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Research on the development of response inhibition in humans has focused almost exclusively on average stop- 

ping performance. The development of intra-individual variability in stopping performance and its underlying 

neural circuitry has remained largely unstudied, even though understanding variability is of core importance for 

understanding development. In a total sample of 45 participants (19 children aged 10–12 years and 26 adults 

aged 18–26 years) of either sex we aimed to identify age-related changes in intra-individual response inhibition 

performance and its underlying brain signal variability. While there was no difference in average stopping per- 

formance between children and adults, stop signal latencies for the children were more variable. Further, brain 

signal variability during successful stopping was significantly higher in adults compared to children, especially 

in bilateral thalamus, but also across regions of the inhibition network. Finally, brain signal variability was sig- 

nificantly associated with stopping performance behavioral variability in adults. Together these results indicate 

that variability in stopping performance decreases, whereas neural variability in the inhibition network increases, 

from childhood to adulthood. Future work will need to assess whether developmental changes in neural variabil- 

ity drive those in behavioral variability. In sum, both, neural and behavioral variability indices might be a more 

sensitive measure of developmental differences in response inhibition compared to the standard average-based 

measurements. 
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. Introduction 

Early executive functions (EF’s) are critically important for later life

utcomes ( Moffitt et al., 2011 ). Due to this, understanding the nature of

evelopmental change in EF’s is crucial for devising interventions seek-

ng to improve this important life-skill. One such ability is response in-

ibition, the ability to withhold prepotent response tendencies in order

o respond appropriately to the environment. Developmental studies of

esponse inhibition show inconsistent findings in terms of age-related

hanges, with some studies showing no difference between children

nd adults ( Schel et al., 2014 ), and others showing continuing devel-

pment ( Ordaz et al., 2013 ). Such discrepant findings could be related

o a reliance on measures of inhibition that unreliably index age-related

hanges in response inhibition, in particular the use of mean response

imes ( Band et al., 2003 ; Logan and Cowan, 1984 ; Verbruggen and Lo-

an, 2008 ). 

Across cognitive psychology, there has recently been recognition

hat over-reliance on the mean may lead to misinterpretation of data

nd erroneous conclusions ( Heathcote et al., 1991 ; Speelman and Mc-
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ann, 2013 ). For example, response time distributions may differ be-

ween two groups, but these differences may not be reflected as a differ-

nce in means ( Whelan, 2008 ). This may lead researchers to conclude

hat performance does not differ between groups, when it does. Fur-

her, key cognitive operations may not be indexed by the mean. Cogni-

ive performance is not stable and this reflects a fluctuating cognitive

ystem ( Shalev et al., 2019 ) (indeed, the mean itself is derived from a

istribution of scores, indicating this variability in performance). The

egree and manner to which an individual’s cognitive system fluctuates

ay in fact be crucial to understanding their cognitive performance.

onsider, for example, the way in which two children differ in how

onsistently they attend to a class at school. This type of fluctuation in

ttention may index a feature of the cognitive system that is not neces-

arily detectable by mean scores, since mean performance may appear

he same ( Whelan, 2008 ), yet may crucially impact their learning and

ubsequent academic performance on that subject. For these reasons, in

ecent years there has been increased focus on variability measures per

e , as a meaningful measure of interest. 

One area that has seen fruitful use of variability measures is re-

earch into attention-deficit hyperactivity disorder (ADHD), a develop-

ental condition characterized by impulsivity, hyperactivity and inat-
uk (N. Steinbeis). 
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ention, and commonly associated with response inhibition deficits

 Wodka et al., 2007 ). Many studies report that ADHD is associated with

ncreased response time variability ( Karalunas et al., 2014 ; Kofler et al.,

013 ). Measures of variability provide greater clinical and diagnos-

ic specificity than the mean, for example, variability measures are

ore sensitive than mean response time measures at differentiating in-

ividuals with ADHD from controls ( Klein et al., 2006 ; Nigg, 1999 ),

nd stimulant medication specifically impacts variability measures

 Epstein et al., 2011 ). Multiple different cognitive and physiological

echanisms have been proposed as underlying response time variabil-

ty in ADHD ( Tamm et al., 2012 ). Most widely reported is that re-

ponse time variability may index distractibility and lapses of attention

 Adams et al., 2011 ; Di Martino et al., 2008 ; Tamm et al., 2012 ). 

At the neural level, the processes underlying behavioral variability

re not fully understood ( Garrett et al., 2013 ). One line of research fo-

usses on the relationship between behavioral and neural variability.

rain signals inherently fluctuate ( Faisal et al., 2008 ; Pinneo, 1966 ).

uch like with behavioral variability, in recent years, researchers have

egun to investigate neural variability directly, under the assumption

hat rather than representing noise, variability per se may have func-

ional relevance ( Garrett et al., 2013 ). It has been proposed that neural

ariability increases the ‘dynamic range’ of responsivity, enabling the

rain to respond adaptively in a changeable and dynamic environment

 Grady and Garrett, 2018 ). This interpretation is bolstered by the find-

ng that variability across local brain regions is higher during externally-

irected tasks, compared with internally-directed ones, since less flexi-

ility is required for tasks directed internally ( Grady and Garrett, 2018 ).

n this way, the relationship between neural and behavioral variability

as been proposed to be antithetical ( Garrett et al., 2018 ), whereby in-

reased neural variability enables more stable (less variable) behavioral

erformance ( Garrett et al., 2018 ; Petroni et al., 2018 ). This is in line

ith studies in adults that report that BOLD variability increases when

ngaged in a task ( Garrett et al., 2013 ) and as task difficulty increases

 Garrett et al., 2014 ). 

