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ABSTRACT
Understanding the geographical distribution of 
COVID-19 through the general population is key to 
the provision of adequate healthcare services. Using 
self- reported data from 1 960 242 unique users in Great 
Britain (GB) of the COVID-19 Symptom Study app, 
we estimated that, concurrent to the GB government 
sanctioning lockdown, COVID-19 was distributed across 
GB, with evidence of ’urban hotspots’. We found a 
geo- social gradient associated with predicted disease 
prevalence suggesting urban areas and areas of higher 
deprivation are most affected. Our results demonstrate 
use of self- reported symptoms data to provide focus on 
geographical areas with identified risk factors.

The COVID-19 epidemic has led to large- scale 
closures and lockdown measures worldwide with 
the British government sanctioning lockdown from 
23 March 2020 (https://www. gov. uk/ government/ 
speeches/ pm- address- to- the- nation- on- corona-
virus- 23- march- 2020).

Early in the pandemic, case distribution was not 
evenly spread across countries, with dense urban 
centres being the most affected.1 Individuals in 
deprived areas have lower life expectancy,2 are more 
likely to have multiple underlying comorbidities, 
have a higher level of influenza- associated hospital-
isation3 and therefore could be more susceptible to 
COVID-19.2

Based on the known socioeconomic health 
gradient, we hypothesised that individuals in 
deprived areas were at greater risk of contracting 
COVID-19. Understanding the geographical distri-
bution of the virus in a socioeconomic context 
is key to assist adequate healthcare resourcing, 
particularly intensive care beds.4

Here we investigated the geographical distribu-
tion of COVID-19 in Great Britain (GB) and its 
association with area- level deprivation using self- 
reported data from almost 2 million users of the 
COVID-19 Symptom Study.5

We studied 1 960 242 unique GB app users 
(20–69 years old) reporting on COVID-19 symp-
toms, hospitalisation, reverse- transcription PCR 
(RT- PCR) test outcomes, demographic information 
and pre- existing medical conditions (online supple-
mental methods) over 23 days (29 March–19 April) 
of major social distancing measures (‘lockdown’). 

We computed a proxy of contracting COVID-19, 
based on reported symptoms6 (positive predicted 
value=0.69 (0.66; 0.71) (online supplemental 
methods). We then calculated a predicted prevalence 
as the proportion of app users that we predicted to 
have COVID-19 within each area (online supple-
mentary figure S1).

Following aggregation of variables to local 
authority district level (LAD/geographic unit 
representing ~17 000 individuals), we tested the 
geographical distribution of predicted prevalence 
at eight different time points spanning 23 days. We 
used Local Moran’s I tests, which assess for non- 
random spatial distribution and clustering of a 
feature and can be used to identify disease hotspots 
and cold spots relative to the mean GB predicted 
prevalence7 (online supplemental methods).

Next, we used data from the eight different 
time points and used multivariable mixed- effects 
models to investigate the association of predicted 
area- level prevalence (at middle super output area 
level (MSOA)) and deprivation (as captured by 
the Index of Multiple Deprivatio) adjusting for 
different factors including geo- social mediators and 
confounders (air pollution, general practitioners 
per MSOA, household density and urbanicity) area 
level aggregates of obesity and comorbidities) and 
area- level adjusted mean age and sex and spatial 
autocorrelations8 (online supplemental methods).

table table 1 1 and online supplemental table S1. 
The number of predicted COVID-19 positive indi-
viduals ranged between 15 991 and 79 378.

Local Moran’s I showed that predicted COVID-19 
prevalence clustered in urban areas across GB when 
considered as a proportion of the population per 
LAD7 (figure 1 and online supplemental figure S2) 
adjusting for multiple testing. Predicted prevalence 
decreased over time, consistent with ‘lockdown’ 
(figure 1 and online supplemental figure S2) (pair-
wise Wilcoxon rank- sum tests, prevalence: all time 
points except T2:T3 and T1:T4, p<0.001), but 
some hotspots remained.

