda ) as a meromorphic
family in the variable \lambda .

Recap of ``from quasimodes to resonances."" Recall that resonances of  - \hbar 2\Delta +
V are defined as poles of the meromorphic continuation of RV (w) into Imw < 0;
see [15, sections 4.2 and 7.2]. The ``quasimodes to resonances"" argument of [47]
(following [45, 46]; see also [15, Theorem 7.6]) shows that existence of quasimodes (as
in Definition 1.2) implies existence of resonances close to the real axis; the additional
arguments in [43] then prove the corresponding result with multiplicities.

These arguments use the semiclassical maximum principle (a consequence of the
maximum principle of complex analysis; see Theorem 2.7 below) combined with the
bounds
(1.13)

\| \chi RV (\lambda )\chi \| L2\rightarrow L2 \leq C exp
\Bigl( 
C\hbar  - d log \delta  - 1

\Bigr) 
, \lambda 2 \in \Omega 

\Big\backslash \bigcup 
w\in Res( - \hbar 2\Delta +V )

B(w, \delta ),

for \Omega \Subset \{ Rew > 0\} , and

(1.14) \| RV (\lambda )\| L2\rightarrow L2 \leq 1

Im(\lambda 2)
for Im(\lambda 2) > 0;

see [47, Lemma 1], [48, Proposition 4.3], and [15, Theorem 7.5].
From quasimodes to eigenvalues. Theorems 1.5 and 1.8 are proved using the same

ideas as in the ``quasimodes to resonances"" arguments, except that now we work in
the complex z-plane (with real \lambda ) instead of the complex \lambda -plane. The analogues of
the bounds (1.13) and (1.14) are given in the following lemma.

Lemma 1.14 (bounds on R\Omega tr(\lambda , z)). Let 0 < a < b, and let zj(\hbar , \lambda ) be the poles
of R\Omega tr(\lambda , z) (as a meromorphic function of z). Then there exist C1, \varepsilon 1 > 0 such that
for all 0 < \hbar < 1, \lambda 2 \in [a, b], and \delta > 0,

\| R\Omega tr(\lambda , z)\| L2(\Omega tr)\rightarrow L2(\Omega tr) \leq exp
\Bigl( 
C1\hbar  - d log \delta  - 1

\Bigr) 
for z \in B(0, \varepsilon 1\hbar )

\Big\backslash \bigcup 
j

B(zj(\hbar , \lambda ), \delta ).(1.15)

Furthermore, there exists C2 > 0 such that

(1.16) \| R\Omega tr
(\lambda , z)\| L2(\Omega tr)\rightarrow L2(\Omega tr) \leq C2

\langle z\rangle 
Im z

for Im z > 0,

where \langle z\rangle := (1 + | z| 2)1/2.
The bound (1.15) is proved by finding a parametrix for  - \hbar 2\Delta  - \lambda 2 - z1\Omega tr (i.e., an

approximation to R\Omega tr(\lambda , z)) via a boundary complex absorbing potential. While
parametrices based on complex absorption are often used in scattering theory (see,
e.g., [14, 13], [15, Theorem 7.4]), parametrices based on boundary complex absorption
appear to be new in the literature. One of the main features of the argument below
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is that it relies on a comparison of the (in principle, trapping) billiard flow with the
nontrapping free flow to obtain estimates on the parametrix. A similar argument
should work for boundaries in any nontrapping background.

We also highlight that, while we consider the scattering by Dirichlet obstacles in
this paper and therefore must use boundary complex absorption, smooth compactly
supported perturbations of - \Delta , e.g., metric perturbations or semiclassical Schr\"odinger
operators, can be handled similarly. Indeed, for these problems, the parametrix based
on boundary absorption could be replaced by one based on simpler complex absorbing
potentials.

1.6. Outline of the rest of the paper. In section 2, we prove Lemmas 1.11 and
1.12 and then collect preliminary results about the generalized bicharacteristic flow
(section 2.4), the geometry of trapping (section 2.5), complex scaling (section 2.6),
and defect measures (section 2.8). In section 3, we find a parametrix for R\Omega tr(\lambda , z)
via a boundary complex absorbing potential. In section 4, we prove Lemma 1.14. In
section 5, we prove Theorems 1.5 and 1.8 using Lemma 1.14 and the semiclassical
maximum principle.

2. Preliminary results.

2.1. Restatements of Theorems 1.5 and 1.8 in semiclassical notation.

Definition 2.1 (quasimodes in \hbar notation). A family of quasimodes of quality
\varepsilon (\hbar ) is a sequence \{ (u\ell , \hbar \ell )\} \infty \ell =1 \subset H2(\Omega tr)\cap H1

0,D(\Omega tr)\times \BbbR such that \hbar \ell \rightarrow 0 as \ell \rightarrow \infty 
and there exists a compact subset \scrK \Subset \Omega 1 such that, for all \ell , supp u\ell \subset \scrK ,\bigm\| \bigm\| ( - \hbar 2\Delta  - 1)u\ell 

\bigm\| \bigm\| 
L2(\Omega tr)

\leq \varepsilon (\hbar \ell ) and \| u\ell \| L2(\Omega tr)
= 1.

Let

(2.1) \varepsilon (\hbar ) := \hbar 2\epsilon (\hbar  - 1).

Remark 1.3 implies that we can assume that there exist \widetilde S1, \widetilde S2 > 0 such that

(2.2) \varepsilon (\hbar ) \geq \widetilde S1 exp( - \widetilde S2/\hbar ).

Theorem 1.5 is then equivalent to the following result in the sense that the following
result holds if and only if Theorem 1.5 holds with \mu \ell := \hbar  - 2

\ell z\ell .

Theorem 2.2 (analogue of Theorem 1.5 in \hbar notation). Let \alpha > 3(d + 1)/2.
Suppose there exists a family of quasimodes in the sense of Definition 2.1 such that
the quality \varepsilon (\hbar ) satisfies

(2.3) \varepsilon (\hbar ) \ll \hbar 1+\alpha .

Then there exists \hbar 0 > 0 (depending on \alpha ) such that if \ell is such that \hbar \ell \leq \hbar 0, then
there exists z\ell \in \BbbC and 0 \not = u\ell \in H1

0,D(\Omega tr) with
(2.4)
( - \hbar 2\ell \Delta  - 1 + z\ell )u\ell = 0 in \Omega tr, \gamma tr1 u\ell = \scrD (\hbar  - 1

\ell )(\gamma tr0 u\ell ), and | z\ell | \leq \hbar  - \alpha 
\ell \varepsilon (\hbar \ell ).

Definition 2.3 (quasimodes with multiplicity in \hbar notation). Let 0 \leq a(\hbar ) \leq 
b(\hbar ) <\infty be two functions of \hbar . A family of quasimodes of quality \varepsilon (\hbar ) and multiplic-
ity m(\hbar ) in the window [a(\hbar ), b(\hbar )] is a sequence \{ \hbar j\} \infty j=1 such that \hbar j \rightarrow 0 as j \rightarrow \infty 
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and for every j there exist \{ (uj,\ell , Ej,\ell )\} m(\hbar j)
\ell =1 \subset H2(\Omega tr) \cap H1

0,D(\Omega tr) \times [a(\hbar j), b(\hbar j)]
with \bigm\| \bigm\| ( - \hbar 2j\Delta  - Ej,\ell )uj,\ell 

\bigm\| \bigm\| 
L2(\Omega tr)

= \varepsilon (\hbar j), \| uj,\ell \| L2(\Omega tr)
= 1,\bigm| \bigm| \langle uj,\ell 1 , uj,\ell 2\rangle L2(\Omega tr)

\bigm| \bigm| \leq \hbar  - 2
j \varepsilon (\hbar j) for \ell 1 \not = \ell 2,

and supp uj,\ell \subset \scrK for all j and \ell , where \scrK \Subset \Omega 1.

With \{ zp(\hbar , \lambda )\} p the set of poles of z \mapsto \rightarrow R\Omega tr(\lambda , z) counting multiplicities (with
zp(\hbar , \lambda ) depending continuously on \lambda for each p), let

(2.5) \scrZ (\varepsilon 1, \varepsilon 0, a, b; \hbar ) :=
\Bigl\{ 
p : zp(\hbar , \lambda ) \in ( - 2\varepsilon 1, 2\varepsilon 1) - i(0, 2\varepsilon 0) for some \lambda 2 \in [a, b]

\Bigr\} 
;

| \scrZ | is therefore the counting function of the poles of z \mapsto \rightarrow R\Omega tr(\lambda , z) that enter a
rectangle next to zero in z as \lambda 2 varies from a to b.

Theorem 2.4 (analogue of Theorem 1.8 in \hbar notation). Let 0 < a0 \leq a(\hbar ) \leq 
b(\hbar ) < b0 <\infty , and suppose there exists a family of quasimodes with quality

(2.6) \varepsilon (\hbar ) \ll \hbar (5d+3)/2

and multiplicity m(\hbar ) in the window [a(\hbar ), b(\hbar )] (in the sense of Definition 2.3). If

\varepsilon 0(\hbar ) is such that, for some \widetilde S > 0,

(2.7) \varepsilon 0(\hbar ) \leq \widetilde S \hbar (d+1)/2 for all \hbar , and \varepsilon 0(\hbar ) \gg \hbar  - 2d - 1\varepsilon (\hbar ) as \hbar \rightarrow 0,

then there exists \hbar 0 > 0 such that if \hbar j \leq \hbar 0, then\bigm| \bigm| \bigm| \scrZ \Bigl( \hbar  - (d+1)/2
j \varepsilon 0(\hbar j) , \varepsilon 0(\hbar j) , a(\hbar j) , b(\hbar j) ; \hbar j

\Bigr) \bigm| \bigm| \bigm| \geq m(\hbar j).

Proof of Theorem 1.8 from Theorem 2.4. We first show that if there exists a fam-
ily of quasimodes uj with multiplicity m\ell in the window [k - \ell , k

+
\ell ] in k notation (i.e., in

the sense of Definition 1.4), then there exists a family of quasimodes in \hbar notation (in
the sense of Definition 2.3).

Without loss of generality, each k\ell \in [k - j , k
+
j ] for some j (if necessary by adding

a window with k - j = k+j = k\ell ), i.e., given \ell in the index set of the quasimode, there
exists j such that \ell \in Wj . We now index the quasimode with the index j describing
the windows [k - j , k

+
j ]. Let

\hbar j := (k - j )
 - 1, m(\hbar j) := mj , a(\hbar j) := 1, b(\hbar j) :=

(k+j )
2

(k - j )
2
,

\varepsilon (\hbar j) := \hbar 2j\epsilon (\hbar 
 - 1
j ), and Ej,\ell :=

(k\ell )
2

(k - j )
2

and uj,\ell := u\ell for \ell \in \scrW j .

Then \bigm\| \bigm\| (\hbar 2j\Delta + Ej,\ell )uj,\ell 
\bigm\| \bigm\| 
L2(\Omega tr)

= (k - j )
 - 2
\bigm\| \bigm\| (\Delta + k2\ell )u\ell 

\bigm\| \bigm\| 
L2(\Omega tr)

= (k - j )
 - 2\epsilon (k\ell ) \leq (k - j )

 - 2\epsilon (k - j ) = \varepsilon (hj),

where we have used that \epsilon (k) is a decreasing function of k. Therefore, we have
shown that there exists a family of quasimodes with multiplicity m(\hbar ) in the window
[a(\hbar ), b(\hbar )] in \hbar notation (i.e., in the sense of Definition 2.3).
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The result of Theorem 1.8 then follows from the result of Theorem 2.4 since (a)
if \lambda 2 \in [a(\hbar ), b(\hbar )] and \lambda /\hbar = k, then k \in [k - j , k

+
j ], and (b) if

z \in \scrZ 
\Bigl( 
\hbar  - (d+1)/2
j \varepsilon 0(\hbar j) , \varepsilon 0(\hbar j) , a(\hbar j) , b(\hbar j) ; \hbar j

\Bigr) 
,

then

\mu := \hbar  - 2
j z \in \scrE 

\Bigl( 
(k - j )

(d+1)/2\epsilon 0(k
 - 
j ) , \epsilon 0(k

 - 
j ) , k

 - 
j , k

+
j

\Bigr) 
.

2.2. Results about meromorphic continuation.

Proof of Lemma 1.11. Once we show (1.12), the meromorphicity of R\Omega tr
(\lambda , z) in

\lambda follows from the corresponding result for RV (\lambda ) [15, Theorem 4.4].
We first show that the appropriate extension of a solution of (1.8) is a solution

of (1.9) with V (z) =  - z1\Omega tr
. We then show that the appropriate restriction of the

solution of (1.9) with V (z) =  - z1\Omega tr
is a solution of (1.8).

Given f \in L2(\Omega tr), suppose that u solves (1.8). Then, by the definition of the
operator \scrD , there exists a \lambda /\hbar -outgoing function v \in H2

loc(\BbbR d \setminus \Omega 1) such that

( - \hbar 2\Delta  - \lambda 2)v = 0 on \BbbR d \setminus \Omega 1, and \gamma tr0 v = \gamma tr0 u, \gamma tr1 v = \gamma tr1 u.

Therefore, \widetilde v := 1ext\Omega tr
u+ 1ext\BbbR d\setminus \Omega 1

v

is in H2
loc(\Omega +) (since both its Dirichlet and Neumann traces match across \partial \Omega 1) and

( - \hbar 2\Delta  - \lambda 2)\widetilde v = z1\Omega tr\widetilde v + 1ext\Omega tr
f on \Omega +.

By the definition of R(\lambda , z) as the solution of (1.10) with V (z) =  - z1\Omega tr ,

\widetilde v = R(\lambda , z)1ext\Omega tr
f, which implies that u = 1res\Omega tr

R(\lambda , z)1ext\Omega tr
f.

Now suppose \widetilde f \in L2(\Omega +). Then, by (1.11) and (1.9),

(2.8)

\left\{     
( - \hbar 2\Delta  - \lambda 2  - z1\Omega tr)R(\lambda , z)

\widetilde f = \widetilde f in \Omega ,

R(\lambda , z) \widetilde f = 0 on \Gamma D,

R(\lambda , z) \widetilde f is \lambda /\hbar -outgoing.

Therefore, if \widetilde f = 1ext\Omega tr
f and v := R(\lambda , z) \widetilde f , then ( - \hbar 2\Delta  - \lambda 2)R(\lambda , z) \widetilde f = 0 in \BbbR d \setminus \Omega 1

and v is \lambda /\hbar -outgoing. This last fact implies that

(2.9) \gamma tr1 (1res\BbbR d\setminus \Omega tr
v) = \scrD (\lambda /\hbar )\gamma tr0 (1res\BbbR d\setminus \Omega tr

v).

Since v = R(\lambda , z) \widetilde f \in H2
loc(\Omega +), the Dirichlet and Neumann traces of v across \Gamma tr do

not have jumps, so that (2.9) implies that

(2.10) \gamma tr1 (1res\Omega tr
v) = \scrD (\lambda /\hbar )\gamma tr0 (1res\Omega tr

v).

Then, by (2.8) and (2.10), u := 1res\Omega tr
v solves (1.8) and the proof is complete.

Proof of Lemma 1.12. Since

( - \hbar 2\Delta  - \lambda 2  - z1\Omega tr
)R(\lambda , 0) = I  - z1\Omega tr

R(\lambda , 0),
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the definition of R(\lambda , z) (1.11) implies that

(2.11) R(\lambda , z) = R(\lambda , 0)
\bigl( 
I  - z1\Omega tr

R(\lambda , 0)
\bigr)  - 1

.

We now claim that, for any \rho \in C\infty (\Omega +) with supp \rho \Subset \BbbR d and \rho \equiv 1 on \Omega tr,

(2.12)
\bigl( 
I  - z1\Omega tr

R(\lambda , 0)
\bigr)  - 1

=
\bigl( 
I  - z1\Omega tr

R(\lambda , 0)\rho 
\bigr)  - 1\bigl( 

I + z1\Omega tr
R(\lambda , 0)(1 - \rho )

\bigr) 
.

Indeed,

I - z1\Omega tr
R(\lambda , 0) =

\Bigl( 
I - z1\Omega tr

R(\lambda , 0)(1 - \rho )
\bigl( 
I - z1\Omega tr

R(\lambda , 0)\rho 
\bigr)  - 1
\Bigr) \bigl( 
I - z1\Omega tr

R(\lambda , 0)\rho 
\bigr) 
,

and thus\bigl( 
I  - z1\Omega trR(\lambda , 0)

\bigr)  - 1
(2.13)

=
\bigl( 
I  - z1\Omega tr

R(\lambda , 0)\rho 
\bigr)  - 1
\Bigl( 
I  - z1\Omega tr

R(\lambda , 0)(1 - \rho )
\bigl( 
I  - z1\Omega tr

R(\lambda , 0)\rho 
\bigr)  - 1
\Bigr)  - 1

.

Observe that since \rho R(\lambda , 0)\rho : L2(\Omega +) \rightarrow L2(\Omega +) is compact, 1\Omega tr
R(\lambda , 0)\rho : L2(\Omega +) \rightarrow 

L2(\Omega +) is compact, and the analytic Fredholm theorem [15, Theorem C.8] implies that

(2.14) z \mapsto \rightarrow (I  - z1\Omega tr
R(\lambda , 0)\rho ) - 1 is a meromorphic family of operators for z \in \BbbC 

with finite rank poles.
Now, since (1 - \rho )1\Omega tr

= 0, for | z| small enough,

(2.15) (1 - \rho )
\bigl( 
I  - z1\Omega trR(\lambda , 0)\rho 

\bigr)  - 1
= (1 - \rho )

\infty \sum 
j=0

(z1\Omega trR(\lambda , 0)\rho )
k = (1 - \rho ).

