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Hydrogen donation by catalytic decomposition of bio-acids was investigated.
Ten transition metals were tested as loading metals for bio-acids adsorption.

Mo loaded nitrogen doped carbon nanotubes facilitated bio-acids decomposition.
Formic acid exhibited great potential as an alternative hydrogen donor.

Interface interactions were analysed by electrons density and atomic charges.
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Abstract

Biomass-derived carboxylic acids (e.g. acetic acid AcOH and formic acid FA) are
a green and low-cost hydrogen source to replace hazardous H» gas in in-situ
hydrogenation processes. To date, bio-acids dehydrogenation has been mainly conducted

using noble metal catalysts which would negatively impact the process economy, thus
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development of efficient non-noble metal catalysts for this purpose is highly desirable. In
this study, the performance of transition metals supported on nitrogen doped carbon
nanotubes were thoroughly evaluated by computational modelling based on Density
Functional Theory (DFT). Results revealed that, out of the 10 selected transition metal
candidates, molybdenum (Mo) was most active for binding AcOH and a combination of
Mo and nitrogen doping significantly enhanced binding to the carboxylic acid molecules
compared to pristine CNT. The newly designed Mo/N-CNT catalysts considerably
facilitated the bio-acids decomposition compared to the non-catalytic scenarios by
lowering energy barriers. FA distinctly outperformed AcOH in hydrogen donation over
Mo/N-CNT catalysts, through its spontaneous cleavage leading to facile hydrogen

donation.

Key words: Acetic acid (AcOH); Formic acid (FA); Carbon nanotubes (CNTs);

Molybdenum; Biomass

1. Introduction

The rapid economic growth and increase in the global population have accelerated
the consumption of fossil resources. This has resulted in an unprecedented increase in the
level of CO; and other greenhouse gases (GHG) emissions, threatening the future of our
planet by contributing to global warming [1]. Therefore, alternative sustainable

feedstocks are needed to meet the demands for organic chemicals and fuels.

Non-edible and waste biomass such as lignocellulose and triglycerides are
considered a sustainable source of carbon that can be used to produce green and low-cost

chemicals and fuels. However, lignocellulosic biomass has high oxygen content, thus
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itself or its derivative has to undergo some deoxygenation steps to be converted to the
desired products [2]. Conventionally, deoxygenation is conducted via hydrogenation
using precious metal-based catalysts and molecular H>. However, this approach can have
negative impact on process economy and safety, owing to the high cost of precious metals
(e. g. Pt, Pd, and Ru) and the need for high H» pressure (> 30 bar) [3]. Therefore,
alternative sustainable hydrogen sources, as well as the efficient catalysts to maximise

the energy efficiency of the hydrogen transfer process are sought after.

Various alternative organic hydrogen donors have been reviewed in detail in our
previous work [4]. Among them, bio-acids are promising, not only as hydrogen donors,
but also as potential chemicals for hydrogen storage [S]. The research on bio-acids
decomposition for in-situ hydrogen generation has been focused mainly on acetic acid
(AcOH) and formic acid (FA) [6-8], because they are abundant in bio-oil and more
readily decomposed compared to other bio-based carboxylic acids [9,10]. Jiang et al. [6]
predicted the pathway of FA decomposition over Cu (111) as HCOOH — HCO+OH —
H+CO+OH. Li et al. [11] reported the decomposition mechanism of AcOH over Co (111)
stepped surface, suggesting that the reaction pathway follows CH3:COOH —
CH;CO+OH— CHCO+H+OH — CH;+CO+H+OH — CH+CO+2H+OH. There are
other different reaction mechanisms over noble metals, producing CHs and CO from
AcOH decomposition, and CO; and H> from FA decomposition, respectively [7,12,13].
Also, our previous DFT study demonstrated that Mo (110) exhibited a great potential as
a catalyst for the dehydrogenation of FA and AcOH, due to their exothermic property and
lower energy barriers during the decomposition [4]. Nevertheless, unsupported metal
catalysts are rarely used in practice because metal clusters are usually needed to be evenly

dispersed on a high surface area support to maximise the interface between the reactants
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and the catalytic sites. Furthermore, the interaction between the support and the metal can
have significant impact on the activity and selectivity of the catalytic system, therefore
selection of an appropriate support and understanding the metal-support interactions are

crucial to the smart catalyst design [14].