However, the theoretical accounts proposing an antithetical relation-

hip between neural and behavioral variability are largely based on

tudies in adults. In contrast, studies in children have provided more

ixed findings. Children show greater behavioral variability (as indi-

ated by response time measures) ( Li et al., 2009 ; McAuley et al., 2006 ;

illiams et al., 2005 , 2007 ), which decreases with age ( Tamnes et al.,

012 ). Studies report that reduced variability of behavior over child-

ood is associated with both increased ( McIntosh et al., 2008 ; Mi š i ć

t al., 2010 ) and reduced neural variability ( Guassi Moreira et al., 2019 ).

hese contradictory findings in childhood may suggest a changing na-

ure of this relationship across development. Notably, this may vary with

pecific task demands ( Armbruster-Genc et al., 2016 ) and across brain

egions ( Nomi et al., 2017 ). Such contradictory patterns of neural vari-

bility with age make this an urgent field of further enquiry. In particu-

ar, it is important that more developmental studies are conducted inves-

igating this relationship across a range of tasks to gain a comprehen-

ive understanding of the underlying mechanisms. To our knowledge,

o study has investigated neural variability in relation to performance

ariability of response inhibition. Given that response inhibition enables

exible responding to changes in the environment, this makes it a suit-

ble candidate for a behavioral task that may be associated with neural

ariability. Thus, in the present study we sought to conduct the first in-

estigation of the development of neural and behavioral variability in

he context of response inhibition. 

Previous studies investigating the neural correlates of variability in

esponse inhibition performance in adults report that ‘Go’ trial vari-

bility correlates with commission errors ( Bellgrove et al., 2004 ), and

hat higher variability is associated with activation of prefrontal regions

uring ‘No Go’ trials in both adults ( Bellgrove et al., 2004 ) and chil-

ren ( Simmonds et al., 2007 ). These studies used average BOLD sig-

al, and did not investigate BOLD variability. Further, for performance

ariability, these studies used measures that assume a Gaussian data
2 
istribution. The main outcome variable in response inhibition tasks is

esponse time data, which is characteristically positively skewed and

herefore non-Gaussian. Using approaches that assume a normal distri-

ution on non-normal data may lead to loss of information and loss of

ower ( Ratcliff, 1993 ). Due to this, approaches that do not assume a

ormal distribution may be more appropriate ( Balota and Yap, 2011 ). 

To overcome these limitations, we used an ex-Gaussian distribution

n the current study, which is similar to a typical response time dis-

ribution ( Luce, 1986 ). Ex-Gaussian distributions convolve the normal

ith an exponential distribution, generating three parameters, mu ( 𝜇)

nd sigma ( 𝜎) reflect the mean and standard deviation of the Gaussian

istribution and tau ( 𝜏) reflects the mean and standard deviation of the

xponential distribution (the tail of the curve). Ex-Gaussian analysis has

ed to unique insights in other areas ( Chevalier et al., 2014 ; Matzke et al.,

017 ). For example, a meta-analysis reported that in individuals with

DHD, increased response time variability is primarily related to par-

icularly slow responses on a subset of trials which may relate to atten-

ional lapses, reflected by tau, rather than consistent variability across

ll trials, reflected by sigma ( Kofler et al., 2013 ). 

In this study, we provide the first investigation of the develop-

ent of response inhibition related BOLD signal variability from child-

ood to early adulthood and its influence on intra-individual variability

n response inhibition performance. Intra-individual variability in re-

ponse inhibition performance was estimated using Bayesian estimation

f ex-Gaussian stop-signal response time distributions ( Matzke et al.,

013b ). Brain signal variability was estimated during successful stop-

ing. For analyses relating brain signal variability to behavioral re-

ponse inhibition, we focused on regions frequently implicated in in-

ibition ( Aron et al., 2007 ; Jahfari et al., 2011 ), specifically the right

nferior frontal gyrus, right caudate nucleus, right putamen, right tha-

amus, and right subthalamic nucleus, henceforth referred to as the ‘in-

ibition network’. To examine the relationship between behavioral and

rain signal variability, we investigated the correlations between these

easures. 

We hypothesized that intra-individual variability in response inhibi-

ion performance would decrease from childhood to adulthood. Given

hat there are few studies investigating BOLD variability in develop-

ent, our investigations regarding changes in BOLD variability from

hildhood to adulthood and in terms of correlations with performance,

ere exploratory. 