However, by (2.14) both the left- and the right-hand sides of (2.15) are meromorphic
for z \in \BbbC . Therefore, (2.15) holds for all z \in \BbbC , and hence

(2.16)
\bigl( 
I  - z1\Omega trR(\lambda , 0)(1 - \rho )

\bigr)  - 1
= I + z1\Omega trR(\lambda , 0)(1 - \rho ).

Using (2.15) and (2.16) in (2.13), we obtain (2.12). Therefore, for \chi \equiv 1 on \Omega tr and
\rho \equiv 1 on supp\chi , (2.11), (2.12), and (2.15) imply that

\chi R(\lambda , z)\chi = \chi R(\lambda , 0)\rho 
\bigl( 
I  - z1\Omega trR(\lambda , 0)\rho 

\bigr)  - 1
\chi .

Using (2.14) again completes the proof.

With z0(\hbar , \lambda ) a pole of R\Omega tr
(\lambda , z), let

(2.17)

\Pi z0(\hbar ,\lambda ) :=  - 1

2\pi i

\oint 
z0(\hbar ,\lambda )

R\Omega tr(\lambda , z) dz and mR

\bigl( 
z0(\hbar , \lambda )

\bigr) 
:= rank\Pi z0(\hbar ,\lambda ),

where
\oint 
z0(\hbar ,\lambda ) denotes integration over a circle containing z0 and no other pole of

R\Omega tr(\lambda , z).
The following result then holds by, e.g., [15, Theorem C.9].

Lemma 2.5. For \lambda \in \BbbR \setminus \{ 0\} , \Pi z0(\hbar ,\lambda ) : L
2(\Omega tr) \rightarrow L2(\Omega tr) is a bounded projection

with finite rank.
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The next result concerns the singular behavior of R\Omega tr
(\lambda , z) near its poles in z

and is analogous to (parts of) [15, Theorem 4.7] concerning the singular behavior of
RV (\lambda ) near its poles in \lambda .

Lemma 2.6. For \lambda \in \BbbR \setminus \{ 0\} , if z0 = z0(\hbar , \lambda ) and mR(z0) > 0, then there exists
Mz0 > 0 such that

R\Omega tr
(\lambda , z) =  - 

Mz0\sum 
\ell =1

\Pi z0

( - \hbar 2\Delta  - \lambda 2  - z)\ell  - 1

(z  - z0)\ell 
+A(z, z0, \lambda ),

where z \mapsto \rightarrow A(z, z0, \lambda ) is holomorphic near z0.

Proof. By Lemma 1.12, for \lambda \in \BbbR \setminus \{ 0\} , z \mapsto \rightarrow R\Omega tr
(\lambda , z) is a meromorphic family

of operators (in the sense of [15, Definition C.7]) from L2(\Omega tr) \rightarrow L2(\Omega tr), and thus
there exist Mz0 > 0, finite-rank operators A\ell (\lambda ) : L

2(\Omega tr) \rightarrow L2(\Omega tr), \ell = 1, . . . ,Mz0 ,
and a family of operators z \mapsto \rightarrow A(z, z0, \lambda ) from L2(\Omega tr) \rightarrow L2(\Omega tr), holomorphic near
z0, such that

R\Omega tr
(\lambda , z) =

Mz0\sum 
\ell =1

A\ell (\lambda )

(z  - z0)\ell 
+A(z, z0, \lambda ).

By integrating around z0 and using the residue theorem, we have A1 =  - \Pi z0 . Then,
with \equiv denoting equality up to holomorphic operators,

R\Omega tr
(\lambda , z)( - \hbar 2\Delta  - \lambda 2  - z) \equiv 

Mz0\sum 
\ell =1

\biggl( 
A\ell ( - \hbar 2\Delta  - \lambda 2  - z0)

(z  - z0)\ell 
 - A\ell 

(z  - z0)\ell  - 1

\biggr) 
,

=

Mz0\sum 
\ell =1

A\ell ( - \hbar 2\Delta  - \lambda 2  - z0) - A\ell +1

(z  - z0)\ell 
,

where we define AMz0+1 := 0. Since R\Omega tr
(\lambda , z)( - \hbar 2\Delta  - \lambda 2  - z) = I on H2(\Omega tr) \cap 

H1
0 (\Omega +), A\ell +1 = A\ell ( - \hbar 2\Delta  - \lambda 2  - z), \ell = 1, . . . ,Mz0 , and the result follows from the

density of H2(\Omega tr) \cap H1
0 (\Omega +) in L

2(\Omega tr).

2.3. The semiclassical maximum principle. The following result is the semi-
classical maximum principle of [47, Lemma 2], [48, Lemma 4.2] (see also [15, Lemma
7.7]).

Theorem 2.7 (semiclassical maximum principle). Let \scrH be a Hilbert space and
z \mapsto \rightarrow Q(z, \hbar ) \in \scrL (\scrH ) an holomorphic family of operators in a neighborhood of

(2.18) \Omega (\hbar ) :=
\bigl( 
w  - 2\beta (\hbar ), w + 2\beta (\hbar )

\bigr) 
+ i
\bigl( 
 - \delta (\hbar )\hbar  - L, \delta (\hbar )

\bigr) 
,

where

(2.19) 0 < \delta (\hbar ) < 1 and \beta (\hbar )2 \geq C\hbar  - 3L\delta (\hbar )2

for some L > 0 and C > 0. Suppose that

\| Q(z, \hbar )\| \scrH \rightarrow \scrH \leq exp(C\hbar  - L), z \in \Omega ,(2.20)

\| Q(z, \hbar )\| \scrH \rightarrow \scrH \leq C

Im z
, Im z > 0, z \in \Omega .(2.21)

Then

(2.22) \| Q(z, \hbar )\| \scrH \rightarrow \scrH \leq C

\delta (\hbar )
exp(C + 1) for all z \in 

\bigl[ 
w  - \beta (\hbar ), w + \beta (\hbar )

\bigr] 
.
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References for proof. Let f, g \in \scrH with \| f\| \scrH = \| g\| \scrH = 1, and let

F (z, \hbar ) :=
\bigl\langle 
Q(z + w, h)g, f

\bigr\rangle 
\scrH .

The result (2.22) follows from the ``three-line theorem in a rectangle"" (a consequence
of the maximum principle) stated as [15, Lemma D.1] applied to the holomorphic
family (F (\cdot , h))0<h\ll 1 with

R = 2\beta (\hbar ), \delta + = \delta (\hbar ), \delta  - = \delta (\hbar )h - L,

M =M - = exp(C\hbar  - L), M+ = C \delta (\hbar ) - 1.

2.4. The generalized bicharacteristic flow. Recall that

T \ast 
\Omega +

\BbbR d :=
\bigl\{ 
(x, \xi ) \in T \ast \BbbR d, x \in \Omega +

\bigr\} 
=
\bigl\{ 
x \in \Omega +, \xi \in \BbbR d

\bigr\} 
and

S\ast 
\Omega +

\BbbR d :=
\bigl\{ 
(x, \xi ) \in S\ast \BbbR d, x \in \Omega +

\bigr\} 
=
\bigl\{ 
x \in \Omega +, \xi \in \BbbR d with | \xi | = 1

\bigr\} 
.

We write \varphi t : S\ast 
\Omega +

\BbbR d \rightarrow S\ast 
\Omega +

\BbbR d for the generalized bicharacteristic flow associated

with a symbol p (see, e.g., [31, section 24.3]). Since the flow over the interior is
generated by the Hamilton vector field Hp, for any symbol b \in C\infty 

c (T \ast 
\Omega +

\BbbR d),

(2.23) \partial t(b \circ \varphi t) = Hpb = \{ p, b\} ,

where \{ \cdot , \cdot \} denotes the Poisson bracket; see [52, section 2.4].
We primarily consider the case when p is the semiclassical principal symbol of the

Helmholtz equation, namely p = | \xi | 2  - 1. By Hamilton's equations, away from the
boundary of \Omega +, the corresponding flow satisfies \.xi = 2\xi i and \.\xi i = 0, and thus, for
\rho = (x, \xi ) with x away from \Gamma D, \varphi t(\rho ) = x+ 2t\xi for t sufficiently small; i.e., the flow
has speed two.

We let \pi \BbbR denote the projection operator onto the spatial variables; i.e.,

\pi \BbbR : T \ast 
\Omega +

\BbbR d \rightarrow \Omega +, \pi \BbbR ((x, \xi )) = x.

2.5. Geometry of trapping. Let \chi \in C\infty (\Omega +; [0, 1]) with supp\chi \Subset \BbbR d and
\chi \equiv 1 near \Omega  - , and define r : T \ast 

\Omega +
\BbbR d \rightarrow \BbbR by

r(x, \xi ) := (1 - \chi (x))| x| 

so that there exists c > 0 such that for r0 > c,

\{ x : r > r0\} = \BbbR d \setminus B(0, r0).

Moreover, note that \{ r \leq c\} is compact for every c. Next, define the directly escaping
sets,

\scrE \pm :=
\Bigl\{ 
(x, \xi ) \in S\ast \BbbR d | r(x, \xi ) \geq r0, \pm \langle x, \xi \rangle \BbbR d \geq 0

\Bigr\} 
,

\scrE o
\pm :=

\Bigl\{ 
(x, \xi ) \in S\ast \BbbR d | r(x, \xi ) \geq r0, \pm \langle x, \xi \rangle \BbbR d > 0

\Bigr\} 
.
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Then

(2.24) \rho \in \scrE \pm implies that \varphi \pm t(\rho ) \in \scrE \pm and r(\varphi \pm t(\rho )) \geq 
\sqrt{} 

r(\rho )2 + 4t2 for all t \geq 0.

Therefore, r(\varphi t(\rho )) \rightarrow \infty as t \rightarrow \pm \infty , and hence \rho \in \scrE \pm escapes forward/backward
in time. This, in particular, implies that

(2.25) r(\rho ) \geq r0, r(\varphi \mp t0(\rho )) \leq r(\rho ) for some t0 > 0 \Rightarrow \pm \langle x(\rho ), \xi (\rho )\rangle > 0.

We now define the outgoing tail \Gamma + \subset S\ast 
\Omega \BbbR d, the incoming tail \Gamma  - \subset S\ast 

\Omega \BbbR d, and the
trapped set K by

(2.26) \Gamma \pm := \{ q \in S\ast 
\Omega \BbbR d | r(\varphi t(q)) \not \rightarrow \infty , t\rightarrow \mp \infty \} , K := \Gamma + \cap \Gamma  - ;

i.e., the outgoing tail is the set of trajectories that do not escape as t \rightarrow  - \infty , the
incoming tail is the set of trajectories that do not escape as t\rightarrow \infty , and the trapped
set is the set of trajectories that do not escape in either time direction.

We now recall some basic properties of \Gamma \pm and K, with these proved in a more
general setting in [15, section 6.1].

Lemma 2.8.
(i) The sets \Gamma \pm ,K are closed in S\ast 

\Omega \BbbR d, and K \subset \{ r < r0\} .
(ii) Suppose that \rho n \in S\ast 

\Omega +
\BbbR d with \rho n \rightarrow \rho and there exist tn \rightarrow \infty such that

\varphi \pm tn(\rho n) \rightarrow \rho \infty . Then \rho \in \Gamma \mp .

Proof. (i) We show that \Gamma  - is closed in S\ast 
\Omega \BbbR d. Suppose that \rho 0 \in S\ast 

\Omega \BbbR d \setminus \Gamma  - .
Then r(\varphi t(\rho 0)) \rightarrow \infty as t \rightarrow \infty . In particular, there exist 0 < t1 < t2 such that
r(\varphi t2(\rho 0)) \geq r0 and r(\varphi t1(\rho 0)) \leq r(\varphi t2(\rho 0)). So, applying (2.25) with \rho = \varphi t2(\rho 0),
we have \varphi t2(\rho 0) \in \scrE o

+. Since \scrE o
+ is open and \varphi t2 is continuous, we have \varphi t2(\rho ) \in \scrE o

+

for all \rho sufficiently close to \rho 0, and hence, by (2.24), \rho /\in \Gamma  - . Therefore, \Gamma  - is closed.
By an identical argument, \Gamma + and hence \Gamma  - \cap \Gamma + are closed.

Now we show that K \subset \{ r < r0\} . Note that S\ast 
\Omega \BbbR d \cap \{ r \geq r0\} \subset \scrE + \cup \scrE  - . But

\scrE + \cap \Gamma  - = \emptyset and \scrE  - \cap \Gamma + = \emptyset , and hence S\ast 
\Omega \BbbR d \cap \{ r \geq r0\} \cap \Gamma + \cap \Gamma  - = \emptyset as claimed.

(ii) We prove the result for tn \rightarrow \infty ; the proof of the other case is similar.
Seeking a contradiction, assume that \rho /\in \Gamma  - . Then there exists T > 0 such that
r(\varphi T (\rho )) \in \scrE o

+, and hence, since \varphi T is continuous, and \scrE o
+ is open, for n large enough,

\varphi T (\rho n) \in \scrE o
+. But then, by (2.24) and (2.25), for t \geq T , r(\varphi t(\rho n)) \geq 

\sqrt{} 
r20 + 4(t - T )2.

In particular, for n large enough,

r(\varphi Tn
(\rho n)) \geq 

\sqrt{} 
r20 + 4(Tn  - T )2 \rightarrow \infty ,

which contradicts the fact that r(\varphi Tn(\rho n)) \rightarrow \rho \infty .

2.6. Complex scaling. We now review the method of complex scaling following
[15, section 4.5]. We first fix a small angle of scaling, \theta > 0, and the radius, r1 > r0,
where the scaling starts; without loss of generality, we assume that \Omega 1 \Subset \{ x : r \leq r1\} .
Let f\theta \in C\infty ([0,\infty ) satisfy

f\theta (r) \equiv 0, r \leq r1; f\theta (r) = r tan \theta , r \geq 2r1;

f \prime \theta (r) \geq 0, r \geq 0; \{ f \prime \theta (r) = 0\} = \{ f\theta (r) = 0\} .
Then consider the totally real submanifold (see [15, Definition 4.28])

\Gamma \theta :=

\biggl\{ 
x+ if\theta (| x| )

x

| x| : x \in \BbbR d

\biggr\} 
\subset \BbbC d
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and note that we identify \Omega  - with its image on \Gamma \theta . We define the complex scaled
operator P\theta on \Omega by the Dirichlet realization of

P\theta :=

\biggl( 
1

1 + if \prime \theta (r)
\hbar Dr

\biggr) 2

 - (d - 1)i

(r + if\theta (r))(1 + if \prime \theta (r))
\hbar 2Dr - 

\hbar 2\Delta \phi 

(r + if\theta (r))2
, \{ r \geq r0\} ,

where \Delta \phi denotes the Laplacian on the round sphere Sd - 1. Note that P\theta is a semi-
classical differential operator of second order such that on r \leq r1, P\theta =  - \hbar 2\Delta with
principal symbol, p\theta , satisfying p\theta (x, \xi ) = | \xi | 2 on \{ r \leq r1\} , and in polar coordinates
x = r\phi ,

(2.27) p\theta (r, \phi , \xi r, \xi \phi ) =
\xi 2r

(1 + if \prime \theta (r))
2
+

| \xi \phi | 2
(r + if\theta (r))2

.

Now, by, e.g., [15, Theorems 4.36 and 4.38], for Im(ei\theta \lambda ) > 0,

(2.28) P\theta  - \lambda 2 : H2(\Omega +)\cap H1
0 (\Omega +) \rightarrow L2(\Omega +) is a Fredholm operator of index zero.

In particular, for V \in L\infty (\BbbR d), suppV \subset \{ r < r1\} , this implies that
(2.29)
P\theta  - \lambda 2 + V : H2(\Omega +) \cap H1

0 (\Omega +) \rightarrow L2(\Omega +) is a Fredholm operator of index zero.

Moreover, by [15, Theorem 4.37], (P\theta  - \lambda 2 + V ) - 1 has the same poles as RV (\lambda ) and,
for \chi \in C\infty 

c (\{ x : r \leq r1\} ) with supp\chi \Subset \BbbR d,

(2.30) \chi (P\theta  - \lambda 2 + V ) - 1\chi = \chi RV (\lambda )\chi .

2.7. Semiclassical pseudodifferential operators. For simplicity of exposi-
tion, we begin by discussing semiclassical pseudodifferential operators on \BbbR d and then
outline below how to extend the results from \BbbR d to a manifold \Gamma (with these results
then applied with \Gamma = \Gamma D or \Gamma = \Gamma tr).

A symbol is a function on T \ast \BbbR d := \BbbR d \times (\BbbR d)\ast that is also allowed to depend on
\hbar and thus can be considered as an \hbar -dependent family of functions. Such a family
a = (a\hbar )0<\hbar \leq \hbar 0

, with a\hbar \in C\infty (T \ast \BbbR d), is a symbol of order m, written as a \in Sm(\BbbR d),
if for any multi-indices \alpha , \beta 

(2.31) | \partial \alpha x \partial \beta \xi a\hbar (x, \xi )| \leq C\alpha ,\beta \langle \xi \rangle m - | \beta | for all (x, \xi ) \in T \ast \BbbR d and for all 0 < \hbar \leq \hbar 0,

where \langle \xi \rangle := (1 + | \xi | 2)1/2 and C\alpha ,\beta does not depend on \hbar ; see [52, page 207], [15,
section E.1.2].