In the MSOA- level analysis, area- level depri-
vation was significantly associated with predicted 
area- level prevalence in all models (M1–M6, see 
online supplemental table S2), including in the full 
model (M6) when adjusting for all geo- social covar-
iates and comorbidities (M6: Beta (95% CI)=−0.15 
(−0.17 to –0.130, p<0.001). This suggests that 
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people in deprived areas were at higher risk.
Predicted COVID-19 prevalence was higher in urban areas 

compared with rural and in more deprived areas compared with 
less deprived. This could reflect the likelihood of individuals in 
more deprived areas working/living with people whose vocations 
mean they are unable to work from home and are thus more 
likely to be exposed to circulating COVID-19. Accumulation of 
socioenvironmental exposures across the life course are known 
to contribute to a greater health deficit and disease burden2; our 
results suggest that COVID-19 is no exception.

Moreover, our study illustrates how app data could be used to 
successfully monitor COVID-19 over time and identify hotspots 
as the viral pandemic progresses and social distancing measures 
are implemented or eased. Using this method, we detected a 
geo- social gradient associated with prevalence in the context 
of COVID-19, suggesting the focus of resources should be on 
deprived urban areas.

Our study has some limitations and assumptions. We used 
self- reported data on symptoms that can lead to bias. For 
example, should users in deprived areas report more symp-
toms due to a facet of the socioeconomic environment (eg, 
higher air pollution), this could lead to an incorrectly higher 
predicted prevalence in deprived areas. Second, app users are 
a self- selected group, not representative of the general popu-
lation. Our approach to adjust for age and sex differences at 
MSOA level is unlikely to sufficiently overcome selection and 
collider bias.9 Third, our predicted COVID-19 prevalence is 
not from confirmed tests via RT- PCR, but rather based on self- 
reported symptoms. Additionally, we assume that people who 
have symptoms or have been exposed to COVID-19 are equally 
likely to use the app as those who do not. We performed a 
sensitivity analysis by rerunning the pooled analysis on individ-
uals who were self- reportedly healthy at sign up and found the 
observed associations remained (online supplemental table S3), 
suggesting selection bias associated with being unhealthy at sign 
up is not influencing the observed associations of COVID-19 
and deprivation. We also assume that people report symptoms 
in the same way and that their drop- out patterns do not differ 
by space, time and symptom reports. Finally, we aggregated 
data at MSOA level that could lead to ecological bias. We also 

Table 1 Demographic characteristics of the study population at eight time points
29 March 2020 1 April 2020 4 April 2020 7 April 2020 10 April 2020 13 April 2020 16 April 2020 19 April 2020 All unique users

N 1 324 843 1 431 515 1 142 923 1 083 601 995 157 985 860 980 608 1 164 262 1 960 242

Predicted COVID-19 (n/%) 60 827 79 378 62 508 48 418 30 132 22 352 16 586 15 991 117 614

(4.6) (5.6) (5.5) (4.5) (3.0) (2.3) (1.7) (1.4) (6.0)

Average number of reports per user 2.9 3.8 4.2 4.7 5 5 5 4.5 4.4

Age, years (median (IQR)) 41 (21) 41 (21) 43 (21) 44 (22) 45 (21) 45 (21) 46 (21) 45 (21) 42.2 (21.8)

Male, (n/%) 426 923 459 620 365 078 353 233 327 608 327 620 327 114 388 378 654 950

(32.2) (32.1) (31.9) (32.6) (32.9) (33.3) (33.3) (33.4) (33.4)

Obesity, % 21.3 21.4 20.7 20.3 21.6 22.1 21.4 21.7 21.5

Kidney disease, % 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.5

Lung disease, % 12.2 12.3 12.5 12.5 12.4 12.4 12.4 12.4 12.2

Diabetes, % 2.4 2.5 2.7 2.7 2.8 2.9 2.9 2.9 2.4

Smokers, % 10.5 10.5 9.7 9.4 9.0 8.8 8.7 9.0 10.4

Heartdisease, % 1.4 1.4 1.6 1.6 1.7 1.7 1.7 1.7 1.4

Obesity: BMI >=30 kg/m2.
At each time point, we only include users who have made an assessment in the previous 7 days. Exclusion criteria are listed in the supplements. Users are asked daily whether (or not) they have any symptoms. Predicted 
COVID-19 was calculated on users who reported on symptoms. Users who reported having no symptoms were included in the area- level predicted prevalence estimates (please see the supplements for details).
BMI, body mass index.

