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Abstract
Proof is central to mathematics and has drawn substantial attention from the mathematics
education community. Yet, valid and reliable measures of proof comprehension remain rare.
In this article, we present a study investigating proof comprehension via students’ sum-
maries of a given proof. These summaries were evaluated by expert judges making pairwise
comparisons, which were used to generate a score for each summary. This approach, known
as comparative judgement, has been demonstrated to generate reliable and valid scores when
assessing other mathematical constructs. Our findings suggest that comparative judgement
can produce valid and reliable assessments of the quality of student-produced proof sum-
maries. We also explored which features of students’ proof summaries were most valued
by the expert judges, and found that high-scoring summaries referenced a proof’s logical
structure and the mechanism by which it reached a contradiction.

Keywords Proof comprehension · Comparative judgement · Reliability · Validity ·
Assessment

1 Introduction

Undergraduate mathematics is commonly assessed using tasks in which students construct
proofs (Mejia-Ramos & Inglis, 2009; Weber, 2012). However, such assessments have been
criticised as relying too heavily on recall and near-transfer tasks and thus as having lim-
ited validity as meaningful measures of comprehension (Cowen, 1991; Conradie & Frith,
2000). Consequently, there is growing interest in more directly assessing students’ proof
comprehension. For example, Mejia-Ramos, Lew, de la Torre, and Weber (2017) designed
multiple-choice tests to assess comprehension of proofs drawn from real analysis and num-
ber theory. These tests were rigorously developed, and psychometric work demonstrated
that they offer valid and reliable assessments.
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Such test development, however, requires time- and resource-intensive iterative work for
every new proof. In the present article, we investigate an alternative approach to assessing
proof comprehension, based on the Law of Comparative Judgement (Thurstone, 1927). This
approach asks experts to make numerous pairwise comparisons of the “quality” of students’
responses to a task, usually one that is simple to state and open-ended. These comparative
judgements are then statistically modelled to produce a score for each response. Compara-
tive judgement (CJ) has previously been used to assess mathematical competencies that are
difficult, time- and resource-intensive to address using traditional methods, notably con-
ceptual understanding (Bisson, Gilmore, Inglis, & Jones, 2016; Jones & Karadeniz, 2016;
Hunter & Jones, 2018; Jones & Alcock, 2014) and problem solving (Jones et al., 2014;
Jones & Inglis, 2015).

Following the methods developed by this previous research, we investigated the relia-
bility and validity of a comparative judgement technique for assessing students’ summaries
of a given proof; we used summaries because summarising is a recognised aspect of proof
comprehension (Mejia-Ramos, Lew, de la Torre, & Weber, 2017) but is difficult to assess
via traditional methods. Specifically, we provided students with a proof that the open unit
interval is uncountable, and asked for a 40-word summary. We then generated CJ scores for
participants’ responses. To investigate reliability, we used measures standard in CJ studies.
To investigate validity, we first compared CJ scores with outcomes of Mejia-Ramos et al.’s
(2017) multiple-choice test and with student achievement data; positive correlations indi-
cate criterion validity. We also conducted a content analysis of the responses followed by
regression analyses predicting the CJ scores based on these contents. Content validity was
evaluated by considering the relationship between the content of high-scoring responses and
earlier research on what mathematicians value in proofs. These validity analyses yielded
acceptable results. So, in addition to our methodological contribution, we contribute to the-
oretical discussions on proof comprehension by offering empirically evidenced insight into
what constitutes a “good” proof summary.

2 Comparative judgement theory and application

In this section, we review two areas of relevant literature. First, we describe the theory
and methodological application of CJ, explaining its earlier use in mathematics education
for assessing conceptual understanding and problem solving. We then review research on
assessing proof comprehension.

2.1 Comparative judgement

Comparative judgement offers a general method for positioning a set of complex objects
on a unidimensional scale. It has been used in psychological laboratory studies for almost
a century (Thurstone, 1927) and is based on the observation that humans are relatively
poor at making isolated absolute judgements of quantities or constructs such as weight or
social attitudes, yet vastly more reliable at making pairwise comparisons of those quantities
(Thurstone, 1927; 1954). CJ is applied by asking people to make pairwise decisions about
which of two objects has the greatest “amount” of the construct of interest (Thurstone,
1927). The binary decision data frommany such pairings are then fitted to a statistical model
to produce a unique score for each object (Bradley & Terry, 1952).