For a \in Sm, we define the semiclassical quantisation of a, denoted by Op\hbar (a) :
\scrS (\BbbR d) \rightarrow \scrS (\BbbR d), as

(2.32) Op\hbar (a)v(x) := (2\pi \hbar ) - d

\int 
\BbbR d

\int 
\BbbR d

exp
\bigl( 
i(x - y) \cdot \xi /\hbar 

\bigr) 
a(x, \xi )v(y) dyd\xi ;

see [52, section 4.1], [15, section E.1 (in particular page 543)]. The integral in (2.32)
need not converge, and can be understood either as an oscillatory integral in the sense
of [52, section 3.6], [30, section 7.8], or as an iterated integral, with the y integration
performed first; see [15, page 543].

Conversely, if A can be written in the form above, i.e., A = Op\hbar (a) with a \in Sm,
we say that A is a semiclassical pseudodifferential operator of order m and we write

D
ow

nl
oa

de
d 

05
/1

1/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

6744 J. GALKOWSKI, P. MARCHAND, AND E. A. SPENCE

A \in \Psi m
\hbar . We use the notation a \in \hbar lSm if \hbar  - la \in Sm; similarly, A \in \hbar l\Psi m

\hbar if
\hbar  - lA \in \Psi m

\hbar . We write \Psi  - \infty 
\hbar = \cap m\Psi  - m

\hbar .
Let the quotient space Sm/\hbar Sm - 1 be defined by identifying elements of Sm that

differ only by an element of \hbar Sm - 1. For any m, there exists a linear, surjective map

\sigma m
\hbar : \Psi m

\hbar \rightarrow Sm/\hbar Sm - 1,

called the principal symbol map, such that, for a \in Sm,

(2.33) \sigma m
\hbar 
\bigl( 
Op\hbar (a)

\bigr) 
= a, mod \hbar Sm - 1;

see [52, page 213], [15, Proposition E.14] (observe that (2.33) implies that ker(\sigma m
\hbar ) =

\hbar \Psi m - 1
\hbar ). When applying the map \sigma m

\hbar to elements of \Psi m
\hbar , we denote it by \sigma \hbar (i.e., we

omit the m dependence) and we use \sigma \hbar (A) to denote one of the representatives in
Sm (with the results we use then independent of the choice of representative). Key
properties of the principal symbol that we use below are that

(2.34) \sigma \hbar (AB) = \sigma \hbar (A)\sigma \hbar (B) and \hbar  - 1\sigma \hbar 
\bigl( \bigl[ 

Op\hbar (a),Op\hbar (b)
\bigr] \bigr) 

=  - i\{ a, b\} ,

where (as in section 2.4) \{ \cdot , \cdot \} denotes the Poisson bracket; see [15, Proposition E.17]
and [15, equation E.1.44], [52, page 68].

While the definitions above are written for operators on \BbbR d, semiclassical pseu-
dodifferential operators and all of their properties above have analogues on compact
manifolds (see, e.g., [52, section 14.2], [15, section E.1.7]). Roughly speaking, the
class of semiclassical pseudodifferential operators of order m on a compact mani-
fold \Gamma , \Psi m

\hbar (\Gamma ) are operators that, in any local coordinate chart, have kernels of the
form (2.32) where the function a \in Sm modulo a remainder operator R that has the
property

(2.35) \| R\| H - N
\hbar \rightarrow HN

\hbar 
\leq CN\hbar N .

We say that an operator R satisfying (2.35) is O(\hbar \infty )\Psi  - \infty 
\hbar 

.

Semiclassical pseudodifferential operators on manifolds continue to have a natural
principal symbol map

\sigma \hbar : \Psi m
\hbar \rightarrow Sm(T \ast \Gamma )/\hbar Sm - 1(T \ast \Gamma ),

where now Sm(T \ast \Gamma ) is a class of functions on T \ast \Gamma , the cotangent bundle of \Gamma , which
satisfies the estimates (2.31). Furthermore, (2.34) holds as before.

Finally, there is a noncanonical quantization map Op\hbar : Sm(T \ast \Gamma ) \rightarrow \Psi m
\hbar (\Gamma ) that

satisfies
\sigma \hbar (Op\hbar (a)) = a,

and for all A \in \Psi m
\hbar (\Gamma ), there exists a \in Sm(T \ast \Gamma ) such that

A = Op\hbar (a) +O(\hbar \infty )\Psi  - \infty 
\hbar 

.

2.8. Defect measures. We say that a sequence \{ u\hbar n
\} \infty n=1 with \| uhn

\| L2(\BbbR d) \leq C

for all n (with C independent of n) has defect measure \mu if for all a \in C\infty 
c (T \ast \BbbR d),

\bigl\langle 
Op\hbar n(a)u\hbar n , u\hbar n

\bigr\rangle 
L2(\BbbR d)

\rightarrow 
\int 
a d\mu ,
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where Op\hbar (a) is defined by (2.32). By, e.g., [52, Theorem 5.2], \mu is a positive Radon
measure on T \ast \BbbR d. We say that u\hbar n

and f\hbar n
have joint defect measure \mu j if

(2.36)
\bigl\langle 
Op\hbar n

(a)u\hbar n
, f\hbar n

\bigr\rangle 
L2(\BbbR d)

\rightarrow 
\int 
a d\mu j .

We usually suppress the n in the notation and instead write that u\hbar has defect
measure \mu and that u\hbar and f\hbar have joint defect measure \mu j .

Lemma 2.9 (see [52, Theorem 5.3]). Let \sansP \in \Psi m
\hbar (\BbbR d), and suppose that u\hbar has

defect measure \mu and satisfies

\| \sansP u\hbar \| L2(\BbbR d) = o(1).

Then supp\mu \subset \{ \sigma \hbar (\sansP ) = 0\} , where \sigma \hbar (\sansP ) is the semiclassical principal symbol of \sansP .

The following lemma is the defect-measure analogue of the propagation of singu-
larities result [15, Theorem E.47].

Lemma 2.10. Let \sansP \in \Psi m
\hbar (\BbbR d) with Im\sigma \hbar (\sansP ) \leq 0. There exists C > 0 such that

the following holds: suppose that u\hbar has defect measure \mu and satisfies

\sansP u\hbar = \hbar f\hbar ,

where \| f\hbar \| L2(\BbbR d) \leq C1 and u\hbar and f\hbar have joint defect measure \mu j. Then, for all real

valued a \in C\infty 
c (T \ast \BbbR d),

\mu (HRe\sigma \hbar (\sansP )a
2) \geq  - 2 Im\mu j(a2) - C\mu 

\bigl( 
\langle \xi \rangle m - 1a2

\bigr) 
.

Proof. Let A = Op\hbar (a). Since \sigma \hbar (A
\ast ) = a (by [15, equation E.1.45]) and thus

\sigma \hbar (A
\ast A) = a2 (by [15, equation E.1.43]), by the definition of the joint measure (2.36),

(2.37) 2\hbar  - 1 Im
\bigl\langle 
A\ast Au\hbar ,\sansP u\hbar 

\bigr\rangle 
= 2 Im\mu j(a2) + o(1),

and, by (2.34) and (2.23),

\hbar  - 1 Im
\bigl\langle 
[A\ast A,Re\sansP ]u\hbar , u\hbar 

\bigr\rangle 
= \mu (HRe\sigma \hbar (\sansP )a

2).

Since 2 Im z = Im(z  - z) and \sansP = Re\sansP + i Im\sansP with Re\sansP and Im\sansP both self-adjoint,

 - 2\hbar  - 1 Im
\bigl\langle 
A\ast Au\hbar ,\sansP u\hbar 

\bigr\rangle 
,

= \hbar  - 1 Im
\Bigl( \bigl\langle 

\sansP u\hbar , A
\ast Au\hbar 

\bigr\rangle 
 - 

\bigl\langle 
A\ast Au\hbar ,\sansP u\hbar 

\bigr\rangle \Bigr) 
,

= \hbar  - 1 Im
\Bigl( \bigl\langle 

(A\ast ARe\sansP  - Re\sansP A\ast A)u\hbar , u\hbar 
\bigr\rangle 
+ i

\bigl\langle 
(A\ast A Im\sansP + Im\sansP A\ast A)u\hbar , u\hbar 

\bigr\rangle \Bigr) 
,

= \hbar  - 1 Im
\bigl\langle 
(A\ast ARe\sansP  - Re\sansP A\ast A)u\hbar , u\hbar 

\bigr\rangle 
+ 2\hbar  - 1 Re

\bigl\langle 
A\ast A Im\sansP u\hbar , u\hbar 

\bigr\rangle 
),

= \mu (HRe\sigma \hbar (\sansP )a
2) + o(1) + 2\hbar  - 1 Re

\bigl\langle 
Im\sansP Au\hbar , Au\hbar 

\bigr\rangle 
+ 2\hbar  - 1 Re

\bigl\langle 
A\ast [A, Im\sansP ]u\hbar , u\hbar 

\bigr\rangle 
,

\leq \mu (HRe\sigma \hbar (\sansP )a
2) + o(1) + 2\hbar  - 1 Re

\bigl\langle 
A\ast [A, Im\sansP ]u\hbar , u\hbar 

\bigr\rangle 
+ C\| Au\| 2H(m - 1)/2 ,(2.38)

where the last line follows from the sharp Garding inequality (see, e.g., [15, Proposi-
tion E.32]) and the fact that Im\sigma \hbar (\sansP ) \leq 0. By (2.34),

Re \hbar  - 1\sigma \hbar 
\bigl( 
A\ast [A, Im\sansP ]

\bigr) 
= Re

\bigl( 
 - ia\{ a, Im\sigma \hbar (\sansP )\} 

\bigr) 
= 0,

and therefore, since the kernel of \sigma \hbar : \Psi  - \infty 
\hbar \rightarrow S - \infty /\hbar S - \infty is \hbar \Psi  - \infty 

\hbar , \hbar  - 1 ReA\ast [A, Im\sansP ] \in 
\hbar \Psi  - \infty 

\hbar and, in particular,

(2.39) Re\langle A\ast [A, Im\sansP ]u\hbar , u\hbar \rangle = \scrO (\hbar 2).

The result follows by combining (2.38) with (2.39) and (2.37) and sending \hbar \rightarrow 0.
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Corollary 2.11. Let \Xi \geq 0, and suppose the assumptions of Lemma 2.10 hold
and, in addition, \mu j = 0. Then, with \varphi t the bicharacteristic flow corresponding to the
symbol Re\sigma \hbar (\sansP ), for any B \subset T \ast \BbbR d \cap \{ | \xi | \leq \Xi \} ,

(2.40) \mu 
\bigl( 
\varphi t(B)

\bigr) 
\leq eCt\langle \Xi \rangle m - 1

\mu (B) for t \geq 0.

Corollary 2.11 shows that, under the assumptions of Lemma 2.10, we have infor-
mation about the defect measures of sets moving forward under the flow.

Proof of Corollary 2.11. Let a \in C\infty 
c (T \ast \BbbR d \cap \{ | \xi | \leq \Xi \} ). By (2.23),

\partial t

\biggl( 
eCt\langle \Xi \rangle m - 1

\int 
(a2 \circ \varphi t) d\mu 

\biggr) 
=

\int 
\partial t(a

2 \circ \varphi t) + (C\langle \Xi \rangle m - 1a2) \circ \varphi t d\mu 

\geq 
\int 
\partial t(a

2 \circ \varphi t) + (C\langle \xi \rangle m - 1a2) \circ \varphi t d\mu 

= \mu 
\bigl( 
HRe\sigma \hbar (\sansP )a

2 + C\langle \xi \rangle m - 1a2
\bigr) 
\geq 0,

and thus

(2.41) eCt\langle \Xi \rangle m - 1

\int 
a2 d\mu \geq 

\int 
(a2 \circ \varphi  - t) d\mu .

Let 1B be the indicator function of B \subset T \ast \BbbR d \cap \{ | \xi | \leq \Xi \} . By approximating 1B by
squares of smooth, compactly supported symbols, (2.41) holds with a2 = 1B . Since
1B \circ \varphi  - t = 1\varphi t(B), the result (2.40) follows. More precisely, we first let B be open and

Kn \Subset B compact with Kn \uparrow B and choose an \in C\infty 
c (T \ast \BbbR d \cap \{ | \xi | \leq \Xi \} ) with an \equiv 1

on Kn and supp an \subset B. The result for B open follows by monotonicity of measure
from below; the result for general B follows by outer regularity of \mu .

We now review some recent results from [22] about defect measures when u\hbar 
satisfies the Helmholtz equation. Let f\hbar \in L2

comp(\BbbR d) be such that \| f\hbar \| L2(\BbbR d) \leq C.
We use Riemannian/Fermi normal coordinates (x1, x

\prime ) in which \Gamma D is given by
\{ x1 = 0\} and \Omega + is \{ x1 > 0\} . The conormal and cotangent variables are given by
(\xi 1, \xi 

\prime ). Recall the definition of the hyperbolic set

\scrH \Gamma D
:=
\bigl\{ 
(x\prime , \xi \prime ) \in T \ast \Gamma D : | \xi \prime | g < 1\} \subset T \ast \Gamma D

(where the metric g is that induced by \Gamma D) and the definition of the gliding set

\scrG :=
\Bigl\{ 
x1 = Hpx1 = 0, H2

px1 < 0, | \xi | = 1
\Bigr\} 
\subset S\ast 

\Gamma D
\BbbR d.

Let \scrN \in \Psi m
\hbar (\Gamma D) and \scrD \in \Psi m+1

\hbar (\Gamma D) have real-valued principal symbols satisfying

(2.42)
| \sigma \hbar (\scrN )| 2\langle \xi \prime \rangle  - 2m + | \sigma \hbar (\scrD )| 2\langle \xi \prime \rangle  - 2m - 2 > c > 0 on T \ast \Gamma D,

\sigma \hbar (\scrN )\sigma \hbar (\scrD ) > 0 on B\ast \Gamma D,

where B\ast \Gamma D := \{ (x\prime , \xi \prime ) : | \xi \prime | g < 1\} and | \xi \prime | g denotes the norm of \xi \prime in the metric, g,
induced on \Gamma D from \BbbR d. Let u \in L2

loc(\Omega +) be a solution to

( - \hbar 2\Delta  - 1)u\hbar = \hbar f\hbar in \Omega +, (\scrN hD\nu  - \scrD )u\hbar | \Gamma D
= o(1).

Later we restrict our attention to specific \scrN and \scrD , but we consider more general
operators here because we believe some of our intermediate results (specifically Lemma
3.3) are of independent interest; see [23].
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Suppose that 1ext\Omega +
u\hbar has defect measure \mu and that 1ext\Omega +

u\hbar and fh have joint

defect measure \mu j . On \Gamma D, let \nu j be the joint measure associated with the Dirichlet
and Neumann traces and \nu n be the measure associated with the Neumann trace; see
[22, Theorem 2.3]. In what follows, we only use the fact that \.nj\nu n = \nu j , where
\.nj = \sigma \hbar (\scrN )/\sigma \hbar (\scrD ) is bounded (see [22, Lemma 2.14 and section 4]).

With u as above, let \mu in/out be the positive measures on T \ast \Gamma D, supported in the
hyperbolic set \scrH \Gamma D

and defined in [22, Lemma 2.9], [40, Proposition 1.7, part (ii)].
In the following lemma, bT \ast \Omega + denotes the b-cotangent bundle to \Omega + and \pi :

T \ast \Omega + \rightarrow bT \ast \Omega + is defined in local coordinates by \pi (x1, x
\prime , \xi 1, \xi 

\prime ) := (x1, x
\prime , x1\xi 1, \xi 

\prime )
(for more details about bT \ast \Omega +, see, e.g., [31, section 18.3], [24, section 4B]).

Lemma 2.12. With u\hbar , \mu , \mu 
j, \mu in, \mu out, and \.nj as above, the following hold:

(i) supp\mu \subset S\ast \Omega +.
(ii) For all \chi \in C\infty 

c (\BbbR d \setminus \Omega  - ), lim\hbar \rightarrow 0 \| \chi u\hbar \| 2L2 = \mu (| \chi | 2).
(iii) For all a \in C\infty 

c (bT \ast \Omega +),

\pi \ast \mu (a \circ \varphi t) - \pi \ast \mu (a)

=

\int t

0

\biggl( 
 - 2 Im\pi \ast \mu 

j + \delta (x1)\otimes (\mu in  - \mu out) +
1

2

\sigma \hbar (\scrN )

\sigma \hbar (\scrD )
H2

px1\mu 1\scrG 

\biggr) 
(a \circ \varphi s) ds

(where the integral is understood as the integral of distributions acting on
smooth functions).

(iv) On \scrH \Gamma D
, \mu out = \alpha \mu in, where

(2.43) \alpha :=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sqrt{} 
1 - | \xi \prime | 2g \sigma \hbar (\scrN )(x\prime , \xi \prime ) - \sigma \hbar (\scrD )(x\prime , \xi \prime )\sqrt{} 
1 - | \xi \prime | 2g \sigma \hbar (\scrN )(x\prime , \xi \prime ) + \sigma \hbar (\scrD )(x\prime , \xi \prime )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

References for the proof. Parts (i) and (ii) are proved in [24, Lemma 4.2]. Part
(iii) is proved in [22, Theorem 2.15] (following [24, Lemma 4.8]), and part (iv) is
proved in [22, Lemmas 2.12 and 2.18] (following [40, Proposition 1.10, part (iii)]).