Several studies have reported the decomposition of bio-acids over heterogeneous
catalysts with a variety of supports including metal oxides [15,16], zeolites [17], as well
as carbon based materials [18,19]. Among the various types of supports, carbon
nanotubes (CNTs) are very interesting materials, owing to their excellent thermal stability
(up to 3000K), carbonaceous deposit resistance, as well as large specific surface area
(over 1000 m%/g) which allow a higher metal dispersion compared to other supports
[20,21]. Additionally, CNTs can be prepared using residual biomass, contributing to the
reduction in carbon footprint [22—24]. CNTs functionalised with transition metals [25],
defects and heteroatoms [26,27] have demonstrated to be promising catalysts for redox
reactions by achieving high conversion rates and selectivity to the desired products [28].
For example, N-doped CNTs have shown remarkable activities in redox reaction by
tailoring the local electron property [29]. Metal doped CNTs have also shown promising
results in the hydrodeoxygenation of anisole [30], Aerobic oxidation of 5-
hydroxymethylfurfural to 2,5-furandicarboxylic acid [31] , and transformation of furfural
to cyclopentanone, as well as in-situ hydrogen generation via decomposition of bio-acids
[32]. Ding et al. [33] reported the decomposition of FA into CO» and H, over Pd/CNTs at
room temperature with a high turnover frequency (TOF) of 1135 h™!. Nabid and co-
workers [34] synthesized Ag core Pd shell nanoparticles supported on CNTs without any

additives and achieved FA dehydrogenation with an overall activation energy of 28.28
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KJ mol ™. Bi et al. [35] modified CNTs by N doping, achieving TOF > 5000 h"! and near

complete conversion of FA.

In a N-CNT support, four types of nitrogen atoms could be present (as illustrated
in Fig. 1); 1) graphitic N (Ng-CNTs), 2) (vacancy) pyridinic N (referred as pyridinic
nitrogen in this work, Np-CNTs), 3) pyrrolic N, and 4) pyridinic N-O. Previous
investigations into N-CNTs indicate that Ng-CNTs and Np-CNTs are the most common
types of N dopants in CNTs [36,37]. Pyridinic N atoms (Np) are normally located at the
edges or in the vacancy of the CNT surface and are bonded to two carbon atoms, and the
three sp2 orbitals are occupied by four electrons, where two electrons are used to form
two 0 bonds with carbon atoms, and the other two hybridized electrons form a lone pair.
The remaining electron in Nj joins the adjacent carbon atoms to form a © bond. The lone
electron pair would endow the Np-CNTs with Lewis basicity, while the « electron acts as
an electron acceptor [38—40]. N has similar sp2 hybridisation as Nj; four orbitals are
occupied by only four electrons to form three 6 bonds and one =, and the fifth electron is
not accommodated in a bonding orbital, because it is in a higher energy state and

delocalised from the N site, functioning as an electron donor [29,41,42].
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Fig. 1 Common types of N doping in carbon matrices [37,43]

Due to the different basicity and acidity, each of the various doping types of N in
CNTs promotes different catalytic reactions [44,45]. Although experimental data suggest
that functionalised CNTs are promising catalysts for in-situ hydrogen generation from the
decomposition of bio-acids [33-35], the literature on the reaction mechanism is very
limited. Particularly, the interactions between each functional component of the CNTs

catalyst composite have rarely been explored.