Figure 1 Geographical distribution of predicted COVID-19 prevalence 
across four time points. Prevalence is presented as proportional to the 
responders per local authority district (LAD). Analyses are adjusted 
for multiple testing using Benjamini- Hochberg false discovery rate 
correction (p<0.05). Inset highlights London where LAD areas are 
smaller. Hot and cold spots are defined relatively to their neighbours 
and the mean GB predicted prevalence. Red/blue coloured perimeter 
lines around each LAD denote hotspot/coldspot.
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cannot conclude that deprivation increased COVID-19 prev-
alence, as there could be unmeasured confounders or other 
factors.

Future work should check our assumptions and seek to inte-
grate these data with data on area- level morbidity, extended 
pollution data, ethnicity and disease severity. Indeed, higher 
mortality has been observed among minority ethnic groups,10 
and disentangling the environmental and biological factors 
contributing to greater disease burden in both deprived areas 
and among ethnic minorities is an essential focus of future work 
to ensure resources and intervention are better assigned.

Twitter M Jorge Cardoso @mjorgecardoso
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Supplementary Methods 1 

Study setting and participants 2 

The COVID Symptom Study app developed by Zoe with scientific input from researchers and 3 

clinicians at King’s College London and Massachusetts General Hospital, was launched in GB on 4 

Tuesday the 24th March 2020 (https://covid.joinzoe.com/) and in the 23 days (March 29th – April 5 

19th) immediately after the UK lockdown (https://www.gov.uk/government/speeches/pm-6 

statement-on-coronavirus-22-march-2020 ) was introduced, it reached 2,266,235 unique GB users, 7 

making 9,108,769 assessments (e.g. an average user is included in 4 out of 8 timepoints). 8 

Referrals/word of mouth, press and eventually partnerships with charities and the Welsh and 9 

Scottish governments drove usage. 10 

 The app enables capture of self-reported information related to COVID-19 infections. On first use, 11 

the app records self-reported location, age, and core health risk factors. With continued use, 12 

participants provide daily updates on symptoms, health care visits, COVID-19 testing results, and if 13 

they are self-quarantining or seeking health care, including the level of intervention and related 14 

outcomes. Individuals without apparent symptoms are also encouraged to use the app. Through 15 

direct updates, the research team can add or modify questions in real-time to capture new data to 16 

test emerging hypotheses about COVID-19 symptoms and treatments. Importantly, participants 17 

enrolled in ongoing epidemiologic studies, clinical cohorts, or clinical trials, can provide informed 18 

consent to link data collected through the app in a Health Insurance Portability and Accountability 19 

Act (HIPAA) and General Data Protection Regulation (GDPR)-compliant manner with extant study 20 

data they have previously provided or may provide in the future.  21 

In this study, we included 1,960,242 unique users as outlined in the flow diagram below (Figure A).  22 

Briefly, out of 2,415,843 unique app uses who reported on the COVID-19 symptom Study App 23 

between 29th March 2020 and 19th April 2020, we excluded (i) 149,608 non GB users;  (ii) 88,422 24 

users who only reported on the earliest app-version that did not include loss of smell and taste (the 25 

strongest single predictor of COVID-191 2); (iii) 66,975 reporting BMI outside the biological range; (iv) 26 

148,111 users younger than 20 or older than 69; (v) 1007 with missing biological sex at birth or who 27 

were not assigned male or female as their biological sex at birth; (v) 1478 users who did not report 28 

on pre-existing medical conditions (Figure A). 29 

 30 
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2 

 