. Methods 

.1. Participants 

Nineteen healthy right-handed children between 10 and 12 years of

ge (10 females, M = 11.56, SD = 0.83) and twenty-six healthy right-

anded adults between 18 and 26 years of age (15 females, M = 21.55,

D = 2.31) participated in the experiment. We did not have any par-

icipant exclusion criteria for conditions (such as ADHD or substance

se disorders) that may be associated with differences in SSRT perfor-

ance, as our intention was to sample a cohort that is representative

f the general population. The mean behavioral and fMRI results of a

ubset of the adults have previously been published in a larger report

n response inhibition ( Schel et al., 2014 ). A chi-square test revealed

o significant differences in gender distributions between age groups

 p = .736). All participants had normal or corrected-to-normal vision,

nd no neurological or psychiatric impairments according to self- or

arent-report. Informed consent was obtained for all participants and

he study was approved by the internal review board at Leiden Uni-

ersity Medical Center. In accordance with the guidelines of the Leiden

niversity Medical Center, all anatomical scans were reviewed by a ra-

iologist. No anomalous findings were reported. 

To obtain an estimate of cognitive functioning, children and adults

ompleted the subtests similarities and block design of the Wechsler In-

elligence Scale for Children (WISC) ( Wechsler, 1981b ) and the Wech-
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ler Adult Intelligence Scale (WAIS) ( Wechsler, 1981a ) respectively. Es-

imated IQ scores were slightly above average (children: M = 111.32,

D = 9.94, adults: M = 111.81, SD = 6.59) and age groups did not differ

n estimated IQ scores, F (1, 44) = 0.04, p = .843. 

.2. Task 

The stop-signal task ( Logan and Cowan, 1984 ) was presented in a vi-

ual form ( Schel et al., 2014 ). Each trial started with the presentation of

 green left- or rightwards pointing arrow. Participants were instructed

o make a speeded response to the direction of the arrow. For the left-

ards pointing arrow participants had to press a button with their left

ndex finger and for the rightwards pointing arrow participants had to

ress a button with their right index finger. The arrow disappeared when

articipants responded or after 1500 milliseconds had passed. Following

he presentation of the arrow a fixation cross was presented with a du-

ation jittered between 2000 and 4000 milliseconds. When participants

esponded to the arrow, the duration of the fixation cross was extended

y 1500 milliseconds minus the response time, in order to keep the du-

ation of the task stable between participants. 

On a limited number of trials (25%) a stop-signal was presented. In

his case, the arrow suddenly changed color to red. This color change

ndicated that participants had to inhibit responding to the direction

f the arrow. Stop-signal delay (SSD) was adjusted using a staircase-

racking procedure to guarantee a 50% inhibition rate ( Lappin and Erik-

en, 1966 ). At the beginning of the task SSD was set at 250 milliseconds.

hen participants successfully inhibited, SSD was increased by 50 mil-

iseconds to make the task more difficult. When participants were not

ble to inhibit responding, SSD was decreased by 50 milliseconds to

ake the task easier. 

The experiment consisted of two blocks of 128 trials, each block

onsisting of 96 go-trials and 32 stop-trials. Trials were presented in

 pseudo-randomized order so that each stop-trial was preceded by 1,

, 4, or 5 go-trials. 

For this task, we used an exclusion criterion of 30% successful stops.

his was checked for all participants in order to exclude participants

ith less than this. No participants were excluded on this basis. 

.3. Data acquisition 

Scanning was performed with a standard whole-head coil on a 3.0

esla Philips scanner at the Leiden University Medical Center. The stop-

ignal task consisted of 2 event-related runs, both lasting approximately

 min. Functional data were acquired using T2 ∗ -weighted echo-planar

maging (EPI). The first 2 vol. of each run were discarded in order to

llow for equilibration of T1 saturation effects (TR = 2.2 s, TE = 30 ms,

equential acquisition, 38 slices of 2.75 mm, field of view 220 mm,

0 × 80 matrix, in-plane resolution 2.75 mm). After the functional

uns, a high-resolution 3D T1-FFE scan for anatomical reference was

btained (TR = 9.760 ms, TE = 4.59 ms, flip angle = 8°, 140 slices,

.875 × 0875 × 1.2 mm 

3 voxels, field of view = 224 × 168 × 177 mm 

3 ).

ead motion was restricted by using foam inserts between the head and

he head coil. Visual stimuli were projected onto a screen in the magnet

ore that could be viewed through a mirror attached to the head coil. 

.4. Behavioral data analysis 

We first used a canonical calculation of SSRT and secondly calculated

easures of SSRT variability. 

Calculation of SSRT. The SSRT was calculated according to the horse-

ace model of stopping ( Logan and Cowan, 1984 ) following the proce-

ures described in Band et al. (2003) . In short, first all response times

RTs) for the correct go-trials were rank-ordered. Next, the percentage

f failed inhibitions was determined. Then, the go-RT corresponding to

hat percentage was determined. Finally, SSRT was computed as the
3 
ifference between the go-RT corresponding to the percentage of failed

nhibitions and the mean SSD. 