In this study, the catalytic decomposition of AcOH and FA for hydrogen
production over the metal supported on N-CNTs was investigated with a focus on the
cleavage of hydrogen related bonds. Ten transition metals including Ni, Mo, Fe, Co, Pt,
Rh, Ru, Zn, Cu, and Pd, as well as six types of CNT-based catalyst supports (5
functionalised CNT and the pristine CNT) were compared with respect to their binding
energy in adsorbing AcOH. AcOH and FA were then evaluated in terms of their

adsorption process and reactivity in dehydrogenation over the Metal/N-CNT catalysts,
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and the cleavage of the corresponding bonds was tracked throughout the decomposition

reaction.
2. Methodology

The first-principle density functional theory with dispersion correction (DFT-D)
calculations was implemented in CASTEP, and models were established in Materials
Studio 2017 R2 from BIOVIA [46,47]. The generalised gradient corrected approximation
(GGA) [48] treated by the Perdew—Burke—Ernzerhof (PBE) exchange-correlation
potential with long-range dispersion correction via Grimme’s scheme was used to
calculate the exchange-correlation energy [49]. The on-the-fly generated (OTFG) ultra-
soft pseudopotential was employed as the scheme in the representation of reciprocal space
for all the elements [50,51]. The plane-wave cut-off energy was set to 600 eV for all the
calculations based on its independence test (Fig. S1a). The Brillouin zone was sampled
using a 2x1x4 Monkhorst-Pack k-point (spacing of 0.03 A!) with a smearing of 0.1 eV,
based on its independence test (Fig. S1b). The self-consistent field (SCF) tolerance was
set to 107® eV/atom. The entire calculation was performed with a convergence threshold
of 1073 eV/atom on energy, 0.03 eV/A on maximum force, and 107> A on the maximum

displacement. No symmetry constraint was used for any modelling.

All the models were based on a two-unit supercell of achiral zigzag (n=12, m=0,
©=0°) form single wall CNT (SWCNT) with a diameter of 9.5 A. A 15 A vacuum region
was created above the top of the CNT. Based on the tests with larger supercell models,
the size of CNT model used in this study would be adequate to get reliable computation
results (Fig. S2). Geometry optimisation was implemented to every model before energy

was calculated. The transition state (TS) was completely determined by the LST/QST
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method, and the TSs for the dominant reaction steps were confirmed by the unique
imaginary frequency (Table S2). Hirshfeld charge was calculated for atomic electron
analysis. The adsorption energy (Eaq) was determined by Eq. 1, where Ecatalyst, Eadsorbate
and Eadsorbate/catalyst are the total energies of clean catalyst, free adsorbate molecule and
catalyst with adsorbed molecule, respectively. The energy barriers of reactions (Evarrier)
were determined by the difference between the energies of transition state and reactant,
as shown in Eq. 2, where Etrnsition state and Ereactant are the total energies of the transition

state and reactant of a reaction, respectively.

Ead = Eadsorbate/catalyst - (Ecatalyst + Eadsorbate) Eq 1

Ebarrier = Etransition state = Ereactant Eq 2

The bond dissociation energies (BDEs) were determined by Eq. 3, where Emolecule
is the molecule energy, and Efagmenss 1S the energy summation of each decomposed

fragments from bond cleavage.
BDE = Emolecule - Efragments Eq 3

The electron density difference (EDD) was determined by Eq. 4, where
Padsorbate@cata 1S the electron density of the whole system of adsorbate and catalyst, and
Padsorbate aNd Peata are the unperturbed electron densities of the adsorbate and the catalyst

structure, respectively.

Ap = Padsorbate@cata = (padsorbate + pcata) Eq 4
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3. Results and discussion

3.1 Impact of metal and nitrogen type on acetic acid adsorption energy

To evaluate the performance of various transition metals and N-CNT catalyst
supports, the adsorption energy of AcOH on 10 Np-CNT supported transition metals as
well as the corresponding unsupported metals were compared, as shown in Fig. 2 and Fig.
S3. The results reveal that the adsorption energy of AcOH on the supported metals is
generally larger than that of the unsupported metal facets [4], indicating the enhanced
interactions between AcOH and the CNT supported catalysts. Among the selected
materials, Mo and Pt supported on Np-CNT exhibited the strongest AcOH binding energy
(1.76 eV), implying that they are probably more catalytically active than other transition
metals selected in activating carboxylic acids. Since precious metal catalysts were

avoided in this study, Mo was selected for further investigation.