3. Parametrix for (\bfitP \bfittheta  - \bfitlambda \bftwo ) via boundary complex absorption. We now
find a parametrix for (P\theta  - \lambda 2) using a complex absorbing potential on the boundary
\Gamma D. We then obtain by perturbation a parametrix for (P\theta  - \lambda 2 - z1\Omega tr

) for z sufficiently
small.

First, let

\scrP \theta (\lambda ) :=

\biggl( 
P\theta  - \lambda 2

\gamma D0

\biggr) 
: H2(\Omega +) \rightarrow L2(\Omega +)\oplus H3/2(\Gamma D).

Then let E : H3/2(\Gamma D) \rightarrow H2(\Omega +) be an extension operator satisfying

\gamma D0 Eg = g, g \in H
3
2 (\partial \Omega ).

Simple calculation then implies that

(3.1) (\scrP \theta (\lambda ))
 - 1 =

\Bigl( 
\scrR \theta (\lambda ), E  - \scrR \theta (\lambda )(P\theta  - \lambda 2)E

\Bigr) 
,

where \scrR \theta (\lambda ) := (P\theta  - \lambda 2) - 1 is the inverse of (2.28).

Lemma 3.1. The operator \scrP \theta (\lambda ) is Fredholm with index zero.
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Proof. Recall that the map (2.28) is Fredholm with index zero. First, note that
if \scrP \theta (\lambda )u = 0, then u \in H1

0 (\Omega +) \cap H2(\Omega +) and in particular, u \in ker(P\theta  - \lambda 2).
Therefore, since P\theta  - \lambda 2 : H1

0 (\Omega +) \cap H2(\Omega +) \rightarrow L2(\Omega +) is Fredholm, ker\scrP \theta (\lambda ) is
finite dimensional. To see that the cokernel L2(\Omega +) \oplus H3/2(\Gamma D)

\big/ 
\scrP \theta (\lambda )H

2(\Omega +) is
finite dimensional, define the map

\pi : L2(\Omega +)\oplus H3/2(\Gamma D)
\Big/ 
\scrP \theta (\lambda )H

2(\Omega +) \rightarrow L2(\Omega +)
\Big/ 
(P\theta  - \lambda 2)

\bigl( 
H1

0 (\Omega +) \cap H2(\Omega +)
\bigr) 
,

(f, g) + \scrP \theta (\lambda )H
2(\Omega +) \mapsto \rightarrow f  - (P\theta  - \lambda 2)Eg + (P\theta  - \lambda 2)

\bigl( 
H1

0 (\Omega +) \cap H2(\Omega +)
\bigr) 
.

First, observe that this map is well defined since if (f1, g1)+\scrP \theta (\lambda )H
2(\Omega +) = (f2, g2)+

\scrP \theta (\lambda )H
2(\Omega +), then there exists u \in H2(\Omega +) such that

(f1  - f2, g1  - g2) =
\bigl( 
(P\theta  - \lambda 2)u, \gamma Du

\bigr) 
.

In particular,

(f1 - f2) - (P\theta  - \lambda 2)E(g1 - g2) = (P\theta  - \lambda 2)(u - E(g1 - g2)) \in (P\theta  - \lambda 2)
\bigl( 
H1

0 (\Omega +)\cap H2(\Omega +)
\bigr) 
,

so \pi (f1, g1) = \pi (f2, g2).
Now suppose that \pi (f, g) = 0. Then there exists u \in H1

0 (\Omega +) \cap H2(\Omega +) such
that

f  - (P\theta  - \lambda 2)Eg = (P\theta  - \lambda 2)u.

Therefore,

(f, g) - \scrP \theta (\lambda )Eg = (f  - (P\theta  - \lambda 2)Eg, 0) = ((P\theta  - \lambda 2)u, 0) \in \scrP \theta (\lambda )H
2(\Omega +),

and \pi is injective. For an injective operator,

dim(domain) \leq dim(range) \leq dim(codomain);

therefore,

dim
\Bigl( 
L2(\Omega +)\oplus H3/2(\Gamma D)

\Big/ 
\scrP \theta (\lambda )H

2(\Omega +)
\Bigr) 

\leq dim
\Bigl( 
L2(\Omega +)

\Big/ 
(P\theta  - \lambda 2)

\bigl( 
H1

0 (\Omega +) \cap H2(\Omega +)
\bigr) \Bigr) 

<\infty .

Since P\theta  - \lambda 2 : H1
0 (\Omega +)\cap H2(\Omega +) \rightarrow L2(\Omega +) is Fredholm, \scrP \theta (\lambda ) is Fredholm. To see

that \scrP \theta (\lambda ) has index zero, recall that the index is constant in \lambda by, e.g., [15, Theorem
C.5], and observe that the formula (3.1) implies that the inverse exists for some \lambda .

We now define our complex absorbing operator. Let \psi \in C\infty 
c (\BbbR ; [0, 1]) with \psi \equiv 1

on [ - b, b] and supp\psi \subset [ - 2b, 2b]. It will be convenient to have a specific notation
for the Neumann trace with the standard derivative operator replaced by D :=  - i\hbar \partial .
We therefore let \gamma D1,\hbar :=  - i\hbar \gamma D1 . Let

\scrP \theta ,Q(\lambda ) :=

\biggl( 
P\theta  - \lambda 2

Qb\gamma 
D
1,\hbar + \gamma D0

\biggr) 
: H2(\Omega +) \rightarrow L2(\Omega +)\oplus H3/2(\Gamma D),

where Qb \in \Psi comp
\hbar (\Gamma D) with symbol

(3.2) \sigma \hbar (Qb) =  - \psi (| \xi \prime | g).
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Note that

\scrP \theta ,Q(\lambda ) = \scrP \theta (\lambda ) +

\biggl( 
0

Qb\gamma 
D
1,\hbar 

\biggr) 
and hence \scrP \theta ,Q(\lambda ) is a compact perturbation of \scrP \theta (\lambda ). Therefore, by Lemma 3.1,
\scrP Q(\lambda ) is Fredholm with index zero.

Lemma 3.2. Let Qb be as above, and let 0 < a < b and C1 > 0. Then there exists
C > 0 such that for all \lambda \in [a, b] + i[ - C1\hbar , C1\hbar ],
(3.3)
\| \gamma D1,\hbar u\| L2(\Gamma D)+\| u\| H2

\hbar (\Omega +) \leq C\hbar  - 1
\bigm\| \bigm\| (P\theta  - \lambda 2)u

\bigm\| \bigm\| 
L2(\Omega +)

+C
\bigm\| \bigm\| (Qb\gamma 

D
1,\hbar + \gamma D0 )u

\bigm\| \bigm\| 
H

3/2
\hbar (\Gamma D)

.

In particular, since \scrP \theta ,Q(\lambda ) is Fredholm with index zero,

\scrR \theta ,Q(\lambda ) := (\scrP \theta ,Q(\lambda ))
 - 1

exists and satisfies
(3.4)

\| \gamma D1,\hbar \scrR \theta ,Q(\lambda )(f, g)\| L2(\Gamma D)+\| \scrR \theta ,Q(\lambda )(f, g)\| H2
\hbar (\Omega +) \leq C

\Bigl( 
h - 1\| f\| L2(\Omega +)+\| g\| 

H
3/2
\hbar (\Gamma D)

\Bigr) 
.

Observe that the bound (3.4) has the same \hbar -dependence as the standard non-
trapping resolvent estimate.

Before proving Lemma 3.2, we show how a parametrix for the operator (P\theta  - \lambda 2 - 
z1\Omega tr

) can be expressed in terms of \scrR \theta ,Q(\lambda ). Let

\scrP \theta ,Q(\lambda , z) :=

\biggl( 
P\theta  - \lambda 2  - z1\Omega tr

Qb\gamma 
D
1,\hbar + \gamma D0

\biggr) 
: H2(\Omega +) \rightarrow L2(\Omega +)\oplus H3/2(\Gamma D).

By Lemma 3.2, the bound (3.4), and inversion by Neumann series, for | z| \leq \hbar /(2C)
(where C is the constant from Lemma 3.2),

\scrR \theta ,Q(\lambda , z) := (\scrP \theta ,Q(\lambda , z))
 - 1

exists and satisfies

\| \gamma D1,\hbar \scrR \theta ,Q(\lambda , z)(f, g)\| L2(\Gamma D) + \| \scrR \theta ,Q(\lambda , z)(f, g)\| H2
h(\Omega +)(3.5)

\leq 2C
\Bigl( 
h - 1\| f\| L2(\Omega +) + \| g\| 

H
3/2
h (\Gamma D)

\Bigr) 
.

Next, let

(3.6) \scrP \theta (\lambda , z) :=

\biggl( 
P\theta  - \lambda 2  - z1\Omega tr

\gamma D0

\biggr) 
: H2(\Omega +) \rightarrow L2(\Omega +)\oplus H

3/2
\hbar (\Gamma D).

If \scrR \theta ,Q(\lambda , z) exists, then

\scrP \theta (\lambda , z) =
\bigl( 
I +K(\lambda , z)

\bigr) 
\scrP \theta ,Q(\lambda , z),

where

(3.7) K(\lambda , z) := Q\scrR \theta ,Q(\lambda , z) and Q :=

\biggl( 
0

 - Qb\gamma 
D
1,\hbar 

\biggr) 
.
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SinceK(\lambda , z) : L2(\Omega +)\oplus H3/2(\Gamma D) \rightarrow L2(\Omega +)\oplus H3/2(\Gamma D) is compact, (I+K(\lambda , z)) - 1

is a meromorphic family of operators by [15, Theorem C.8]. Therefore, for | z| \leq 
\hbar /(2C),

(3.8) \scrP \theta (\lambda , z)
 - 1 = \scrR \theta ,Q(\lambda , z)

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
.

Let R\theta (\lambda , z) be the inverse of the map (2.29) with V =  - z1\Omega tr
, i.e.,

(3.9) R\theta (\lambda , z) := (P\theta  - \lambda 2  - z1\Omega tr)
 - 1.

Then, for | z| \leq \hbar /(2C),

(3.10) R\theta (\lambda , z) = \scrP \theta (\lambda , z)
 - 1

\biggl( 
I
0

\biggr) 
= \scrR \theta ,Q(\lambda , z)

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
\biggl( 
I
0

\biggr) 
,

which is the required parametrix.

Proof of Lemma 3.2. Suppose that the estimate (3.3) fails with the left-hand
side replaced by \| u\| L2(\Omega +); then there exist \hbar n \rightarrow 0, \lambda n \in [a, b] + i[ - C\hbar , C\hbar ], and
(\~un, \~fn, \~gn) \in H2(\Omega +)\oplus L2(\Omega +)\oplus H

3/2
\hbar (\Gamma D) with\bigm\| \bigm\| \~fn\bigm\| \bigm\| L2(\Omega +)

+ \| \~gn\| H3/2
\hbar (\Gamma D)

= 1, \| \~un\| L2 = n,

and with

\scrP \theta ,Q(\~un) = (\hbar n \~fn, \~gn).

In particular, renormalizing un := \~un/n, fn := \~fn/n, and gn := \~gn/n,

\| fn\| L2(\Omega +) = \hbar  - 1
\bigm\| \bigm\| (P\theta  - \lambda 2n)un

\bigm\| \bigm\| 
L2(\Omega +)

\leq 1

n

and

\| gn\| L2(\Gamma D) =
\bigm\| \bigm\| (Qb\gamma 

D
1,\hbar + \gamma D)un

\bigm\| \bigm\| 
L2(\Gamma D)

\leq 1

n
.

Now, since 0 < a \leq Re\lambda n \leq b, we may rescale \hbar n to \~\hbar := \hbar n/Re\lambda n and hence replace
Re\lambda n by 1. Note that this rescaling does not cause any issues since b - 1\hbar n \leq \~\hbar n \leq 
a - 1\hbar n. Extracting a subsequence, we can assume that 1ext\Omega +

un has defect measure

\mu (see, e.g., [52, Theorem 5.2]), and \hbar  - 1
n Im\lambda n \rightarrow Im\beta \infty , and Re\lambda n = 1. Since

\| f\hbar n
\| L2 \rightarrow 0, \mu j = 0.
Let \chi , \chi 0 \in C\infty 

c (\BbbR d; [0, 1]) with supp\chi \Subset \BbbR d and \chi , \chi 0 \equiv 1 in a neighborhood of
\{ r \leq 2r1\} and supp\chi 0 \subset \{ \chi \equiv 1\} . We first show that

(3.11) \| (1 - \chi )un\| L2(\Omega +) = \scrO (\hbar n).

To do this, observe that, by (2.27),

(3.12) | \sigma \hbar (P\theta  - \lambda 2n)(x, \xi )| =
\bigm| \bigm| \bigm| \bigm| | \xi | 2
(1 + i tan \theta )2

 - 1

\bigm| \bigm| \bigm| \bigm| \geq c(| \xi | 2 + 1), r(x, \xi ) \geq 2r1.

Therefore, by ellipticity, for W a neighborhood of supp \partial \chi ,

(3.13) \| un\| H2
\hbar (W ) \leq C

\bigl( \bigm\| \bigm\| (P\theta  - \lambda 2)un
\bigm\| \bigm\| 
L2(\Omega +)

+ \| un\| L2(\Omega +)

\bigr) 
.
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Now, by (3.12) and the definitions of \chi and \chi 0,\bigm| \bigm| \bigm| \sigma \Bigl( Op\hbar 
\bigl( 
(1 + | \xi | 2) - 1

\bigr) 
(1 - \chi 0)(P\theta  - \lambda 2n)(1 - \chi 0) - i\chi 0

\Bigr) \bigm| \bigm| \bigm| \geq c.

Therefore, by [52, Theorem 4.29],

\| (1 - \chi )un\| L2(\Omega +)

\leq C
\bigm\| \bigm\| \bigl[ Op\hbar ((1 + | \xi | 2) - 1)(1 - \chi 0)(P\theta  - \lambda 2

n)(1 - \chi 0) - i\chi 0

\bigr] 
(1 - \chi )un

\bigm\| \bigm\| 
L2(\BbbR d)

= C
\bigm\| \bigm\| Op\hbar ((1 + | \xi | 2) - 1)(1 - \chi 0)(P\theta  - \lambda 2

n)(1 - \chi )un

\bigm\| \bigm\| 
L2(\BbbR d)

.(3.14)

But \bigm\| \bigm\| Op\hbar ((1 + | \xi | 2) - 1)(1 - \chi 0)(P\theta  - \lambda 2n)(1 - \chi )un
\bigm\| \bigm\| 
L2(\BbbR d)

\leq C \| (1 - \chi )\hbar nfn\| L2(\Omega +) + \| [P\theta , \chi ]un\| H - 2
\hbar (\Omega +)

\leq C \| (1 - \chi )\hbar nfn\| L2(\Omega +) + C\hbar n \| un\| L2(\Omega +) = \scrO (\hbar n),(3.15)

where we have used that, by direct computation, \| [P\theta , \chi ]\| Hs
\hbar (\Omega +)\rightarrow Hs - 1

\hbar (\Omega +) \leq C\hbar in

the second inequality; (3.11) then follows from combining (3.14) and (3.15).
We now show that \mu (T \ast \BbbR d) = 1. First, observe that

(3.16) (P\theta  - \lambda 2n)\chi un = [P\theta , \chi ]un + o(\hbar n)L2 .

Consequently, using (3.13) in (3.16) we find that

(P\theta  - \lambda 2n)\chi un = \scrO (\hbar n)L2 .

Since (P\theta  - \lambda 2) = ( - \hbar 2\Delta  - \lambda 2) on supp\chi , we can now apply Lemma 2.12 (with u in
that lemma replaced by \chi un here) to find that

\mu (\chi 2) = lim
\hbar \rightarrow 0

\| \chi un\| 2L2(\Omega +) = lim
\hbar \rightarrow 0

\| un\| 2L2(\Omega +) = 1,

where we have used (3.11) in the second equality. Moreover,

\mu (T \ast \BbbR d) \leq lim
\hbar \rightarrow 0

\| un\| 2L2(\Omega +) = 1,

so that in fact \mu (T \ast \BbbR d) = 1.
We now show that \mu = 0, which is a contradiction. To do this, we start by

observing that (3.11) implies that \mu (\{ r \geq 2r1\} ) = 0. In fact, by Lemma 2.9,
\mu (\{ \sigma \hbar (P\theta ) \not = 0\} ) = 0, and therefore supp\mu \subset S\ast 

\Omega +
\BbbR d \cap \{ r \leq 2r1\} .

Now, Lemma 2.12, along with Lemma 2.10 together with the fact that Im\sigma \hbar (P\theta ) \leq 
0, allows us to propagate forward along the generalized bicharacteristic flow (in the
sense of Corollary 2.11) but not backward. In particular, since \mu (\{ r \geq 2r1\} = 0),
this implies that supp\mu \subset \Gamma +. Indeed, suppose that A \subset S\ast 

\Omega +
\BbbR d is compact and

A \cap \Gamma + = \emptyset . Then, by the definition of \Gamma + (2.26), for each \rho \in A there ex-
ists t\rho > 0 such that r(\varphi  - t\rho (\rho )) > max(2r1, r(\rho )). Hence, by (2.24), for t \geq t\rho ,
r(\varphi  - t(\rho )) > 2r1, and by the continuity of \varphi  - t\rho , there is a neighborhood U\rho of \rho such
that \varphi  - t(U\rho ) \subset \{ r > 2r1\} for t \geq t\rho . In particular, by the compactness of A, there
exists T > 0 such that \varphi  - T (A) \subset \{ r > 2r1\} . By the compactness of A in the \xi 
variable and (2.40), there exists C > 0 such that \mu (A) \leq exp (CT )\mu (\varphi  - T (A)) = 0.
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6752 J. GALKOWSKI, P. MARCHAND, AND E. A. SPENCE

Now, by Lemma 2.8, \Gamma + is closed, and hence we may write (\Gamma +)
c = \cup nAn with An

compact. In particular, \mu ((\Gamma +)
c) = 0 by monotonicity from below.