Calculation of SSRT variability. In order to estimate the intra-

ndividual variability in SSRTs, the entire distribution of SSRTs was es-

imated using a Bayesian Parametric Approach (BPA) ( Matzke et al.,

013 a, 2013b ). The BPA assumes that SSRTs form an ex-Gaussian dis-

ribution and uses Markov chain Monte Carlo (MCMC) sampling of the

bserved participant SSRT data in order to estimate the three parame-

ers that describe the SSRT distribution ( Matzke et al., 2013 b). These

arameters describe different parts of the SSRT curve: the 𝜇 and 𝜎 re-

ect the mean and standard deviation of the curve and the 𝜏 reflects

he skewness (tail) of the curve. The validity of the BPA approach in

stimating SSRT distributions has been demonstrated through param-

ter recovery studies on both real and simulated data, which demon-

trate that the BPA approach accurately recovers underlying parame-

ers from the SSRT distribution ( Matzke et al., 2013 a). BEESTS software

ersion 2.0 ( Matzke et al., 2013 b) was used to implement the BPA on

he hierarchical child stop-signal data and the hierarchical adult stop-

ignal data. The hierarchical approach simultaneously estimates the

roup level parameters as well as the participant level ‘go’ and ‘stop’

arameters. This is especially valuable when there is a small number

f observations and moderate between subject variability in parameter

alues ( Matzke et al., 2013 b). The following settings were used for the

CMC sampling: number of chains = 3, number of samples = 30,000,

umber of burn-in = 10,000, amount of thinning = 10, number of predic-

ions = 1000, and trigger failure = TRUE. The trigger failure setting was

sed to allow for identifying deficiencies in detecting the stop-signal,

hich can distort estimation of the SSRT distribution when ignored

 Matzke et al., 2017 ). 

.5. FMRI data analysis 

Data preprocessing. Data were preprocessed using SPM12 (Wellcome

epartment of Cognitive Neurology, London) and the CONN toolbox

 Whitfield-Gabrieli and Nieto-Castanon, 2012 ). The standard prepro-

essing pipeline in CONN, including slice-time and motion correction,

ormalization to the MNI template, resampling to a 3-mm cubic voxel,

nd smoothing with an 8-mm full-width-at-half-maximum isotropic

aussian kernel was applied. To further denoise the data for the BOLD

ariability calculation, denoising in CONN was conducted to remove

hysiological artifacts and residual movement effects. Specifically, av-

rage time series of white matter, cerebral spinal fluid (CSF), realign-

ent parameters, and volumes affected by motion as detected by Arti-

act Detection Tools (ART) were filtered out. These extra denoising steps

ave been shown to improve the predictive power of BOLD variability

 Garrett et al., 2010 ; Garrett et al., 2014 ). 

Calculation of BOLD variability. BOLD signal variability was calcu-

ated using SPM 8 by calculating the difference of residuals (DoR) of

wo different regression models. All steps undertaken are in line with

he procedures described in Armbruster-Genc et al. (2016 ). In short, first

 standard regression model using a general linear model (GLM) with

 canonical hemodynamic response function (HRF), one regressor per

ondition, one regressor for the error trials and the time and dispersion

erivatives to account for variability in peak and width of the HRF was

stimated. Next, a condition specific trial-by-trial regression model was

stimated. This model was similar to the standard model, except that

or the condition of interest a separate regressor for each trial of that

ondition was added to the model, instead of the one condition regres-

or. By subtracting the residuals of the standard regression model from

he residuals of the condition specific trial-by-trial model, an estimate

f the trial-by-trial variability in one specific condition is obtained. The

oR was calculated for the successful stop condition. Importantly, the

esiduals maps used for the subtraction were not corrected for degrees of

reedom of the regression model, since the degrees of freedom of the con-

ition specific trial-by-trial regression model are confounded with the

umber of successful versus unsuccessful stop-trials which could differ
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Fig. 1. A. Mean stop-signal reaction time (SSRT) per age group. B. Percentage stop success per age group. C. Measures of variability: mu (mean), sigma (standard 

deviation), and tau (skewness or tail) per age group. Means (dot) and standard error (line) are presented. 
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etween participants. Correcting for degrees of freedom would there-

ore bias the DoR of subjects with different ratios of successful versus

nsuccessful stop-trials ( Armbruster-Genc et al., 2016 ). Finally, individ-

al DoR images were entered into a second-level analysis to examine

evelopmental differences in condition specific BOLD variability. All re-

orted effects consisted of at least 10 contiguous voxels that exceeded a

amily-wise error (FWE) corrected threshold of p < .05. 