Figure A. Flow diagram representing the study subjects’ inclusion criteria.  31 

 32 

Geographic clustering of COVID-19 prevalence 33 

Because we were primarily interested in understanding the geography of COVID-19 distribution, and 34 

how aspects of an area, in particular area-level deprivation, associated with COVID-19 prevalence we 35 

aggregated user data at different GB geographic areas. This was particularly of use as the geosocial 36 

variables considered (please see below) are also defined geographically and are time invariant (as 37 

they are not defined by the app users themselves but by GB geographic area).  38 

The maps (Figure 1, S2) were created using a shapefile of Local Authority Districts (LADs) from the 39 

Office for National Statistics (ONS) using the geopandas package in Python. Overlaid on the map are 40 

statistically significant ‘hot-spots’ and ‘cold-spots’ at LAD level. To assess the significance of these 41 

regions, we used Local Moran’s I test, as introduced below. In order to do this, spatial weights were 42 
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calculated to create a spatially lagged COVID-19 prevalence variable for each LAD. Because our 43 

geographical units share borders we assume a queen criterion, which assumes equal weights of 44 

neighbouring areas, which is appropriate for defining these. Islands were considered to have zero 45 

neighbours. We adjusted for multiple testing using the Benjamini & Hochberg method (‘p.adjust’) 46 

and used the ‘spdep’ package in R for the Local Moran’s and calculation of the spatial lag. This 47 

approach of calculating the spatial lag was repeated at the middle super output area level (MSOA) 48 

level (below).  49 

Hotspot and Coldspot definition 50 

Predicted prevalence hotspots at LAD levels were defined using Local Moran’ s I. The Moran’s I 51 

statistic gives a value indicating the spatial clustering of a variable relative to its neighbours. Where 52 

there are significant (false discovery rate (FDR)adjusted p < 0.05) high positive local Moran’s I in high 53 

value neighbourhood (i.e. where the significant area also had a predicted prevalence greater than 54 

the mean predicted prevalence and greater than the mean of the lagged variable, which effectively 55 

represents how similar COVID-19 prevalence is to the areas that surround it) this implies the area 56 

can be considered a ‘hotspot’3. This method ensures we do not consider areas as hotspots where 57 

they may have higher predicted prevalence to the surrounding areas but are lower than average for 58 

the UK, although it might miss areas that are surrounded on all borders by other areas which would 59 

be considered hotspots.  A coldspot is assessed similarly using Local Moran’s I, but where the area is 60 

less than the mean and mean of the lagged variable.  61 

Sources of geographic data 62 

Index of Multiple Deprivation (IMD) 63 

The IMD was downloaded from the relevant government websites as below, and the most recent 64 

IMD available at time of analysis was used: 65 

 English (2019): https://www.gov.uk/government/statistics/english-indices-of-deprivation-66 

2019 67 

 Scottish (2016): https://www2.gov.scot/Topics/Statistics/SIMD 68 

 Welsh (2019): https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-69 

Inclusion/Welsh-Index-of-Multiple-Deprivation/WIMD-2019 70 

Because the IMD is calculated in each devolved administration using slightly different methodology, 71 

and because of the different number of areas in each country, ranks are not directly comparable. 72 
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Therefore, we used within-country defined deciles. As the IMD is calculated for smaller area 73 

geographies than MSOA, we calculated the average IMD per MSOA. This was then categorised into 74 

quintiles where 1 is the least deprived and 5 is the most deprived.  75 

Rural-urban gradient (RUC)  76 

The RUC was downloaded from the relevant government websites as below: 77 

 England and Wales RUC (2011): https://data.gov.uk/dataset/9c0e093d-d267-4eb8-90d8-78 

54475ab4d1ff/rural-urban-classification-2011-of-middle-layer-super-output-areas-in-79 

england-and-wales 80 

 Scotland RUC (8 fold classification): 81 

https://www2.gov.scot/Topics/Statistics/About/Methodology/UrbanRuralClassification 82 