CJ has been successfully applied in a range of educational assessment contexts
(Tarricone & Newhouse, 2016). An early application in mathematics education was in
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assessing problem solving. Jones, Swan, and Pollitt (2014) compared CJ outcomes with
rubric-based scoring of students’ responses to innovative problem solving tasks (based on
Bowland Mathematics materials; (Onion, 2011)). They reported a high correlation, sug-
gesting good criterion validity (Newton & Shaw, 2014). Similarly, Jones and Inglis (2015)
commissioned professional examination writers to construct a test of mathematical problem
solving and found that CJ outcomes had good criterion validity as compared to outcomes
from a scoring rubric generated iteratively from a sample of student responses. Simi-
lar methods have been employed to assess conceptual understanding in mathematics. CJ
outcomes have been compared to independent measures for students’ understanding of
mathematical concepts including fractions (Jones & Wheadon, 2015), differential calculus
(Bisson et al., 2016; Jones & Alcock, 2014; Bisson, Gilmore, Inglis, & Jones, 2019) and
variables (Bisson et al., 2016; Jones, Bisson, Gilmore, & Inglis, 2019). Good criterion and
divergent validity were reported in each case.

Of course, researchers are interested not just in validity but also in content: assess-
ment research has a tradition of investigating how experts make decisions when assessing
student work (e.g., Crisp, 2017). Accordingly, most published studies on CJ in mathe-
matics education include analyses of which features of student responses expert judges
value. Judges have been asked to complete surveys (e.g., Jones et al., 2014) and inter-
views (e.g., Jones & Alcock, 2014) about their decisions. And, as for the present study,
researchers have conducted content analyses of students’ responses. For example, Jones and
Karadeniz (2016) applied an existing coding scheme to lower secondary students’ written
explanations of a range of mathematical concepts. They reported that expert judges pre-
ferred responses that contained numbers and graphics but had no preference for responses
that contained letters (variables), references to real-world contexts, or connections between
different mathematical topics.

Informed by all of this work, we report a study in which CJ was applied to proof sum-
maries in order to assess undergraduates’ comprehension of given proofs, and in which the
preferences of expert judges were investigated using content analysis.

2.2 Assessing proof comprehension

Research into students’ understanding of proof has traditionally focused on proof construc-
tion (e.g., Weber, 2001; Hoyles & Healy, 2007); until recently, less attention was paid
to comprehension of written proofs (Mejia-Ramos & Inglis, 2009). Early interest in how
students read proofs tended to focus on validation, defined as “the process in which an indi-
vidual determines whether a proof is correct and actually proves the particular theorem it
claims to prove” (Yang & Lin, 2008, p. 60). For instance, Selden and Selden (2003) and
Alcock and Weber (2005) observed that some students did not pay attention to a purported
proof’s global structure, focusing instead on verifying calculations or specific implications.
Weber (2010) and Ko and Knuth (2013) found that mathematics majors did not adequately
identify localised logical flaws. These largely interview-based findings were corroborated
using eye-movement analyses by Inglis and Alcock (2012), who found that undergraduates
focused less than mathematicians on the words in purported proofs. Inglis and Alcock also
reported that students were less inclined to switch their attention back and forth in a man-
ner consistent with identifying implicit links between statements or attending to a global
structure.

Such findings prompted Mejia-Ramos and Inglis (2009) to argue that students might
not fully comprehend the proofs they are expected to read and that there was a need for
research focused on reading comprehension. They noted that a barrier to progress was a
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lack of methods for assessing students’ proof comprehension. There was work to build
on: dissatisfaction with standard examinations had prompted Conradie and Frith (2000) to
discuss proof comprehension tests, and Yang and Lin (2008) had developed tests to assess
students’ comprehension of geometry proofs. Mejia-Ramos, Fuller, Weber, Rhoads, and
Samkoff (2012) combined this work with an extensive literature review and semi-structured
interviews with mathematicians to construct a seven-part model of proof comprehension
(see Table 1).