Next, note that since Im\sigma \hbar (P\theta  - \lambda 2) < 0 on \{ f\theta \not = 0\} ,

supp\mu \subset \{ f\theta = 0\} 

by Lemma 2.9. In particular, by the definition of f\theta ,

supp\mu \subset \{ r < 2r1\} .

To complete the proof, we need to show that in fact \mu (\Gamma +) = 0. This is where the
boundary term Qb is used.

We claim that there are T, c > 0 such that

(3.17) \mu (\varphi  - T (A)) \geq ec\mu (A)

for all A. Once this is done, we have that \mu \equiv 0. To see this, observe that if \mu (A) > 0,
then by induction \mu (\varphi  - nT (A)) \geq enc\mu (A). Taking N >  - (log\mu (A))/c, we have
\mu (\varphi  - NT (A)) > 1, which is a contradiction to \mu (T \ast \BbbR d) = 1.

We now prove (3.17). First, note that the statement is empty if \mu (A) = 0.
Therefore, we can assume that \mu (A) > 0. Since supp\mu \subset \Gamma +, we assume that
A \subset \Gamma +; since \Gamma + is closed, we can assume that A is compact. Now, by (2.24), (2.25),
and (2.26),

\Gamma + \cap \{ r0 \leq r \leq 2r1\} \subset 

\surd 
(2r1)2 - r20\bigcup 

t=0

\varphi t(\Gamma + \cap \{ r \leq r0\} ).

Therefore, increasing T by
\sqrt{} 
(2r1)2  - r20, we may assume that A \subset \{ r < r0\} \cap \Gamma +.

Letting \scrN = Qb and \scrD =  - 1 and recalling (3.2), we see that \scrN and \scrD sat-
isfy (2.42). Therefore, the proof of (3.17) is completed by the next lemma.

Lemma 3.3. Suppose that \scrN and \scrD are as in (2.42), \mu satisfies the conclusions
of parts (iii) and (iv) of Lemma 2.12 with \mu j = 0, and A \subset \{ r < r0\} \cap \Gamma +. Then
there exist T, c > 0 such that (3.17) holds.

Proof. We claim that there exist \varepsilon 1, T > 0 such that for all \rho \in \Gamma + with r(\rho ) < r0,\int T

0

\biggl( 
 - 1

2

\sigma \hbar (\scrN )

\sigma \hbar (\scrD )
H2

px11\scrG (\varphi  - t(\rho ))(3.18)

+ | Hpx1(\varphi  - t(\rho ))|  - 1\delta 
\bigl( 
x1(\varphi  - t(\rho ))

\bigr) 
log\alpha 

\bigl( 
\pi \Gamma D

(\varphi  - t(\rho ))
\bigr) \biggr) 
dt \leq  - \varepsilon 1,

where \pi \Gamma D
: S\ast 

\Gamma D
\BbbR d \rightarrow T \ast \Gamma D is the orthogonal projection and \alpha is given by (2.43).

Once (3.18) is proved, we claim that Lemma 2.12 implies (3.17) with (c, T ) =
(\varepsilon 1, T ). Indeed, suppose that (3.18) holds and that \mu (A) > 0, A \subset \Gamma + \cap \{ r < r0\} ,
and A is closed. Then let 0 \leq a \in C\infty 

c (bT \ast \BbbR d \setminus \Omega  - ) with a \equiv 1 on A and

(3.19)
\bigcup 

t\in [0, - T ]

\varphi t(supp a) \subset 
\biggl\{ 
r <

r0 + r1
2

\biggr\} 
.

Now let \chi \equiv 1 on \{ r \leq r0+r1
2 \} with supp\chi \subset \{ r < r1\} . Then

( - \hbar 2\Delta  - 1)\chi u = [ - \hbar 2\Delta , \chi ]u+ \hbar f, \chi u| \Gamma D
= 0
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with f = o(1)L2 , and hence by Lemma 2.12

\pi \ast \mu (\chi 
2(a \circ \varphi t)) - \pi \ast \mu (\chi 

2a)

=

\int t

0

\biggl( 
 - 4
\bigl\langle 
\xi , \partial \chi 

\bigr\rangle 
\mu + \delta (x1)\otimes (\mu in  - \mu out) +

\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px1\mu 1\scrG 

\biggr) 
(\chi 2(a \circ \varphi s)) ds.

But, by (3.19), \chi 2 \equiv 1 on supp a \circ \varphi t for t \in [0, T ]. In particular, for t \in [0, T ],

\pi \ast \mu (a \circ \varphi t) - \pi \ast \mu (a) =

\int t

0

\biggl( 
\delta (x1)\otimes (\mu in  - \mu out) +

\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px1\mu 1\scrG 

\biggr) 
(a \circ \varphi s) ds.

Finally, since A is closed, we may approximate 1A by smooth, compactly supported
functions to obtain
(3.20)

\pi \ast \mu (\varphi  - t(A)) - \pi \ast \mu (A) =

\int t

0

\biggl( 
\delta (x1)\otimes (\mu in  - \mu out) +

\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px1\mu 1\scrG 

\biggr) 
(1A \circ \varphi s) ds.

Now, to study (3.20), we first assume that A and t are such that for all \rho \in A and
s \in [0, 2t], \varphi  - s(\rho ) does not lie in the glancing region (Hpx1 = 0) and each trajectory
intersects \Gamma D exactly once and does so for s \in (0, t). Shrinking the support of a
further if necessary, we can find \Sigma \subset b T \ast \BbbR d \setminus \Omega  - transverse to the vector field Hp

such that
F : [ - t, t]\times \Sigma \ni (s, \rho ) \mapsto \rightarrow \varphi  - s(\rho ) \in b T \ast 

\Gamma D
\BbbR d

are smooth coordinates and \varphi  - s(A) is in the image of F for all s \in [0, t]. Then (3.20)
reads as

\pi \ast \mu (\varphi  - t(A)) - \pi \ast \mu (A)

=

\int t

0

\Bigl( 
\delta (x1)\otimes (\mu in  - \mu out)

\Bigr) 
(1A \circ \varphi t\prime ) dt

\prime 

=

\int t

0

\int t

 - t

\int 
\Sigma 

\Bigl( 
| Hpx1| (s, \rho )\delta (s)\otimes (1A(s - t\prime , \rho ))

\Bigr) 
d(\mu in  - \mu out)(\rho ) ds dt\prime 

=

\int 
\Sigma 

\int t

0

\Bigl( 
| Hpx1| (0, \rho )(\alpha  - 1(\rho ) - 1)1A( - t\prime , \rho )

\Bigr) 
d\mu out(\rho )dt\prime .

Now, arguing as in [22, Lemma 2.16], we obtain that \pi \ast \mu = | Hpx1| \mu out1s<0ds +
| Hpx1| \mu in1s>0ds, and hence

\pi \ast \mu (A) =

\int 
\Sigma 

\int t

0

| Hpx1| (0, \rho )1A( - t\prime , \rho )d\mu out(\rho )dt\prime .

Therefore,

\pi \ast \mu (\varphi  - t(A)) \geq inf
F - 1(A)

(\alpha (\rho )) - 1\pi \ast \mu (A)

= inf
A

e - 
\int t
0
(| Hpx1| (\varphi  - t\prime (\rho ))

 - 1\delta (x1(\varphi  - t\prime (\rho ))) log\alpha (\pi \Gamma D
(\varphi  - t\prime (\rho )))dt

\prime 
\pi \ast \mu (A),

where this last equality comes from evaluating the integral using the fact that F is
well defined (since each trajectory intersects \Gamma D exactly once):

A \subset 
\Bigl\{ 
\varphi s

\bigl( 
\{ x1 = Hpx1 = 0\} 

\bigr) 
\setminus 
\bigl\{ 
Hpx1 \not = 0, x1 = 0

\bigr\} 
: s \in [0, t]

\Bigr\} 
,
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so that, in particular, trajectories from A do not intersect the hyperbolic set. In this
case, (3.20) implies that

(3.21) \partial s\pi \ast \mu (\varphi  - s(A)) =

\biggl( 
\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px11\scrG \pi \ast \mu 

\biggr) \bigl( 
\varphi  - s(A)

\bigr) 
.

In particular, shrinking A if necessary, we may choose \Sigma \subset \{ x1 = Hpx1 = 0\} trans-
verse to Hp and work in coordinates

[0, t]\times \Sigma \ni (s, \rho ) \mapsto \rightarrow \varphi  - s(\rho ) \in 
\Bigl\{ 
\varphi  - s

\bigl( 
\{ x1 = Hpx1 = 0\} 

\bigr) 
: s \in [0, t]

\Bigr\} 
.

In these coordinates, (3.21) implies that \pi \ast \mu is absolutely continuous with respect to
t in the sense that there is a family of measures t \mapsto \rightarrow \nu t on \Sigma such that \nu t(\Sigma ) \in L1

and \mu = \nu tdt. Moreover,\int 
B

d\nu s(\rho ) =

\int 
B

exp

\biggl( \int 
\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px11\scrG (\varphi  - s(\rho ))ds

\biggr) 
d\nu (\rho ).

In particular,

\pi \ast \mu (\varphi  - t(A)) \geq inf
A

exp

\biggl( \int 
\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
x11\scrG (\varphi  - s(\rho ))ds

\biggr) 
\pi \ast \mu (A).

Putting everything together, we have for all A and 0 \leq t \leq T ,

\pi \ast \mu (\varphi  - t(A))

\geq inf
A

exp

\biggl( 
 - 
\int t

0

(| Hpx1| (\varphi  - t(\rho ))
 - 1\delta (x1(\varphi  - t(\rho ))) log\alpha (\pi \Gamma D

(\varphi t(\rho )))

 - \sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
x11\scrG (\varphi  - s(\rho )))ds

\biggr) 
\pi \ast \mu (A)

\geq e\varepsilon 1\pi \ast \mu (A)

as claimed.
Therefore, it is enough to prove (3.18). Seeking a contradiction, we assume that

for every \varepsilon 1 > 0 and T > 0 there exists \rho \in \Gamma + with r(\rho ) < r0 such that

\int T

0

\biggl( 
 - \sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px11\scrG (\varphi  - t(\rho ))

(3.22)

+ | Hpx1(\varphi  - t(\rho ))|  - 1\delta (x1(\varphi  - t(\rho ))) log\alpha (\pi \Gamma D
(\varphi  - t(\rho )))

\biggr) 
dt \geq  - \varepsilon 1.

Note that since both terms are nonpositive (since \alpha \leq 1 and \sigma \hbar (\scrN )\sigma \hbar (\scrD ) > 0), this
implies that each term is \geq  - \varepsilon 1.

Now, if \varphi  - t(\rho ) \in \scrG for t \in [t1, t2], then, since the flow in \scrG is given by the flow of
the vector field

HG
p := Hp +

H2
px1

H2
x1
p
Hx1

, p = | \xi | 2  - 1
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(see [31, Definition 24.3.6]), we obtain, using that \sigma \hbar (\scrN )/\sigma \hbar (\scrD ) > c > 0 on \scrG (since
\scrG \subset B\ast \Gamma D),

\varphi  - t2(\rho ) = exp( - (t2  - t1)H| \xi | 2(\rho )) +\scrO 
\biggl( \int t2

t1

H2
px1(\varphi  - t(\rho ))dt

\biggr) 
= exp( - (t2  - t1)H| \xi | 2(\rho )) +\scrO 

\biggl( \int t2

t1

\sigma \hbar (\scrN )

2\sigma \hbar (\scrD )
H2

px1(\varphi  - t(\rho ))dt

\biggr) 
,

where both here and in the rest of this proof we write a = b+\scrO (c) if | a - b| \leq Cc for
some C > 0 depending only on \sigma \hbar (\scrN ) and \sigma \hbar (\scrD ). On the other hand, if \varphi  - t(\rho ) /\in \scrG 
for t \in [t1, t2], and has exactly one intersection with \Gamma D, then

\varphi  - t2(\rho ) = exp( - (t2  - t1)H| \xi | 2(\varphi  - t1(\rho )) +\scrO 
\Bigl( 
| t2  - t1| 2

\sqrt{} 
1 - | \xi \prime r| 2g

\Bigr) 
,

where | \xi \prime r| g is measured at the point of reflection. All together, since \sigma \hbar (\scrN )\sigma \hbar (\scrD ) >
c > 0 on | \xi \prime | g \leq 1, and thus there exists c > 0 such that

log\alpha =  - 4
\sqrt{} 

1 - | \xi \prime | 2g
\sigma \hbar (\scrN )

\sigma \hbar (\scrD )
+\scrO 

\bigl( 
1 - | \xi \prime | 2g

\bigr) 
\leq  - c

\sqrt{} 
1 - | \xi \prime | 2g

\sigma \hbar (\scrN )

\sigma \hbar (\scrD )
+\scrO 

\bigl( 
1 - | \xi \prime | 2g

\bigr) 
,

we obtain from (3.22) that

\varphi  - T (\rho ) = exp( - TH| \xi | 2(\rho )) +\scrO (\varepsilon 1).

Therefore, choosing T \gg r0, and \varepsilon 1 small enough, we obtain

dist(\pi \BbbR (\varphi  - T (\rho )), \pi \BbbR (\rho )) > 3r0,

which is a contradiction to \rho \in \Gamma + \cap \{ r \leq r0\} .
We have therefore proved that

(3.23) \| u\| L2(\Omega +) \leq C\hbar  - 1
\bigm\| \bigm\| (P\theta  - \lambda 2)u

\bigm\| \bigm\| 
L2(\Omega +)

+ C
\bigm\| \bigm\| (Qb\gamma 

D
1,\hbar + \gamma D0 )u

\bigm\| \bigm\| 
H

3/2
\hbar (\Gamma D)

,

where here, and in the rest of the proof, C denotes a constant, independent of \hbar , \lambda ,
and z, whose value may change from line to line. To complete the proof of Lemma
3.2, we now need to obtain a bound on the H2

h norm of u, as opposed to just the
L2 norm in (3.23). By a standard elliptic parametrix construction, for \chi 1 \in C\infty (\Omega +)
supported away from \Gamma D, we have

\| \chi 1u\| H2
\hbar (\Omega +) \leq C

\bigm\| \bigm\| (P\theta  - \lambda 2)u
\bigm\| \bigm\| 
L2(\Omega +)

+ C \| u\| L2(\Omega +)

\leq C\hbar  - 1
\bigm\| \bigm\| (P\theta  - \lambda 2)u

\bigm\| \bigm\| 
L2(\Omega +)

+ C
\bigm\| \bigm\| (Qb\gamma 

D
1,\hbar + \gamma D0 )u

\bigm\| \bigm\| 
H

3/2
\hbar (\Gamma D)

by (3.23). Finally, using the trace estimate from [22, Corollary 4.2] we have for
\chi 2 \in C\infty (\{ x : r \leq r0\} ) with supp\chi 2 \Subset \BbbR d,\bigm\| \bigm\| \gamma D1,\hbar u\bigm\| \bigm\| L2(\Gamma D)

\leq C \| \chi 2u\| L2(\Omega +) +
\bigm\| \bigm\| ( - \hbar 2\Delta  - 1)\chi 2u

\bigm\| \bigm\| 
L2(\Omega +)

.

Elliptic regularity for the Laplacian then implies that

\| \chi 2u\| H2
\hbar (\Omega +) \leq C

\bigm\| \bigm\| ( - \hbar 2\Delta  - \lambda 2)\chi 2u
\bigm\| \bigm\| 
L2 + C \| \chi u\| L2 + C

\bigm\| \bigm\| \gamma D0 u\bigm\| \bigm\| H3/2
\hbar (\Gamma D)

\leq C\hbar  - 1
\bigm\| \bigm\| (P\theta  - \lambda 2)u

\bigm\| \bigm\| 
L2 + C

\bigm\| \bigm\| (Qb\gamma 
D
1,\hbar + \gamma D0 )u

\bigm\| \bigm\| 
H

3/2
\hbar (\Gamma D)

,

where we have used (3.23). Combining the bounds on \| \chi 1u\| H2
h(\Omega +), \| \chi 2u\| H2

h(\Omega +),

and \| \gamma D1,\hbar u\| L2(\Gamma D), we obtain (3.4).
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4. Proof of Lemma 1.14. With R(\lambda , z) defined by (1.11), R\theta (\lambda , z) defined by
(3.9), and \chi \in C\infty with supp\chi \subset \{ x : r \leq r1\} and supp\chi \Subset \BbbR d, (2.30) implies that

(4.1) \chi R\theta (\lambda , z)\chi = \chi R(\lambda , z)\chi .

Recalling (1.12), we see that to prove the bounds (1.15), (1.16) it is sufficient to bound

\| R\theta (\lambda , z)\| L2(\Omega tr)\rightarrow L2(\Omega tr).

We first focus on proving the bound for Im z > 0 (1.16). By the definitions of \scrP \theta (\lambda , z)
(3.6) and R\theta (\lambda , z) (3.9), the bound (1.16) follows if we can prove the following.