The resulting scale runs from 1 – 8, where 1 is the most urban and 8 is the least.  83 

Nitrogen Oxide (NOx) data 84 

We used NOx pollution data from the Department of Environment, Food and Rural Affairs 85 

(https://uk-air.defra.gov.uk/data/) for England, Scotland and Wales from 2018. Data is provided with 86 

Ordinance Survey 1km2 grid resolution which was used to calculate per MSOA air pollution by taking 87 

the area-weighted average of the readings. 88 

General Practitioners (GPs)/MSOA 89 

GPs addresses were used to derive the number of GPs from each MSOA, from the following data 90 

sources: 91 

 England & Wales:https://digital.nhs.uk/services/organisation-data-service/data-92 

downloads/gp-and-gp-practice-related-data  93 

 Scotland: https://www.opendata.nhs.scot/ne/dataset/general-practitioner-contact-94 

details/resource/b092b69f-0838-408e-bb89-082562f0e1cd 95 

Average household number 96 

This figure was derived from data by dividing the number of houses with at least one usual occupant 97 

with the total population for the same area. 98 

Data sources for occupancy data were downloaded from the following sources: 99 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax

 doi: 10.1136/thoraxjnl-2020-215119–3.:10 2020;Thorax, et al. Bowyer RCE

https://data.gov.uk/dataset/9c0e093d-d267-4eb8-90d8-54475ab4d1ff/rural-urban-classification-2011-of-middle-layer-super-output-areas-in-england-and-wales
https://data.gov.uk/dataset/9c0e093d-d267-4eb8-90d8-54475ab4d1ff/rural-urban-classification-2011-of-middle-layer-super-output-areas-in-england-and-wales
https://data.gov.uk/dataset/9c0e093d-d267-4eb8-90d8-54475ab4d1ff/rural-urban-classification-2011-of-middle-layer-super-output-areas-in-england-and-wales
https://www2.gov.scot/Topics/Statistics/About/Methodology/UrbanRuralClassification
https://digital.nhs.uk/services/organisation-data-service/data-downloads/gp-and-gp-practice-related-data
https://digital.nhs.uk/services/organisation-data-service/data-downloads/gp-and-gp-practice-related-data
https://www.opendata.nhs.scot/ne/dataset/general-practitioner-contact-details/resource/b092b69f-0838-408e-bb89-082562f0e1cd
https://www.opendata.nhs.scot/ne/dataset/general-practitioner-contact-details/resource/b092b69f-0838-408e-bb89-082562f0e1cd


5 

 

5 

 

 England & Wales (table PHP01 2011): https://www.nrscotland.gov.uk/statistics-and-100 

data/statistics/statistics-by-theme/households/household-estimates/small-area-statistics-101 

on-households-and-dwellings 102 

 Scotland: https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-103 

theme/households/household-estimates/small-area-statistics-on-households-and-dwellings 104 

MSOA-level mixed-effects models 105 

We employed multivariable mixed-effects models to understand the relationship of predicted 106 

COVID-19 prevalence at MSOA level with deprivation. As a reminder, these models were ran at 107 

MSOA-level rather than individual-level.  This included the following variables: 108 

The Index of Multiple Deprivation, our primary explanatory variable (IMD, categorised into quintiles 109 

generated on the average IMD within each MSOA, where 1 is most deprived and 5 is least, and 110 

considered as a continuous variable).  111 

Other considered geosocial factors included a rural-urban gradient (RUC, considered as a continuous 112 

variable where 1 is the most urban and 8 is the most rural), General practitioners per population in 113 