Region of interest analysis. Region of interest (ROI) analysis were

erformed to further characterize the BOLD variability of the inhibi-

ion network using the MarsBaR toolbox in SPM ( Brett et al., 2002 )

 http://marsbar.sourceforge.net ). For right caudate, right putamen, and

ight thalamus anatomical AAL ROIs were selected from the MarsBaR-

AL ROIs (centers of mass: right caudate: 15, 11, 8; right putamen: 28,

, 1; right thalamus: 13, − 19, 7). An anatomical ROI of right IFG pars

riangularis was selected from the probabilistic Harvard-Oxford atlas

nd thresholded at 20%, center of mass: 51, 28, 8. For right subthala-

ic nucleus (STN), an anatomical template derived from a study using

ltra-high 7 Tesla scanning was used ( Forstmann et al., 2010 ), center of

ass: 9, − 13, − 7. BOLD variability was extracted both from the separate

OI’s (for the individual ROI analyses) and as an average from the entire

OI network (for the network analysis). To test the specificity of the re-

ationship between inhibition network BOLD variability and behavioral

ariability, we also extracted BOLD variability across a control region.

e selected the right calcarine cortex as a control region, as this region

as not been implicated in response inhibition performance and thus

e would not hypothesize there to be any relationship between neural

ariability in the calcarine cortex and response inhibition variability. 

.6. Experimental design and statistical analysis 

Age group differences in average response inhibition performance,

esponse inhibition performance variability and brain signal variabil-

ty were tested using ANOVA’s. A threshold of p < .05 was used. To

xamine the relation between behavioral and brain signal variability

earson correlation analysis was performed. Z observation analysis was

sed to determine differences in Pearson’s correlations between groups.

ubject motion in the scanner is an important consideration when as-

essing between-group differences, including for variability measures

 Millar et al., 2020 ). Therefore, to rule out any effect of between-group

ifferences in head motion, we conducted an independent t -test on the

mount of motion-correction applied during processing. In order to do

his, mean framewise displacement data was extracted. Further, to test
4 
hether BOLD variability was associated with in scanner motion, we

ested whether mean framewise displacement was correlated with BOLD

ariability in the inhibition network. 

.7. Power 

We conducted a power analysis based on effect size estimates from

revious studies to determine whether the present study has enough

ower to detect the effects of interest. We based this power analysis

pecifically on prior studies that have looked at age-related changes

n BOLD variability ( Garrett et al., 2010 ; Grady and Garrett, 2018 ) in-

luding in the context of cognitive control ( Grady and Garrett, 2018 ).

rady and Garrett (2018) report an age-group comparison of BOLD vari-

bility. The effect size in this study was 1.2 which is considered very

arge according to the criteria of Cohen ( Cohen, 1988 ). With the power

o detect this effect at 0.80 and an alpha of 0.05, the projected sample

ize needed to detect such an effect is 24, with 12 in each group. An

dditional study reports a very large effect size (4.26) associated with

he relationship between age and BOLD variability ( Garrett et al., 2010 ).

ith the power to detect a similar effect set at 0.80 and an alpha of 0.05,

 subjects would be required to detect such an effect. Based on this, we

onsider this study to be sufficiently powered to detect the age-related

ifferences in BOLD variability. 

. Results 

.1. Behavior 

Mean SSRT did not differ between children and adults, F (1,

4) = 0.799, p = .376 ( Fig. 1 A). Children and adults did not differ in the

ercentage of successful stop-trials, F (1, 44) = 0.185, p = .669, and both

uccessfully inhibited approximately 50% of the stop-trials ( Fig. 1 B).

ext, in order to examine developmental differences in intra-individual

ariability in stopping performance, the estimated SSRT distributions

nd the three parameters describing the SSRT distribution were exam-

ned. The estimated SSRT distributions differed between children and

dults, with children showing a wider distribution driven by more ex-

remely long SSRTs ( Fig. 2 ). The 𝜇 did not differ between children and

dults, F (1, 44) = 0.013, p = .911, ( Fig. 1 C) indicating that the mean

f distribution is similar for both groups. However, 𝜎 was larger for

hildren compared to adults, F (1, 44) = 51.388, p < .001, 𝜂2 = 0.54,

 Fig. 1 C) indicating that the SSRT distribution of children is wider.

http://marsbar.sourceforge.net
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Fig. 2. Estimated SSRT distributions for children and adults. 

Fig. 3. Adults showed more BOLD variability compared to children in bilateral 

thalamic area during successful stopping. 
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lso, 𝜏 was larger for children compared to adults, F (1, 44) = 13.026,

 = 0.001, 𝜂2 = 0.23 ( Fig. 1 C) indicating that the SSRT distribution of

he children had a longer tail and thus children showed more extreme

ong SSRTs. 

.2. BOLD variability 

To examine age differences in BOLD variability during successful

topping a whole-brain two sample t -test was computed. This analysis

evealed that BOLD variability in bilateral thalamic area was larger for

dults compared to children (left peak: − 20, − 22, − 4, t(43) = 7.50, p <

001 and right peak: 28, − 22, − 4, t(43) = 6.24, p = .007, see Fig. 3 ). No

egions showed more BOLD variability for children compared to adults.