Lemma 4.1. There exists C > 0 such that if Re\lambda > 0, Im\lambda = 0, then

(4.2) \| \scrP \theta (\lambda , z)
 - 1\| 

L2(\Omega tr)\otimes H
3/2
\hbar (\Gamma D)\rightarrow L2(\Omega tr)

\leq C\langle z\rangle (Im z) - 1 for Im z > 0.

Moreover, there exists \varepsilon > 0 small enough such that if Re\lambda > 0, then Im\lambda = 0 and
(4.3)

\| \scrP \theta (\lambda , z)
 - 1\| 

L2(\Omega +)\otimes H
3/2
\hbar (\Gamma D)\rightarrow H2

\hbar (\Omega +)
\leq C(Im z) - 1 for Im z > 0 and | z| \leq \varepsilon \hbar .

To prove Lemma 4.1, we need the following result about the sign of the Dirichlet-
to-Neumann map.

Lemma 4.2. For Re\lambda > 0 and Im\lambda \geq 0, we have Im\scrD (\lambda /\hbar ) \geq 0.

Proof. Let G(\lambda ) be the meromorphic continuation from Im\lambda > 0 of the solution
operator satisfying

( - \hbar 2\Delta  - \lambda 2)G(\lambda )g = 0 in \BbbR d \setminus \Omega 1, G(\lambda )g| \Gamma tr
= g,

and G is \lambda /\hbar -outgoing; then \scrD (\lambda /\hbar ) = \gamma tr1 G(\lambda ). Note that for Im\lambda > 0, G(\lambda ) :
H1/2(\Gamma tr) \rightarrow H1(\BbbR d \setminus \Omega 1). Therefore, for Re\lambda > 0 and Im\lambda > 0, by integration by
parts,

0 =
\bigl\langle 
( - \hbar 2\Delta  - \lambda 2)G(\lambda )g,G(\lambda )g

\bigr\rangle 
\BbbR d\setminus \Omega 1

= \| h\nabla G(\lambda )g\| 2L2(\BbbR d\setminus \Omega 1)
 - \lambda 2\| G(\lambda )g\| 2L2(\BbbR d\setminus \Omega 1)

+ \hbar 2
\bigl\langle 
\scrD (\lambda /\hbar )g, g

\bigr\rangle 
\Gamma tr
.

Therefore, taking imaginary parts,

2Re\lambda Im\lambda \| G(\lambda )g\| L2(\BbbR d\setminus \Omega 1) = \hbar 2 Im\langle \scrD (\lambda /\hbar )g, g\rangle \Gamma tr ,

and in particular, for Re\lambda > 0 and Im\lambda > 0,

0 \leq Im\langle \scrD (\lambda /\hbar )g, g\rangle \Gamma tr
.

Now, since the right-hand side continues analytically from Im\lambda > 0 to Im\lambda = 0, we
have

Im\langle \scrD (\lambda /\hbar )g, g\rangle \Gamma tr \geq 0

for Re\lambda > 0 and Im\lambda = 0.

Proof of Lemma 4.1. Let u \in H2
loc(\Omega +). Then let v = u  - E\gamma Du \in H2

loc(\Omega +) \cap 
H1

0,loc(\Omega +). By integration by parts,

 - Im
\bigl\langle 
(P\theta  - \lambda 2  - z1\Omega tr)v, v

\bigr\rangle 
\Omega tr

=  - Im
\bigl\langle 
( - \hbar 2\Delta  - \lambda 2  - z1\Omega tr)v, v

\bigr\rangle 
\Omega tr

= (Im z)\| v\| 2L2(\Omega tr)
+ \hbar 2 Im

\bigl\langle 
\scrD (\lambda /\hbar )v, v

\bigr\rangle 
\Gamma tr

\geq (Im z)\| v\| 2L2(\Omega tr)
.
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Therefore, there exist C,C1, C2 > 0 such that for Im z > 0,

\| u\| L2(\Omega tr) \leq \| v\| L2(\Omega tr) + \| E\gamma D0 u\| L2(\Omega tr)

\leq (Im z) - 1\| ( - \hbar 2\Delta  - \lambda 2  - z1\Omega tr)v\| L2(\Omega tr) + C1\| \gamma D0 u\| H3/2
\hbar (\Gamma D)

\leq (Im z) - 1\| (P\theta  - \lambda 2  - z1\Omega tr)u\| L2(\Omega tr) + C2\langle z\rangle (Im z) - 1\| E\gamma D0 u\| H2
\hbar (\Omega tr)

+ C1\| \gamma D0 u\| H3/2
\hbar (\Gamma D)

\leq C\langle z\rangle (Im z) - 1 \| \scrP \theta (\lambda , z)\| L2(\Omega tr)\oplus H
3/2
\hbar (\Gamma D)

by the definition of \scrP \theta (\lambda , z) (3.6). Having obtained the bound (4.2) on \| u\| L2(\Omega tr), we
now prove the bound (4.3) on \| u\| H2

\hbar (\Omega tr). Using, e.g., the trace estimate from [22,

Corollary 4.2] (in a way similar to the end of the proof of Lemma 3.2), we have

(4.4) \| \gamma D1,\hbar u\| L2(\Gamma D) \leq C\hbar  - 1\| ( - \hbar 2\Delta  - \lambda 2  - z1\Omega tr
)u\| L2(\Omega tr) + C\langle z\rangle \| u\| L2(\Omega tr).

Furthermore, by (3.5) there exists \varepsilon > 0 small enough such that for Im z > 0 and
| z| \leq \varepsilon \hbar , (\scrP \theta ,Q(\lambda , z))

 - 1 exists, and then, by Lemma 3.2 and reducing \varepsilon further if
necessary,

\| u\| H2
\hbar (\Omega +) \leq C\hbar  - 1

\bigm\| \bigm\| (P\theta  - \lambda 2  - z1\Omega tr
)u
\bigm\| \bigm\| 
L2(\Omega +)

+ C
\bigm\| \bigm\| (Qb\gamma 

D
1,\hbar + \gamma D0 )u

\bigm\| \bigm\| 
H

3/2
\hbar (\Gamma D)

.

By (3.2) and the Calderon--Vaillancourt theorem (see, e.g., [15, Proposition E.24],
[52, Theorem 13.13]), \| Qb\| L2(\Gamma D)\rightarrow H

3/2
\hbar (\Gamma D)

\leq C. Using this along with (4.4), the fact

that P\theta =  - \hbar 2\Delta on \Omega tr, and (4.2), we obtain

\| u\| H2
\hbar (\Omega +) \leq C

\bigl( 
\hbar  - 1 + \langle z\rangle 2(Im z) - 1

\bigr) \bigm\| \bigm\| (P\theta  - \lambda 2  - z1\Omega tr
)u
\bigm\| \bigm\| 
L2(\Omega +)

+ C
\bigm\| \bigm\| \gamma D0 u\bigm\| \bigm\| H3/2

\hbar (\Gamma D)
,

which implies (4.3); the proof is complete.

Having proved the bound (1.16), we now prove the bound (1.15). From (3.10),

(4.5) R\theta (\lambda , z) = \scrR \theta ,Q(\lambda , z)(I +K(\lambda , z)) - 1

\biggl( 
I
0

\biggr) 
,

where K(\lambda , z) is defined by (3.7). Since we have the bound (3.5) on \scrR \theta ,Q(\lambda , z), to
bound R\theta (\lambda , z) we only need to bound (I +K(\lambda , z)) - 1.

Let \scrH := L2(\Omega +) \oplus H
3/2
\hbar (\Gamma D). Recalling the definition of trace class operators

(see [15, Definition B.17]) and [15, equation B.4.7], since \scrR \theta ,Q(\lambda , z) exists for | z| \leq \varepsilon \hbar ,
K(\lambda , z) defined by (3.7) is trace class for | z| \leq \varepsilon \hbar with

\| K(\lambda , z)\| \scrL 1(\scrH ;\scrH ) \leq \| Qb\| \scrL 1(L2(\Gamma D);H3/2(\Gamma D))\| \gamma D1,\hbar R\theta ,Q(\lambda , z)\| \scrH \rightarrow L2(\Gamma D)

\leq C
\bigm\| \bigm\| \langle hD\rangle 3/2Qb

\bigm\| \bigm\| 
\scrL 1(L2(\Gamma D))

\| \gamma D1,\hbar R\theta ,Q(\lambda , z)\| \scrH \rightarrow L2(\Gamma D).

Then, using reasoning similar to that in [15, page 434] to bound the norm of \langle hD\rangle 3/2Qb

together with the bound (3.5) on \gamma D1,\hbar R\theta ,Q(\lambda , z), we have

(4.6) \| K(\lambda , z)\| \scrL 1(\scrH ;\scrH ) \leq C\hbar 1 - d\hbar  - 1 \leq C\hbar  - d.

Furthermore, by [15, equation B.5.21] and [15, equation B.5.19],\bigm\| \bigm\| (I +K(\lambda , z)) - 1
\bigm\| \bigm\| 
\scrH \rightarrow \scrH \leq det

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
det
\bigl( 
I + [K(\lambda , z)\ast K(\lambda , z)]1/2

\bigr) 
\leq det

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
exp

\bigl( 
\| [K(\lambda , z)\ast K(\lambda , z)]1/2\| \scrL 1(\scrH )

\bigr) 
\leq det

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
exp

\bigl( 
\| [K(\lambda , z)\| \scrL 1(\scrH )

\bigr) 
,(4.7)
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where we have used the definition of the trace class norm \| \cdot \| \scrL 1
in terms of singular

values (see [15, equation B.4.2]) to write\bigm\| \bigm\| [K(\lambda , z)\ast K(\lambda , z)]1/2
\bigm\| \bigm\| 
\scrL 1(\scrH )

= \| K(\lambda , z)\| \scrL 1(\scrH ) .

Using (4.6) in (4.7), we find that

(4.8)
\bigm\| \bigm\| (I +K(\lambda , z)) - 1

\bigm\| \bigm\| 
L2\rightarrow L2 \leq det

\bigl( 
I +K(\lambda , z)

\bigr)  - 1
exp(C\hbar  - d) for | z| \leq \varepsilon \hbar .

To estimate det(I+K(\lambda , z)) - 1, we use the same idea used to prove the bound (1.13),
namely the following complex-analysis result.

Lemma 4.3 (see [15, equation D.1.13]). Let \Omega 0 \Subset \Omega 1 \Subset \BbbC , let f be holomorphic
in a neighborhood of \Omega 1 with zeros zj , j = 1, 2, . . ., and let z0 \in \Omega 1. There exists
C = C(\Omega 0,\Omega 1, z0) such that for any \delta > 0 sufficiently small,

log | f(z)| \geq  - C log
\bigl( 
\delta  - 1
\bigr) \biggl( 

max
z\in \Omega 1

log | f(z)|  - log | f(z0)| 
\biggr) 

for z \in \Omega 0 \setminus 
\bigcup 
j

B(zj , \delta ).

Applying this result with f(z) = det(I + K(\lambda , z)), we see that to get an upper
bound on log det(I +K(\lambda , z)) - 1 we only need a lower bound on det(I +K(\lambda , z0)) for
some | z0| \leq \varepsilon \hbar and an upper bound on det(I +K(\lambda , z)) for all | z| \leq \varepsilon \hbar .

To obtain the upper bound for all | z| \leq \varepsilon \hbar , we again use [15, equation B.5.19]
and (4.6) to obtain

(4.9) | det(I +K(\lambda , z))| \leq exp(\| K(\lambda , z)\| \scrL 1
) \leq exp(C\hbar  - d) for | z| \leq \varepsilon \hbar .

To obtain the lower bound for some | z0| \leq \varepsilon \hbar , we first observe that, from (3.8),\bigl( 
I +K(\lambda , z)

\bigr)  - 1
= \scrP \theta ,Q(\lambda , z)\scrP \theta (\lambda , z)

 - 1 = I  - Q\scrP \theta (\lambda , z)
 - 1,

so that \bigm| \bigm| det \bigl( I +K(\lambda , z)
\bigr) \bigm| \bigm|  - 1

=
\bigm| \bigm| det \bigl( I  - Q\scrP \theta (\lambda , z)

 - 1
\bigr) \bigm| \bigm| .

Since Q\scrP \theta (\lambda , z) is trace class, we use [15, equation B.5.19], [15, equation B.4.7], (4.6),
and (4.3) to obtain
(4.10)

log
\bigm| \bigm| det(I +K(\lambda , z0))

\bigm| \bigm|  - 1 \leq \| Q\| \scrL 1(H2
\hbar (\Omega +);\scrH )

\bigm\| \bigm\| \scrP \theta (\lambda , z0)
 - 1
\bigm\| \bigm\| 
\scrH \rightarrow H2

\hbar (\Omega +)
\leq C\hbar  - d

for z0 = i\varepsilon \hbar . Therefore, combining Lemma 4.3, (4.9), and (4.10), we have

log
\bigm| \bigm| det \bigl( I +K(\lambda , z)

\bigr)  - 1\bigm| \bigm| \leq C\hbar  - d log \delta  - 1, z \in B(0, \varepsilon 1\hbar )
\Big\backslash \bigcup 

zj

B(zj , \delta ),

where zj are the poles of (I + K(\lambda , z)) - 1. Therefore, combining this last bound
with (4.5), (4.8), and (3.5), we have

\| R\theta (\lambda , z)\| L2(\Omega +)\rightarrow L2(\Omega +) \leq exp
\Bigl( 
C\hbar  - d log \delta  - 1

\Bigr) 
for z \in B(0, \varepsilon 1\hbar )

\Big\backslash \bigcup 
zj

B(zj , \delta ),

where zj are the poles of \scrR \theta (\lambda , z). The bound (1.15) and the fact that zj are the
poles of R\Omega tr

(\lambda , z) then follow from the relation (4.1) and Lemma 1.11.
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5. Proofs of Theorems 2.2 and 2.4.

5.1. Proof of Theorem 2.2. With Lemma 1.14 in hand, this proof is very
similar to [15, Proof of Theorem 7.6], except that now we work in the complex z
plane as opposed to the complex \lambda plane. In addition, in this proof, the roles of \varepsilon 0
and \varepsilon are swapped compared to [15, Proof of Theorem 7.6].

Let

(5.1) \varepsilon 0(\hbar ) := \hbar  - \alpha \varepsilon (\hbar ),

with \alpha > 3(d + 1)/2 (we see later where this requirement comes from). The lower
bound (2.2) then implies that, given \hbar 0, there exists C \prime (depending on \hbar 0 and \alpha ) such
that

(5.2) log

\biggl( 
2

\varepsilon 0(\hbar )

\biggr) 
\leq C \prime 

\hbar 
for all 0 < \hbar \leq \hbar 0.

Seeking a contradiction, we assume that when \hbar = \hbar j there are no eigenvalues in
B(0, \varepsilon 0(\hbar j)) (the exponential lower bound on \varepsilon 0(\hbar ) leading to (5.2) therefore limits
how small this ball can be). Our goal is to show that this assumption implies that

(5.3) \| R(1, 0)\| L2(\Omega tr)\rightarrow L2(\Omega tr)
<

1

2

\bigl( 
\varepsilon (\hbar j)

\bigr)  - 1
.

Indeed, since suppu\ell \Subset \Omega 1,

(5.4) R(1, 0)( - \hbar 2j\Delta  - 1)u\ell = u\ell .

Then, by taking the norm of (5.4) and using (5.3), we obtain that \| u\ell \| L2(\Omega tr)
< 1/2,

which contradicts \| u\ell \| L2(\Omega tr)
= 1. We prove (5.3) by using Theorem 2.7, where

\Omega (\hbar ) is a box (to be specified below) in B(0, \varepsilon 0(\hbar )/2) with Lemma 1.14 providing the
bounds (2.20) and (2.21).

We first use the bound (1.15) from Lemma 1.14. This bound is valid for z \in 
B(0, \varepsilon 1\hbar ) and away from the poles. The definition of \varepsilon 0(\hbar ) (5.1) and the upper bound
in (2.3) implies that B(0, \varepsilon 0(\hbar )/2) \subset B(0, \varepsilon 1\hbar ) for \hbar sufficiently small. We then choose
\delta in (1.15) equal to \varepsilon 0(\hbar )/2 and use (5.2) so that, for all \hbar j sufficiently small,

(5.5) \| R(1, z)\| L2(\Omega tr)\rightarrow L2(\Omega tr)
\leq exp

\Bigl( 
C1C

\prime \hbar  - (d+1)
j

\Bigr) 
for all z \in B(0, \varepsilon 0(\hbar j)/2)

and thus for all z \in \Omega (\hbar j) (since \Omega (\hbar j) \subset B(0, \varepsilon 0(\hbar j)/2)). We now let

Q(z, \hbar ) := R\Omega tr(1, z), L := d+ 1, and C := max
\bigl\{ 
C1C

\prime , C2 c
\bigr\} 
,

where c = c(\hbar 0) is chosen large enough such that \langle z\rangle \leq c for all z \in B(0, \varepsilon 0(\hbar )/2) and
\hbar \leq h0; these choices ensure that the right-hand sides of the bounds (5.5) and (1.16)
are bounded by the right-hand sides of (2.20) and (2.21), respectively. We then let

w = 0, 2\beta (\hbar ) =
1

4
\varepsilon 0(\hbar ), and \delta (\hbar ) =M\varepsilon (\hbar )

with M chosen (sufficiently large) later in the proof. For the assumptions of Theorem
2.7 to hold at \hbar = \hbar j , we need that (i) the box \Omega (\hbar j) defined by (2.18) is inside
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B(0, \varepsilon 0(\hbar j)/2) (so that the bound (2.20) follows from (5.5)), and (ii) the second in-
equality in (2.19) is satisfied. The first requirement is ensured if

\delta (\hbar j)\hbar  - (d+1)
j \ll 1

2
\varepsilon 0(\hbar j), that is, M\varepsilon (\hbar j)\hbar  - (d+1)

j \ll 1

2
\hbar  - \alpha 
j \varepsilon (\hbar j),

which is satisfied if \hbar j is sufficiently small since \alpha > d+1. The second requirement is

1

8
h - 2\alpha \varepsilon (\hbar )2 \geq C\hbar  - 3(d+1)M\varepsilon (\hbar )2;

given M , this inequality is satisfied when \hbar is sufficiently small since \alpha > 3(d+ 1)/2.
Therefore, the assumptions of Theorem 2.7 are all satisfied at \hbar = \hbar j (for \hbar j suffi-

ciently small), and the result is that the bound (2.22) holds for all z \in [ - \beta (\hbar j), \beta (\hbar j)]
and thus, in particular, at z = 0. Therefore, for all \hbar j sufficiently small,

\| R(1, 0)\| L2(\Omega tr)\rightarrow L2(\Omega tr)
\leq C

M\varepsilon (\hbar j)
exp(1 + C).