MSOA (GPs/MSOA, where a higher number indicates more GPs per individual by MSOA), average 114 

household number (calculated as number of inhabited dwellings/MSOA population, where a higher 115 

number indicates a higher average number of individuals per household). Because it was on a very 116 

different scale to the rest of the predictor variables, GPs/MSOA was scaled to have mean 0 and 1 SD 117 

prior to model inclusion.  118 

We additionally adjusted for the following variables derived from app response data, considered as 119 

percentage of responders within the MSOA: those who reported having kidney, heart or lung 120 

disease, and who are diabetic, a smoker or obese (calculated as BMI<30). We derived mean-adjusted 121 

age and sex variables to partially adjust for response bias (i.e. the extent responders in an MSOA 122 

represented the demographic of that MSOA).  This was calculated as the difference of the expected 123 

mean/ratio of age/sex in the MSOA (derived from ONS population data) and the observed 124 

mean/ratio of age/sex amongst respondents. 125 

 We included a spatial lagged variable of the COVID-19 prevalence outcome. Inclusion of the lagged 126 

variable is one method that accounts for spatial autocorrelation (SAC)4. It attempts to adjust for 127 

spatial autocorrelation by capturing the variance explained by the influence of neighbouring regions 128 

on the value of interest – in this case COVID-19 severity/prevalence. The lagged variable is calculated 129 

at MSOA level by applying a spatial weights matrix (calculated in this instance under queen’s 130 
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contiguity) to the outcome variable (in this case COVID-19 prevalence) and computing the lag using 131 

the function lag.listw in the ‘spdep’ R package.  This variable is then included as a covariate within 132 

the model.  133 

Data from eight time points were analysed , calculating the covariates (derived from app 134 

responders) and spatial lag at each time point, a dummy variable adjusting for the different sample 135 

times was included in the model as a random effect (allowing for a random intercept). MSOA was 136 

also included to allow for a random intercept  to account for the repeat observations over the eight 137 

time periods, along with country as a fixed effect to account for difference in methodology in 138 

creation of IMD and RUC.  139 

The users’ distribution across GB is not uniform but all analyses took this into account by considering 140 

only middle super output areas (MSOAs) with at least 20 individuals reporting on the app (n = 8097, 141 

n removed = 387), and we included as a covariate the proportion of responders per MSOA at each 142 

time point, in order to adjust for differences in responders by MSOA.  Analysis was conducted in 143 

RStudio v1.1.423 and R v3.6.3. 144 

Variables were checked for multicollinearity before model inclusion using Spearman’s correlation, 145 

(see Figure B) with the a priori threshold of > (+/-) 0.7 indicating a variable should be removed. 146 

  147 
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Figure B. Assessment of collinearity between the variables included in the MSOA-level mixed-148 

effects models. Each cell of the matrix displays Spearman’s correlation between two. The table is 149 

colour coded according to the Spearman’s correlation, with blue denoting a positive correlation 150 

and red denoting a negative correlation. GP/MSOA= General Practitioners per middle super 151 

output area level; RUC= Rural-urban gradient; Av Household N= average household number. 152 

 153 

 The model approach was therefore as follows:  154 

 Model 1 (M1): Linear regression of the estimated COVID-19 prevalence and the IMD  155 

 Model 2 (M2): Linear mixed effects model (LMM) of estimated COVID-19 prevalence and the 156 

IMD, adjusted for country, and allowed a random effect of MSOA ID and time (assuming 157 

random intercept for both) 158 

 Model 3 (M3): Linear mixed effects model of estimated COVID-19 prevalence and the IMD, 159 

adjusted as above in M2, with additional adjustment for spatial autocorrelation (SAC) via 160 

inclusion of a spatial lag.  161 
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 Model 4 (M4): Linear mixed effects model as in M3, with the inclusion of geosocial 162 

mediators and confounders and proportion of MSOA population who were app users. 163 

 Model 5 (M5): Linear mixed effects model as in M4, with the inclusion of aggregated co-164 

morbidities as the % of respondents in MSOA with diabetes, kidney, lung or heart disease, 165 

who are obese or are smokers.  166 

 Model 6 (M6): Covariate + mean-adjusted LMM – Linear mixed effects model as in M6, with 167 

the inclusion of mean-adjusted age and sex variables 168 
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