To further examine BOLD variability during successful stopping, ROI

nalyses were performed for the right IFG pars triangularis, right cau-

ate, right putamen, right thalamus, and right STN. Adults showed more

OLD variability compared to children in all ROIs during successful
5 
topping (right IFG: F (1, 44) = 13.60, p = 0.001, 𝜂2 = 0.24, right

audate: F (1, 44) = 16.89, p < 0.001, 𝜂2 = 0.28, right putamen: F (1,

4) = 19.57, p < 0.001, 𝜂2 = 0.31, right thalamus: F (1, 44) = 23.03, p

 0.001, 𝜂2 = 0.35, right STN: F (1, 44) = 17.60, p < 0.001, 𝜂2 = 0.29)

see Supplementary materials Table 1 and Fig. 4 ). 

We also tested whether movement parameters during the scan were

elated to BOLD variability in the inhibition network. Mean framewise

isplacement did not differ significantly between children ( M = 0.22,

D = 0.09) and adults ( M = 0.19, SD = 0.04); t(43) = 1.59, p = .120.

here was no significant correlation between framewise displacement

nd BOLD variability in the inhibition network for either the whole

roup, r = − 0.113, p = .458, or for the children and adults separately

child: r = 0.004, p = .987; adult: r = 0.087, p = .674). Scatterplots of

hese correlations are included in the Supplementary materials. 

.3. Correlations between neural and behavioral variability 

To examine the relation between BOLD variability and behavioral

erformance variability, correlation analyses were performed for the

ge groups separately. As can be seen in Fig. 5 , more BOLD variability

cross the inhibition network during successful stopping was associated

ith less behavioral variability, specifically with less extremely long SS-

Ts (tau) and a less wide SSRT distribution (sigma) and smaller SSRTs

n average. The relationship between BOLD and behavioral ex-Gaussian

easures was significant for the adult group (tau: r = − 0.614; p < .001;

igma: r = − 0.421; p < .05; mu: r = − 0.439; p < .05). In children, the

irection of effect was similar, but the correlations did not reach sig-

ificance (tau: r = − 0.317; p = .186; sigma: r = − 0.057; p = .818; mu:

 = − 0.244, p = .316). There were no significant differences between

roups on any of these correlations, when tested using a Z observation

nalysis. 

To test the specificity of the relationship between BOLD variability

uring successful inhibition and SSRT variability we also calculated the

x-Gaussian measures (tau, sigma and mu) for the ‘Go’ trials and tested

he relationship between these parameters and BOLD variability. We

ound no significant relationship between any of these parameters for

ither group. Finally, we included the ‘Go’ trial ex-Gaussian parameters

s control variables in partial correlations between stopping variability

nd BOLD variability. We found that the significance of these relation-

hips remained unchanged for both the adults (tau: r = − 0.696; p < .001;

igma: r = − 0.46; p < .05; mu: r = − 0.430, p < .05) and children (tau:

 = − 0.270; p = .31; sigma: r = − 0.139; p = .6; mu: r = − 0.149, p > .05).

Finally, to investigate whether the reported relationship between in-

ibition network BOLD variability and behavioral variability is specific
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Fig. 4. Age differences in standardized BOLD variability levels per region. Adults showed more BOLD variability compared to children in all regions of interest 

during successful stopping. Means (dot) and standard error (line) are presented. 

Fig. 5. Correlations between BOLD variability across the inhibition network during successful stopping and behavioral performance variability, as measured by tau, 

sigma and mu. 
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t  

v  

2  
o the right inhibition network, correlation analyses were performed be-

ween behavioral variability and BOLD variability measures across the

ontrol region, for the groups separately. We did not find any significant

orrelations in either group (adult group, tau: r = − 0.28; p > .05; sigma:

 = − 0.02; p > .05; mu: r = − 0.29, p > .05; child group, tau: r = − 0.35;

 > .05; sigma: r = 0.06; p > .05; mu: r = − 0.31, p > .05). 

. Discussion 

In contrast to previous developmental neuroimaging studies of re-

ponse inhibition, we were specifically interested in behavioral and

rain signal variability during response inhibition. As predicted, chil-

ren were more variable in their response inhibition performance com-

ared to adults, while brain signal variability in the inhibition network

as higher for adults. Brain signal variability was negatively related to

ehavioral variability in the adult group. This effect was specific to the

top-signal and was present across the inhibition network, but not in the

ontrol region we investigated. 

The first question addressed whether children would show more

ntra-individual variability in response inhibition performance com-

ared to adults. Previous research has shown that children show in-

reased response time variability ( Li et al., 2009 ; McAuley et al., 2006 ;

illiams et al., 2005 , 2007 ), and that variability decreases with age

 Tamnes et al., 2012 ). However, developmental intra-individual differ-

nces in SSRTs have not been studied. Despite the absence of average

erformance differences, we found that children were more variable in

heir response inhibition performance, with children showing a wider

istribution and more extremely long SSRTs. Extremely long SSRTs can

e caused by lapses in attention ( Di Martino et al., 2008 ). 