We now choose

M := 2C exp(1 + C)

and obtain (5.3), i.e., the desired contradiction to there being no eigenvalues in
B(0, \varepsilon 0(\hbar j)).

5.2. Proof of Theorem 2.4. We first recall the following lemma proved in [43,
Lemma 4]; see also [35, Lemma AII.20].

Lemma 5.1. Let f1, . . . , fN be N vectors in a Hilbert space \scrH with\bigm| \bigm| \langle fi, fj\rangle \scrH  - \delta ij
\bigm| \bigm| \leq \varepsilon for all i, j = 1, . . . , N.

If \varepsilon < N - 1, then f1, . . . , fN are linearly independent.

We use Lemma 5.1 both in the proof of Theorem 2.4 below and in the proof of
the following preparatory result.

Lemma 5.2. Let m(\hbar j) and \varepsilon (\hbar ) be as in Theorem 2.4 (so that, in particular,
\varepsilon (\hbar ) \ll \hbar (5d+3)/2 as \hbar \rightarrow 0). Then there exists C > 0 (independent of \hbar j) such that

(5.6) m(\hbar j) \leq C\hbar  - d
j .

Proof. First observe that it is sufficient to prove the result for sufficiently small \hbar j
(equivalently, sufficiently large j). Let P (\hbar j) =  - \hbar 2j\Delta with zero Dirichlet boundary
conditions on \Gamma D and \Gamma tr. P (\hbar j) is therefore self-adjoint with a discrete spectrum
and, since suppuj,\ell \subset \scrK \Subset \Omega 1,\bigm\| \bigm\| \bigl( P (\hbar j) - Ej,\ell 

\bigr) 
uj,\ell 
\bigm\| \bigm\| 
L2(\Omega tr)

= \varepsilon (\hbar j) for all j, \ell .

Let \mu > c > 0, let \Pi (\hbar j) be the orthogonal projection onto the eigenspaces
corresponding to all eigenvalues of P (\hbar j) in [a0  - \mu , b0 + \mu ], and let M(\hbar j) be the
number of these eigenvalues (counting multiplicities). By the Weyl law (with no
remainder term) on manifolds with boundary (see, e.g., [31, Theorem 17.5.3]),

M(\hbar j) \leq C\hbar  - d
j .
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Furthermore, rank\Pi (\hbar j) \leq M(\hbar j), and thus to prove the result (5.6) it is sufficient to
prove that m(\hbar j) \leq rank\Pi (\hbar j). To keep expressions compact, we now write P and \Pi 
instead of P (\hbar j) and \Pi (\hbar j).

Since \Pi commutes with (P  - Ej,\ell )
 - 1, and (P  - Ej,\ell ) is invertible on (I  - \Pi )L2,

(5.7)
\bigl( 
I  - \Pi 

\bigr) 
uj,\ell =

\bigl( 
P  - Ej,\ell 

\bigr)  - 1\bigl( 
I  - \Pi 

\bigr) \bigl( 
P  - Ej,\ell 

\bigr) 
uj,\ell .

Since P is self-adjoint, the spectral theorem (see, e.g., [15, Theorem B.8]) implies that

(5.8)
\bigm\| \bigm\| \bigl( P  - Ej,\ell 

\bigr)  - 1\bigl( 
I  - \Pi 

\bigr) \bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq 1

\mu 
.

Therefore, combining (5.7) and (5.8), we have

\bigm\| \bigm\| \bigl( I  - \Pi 
\bigr) 
uj,\ell 
\bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq \varepsilon (\hbar j)
\mu 

(compare to [35, equation 32.2] and the first displayed equation in [43, section 3]).
Then, for \ell 1, \ell 2 \in \{ 1, . . . ,m(\hbar j)\} ,\bigm| \bigm| \langle \Pi uj,\ell 1 ,\Pi uj,\ell 2\rangle L2(\Omega tr)  - \delta \ell 1\ell 2

\bigm| \bigm| \leq \bigm| \bigm| \langle uj,\ell 1 , uj,\ell 2\rangle L2(\Omega tr)  - \delta \ell 1\ell 2
\bigm| \bigm| 

+
\bigm| \bigm| \langle uj,\ell 1 , (I  - \Pi )uj,\ell 2\rangle L2(\Omega tr)

\bigm| \bigm| 
+
\bigm| \bigm| \langle (I  - \Pi )uj,\ell 1 ,\Pi uj,\ell 2\rangle L2(\Omega tr)

\bigm| \bigm| 
\leq \hbar  - 2

j \varepsilon (\hbar j) +
2

\mu 
\varepsilon (\hbar j)(5.9)

\ll \hbar (5d - 1)/2
j as j \rightarrow \infty ,

where we have used that \| \Pi \| L2(\Omega tr)\rightarrow L2(\Omega tr)
\leq 1 since \Pi is orthogonal. By Lemma

5.1, any subset of \{ \Pi uj,\ell \} m(\hbar j)
\ell =1 with cardinality \ll \hbar  - (5d - 1)/2

j is linearly independent.
Seeking a contradiction, assume that (5.6) does not hold, i.e., for all C > 0, there

exists j such that m(\hbar j) > C\hbar  - d
j . Choose a subset of \{ \Pi uj,\ell \} m(\hbar j)

\ell =1 with cardinality

\lfloor C\hbar  - d
j + 1\rfloor . By the above argument, this subset is linearly independent, and thus

\lfloor C\hbar  - d
j + 1\rfloor \leq rank\Pi (\hbar j) =M(\hbar j) \leq C\hbar  - d

j , which is the required contradiction.

Proof of Theorem 2.4. The proof is similar to that of the corresponding ``quasi-
modes to resonances"" result [43, Theorem 1] (see also [15, section 7.7, Exercise 1]),
except that we use the semiclassical maximum principle in the z plane (as in the proof
of Theorem 2.2), and now we also work in an interval in \lambda (as opposed to at \lambda = 1
in the proof of Theorem 2.2). To keep the expressions compact, we write \hbar instead
of \hbar j and write functions of the index j as functions of \hbar ; in particular, we drop the
subscript j on \hbar j , Ej,\ell , and uj,\ell .

Let

\scrZ := \scrZ 
\bigl( 
\varepsilon 1(\hbar ) , \varepsilon 0(\hbar ) , a(\hbar ), b(\hbar ) ; \hbar 

\bigr) 
,

where \scrZ (\varepsilon 1, \varepsilon 0, a, b; \hbar ) is defined by (2.5), \varepsilon 0(\hbar ) is as in the statement of the theorem,
and \varepsilon 1(\hbar ) \ll \hbar will be fixed later. We assume throughout that | \scrZ | <\infty since otherwise
the proof is trivial. Let \Pi (\hbar ) denote the orthogonal projection onto\bigcup 

p\in \scrZ 
\Pi zp(L

2(\Omega tr)),
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where \Pi zp is defined in (2.17). Let \widetilde \scrZ (\lambda ) be the set of distinct values of zp(\hbar , \lambda ) such
that p \in \scrZ . (While \scrZ is independent of \lambda , \widetilde \scrZ depends on \lambda since the poles of z \mapsto \rightarrow 
R\Omega tr

(z, \lambda ) depend on \lambda .) Note that for zp \not = zq, rank(\Pi zp+\Pi zq ) = rank\Pi zp+rank\Pi zq ;
therefore,

rank\Pi (\hbar ) =
\sum 

zp\in \widetilde \scrZ (\lambda )

rank\Pi zp(\hbar ,\lambda ) =
\sum 

zp\in \widetilde \scrZ (\lambda )

mR

\bigl( 
zp(\hbar , \lambda )

\bigr) 
= | \scrZ | ,

where mR(z0) is defined in (2.17). To prove the theorem, therefore, it is sufficient to
show that m(\hbar ) \leq rank\Pi (\hbar ).

Seeking a contradiction, we assume that rank\Pi (\hbar ) < m(\hbar ). By Lemma 2.6,
near zp, the singular part of R\Omega tr

(\lambda , z) is in the range of \Pi zp(\hbar , \lambda ), and therefore
z \mapsto \rightarrow (I  - \Pi (\hbar ))R\Omega tr

(\lambda , z) is holomorphic on

\Omega (\hbar ) :=
\bigl( 
 - 2\varepsilon 1(\hbar ), 2\varepsilon 1(\hbar )

\bigr) 
 - i
\bigl( 
0, 2\varepsilon 0(\hbar )

\bigr) 
for all \lambda 2 \in [a(\hbar ), b(\hbar )]. Let \widetilde \Omega (\hbar ) \subset \Omega (\hbar ) be defined by

\widetilde \Omega (\hbar ) := \bigl(  - \varepsilon 1(\hbar ), \varepsilon 1(\hbar )
\bigr) 
 - i
\bigl( 
0, \varepsilon 0(\hbar )

\bigr) 
.

Our goal is to apply the semiclassical maximum principle (Theorem 2.7) in subsets of\widetilde \Omega (\hbar ) with Q(z, \hbar ) = (I  - \Pi (\hbar ))R\Omega tr(\lambda , z).
By Lemma 1.14, the fact that max(\varepsilon 0, \varepsilon 1) \ll \hbar , and the fact that \Pi (\hbar ) is orthog-

onal (and so \| I  - \Pi (\hbar )\| L2(\Omega tr)\rightarrow L2(\Omega tr) \leq 1),\bigm\| \bigm\| \bigl( I  - \Pi (\hbar )
\bigr) 
R\Omega tr(\lambda , z)

\bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq exp
\Bigl( 
C1\hbar  - d log \delta  - 1

\Bigr) 
(5.10)

for z \in \widetilde \Omega (\hbar )\Big\backslash \bigcup 
m

B(zm(\hbar , \lambda ), \delta )

and for \lambda 2 \in [a(\hbar ), b(\hbar )], where the zm(\hbar , \lambda ) are the poles of R\Omega tr
(\lambda , z) such that

B(zm(\hbar , \lambda ), \delta )\cap \widetilde \Omega (\hbar ) \not = \emptyset . If \delta > min\{ \varepsilon 0(\hbar ), \varepsilon 1(\hbar )\} , then these zm(\hbar , \lambda ) might include
poles that are not equal to zp(\hbar , \lambda ) for some p \in \scrZ , but we restrict \delta so that this is
not the case. Indeed, we now choose \delta > 0 so that the bound in (5.10) holds for all

z \in \widetilde \Omega (\hbar ) and for all \lambda 2 \in [a(\hbar ), b(\hbar )].
If \delta and zm are such that B(zm, \delta ) \Subset \Omega (\hbar ), then the bound in (5.10) holds on

\partial B(zm, \delta ), and then, since z \mapsto \rightarrow (I  - \Pi (\hbar ))R\Omega tr(\lambda , z) is holomorphic in \Omega (\hbar ), the
maximum principle implies that the bound in (5.10) holds in B(zm, \delta ). We now
restrict \delta so that there cannot be a connected union of B(zm, \delta ) that intersects both\widetilde \Omega (\hbar ) and \partial \Omega (\hbar ). Once this is ruled out, the maximum principle and the fact that
z \mapsto \rightarrow (I - \Pi (\hbar ))R\Omega tr(\lambda , z) is holomorphic in \Omega (\hbar ) imply that the bound in (5.10) holds

in \widetilde \Omega (\hbar ). Since we have assumed that rank\Pi (\hbar ) < m(\hbar ), and m(\hbar ) \leq C\hbar  - d by (5.6),
there exists a maximum of C\hbar  - d of balls of radius \delta . In particular, the maximum
distance between any two points in such a connected union is bounded by 2C\delta \hbar  - d,
and hence a connected union intersecting both \partial \Omega (\hbar ) and \~\Omega (\hbar ) is ruled out if

(5.11) 2C\delta \hbar  - d < min
\bigl\{ 
\varepsilon 0(\hbar ), \varepsilon 1(\hbar )

\bigr\} 
.

We now assume that \varepsilon 0(\hbar ) \leq \varepsilon 1(\hbar ) and set

\delta :=
\varepsilon 0(\hbar ) \hbar d

4C
,
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so that (5.11) holds. The lower bound on \varepsilon 0(\hbar ) in (2.7) and the lower bound on \varepsilon (\hbar )
(2.2) imply that, given \hbar 0, there exists C \prime (depending on \hbar 0) such that

log \delta  - 1 \leq C \prime 

\hbar 
for all 0 < \hbar \leq \hbar 0.

Therefore, the end result is that if \hbar is sufficiently small,\bigm\| \bigm\| \bigl( I  - \Pi (\hbar )
\bigr) 
R\Omega tr

(\lambda , z)
\bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq exp
\Bigl( 
C\hbar  - d - 1

\Bigr) 
for z \in \widetilde \Omega (\hbar ) and \lambda 2 \in [a(\hbar ), b(\hbar )], where C := max\{ C1C

\prime , c C2\} , where, as in the proof

of Theorem 2.2, c = c(\hbar 0) is chosen large enough such that \langle z\rangle \leq c for all z \in \widetilde \Omega (\hbar )
and \hbar \leq h0.

We apply the semiclassical maximum principle (Theorem 2.7) with

w = 0, \beta (\hbar ) = \varepsilon 1(\hbar ), \delta (\hbar ) = \hbar d+1\varepsilon 0(\hbar ), and L = d+ 1,

and we now fix \varepsilon 1(\hbar ) as

\varepsilon 1(\hbar ) :=
\hbar (d+1)/2\varepsilon 0(\hbar )

C
;

observe that this definition of \varepsilon (\hbar ) satisfies both the second requirement in (2.19) and
our previous assumption that \varepsilon 0(\hbar ) \leq \varepsilon 1(\hbar ). The result of Theorem 2.7 is that

(5.12)

\bigm\| \bigm\| \bigl( I  - \Pi (\hbar )
\bigr) 
R\Omega tr

(\lambda , z)
\bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq C exp(C + 1)
\hbar  - (d+1)

\varepsilon 0(\hbar )
for z \in 

\bigl[ 
 - \varepsilon 1(\hbar ), \varepsilon 1(\hbar )

\bigr] 
and \lambda 2 \in [a(\hbar ), b(\hbar )].

The definitions of E\ell and u\ell imply that\bigl( 
I  - \Pi (\hbar )

\bigr) 
R\Omega tr

\bigl( \sqrt{} 
E\ell , 0

\bigr) \bigl( 
 - \hbar 2\Delta  - E\ell 

\bigr) 
u\ell =

\bigl( 
I  - \Pi (\hbar )

\bigr) 
u\ell 

for \ell = 1, . . . ,m(\hbar ). Since E\ell \in [a(\hbar ), b(\hbar )] for all \ell , the fact that the bound (5.12)
holds for all \lambda 2 \in [a(\hbar ), b(\hbar )] implies that\bigm\| \bigm\| (I  - \Pi (\hbar ))u\ell 

\bigm\| \bigm\| 
L2(\Omega tr)\rightarrow L2(\Omega tr)

\leq C exp(C + 1)\hbar  - (d+1) \varepsilon (\hbar )
\varepsilon 0(\hbar )

for \ell = 1, . . . ,m(\hbar ). Therefore,\bigm| \bigm| \bigm| \bigl\langle \Pi (\hbar )u\ell 1 ,\Pi (\hbar )u\ell 2
\bigr\rangle 
L2(\Omega tr)

 - \delta \ell 1\ell 2

\bigm| \bigm| \bigm| \leq \varepsilon (\hbar ) + 2C exp(C + 1)\hbar  - (d+1) \varepsilon (\hbar )
\varepsilon 0(\hbar )

(compare to (5.9), but note that now the projection \Pi is different). Using the in-
equality (2.6) and the second inequality in (2.7), we have\bigm| \bigm| \bigm| \bigl\langle \Pi (\hbar )u\ell 1 ,\Pi (\hbar )u\ell 2

\bigr\rangle 
L2(\Omega tr)

 - \delta \ell 1\ell 2

\bigm| \bigm| \bigm| \ll \hbar d,

and thus \bigm| \bigm| \bigm| \bigl\langle \Pi (\hbar )u\ell 1 ,\Pi (\hbar )u\ell 2
\bigr\rangle 
L2(\Omega tr)

 - \delta \ell 1\ell 2

\bigm| \bigm| \bigm| \leq \hbar d

C
,

where C is the constant in (5.6). By (5.6) and Lemma 5.1, \{ \Pi (h)u\ell \} m(\hbar j)
\ell =1 is linearly

independent, and thus rank\Pi (\hbar ) \geq m(\hbar ), which is the desired contradiction to the
assumption that rank\Pi (\hbar ) < m(\hbar ).
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Appendix A. From eigenvalues to quasimodes.