Mejia-Ramos et al.’s model has since been used by various authors to design proof
comprehension tests (e.g., Hodds, Alcock, & Inglis, 2014; Roy, Alcock, & Inglis, 2017).
But only the model’s originators have undertaken rigorous test design, producing multiple-
choice comprehension tests for three specific, commonly studied proofs in number theory
and real analysis (Mejia-Ramos et al., 2017). They constructed these using a mixed-methods
approach comprising interviews with students and mathematicians as well as large-scale
test administration and refinement to evaluate and confirm internal reliability. The inter-
nal consistencies of the three resulting tests were found to be acceptable, all Cronbach’s
α’s > .7. To the best of our knowledge, these are the first psychometrically validated proof
comprehension instruments.

These tests were, however, highly time- and resource-intensive to produce. Moreover,
multiple-choice tests work better for some aspects of proof comprehension than for others.
It is not obvious, in particular, how to use them to test “summarising via high-level ideas”
(aspect 4). Mejia-Ramos et al. (2012) noted that “objectively grading the quality of a proof
summary might be difficult” (p. 11), and proposed that tests could provide several possi-
ble summaries and “ask the student to choose which summary captures the main idea of the
proof”. However, according to Amman et al. (2020), designing summary-based items proves
challenging for many proofs. Happily, the features of summarising that create difficulties
for traditional assessment are precisely those that make it a perfect task for comparative

Table 1 A summary of the assessment model presented by Mejia-Ramos (2012, p. 15)

Aspect Assessment evidence

Local

1. Meaning of terms and statements Understanding of key terms and statements in the proof

2. Logical status of statements and proof
framework

Knowledge of the logical status of statements in
the proof and the logical relationship between these
statements and the statement being proven

3. Justification of claims Comprehension of how each assertion in the proof
follows from previous statements in the proof and
other proven or assumed statements

Holistic

4. Summarising via high-level ideas Grasp of the main idea of the proof and its overarch-
ing approach

5. Identifying the modular structure Comprehension of the proof in terms of its main com-
ponents/modules and the logical relationship between
them

6. Transferring the general ideas or methods
to another context

Ability to adapt the ideas and procedures of the proof
to solve other proving tasks

7. Illustrating with examples Understanding of the proof in terms of its relationship
to specific examples
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judgement. “Provide a summary” is a simple, open-ended task. Varied and unexpected
responses are unproblematic and indeed advantageous: CJ works best when responses are
diverse. And we need not specify quality criteria or know in advance what experts will value
(Bisson et al., 2016). We simply ask judges to make pairwise comparisons then use these
to generate scores. Of course, CJ is less overtly transparent than rubric-based scoring. So,
as in earlier reported studies, its reliability and validity must be carefully considered. But,
if these turn out to be acceptable, we have a strong basis from which to ascertain and report
on what is collectively valued and rewarded by judges.

3 Methods

3.1 Materials

To collect both proof summaries and data relevant to validity, we constructed a task booklet
containing three sections. First was the theorem and proof about the uncountability of the
unit interval, as used by Mejia-Ramos et al. (2017) and shown in Fig. 1. Second was the
12-item multiple-choice comprehension test for this proof developed by Mejia-Ramos et al.

Fig. 1 Uncountability theorem and proof
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Fig. 2 Example items from the comprehension test of Mejia-Ramos et al. (2017), evaluating students’
reading comprehension of the proof in Fig. 1

Fig. 3 Summary task

Fig. 4 The three responses awarded the highest CJ scores. Codes assigned are explained in Section 4.3
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Fig. 5 The three responses awarded the middle CJ scores. Codes assigned are explained in Section 4.3

Fig. 6 The three responses awarded the lowest CJ scores (of those meaningfully addressing the task). Codes
assigned are explained in Section 4.3

(2017). Figure 2 shows two example items from this test1. Third was the summary task
prompt shown in Fig. 3, with space for students to write their responses. We included a
40-word limit to increase the distinctiveness of responses, expecting that without an upper
bound, some would come close to replicating the original proof. Readers wishing to orient
themselves to the nature of the student summaries might wish to inspect Figs. 4, 5 and 6
before reading on.

3.2 Participants

Participants were enrolled in a compulsory introductory course on real analysis for first-
and second-year undergraduates, covering fundamental concepts related to sequences, series
and ε − N definitions. Completing the task booklet was compulsory but did not contribute
to formal assessment. Only responses from students who consented to their data being used
in the research were included in the analysis. Of the 161 students in attendance when the
task booklet was administered, 18 (11.2%) declined to consent, leaving 143 responses for
analysis.