Our findings are in line with the observation that in childhood

ntra-individual variability in response inhibition decreases with prac-

ice ( Chevalier et al., 2014 ). With the current cross-sectional dataset, we

annot disentangle whether this decreased intra-individual performance

ariability with age is caused by a maturational effect of the underlying

eural mechanism, a practice effect of increased application of response

nhibition strategies with age, or a combination of those factors. The

bservation of more intra-individual variability together with similar
6 
verage performance in children compared to adults is interesting since

his implies that in addition to showing more extremely long SSRTs,

hildren must also show more fast stopping responses in order to end

p at the same average performance as adults. Alternatively, this effect

ould be explained by slower “Go ” responses. It will be important for

uture research to examine this. 

The next question addressed whether response inhibition related

rain signal variability would increase from childhood to adulthood. The

esults showed that BOLD variability was higher in adults compared to

hildren during successful stopping, with the bilateral thalamic region

howing significant group differences on a whole-brain level. Impor-

antly, the observed age-related increase in brain signal variability was

ignificant across the inhibition network, assessed via the ROI analysis.

The observation of higher task-related brain signal variability in

dults compared to children is in line with previous research examin-

ng task-related EEG and MEG brain signal variability ( McIntosh et al.,

008 ; Lippe, 2009 ; Misic, 2010 ). However, our results are seemingly at

dds with recent developmental studies investigating BOLD variability

 Guassi Moreira et al., 2019 ; Montez et al., 2017 ; Nomi et al., 2017 ).

omi et al. (2017) report that resting state BOLD variability increased

ith age across the salience network, but decreased across all other

rain regions, including the thalamus, for which we found a strong de-

elopmental effect in the current study. An important distinction be-

ween the current findings and those reported by Nomi et al. (2017) ,

ay be the nature of neural variability when comparing resting state

nd task-based designs such as ours, particularly considering that neu-

al variability increases from rest to task ( Garrett et al., 2013a ). Yet,

ther developmental imaging studies using task based designs, also re-

ort results that appear to contrast with ours, for example that neural

ariability decreases with age when using tasks assessing emotion regu-

ation ( Guassi Moreira et al., 2019 ) and working memory ( Montez et al.,

019 ). 

That our findings appear to contrast with other developmental imag-

ng studies point towards important areas within the field of variability

hat still require clarification – in particular, to what degree is neural

ariability functional, and under what circumstances ( Dinstein et al.,

015 ; Garrett et al., 2013 )? The idea that neural variability has a func-
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ional role, rather than being ‘noise’, may best be understood in the con-

ext of the brain needing to respond adaptively to circumstances that are

hanging and unpredictable ( Garrett et al., 2013 ). In this case, a deter-

inistic or rigid neural response pattern may not be advantageous. Yet,

xcessive levels of instability may also be detrimental, and have been

ssociated with behavioral impairments in neurodevelopmental disor-

ers such as ADHD and autism ( Karalunas et al., 2014 ). It appears that

here may be an optimal level of variability, with both too little and

oo much potentially being suboptimal ( Dinstein et al., 2015 ). It may

lso be the case that the ‘optimal’ level of neural variability differs, de-

ending on the context and precise requirements of the activity. For

xample, Armbruster-Genc et al. (2016) report that neural variability

n the inferior frontal junction is associated with better or worse per-

ormance depending on the task. Specifically, higher neural variability

as associated with higher cognitive flexibility performance, but lower

erformance on a cognitive stability task. This highlights the impor-

ance of task specifics, when seeking to understand the nature of neural

ariability in relation to performance. Task differences may help to ex-

lain the discrepancy between our findings and other task-based studies

 Guassi Moreira et al., 2019 ; Montez et al., 2017 ). As this study is, to our

nowledge, the first to investigate neural variability and its relation to

esponse inhibition, further studies will be required to disentangle these

elationships. 

Importantly, brain signal variability during successful inhibition was

lso associated with stopping performance in the adult group, in partic-

lar, variability of the ‘stop’ but not ‘go’ trials. This was seen across the

nhibition network but not the control region analyzed. Together, these

oints highlight the considerable specificity of our observed effects. This

s the first study to report that decreased stopping response time variabil-

ty is associated with heightened BOLD signal variability across regions

f the right lateralized inhibition network. Previous studies investigat-

ng the neural basis of response inhibition variability have reported that

igher behavioral variability is associated with higher mean prefrontal

ctivation ( Bellgrove et al., 2004 ; Simmonds et al., 2007 ), whilst in-

ividuals with lower behavioral variability activated premotor regions

 Simmonds et al., 2007 ). 

There are several important distinctions between these previous

tudies and our own. 

Firstly, previous studies used a variability measure of the response

election (‘go’) trials; in contrast, this is the first study to investigate

ariability of stopping trials, which (although not a direct measure),

ay be considered a purer measure of inhibition ability. Secondly, the

ariability index used in previous studies (the intra-individual coeffi-

ient of variability) is based on the Gaussian distribution. As response

ime distributions are characteristically non-Gaussian, using methods

ith Gaussian assumptions on such data may lead to loss of power and

nappropriate conclusions ( Balota and Yap, 2011 ; Ratcliff, 1993 ). In con-

rast, in the present study we used ex-Gaussian measures, which may be

ore appropriate as they enable full characterization of the response

ime distribution, and may be more sensitive ( McAuley et al., 2006 ). Fi-

ally, previous studies used average BOLD signal. As it has been demon-

trated that mean BOLD activity and BOLD variability are independent

 Garrett et al., 2011 ) this points to an interesting distinction between

he functionality of the two measures, and highlights the importance of

urther investigating this relationship in more studies. 