Lemma A.1 (from eigenvalues to quasimodes in \hbar notation). Suppose that there
exist z = \scrO (\hbar \infty ) and u satisfying (2.4) with \| u\| L2(\Omega tr) = 1. Let \chi \in C\infty 

c (\Omega 1) with
\chi \equiv 1 in a neighborhood of \pi \BbbR (K). Then \chi u is a quasimode (in the sense of Definition
2.1) of quality \varepsilon (\hbar ) = \scrO (\hbar \infty ) satisfying

\| u - \chi u\| H2
\hbar (\Omega tr) = \scrO (\hbar \infty ).

Proof. The proof is similar to the proof of the ``resonances to quasimodes"" result
of [44, Theorem 1], except that we avoid using results about \scrD for strictly convex
obstacles that are used in [44] and instead use a commutator argument.

First observe that

( - \hbar 2\Delta  - 1 - z)u = 0 in \Omega tr,

so that
u = 1res\Omega tr

R(1, 0)1ext\Omega tr
z u.

Therefore,
u = 1res\Omega tr

R\theta (1, 0)1
ext
\Omega tr

z u

by (2.30) and the definition of R\theta (\lambda , z) (3.9). Let

(A.1) v = R\theta (1, 0)1
ext
\Omega tr
z u,

and observe that v = u on \Omega tr.
We now claim that, since z = \scrO (\hbar \infty ) and \Omega tr \Subset \BbbR d, WF\hbar (v) \subset \Gamma + (defined by

(2.26)). By the definition of the wavefront set [15, Definition E.36], this is equivalent
to Av = \scrO (\hbar \infty ) for all A with WF\hbar (A) \subset (\Gamma +)c. This then follows by noting that
(P\theta  - 1)v = \scrO (\hbar \infty )L2

comp
and applying [15, Theorem E.47], [31, section 24.4], and [50,

Theorem 8.1]3 (with, in the notation of [15, Theorem E.47], B1 = I, B = P = P\theta  - 1),
together with the fact that \sigma \hbar (Im(P\theta  - 1)) \leq 0 and that P\theta  - 1 is elliptic on \{ r \geq 2r1\} 
(so that if (x0, \xi 0) \in WF\hbar (A), then there exists T \geq 0 such that \varphi  - T (x0, \xi 0) \in 
ell\hbar (P\theta  - 1)).

Now let \chi \in C\infty 
c (\Omega 1) with \chi \equiv 1 in a neighborhood of \pi \BbbR (K). We claim that

\chi v = \chi u is a quasimode with quality \varepsilon (\hbar ) = \scrO (\hbar \infty ). To prove this, since

(A.2) \| u - \chi u\| H2
\hbar (\Omega tr)

= \| (1 - \chi )v\| H2
\hbar (\Omega tr)

= \| (1 - \chi )v\| H2
\hbar (\Omega tr\setminus \{ \chi \equiv 1\} ) ,

it is sufficient to prove that v is \scrO (\hbar \infty )H2
\hbar ,loc

outside a compact set.

Our first step is to prove that, with r0 < a < b < r1, for \hbar sufficiently small,

(A.3) \| v\| L2(\bfr >a) \leq C\hbar  - 1\| (P\theta  - 1)v\| L2(\Omega +) + C\| v\| L2(a<\bfr <b),

where here, and in the rest of the proof, C denotes a constant, independent of \hbar and
z, whose value may change from line to line. To prove (A.3), first observe that, since

3Strictly speaking, [15, Theorem E.47] is used away from the boundary and [50, Theorem 8.1]
is written for the time dependent problem, but the semiclassical version can be easily recovered by
applying the time dependent results to eit/\hbar v(x). It is then necessary to use the arguments in [31,
section 24.4] to obtain the ``diffractive improvement,"" i.e., that singularities hitting a diffractive point
follow only the flow of Hp rather than sticking to the boundary. A careful examination of [31, Lemma
24.4.7] shows that the norm on the error term on (P\theta  - 1)v is correct.
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P\theta  - 1 is elliptic on r \geq 2r1, by [15, Theorem E.33] (more precisely its proof together
with the calculus from [52, Chapter 4]),

\| v\| L2(\bfr >3r1) \leq C\| (P\theta  - 1)v\| L2(\Omega +) + CNh
N\| v\| L2(\bfr >2r1)

and hence

(A.4) \| v\| L2(\bfr >3r1) \leq C\| (P\theta  - 1)v\| L2(\Omega +) + CNh
N\| v\| L2(2r1<\bfr <4r1).

Next, observe that there exists T > 0 such that for all \rho \in \Gamma + \cap \{ a+b
2 < r < 4r1\} ,

there exists 0 \leq t \leq T such that a < r(\varphi  - t(\rho )) < b. In particular, using [15, Theorem
E.47] again, we have

\| v\| L2( a+b
2 <\bfr <4r1)

\leq C\hbar  - 1\| (P\theta  - 1)v\| L2(\Omega +) + \| v\| L2(a<\bfr <b) + CNh
N\| v\| L2(\bfr >a).

Using this and (A.4) in

\| v\| L2(\bfr >a) \leq \| v\| L2(a<\bfr <b) + \| v\| L2( a+b
2 <\bfr <4r1)

+ \| v\| L2(\bfr >3r1),

we obtain (A.3) for \hbar sufficiently small.
The next part of the proof involves using a commutator argument to control (up

to h\infty errors) \| v\| L2(a<\bfr <b) by the norm on a slightly bigger region and with a gain
of \hbar (see (A.5) below). Let \psi \in C\infty 

c ( - r1, r1) with \psi \equiv 1 on \{ | x| \leq r0\} , x\psi \prime (x) \leq 0,
and x\psi \prime (x) < 0 on a \leq | x| \leq b. Then

2\hbar  - 1 Im
\bigl\langle 
( - \hbar 2\Delta  - 1)v, \psi (r)v

\bigr\rangle 
L2(\Omega +)

=  - i\hbar  - 1
\Bigl( \bigl\langle 

( - \hbar 2\Delta  - 1)v, \psi (r)v
\bigr\rangle 
L2(\Omega +)

 - 
\bigl\langle 
\psi (r)v, ( - \hbar 2\Delta  - 1)v

\bigr\rangle 
L2(\Omega +)

\Bigr) 
= i\hbar  - 1

\bigl\langle 
[ - \hbar 2\Delta , \psi (r)]v, v

\bigr\rangle 
L2(\Omega +)

=
\bigl\langle \bigl( 
2\psi \prime (r)\hbar Dr  - i\hbar [\Delta (\psi (r))]

\bigr) 
v, v
\bigr\rangle 
L2(\Omega +)

.

By the definition of \Gamma + (2.26), \sigma \hbar (\psi 
\prime (r)hDr) = \psi \prime (r)\langle \xi , x

| x| \rangle <  - c < 0 on \Gamma + \cap \{ a \leq 
r \leq b\} . Therefore, since WF\hbar (v) \subset \Gamma +, for \psi 1 \in C\infty 

c (r0 < r < r1) with \psi 1 \equiv 1 in a
neighborhood of supp \partial \psi (r),

2\hbar  - 1 Im
\bigl\langle 
( - \hbar 2\Delta  - 1)v, \psi (r)v

\bigr\rangle 
L2(\Omega +)

\leq  - c\| v\| 2L2(a<\bfr <b) + C\hbar \| \psi 1v\| 2L2(\Omega +) + CN\hbar N\| v\| 2L2(\Omega +)

by the microlocal Garding inequality [15, Proposition E.34] (with A =  - \psi \prime (r)\hbar Dr  - c
and B supported in \langle \xi , x/| x| \rangle < \epsilon , i.e., away from \Gamma +, and in \{ r0 \leq r \leq r1\} ).
Therefore, by Young's inequality,
(A.5)
\| v\| 2L2(a<\bfr <b) \leq C\hbar  - N - 2\| ( - \hbar 2\Delta  - 1)v\| 2L2(\bfr <r1)

+ C\hbar \| \psi 1v\| 2L2(\Omega +) + CN\hbar N\| v\| 2L2(\Omega +).

We now use the propagation estimate again to control (up to \hbar \infty errors) \| \psi 1v\| 2L2(\Omega +)

by \| v\| 2L2(a<\bfr <b). Suppose that \rho \in r - 1(\{ supp\psi 1\} ) \cap \Gamma +. Then there exists | t| \leq \sqrt{} 
r21  - r20 such that \varphi t(\rho ) \in \{ a < r < b\} . Therefore, by standard propagation esti-

mates [15, Theorem E.47], again using that WF\hbar (v) \subset \Gamma +, we have
(A.6)
\| \psi 1v\| 2L2(\Omega +) \leq C\hbar  - 1\| ( - \hbar 2\Delta  - 1)v\| 2L2(\bfr \leq r1)

+ C\| v\| 2L2(a<\bfr <b) + CN\hbar N\| v\| 2L2(\Omega +).
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We next use the propagation estimate again to control \| v\| L2(\{ \bfr \leq r1\} \setminus \{ \chi \equiv 1\} ) by
\| v\| 2L2(a<\bfr <b). To do this, we need that there exists T > 0 such that for all \rho \in 
S\ast 
\Omega +\setminus \{ \chi \equiv 1\} \Omega + with r(\rho ) \leq r1 there exists | t| \leq T with a < r(\varphi t(\rho )) < b. Suppose not;

then there exists \rho n \in S\ast 
\Omega +\setminus \{ \chi \equiv 1\} \Omega + with r(\rho n) \leq r1 and Tn \rightarrow \infty such that\bigcup 

| t| \leq Tn

\varphi t(\rho n) \cap \{ a < r < b\} = \emptyset .

By (2.24), we have r(\rho n) \leq r0 and also r(\varphi \pm Tn
(\rho n)) \leq r0. In particular, we may

assume that \rho n \rightarrow \rho \in \{ r \leq r0\} \setminus K (since \pi \BbbR (K) \Subset \{ \chi \equiv 1\} ) and \varphi \pm Tn(\rho n) \rightarrow \rho \pm .
Then, by Lemma 2.8, \rho \in \Gamma + \cap \Gamma  - = K, which is a contradiction. Applying the
propagation estimate (using the existence of the uniform time T ), we have
(A.7)
\| v\| 2L2(\{ \bfr \leq r1\} \setminus \{ \chi \equiv 1\} ) \leq C\hbar  - 1\| ( - \hbar 2\Delta  - 1)v\| 2L2(\bfr \leq r1)

+C\| v\| 2L2(a<\bfr <b)+CN\hbar N\| v\| 2L2(\Omega +).

Finally, we control \| v\| L2(\Omega +\setminus \Omega tr). For this, note that v = u1\Omega tr + v1(\Omega tr)c and
by (A.3) and (A.7) we have

(A.8) \| v\| L2(\Omega +\setminus \Omega tr) \leq C\hbar  - 1\| (P\theta  - 1)v\| L2(\Omega +) + C\| v\| L2(a<\bfr <b) + CN\hbar N\| u\| L2(\Omega tr).

Now, using (A.6) in (A.5), and then using the definition of v (A.1) and that v = u
on \Omega tr, we have

\| v\| 2L2(a<\bfr <b) \leq C\hbar  - N - 2\| ( - \hbar 2\Delta  - 1)v\| 2L2(\bfr \leq r1)
+ CN\hbar N\| v\| 2L2(\Omega +)

= C\hbar  - N - 2\| (P\theta  - 1)v\| 2L2(\Omega +) + CN\hbar N\| u\| 2L2(\Omega tr)
+ CN\hbar N\| v\| 2L2(\Omega +\setminus \Omega tr)

.

Then, using (A.8),

\| v\| 2L2(a<\bfr <b) \leq CN\hbar N\| u\| 2L2(\Omega tr)
+ CN\hbar N\| v\| L2(a<\bfr <b),

and, taking \hbar small enough, we obtain

\| v\| L2(a<\bfr <b) \leq CN\hbar N\| u\| L2(\Omega tr) \leq CN\hbar N

since \| u\| L2(\Omega tr) = 1. Therefore, using (A.7), (A.8), the definition of v (A.1), and the
fact that z = \scrO (\hbar \infty ), we have

\| \psi (r)v\| 2L2(\Omega +\setminus \{ \chi \equiv 1\} ) = \scrO (\hbar \infty ),

so that, since WF\hbar (v) \subset S\ast \BbbR d (which is fibre compact),

\| \psi (r)v\| 2H2
\hbar (\Omega +\setminus \{ \chi \equiv 1\} ) = \scrO (\hbar \infty );

the result then follows from (A.2).

Appendix B. Details of how the eigenvalues/eigenfunctions were com-
puted in section 1.3. When discretizing the sesquilinear form a(\cdot , \cdot ) defined by (1.7),
we need to calculate the Dirichlet-to-Neumann map \scrD (k). Instead of approximating
\scrD (k) using either a PML or an absorbing boundary condition, we use boundary in-
tegral operators to find \scrD (k) ``exactly"" (i.e., up to the discretization of these integral
operators).
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Recall that the single-layer potential on \Gamma tr is defined for \varphi \in L1(\Gamma ) by

\scrS k\varphi (x) :=

\int 
\Gamma tr

\Phi k(x, y)\varphi (y) ds(y) for all x \in \BbbR d \setminus \Gamma tr,

where, in two dimensions, \Phi k(x, y) := iH
(1)
0 (k| x - y| )/4, where H(1)

0 is the order zero
Hankel function of the first kind. The single-layer and adjoint-double-layer operators
are then defined, respectively, by Sk := \gamma tr0 \scrS k and D\prime 

k := \gamma tr1 \scrS k  - I/2, where the
traces are taken from inside \Omega tr. With these definitions, for values of k for which
Sk : H - 1/2(\Gamma ) \rightarrow H1/2(\Gamma ) is invertible,

(B.1) \scrD (k) =

\biggl( 
 - 1

2
I +D\prime 

k

\biggr) 
S - 1
k ;

see, e.g., [9, page 136].
To avoid the operator product in (B.1), we introduce the auxiliary variable \varphi \ell =

S - 1
k (\gamma tr0 (u\ell )) \in H - 1/2(\Gamma tr). The eigenvalue problem (1.5) can therefore be rewritten

as follows: find u\ell \in H1
0,D(\Omega tr) and \varphi \ell \in H - 1/2(\Gamma tr) such that

\bigl( 
\nabla u\ell ,\nabla v

\bigr) 
L2(\Omega tr)

 - k2
\bigl( 
u\ell , v

\bigr) 
L2(\Omega tr)

 - 
\biggl\langle \biggl( 

 - 1

2
I +D\prime 

k

\biggr) 
\varphi \ell , \gamma 

tr
0 v

\biggr\rangle 
\Gamma tr

= \mu \ell 

\bigl( 
u\ell , v

\bigr) 
L2(\Omega tr)

and
\bigl\langle 
\gamma tr0 u\ell , \psi 

\bigr\rangle 
\Gamma tr

 - 
\bigl\langle 
Sk\varphi \ell , \psi 

\bigr\rangle 
\Gamma tr

= 0(B.2)

for all v \in H1
0,D(\Omega tr) and \psi \in H - 1/2(\Gamma tr). We note that this formulation is the

transpose of the Johnson--N\'ed\'elec FEM-BEM coupling [33] applied to the eigenvalue
problem (1.5); see, e.g., [26, equation 9].

We use continuous piecewise-linear basis functions to discretize (B.2) and obtain
the following generalized eigenvalue problem:

(B.3) \widetilde Au\ell =

\Biggl( 
Ak

1

2
(Mtr)T  - D\prime 

k

Mtr  - Sk

\Biggr) 
u\ell = \mu \ell 

\biggl( 
M 0
0 0

\biggr) 
u\ell =: \mu \ell Bu\ell ,

where M is the mass matrix on \Omega tr, Sk is a discretization of the single-layer operator,
and Ak is the Galerkin matrix corresponding to the discretization of (\nabla u\ell ,\nabla v)  - 
k2(u\ell , v). The matrices Mtr and D\prime 

k are defined, for i = 1, . . . ,M and j = 1, . . . , N ,
by

(Mtr)i,j = \langle \gamma tr0 vj , \psi i

\bigr\rangle 
\Gamma tr

and (D\prime 
k)j,i =

\bigl\langle 
D\prime 

k\psi i, \gamma 
tr
0 vj

\bigr\rangle 
\Gamma tr

,

where vj and \psi i are, respectively, continuous piecewise-linear basis functions of the
Galerkin discretizations Vh(\Omega tr) \subset H1

0,D(\Omega tr) and Vh(\Gamma tr) \subset H - 1/2(\Gamma tr); the dimen-
sions of these spaces are denoted by N and M , respectively.

To build the matrices in (B.3) and solve this problem, we use PETSc [3, 2, 1]
and the eigensolver SLEPc [41, 29] via the software FreeFEM [28]. Since we are
interested in the eigenvalues near the origin, we use the shift-and-invert technique;
i.e, we compute the largest eigenvalues of the problem (\widetilde A) - 1Bu\ell = \nu \ell u\ell and then

set \mu \ell = 1/\nu \ell . To obtain the action of (\widetilde A) - 1, we use SuperLU [36] to compute the

LU factorization of \widetilde A.

Acknowledgments. EAS gratefully acknowledges discussions with Alex Barnett
(Flatiron Institute) that started his interest in eigenvalues of discretizations of the
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