1We do not present the full test at the request of its developers, who wish to protect its integrity for future
assessment and research. The full version can be requested at pcrg.gse.rutgers.edu/.
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3.3 Procedure

Data collection took place in a week-eight lecture, with content directly related to the task
booklet presented in the preceding lecture. Participants were allowed 30 min to complete the
task booklet. They were advised to spend 20 min on the multiple-choice test and ten on the
summary task. General feedback on overall performance was given to the course lecturer,
based on the anonymised data. We also collected final course scores for each student, which
we treated as a general measure of performance in proof-based mathematics. Final course
scores ranged from 33 to 97%, with a mean of 56% (SD = 13.5%); these were based on
a weighted aggregate of students’ coursework and final examination scores. Consent for
analysis of final course scores was given by 134 of the 143 participants. Data from the
nine students not consenting remained in all analyses not involving final course scores. All
anonymised data are available at https://doi.org/10.17028/rd.lboro.8940149.

3.4 Comparative judgement

Participants’ anonymised proof summaries were scanned and uploaded to nomoremarking.com,
an online CJ engine that is free to use for researchers and educators. The responses were
then comparatively judged by 11 experts. The experts were recruited using contacts from
previous studies: seven were mathematics PhD students at the same English university as
the undergraduates; three were mathematics PhD students from a second English university;
one was a recent mathematics PhD graduate from a third English university. No background
data were collected on the judges (e.g., research interests, teaching experience) because
previous work on CJ has repeatedly confirmed that so long as judges are mathematically
competent, outcomes are reliable (Bisson et al., 2016; Jones & Alcock, 2014). However, we
note that people specialise early in the UK system and a PhD is a research degree (there is
no course-based phase), so all PhD students are active in mathematics research.

Judges worked remotely in their own time. They were instructed to read the uncountabil-
ity theorem and proof (Fig. 1) before judging and to keep it to hand throughout the process.
Pairs of responses were displayed side by side on a screen, with judges clicking “left” or
“right” to indicate which they judged better. The response pairs were different for each
judge because they were selected randomly using a non-adaptive algorithm (Bramley &
Vitello, 2019), with the constraints that all responses received approximately the same num-
ber of judgements and each response was seen by as many judges as possible. Each judge
performed 143 pairwise comparisons, resulting in a total of 1573 judgements. Based on an
informal pilot study and previous experience, judges were paid according to an expected
average of 20 seconds per judgement. The actual median time per judgement was 21.6 s.

4 Data analysis and results

4.1 Reliability and example responses

To begin the analysis, the binary decision data generated by the pairwise comparisons were
downloaded from the nomoremarking.com website and fitted to the Bradley-Terry (1952)
model to generate a parameter estimate of collectively perceived quality for each summary.
These parameter estimates—henceforth referred to as CJ scores—had a mean of 0.06 and a
standard deviation of 1.69.
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To investigate whether the judges were collectively consistent in their judgements, and
therefore whether CJ scores were meaningful on their own terms, we calculated two stan-
dard reliability measures. The first, Scale Separation Reliability (SSR), is analogous to
Cronbach’s α in interpretation (Pollitt, 2012) and is a measure of internal consistency. This
yielded SSR = .86, which is considered acceptable. The second is a measure of inter-rater
reliability, estimated using a split-half comparison method introduced to the CJ literature
by Bisson, Gilmore, Inglis, and Jones (2016). Post-judging, the judges were split randomly
into two groups and CJ scores recalculated for each group. Inter-rater reliability was esti-
mated by computing the Pearson Product-Moment correlation coefficient between the two
groups. We repeated this procedure 100 times and took the median correlation coefficient
as our estimate of inter-rater reliability. This was again acceptable, rmedian = .73.

Taken together, these statistics demonstrate that the judging process produced internally
consistent outcomes: the judges were collectively consistent in their judgements of which
summaries were better and which were poorer. This means that the CJ scores constitute a
reliable measure of proof summary quality. To demonstrate the content of the summaries,
Figs. 4, 5 and 6 each present three: those awarded the highest, middle and lowest CJ scores
respectively. In Fig 6, we present the lowest-scoring responses that meaningfully addressed
the task—seven were awarded lower scores but were fragmented or blank. As is discussed
in a later section, a conjecture that students’ unfamiliarity with the summary task may have
led to a number of such responses.