A potential mechanism through which brain signal variability could

nfluence behavioral variability is through increased connectivity with

he rest of the brain ( Burzynska et al., 2015 ; Garrett et al., 2018 ). When

ctivity in a brain region is more variable this could allow for more

daptability and synchronization with other relevant brain areas and

hereby result in less variable and thus better behavioral performance

 Tamnes et al., 2012 ). Indeed, local brain signal variability is related to

tronger network integration ( Garrett et al., 2018 ). This is in line with

he observed relation between brain signal variability and white matter

ntegrity ( Burzynska et al., 2015 ), suggesting that increased structural

onnectivity, facilitated by synaptic connections and structural proper-
7 
ies such as myelination, may underpin network connectivity and enable

reater brain signal variability. Importantly, the thalamus, the only re-

ion for which we found a developmental effect on the whole brain

evel, appears to play a key role here; stronger local brain signal vari-

bility in the thalamus, is related to greater network integration in adults

 Garrett et al., 2018 ). 

Our report of extremely long SSRTs in the child group, suggestive of

ttentional lapses ( Di Martino et al., 2008 ), may relate to neural vari-

bility related network integration. Attention is maintained by compe-

ition between task-based and task-free (default mode) brain networks

 Hopfinger et al., 2000 ), the interaction of which is underpinned by

tructural connectivity ( Shen et al., 2015 ). Performance that is more

table ( Kelly et al., 2008 ) and attention that is ‘in the zone’ is associ-

ted with greater anti-correlation between these networks ( Kucyi et al.,

017 ). Anti-correlation between the task-based and default mode net-

orks may be less efficient if networks are less well integrated. This may

uggest that increased lapses in attention in the child group may relate

o the reported lower levels of neural variability, as this may be indica-

ive of lower levels of network integration ( Garrett, 2018 ). As we do not

irectly report on functional connectivity in the present study, it will be

nformative for future studies to directly investigate whether functional

onnectivity does indeed underpin the reported effects presented. 

Some limitations of the present study deserve mentioning. In partic-

lar, the sample size included in the present study is relatively small.

hilst such a sample size may be acceptable for the group comparisons

hich form the main component of our findings, it does warrant caution

hen considering the reported correlations. Specifically, whilst we re-

ort a significant relationship between brain variability and behavioral

erformance in the adult group, in the child group this relationship did

ot reach significance. We are not able to conclusively state whether this

uggests that the degree of the relationship is different across the groups

indeed, we did not find a significant difference in the degree of relation-

hip, when directly compared using a Z observation), since it is possible

hat the relationship in the child group may not reach significance for

ther reasons, such as lack of power. Although the power analysis that

e conducted based on previous studies suggested that we are likely to

ave had sufficient power with the sample size included in this sample,

t is important to note that, due to the small number of previous studies

nvestigating such effects, our power analysis was based on a small num-

er of studies, themselves with small samples, which may be associated

ith publication bias and may lead to power overestimation. Thus, it

ill be necessary for future studies to investigate these relationships in

arger samples. Finally, our intention in the present study was to include

rain regions that are typically activated during response inhibition. We

ocused on inferior frontal and basal ganglia regions as these are regions

hat have both commonly been associated with response inhibition and

ave previously been investigated in the context of neural variability

 Garrett et al., 2018 ). However, additional brain regions that we did

ot investigate here may also play a role in response inhibition. Future

tudies will be required to establish whether the findings reported ex-

end to other regions, such as the pre-supplementary motor area, which

ere not included in the present study. 

An important avenue for future research will be to assess whether

t is possible to stimulate children to perform less variably. Cognitive

raining seeking to improve the consistency of performance may be asso-

iated with distinct performance benefits, irrespective of whether there

s also an associated change in the mean. At present, this suggestion is

peculative as cognitive training studies typically focus on improving

ean performance and little is known about whether it is possible to

pecifically improve performance variability and if so, whether this is

ssociated with specific transfer effects ( Smid et al., 2020 ). 

To conclude, the present study is the first to examine behavioral and

eural variability during response inhibition from a developmental per-

pective. Whilst children performed at adult level when looking at av-

rage measures, children’s response inhibition performance was more

ariable. In contrast, adult brain signal variability was higher than in
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hildren. Furthermore, increased brain signal variability in regions of

he inhibition network in adults was associated with reduced perfor-

ance variability. This may suggest that variability in stopping perfor-

ance is increasingly associated with neural variability in the inhibi-

ion network in adulthood. Together these results underscore the im-

ortance of examining behavioral and neural intra-individual variabil-

ty measures. Neural and behavioral variability indices might be a more

ensitive measure of developmental differences compared to the stan-

ard average-based measurements and changes in executive functions

ight be best understood in terms of performance consistency. 
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