4.2 Criterion validity

To investigate whether the judges were consistent not only with one another but also with
empirically and theoretically reasonable criteria for proof summary quality, we next con-
sidered validity. We began with criterion validity (Newton & Shaw, 2014), investigating
whether CJ scores were correlated with our two benchmark measures: the multiple-choice
test scores and final course scores. We would expect students who are more successful on
these other proof-related performance measures to produce better proof summaries, so we
expect positive correlations. We calculated Pearson Product-Moment correlations after first
processing the multiple-choice test scores.

Performance on the 12-item multiple-choice test was significantly above chance but nev-
ertheless low, M = 4.19, SD = 2.16, t (133) = 6.35, p < .001. This indicates that the test
was difficult for this sample of students. Unfortunately, internal consistency was also low,
Cronbach’s α = .53, in contrast to values reported by Mejia-Ramos et al. (2017) when the
test was administered in the USA (all α’s > .7). Consequently, we investigated its factor
structure using principal component analysis (KMO = 0.62 with Bartlett’s test of spheric-
ity at p < .001). Two components were extracted, accounting for 29% of the variance, with
seven items loaded on to Component 1, two items loaded on to Component 2, and two items
loaded on to neither component at> .4. The internal consistency of the subset of seven items
that loaded on to Component 1, αsubset = .61, was higher than that for all twelve items. Con-
sequently, we based our analysis on the subset of seven items that loaded onto Component
1, although repeating it with all twelve items made no substantive difference to the results.

The correlation between the CJ scores and the seven-item multiple-choice test scores
was significant but modest, r = .28, p < .001 (a scatter plot is shown in Fig. 7). This
correlation is lower than those reported in other studies where scores from standardised
instruments were correlated with the parameter estimates of open-ended tests assessed using
CJ. Bisson et al. (2016), for instance, measured conceptual understanding of three top-
ics in secondary and tertiary mathematics—p-values in statistics, letters in algebra, and

Comparative judgement, proof summaries and proof comprehension 189



Fig. 7 Scatter plot of CJ-based parameter estimates against scores from the 7-item multiple-choice test

derivatives in calculus—and reported correlation coefficients between .35 and .56. To fur-
ther understand our result, we correlated the seven-item multiple-choice test scores with
the final course scores. The correlation was moderate and significant, r = .55, p < .001.
This suggests that, despite the modest internal consistency of the multiple-choice test, it was
meaningful in terms of assessing students’ performance in proof-based mathematics.

The correlation coefficient between the CJ scores and the final course scores was also
significant but modest, r = .23, p < .001. This means that, while low, the two cor-
relations involving our CJ scores were significant and in the expected directions. These
analyses thus offer modest support for the criterion validity of the CJ-based assessment,
while perhaps indicating that overlapping but different skills are required for summarising a
single proof, immediate overall comprehension of a single proof, and performance in course
examinations. We offer further interpretation of these statistical results in the Discussion.

4.3 Content validity and what judges valued

To investigate whether the judges were consistent with theoretically reasonable criteria for
proof summary quality, we next considered content validity. We would expect good sum-
maries to have contents consistent with theoretical analyses and empirical outcomes from
earlier research on proof comprehension. But we do not assume that theoretical analyses
necessarily capture what expert judges actually value in real-world judgements, and we do
not believe that earlier empirical outcomes predict how judges might weigh different factors
when making those judgements. So we first coded the contents of the summaries according
to the principles of thematic analysis (Braun & Clarke, 2006); this involved no value judge-
ments about which contents were “good”. We then conducted multiple regression analyses
to identify which content in proof summaries predicted high CJ scores. This allowed us
to investigate empirically what the expert judges valued (Hunter & Jones, 2018; Jones &
Karadeniz, 2016).
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4.3.1 Coding of proof summary contents

We coded the contents of students’ proof summaries using a scheme developed in three
iterations. We first examined the original proof (Fig. 1) alongside ten student summaries
that were not part of the main dataset. Most statements in the summaries could be directly
mapped to a discrete part of the proof, so the first version of the coding scheme simply par-
titioned the proof into 11 parts, each with a code. In the second iteration, two researchers
independently coded ten responses from the main dataset. Comparing these analyses led to
a revised scheme, clarifying existing codes or dividing one code into several. Having estab-
lished a final 15-code scheme, we turned to the remaining 123 responses. Each researcher
coded 75 responses, with an intersection of 27 for estimating inter-coder reliability: we
calculated a pooled Cohen’s κ of .88, suggesting good agreement between coders. Inconsis-
tencies were found to be either coder errors or unique cases not anticipated by our scheme.
In the latter case, a decision was reached to maintain the clarity of each code, opting to
assign no code to a statement for which we did not have an obvious code.

The final codes are shown in Table 2. Column 1 shows the code number, where these
numbers are also used to show how the codes were assigned to specific responses in Figs. 4,
5 and 6. Column 2 of Table 2 explains each code, and column 3 shows the percentage of
student proof summaries assigned each code. Columns 4 and 5 show the Spearman correla-
tion (ρ) between each code and the CJ scores, and the significance (p) of these correlations.
The remaining columns refer to the regression analyses; both correlations and regressions
are discussed next.

4.3.2 Content validity and contents judges valued

If the CJ scores have good content validity, we would expect codes that correlate with high
CJ scores to be consistent with earlier theoretical and empirical studies on proof compre-
hension. And this seems to be the case. Eight of the 15 content codes correlated significantly
with CJ scores, and all eight (codes 4, 5, 8, 9, 10, 11, 12 and 14) can be viewed as rele-
vant to the construction of objects used in the proof, and to their properties in relation to
the proof’s contradiction argument. For example, the highest correlating code (ρ = .54,
p < .001) was 10 (“Addressed the constructed b from the given proof in any way”); the
second highest (ρ = .51, p < .001) was 12 (“Explicitly stated that b is not in the range
of f (or, that b �= f (n) for any n)”). Both seem highly pertinent to summarising via high-
level ideas because they show a “grasp of the main idea of the proof and its overarching
approach” (Mejia-Ramos, Fuller, Weber, Rhoads, & Samkoff, 2012, p. 15).

Conversely, the seven codes that did not correlate significantly with parameter estimates
(1, 2, 3, 6, 7, 13 and 15) arguably capture information that is more obvious or readily infer-
able by a mathematically experienced reader. For example, code 1 (ρ = .15, p = .101)
captured information about the interval in question (“Explicitly stated that the interval (0, 1)
is infinite”); code 2 (ρ = .06, p = .536) elaborated this point (“Addressed a subset of (0, 1)
(not necessarily explicitly naming 1/2k : k ∈ N)”). These are accurate descriptions of the
original proof’s content, but they seem less essential to communicating the proof’s main
idea or overarching approach.

The correlations thus provide initial support for the content validity of the CJ-based
assessment: codes found to correlate significantly with CJ scores were those that are more
theoretically pertinent to summarising the proof via high-level ideas. We investigated fur-
ther by finding the predictive weights associated with these codes. First, the eight codes
that yielded significant correlations were used in a forced-entry regression predicting the
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CJ scores; the resulting model, F(8, 114) = 14.39, p < .001, explained 50% of the
variance2. Next, we generated a regression including only the four codes identified as sig-
nificant predictors in the first model. The resulting model explained 43% of the variance,
F(4, 118) = 22.56, p < .001 (see Table 2 for both analyses). This second analysis identi-
fied codes 5 and 10 as the most important predictors of CJ scores. These two codes refer to
the two major mathematical objects used in the proof: the function f , which is to be the sub-
ject of the contradiction, and the number b used to demonstrate the contradiction. The other
two codes in the final model, 4 and 14, capture the logical structure of the proof, appealing
to proof by contradiction and explicating that contradiction.

Again, these results support the content validity of the CJ-based approach to assessment.
And because the CJ scores show acceptable reliability, criterion validity and content valid-
ity, they also provide an empirical basis from which to make claims about quality in proof
summaries. Principally, they reveal that judges rewarded summaries capturing the logical
structure of the proof. In this, the judges appear to have acted in alignment not only with
the summarising aspect of Mejia-Ramos et al.’s (2017) proof comprehension assessment
model—as shown in Table 1—but also with the other aspects “logical status of statements
and proof framework”, “justification of claims” and “identifying the modular structure”.
The judges also rewarded a focus on constructed objects which, with hindsight, is per-
haps not surprising for this proof, which relies on an inventive construction to reach its
conclusion.

5 Discussion

This paper reports a study using comparative judgement (CJ) to score undergraduates’ proof
summaries, thus applying a novel method to a difficult-to-assess aspect of proof compre-
hension. Proof summaries provided by 143 students were comparatively judged by experts.
The resulting CJ scores were reliable in the sense that the judges were collectively consis-
tent in their judgements of which summaries were better. The CJ scores showed acceptable
criterion validity in that there were significant, positive correlations with scores from a stan-
dardised proof comprehension test and with overall course scores. These correlations were,
however, lower than those reported in studies using similar research designs for other math-
ematical constructs. This is a point we return to below. The CJ scores showed good content
validity in that of 15 codes capturing the contents of the proof summaries, the eight found
to be significantly correlated with CJ scores were pertinent to the main idea of the proof
and its overarching approach; those not significantly correlated captured content that was
more peripheral or readily inferable. Moreover, the four codes found via regression analyses
to best predict the CJ scores were those that captured the logical structure of the proof—
in this case, proof by contradiction—and the construction of objects used in the argument.
This is in line with what we would expect given previous theoretical and empirical work on
mathematicians’ views of proof.

We believe, therefore, that this CJ approach performed satisfactorily in generating a
quantitative measure of proof summary quality. However, the low correlations between CJ
scores and multiple-choice and final course scores raise issues about the measurement of

2We also ran forced-entry regressions with all 15 codes, and with 12 codes significantly correlated with
parameter estimates before Bonferroni correction (α = .05). All led to very similar conclusions with
respectively explained variance, 53% and 52%.
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complex constructs in educational contexts. First, the multiple-choice test itself did not
achieve acceptable internal consistency. A similar problem hampered Bisson, Gilmore,
Inglis, and Jones (2019), who applied CJ-based assessment in differential calculus: there,
too, a standardised instrument performed sub-optimally outside the context in which it was
developed. If the substantial work done in generating standardised instruments needs to be
repeated in each context, that further motivates a need for alternative low-resource assess-
ment methods such as CJ. However, such instrument failure hinders the validation of those
alternative methods.

Second, the low correlations could be part of a meaningful pattern in which the assess-
ments simply assess different things. Unlike CJ scores, multiple-choice test scores did
correlate moderately with final course scores. This could reflect the fact that a multiple-
choice test is more similar to typical university mathematics assessments (Iannone &
Simpson, 2011) than a summarising task which is likely to be unfamiliar to most students.
Such a “test format effect” (Becker & Johnston, 1999) might have had more detrimental
impact here than in earlier CJ-based mathematics assessments due to the shortness of the
summarising task: participants were restricted to 40 words, where the typical response size
in analogous studies is one page long. Because longer assessments tend to be more reli-
able and more valid (Newton & Shaw, 2014), a longer task—perhaps summarising a series
of proofs—might increase measured criterion validity. On the other hand, it could be that
summarising is an important skill but one that overlaps only partially with more standard
assessments. A summarising task is a production task, whereas a multiple-choice test is a
recognition task; perhaps scores on a summarising task would correlate more highly with
scores from other production tasks such as proof construction. A mathematics exam is a
production task, but one in which performance is influenced by many extra-mathematical
variables such as commitment to regular study. Perhaps, then, more comparisons are needed,
and it would benefit the field to conduct studies able to disentangle relationships between
various proof-related skills.

For now, we conclude with emphasis on the positive. Students’ proof comprehension has
attracted attention in mathematics education but has traditionally been under-researched due
to a paucity of methods and tools for assessing comprehension. Recent progress has been
enabled by the development of standardised instruments (Mejia-Ramos et al., 2017), but that
development work is time- and resource-intensive and must be replicated for every proof.
The CJ-based approach explored here offers a potentially efficient and inexpensive method
for assessing comprehension of any proof. Further research is required in order to establish
design principles for optimising validity in CJ-based approaches, to investigate their appli-
cation to other aspects of proof comprehension, and to understand the relationships between
proof comprehension and other proof-related skills. But, as one of a suite of methods, we
believe that the CJ approach has much to offer, both to researchers and to lecturers wishing
to understand students’ learning of proof.
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