Mo Pt Fe Co Zn Ru Cu Pd Rh Ni
0.00
0.20
L0.30
-0.40
—
> 047
— -0.60
> L0.58 .60
o -0.67 -0.66
T -0.70 L0.71
2 -0s0
7]
c 0.88
O 100 L0.91
=
a -
I~ 1.00 -1.07
=] :
a 120 118
= 123 s
< 1.31 -
-1.40 o
140 138
-1.60 158 Metal/Np-CNT = Metal Slab
-180 176 -1.76

Fig. 2 Adsorption energy of acetic acid over metal/Np-CNTs (from this work) and pure

metal facets (from our previous work [4]).
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The structure of the aforementioned two common types of N-CNT models (Np-
CNT and Ng-CNT) supported Mo catalysts was established and demonstrated in Fig. 3,
along with the pristine CNT model. The impact of different N chemical environments on
the adsorption energy of AcOH on the metal-doped and metal-free CNT was compared,

and the results are summarised in Table 1.

Fig. 3 Models of (a) Mo/CNT (b) Mo/Ng-CNT (c) Mo/N,-CNT (grey denotes carbon,
green denotes Mo, blue denotes nitrogen, red denotes oxygen and white denotes

hydrogen)

Table 1 Adsorption energy of AcCOH on (functionalised) CNTs

Active site (catalyst) Mo/Ny-CNT  Mo/Ng-CNT  Mo/CNT  Np-CNT  Ng-CNT  CNT

Eat (AcOH) (V) -1.76 -1.61 -1.72 0.73% 073 -0.63*

*only stable weak adsorption observed, and the corresponding configurations are shown in Fig.S4.

Results showed that the pristine CNT as the catalyst led to the lowest adsorption
energy (close to physical adsorption, distance larger than 3A) of AcOH. N-CNTs gave
rise to slightly larger adsorption energy, however, no obvious difference was observed
between Nj and N, types; the distances between the molecule and catalysts for the above

cases were all larger than 2.7A (Fig.S4). The modelling results reveal that the adsorption
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energy of AcOH significantly increased when Mo was present on the CNT surface, with
simultaneous shorter distances (around 2A) between the molecule and catalysts,
confirming the binding promotion effect of Mo on the AcOH adsorption, in agreement
with the literature [4]. Over Mo/N,-CNT, AcOH exhibited the highest binding energy (-
1.76 eV) than that of Mo/Ng-CNT and Mo/CNT, ascribed to the unpaired electron of
pyridinic N which acts as electron acceptor (Lewis acid), reinforcing the binding between
the catalyst and the adsorbate molecule [52]. This also explains the slightly lower
adsorption energy of AcOH over Mo/CNT. Compared to Mo/N,-CNT and Mo/CNT, the
adsorption energy was obviously decreased by Mo/Ng-CNT, indicating the weaker
binding between the AcOH molecule and Mo/Ng-CNT, resulting from the
aforementioned delocalized electron of Ng [29]. It is also found that Np-CNT and Ng-CNT
exhibit different acid and base effects on AcOH adsorption only in the presence of Mo,
which can be attributed to the synergistic effects between N and Mo atoms, in line with
the reported results in the literature [40,53]. This difference in term of acid and base
effects may also endow the catalysts with different redox properties. It is thus
hypothesised that the two types of N doping would lead to different catalytic performance
of Mo/N-CNTs in the decomposition of bio-acids. Besides the adsorption performance,
the stability of these two catalysts were tested (Fig.S5). Results show that Mo/Np-CNT
had higher thermal stability, and thus could operate in high temperatures up to 1000 K
with little distortion, whereas Mo/Ng-CNT is suitable for milder temperature (600 K)

operation scenarios.

3.2 Dehydrogenation of acetic acid over Mo/N-CNTs

Different adsorption energies of AcOH in various configurations (Table S1) over

the two types of catalysts of Mo/Np,-CNT and Mo/Ng-CNT are compared in Table 2. The
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bond dissociation energies (BDEs) of each bond in free molecule are shown in Fig. 4 for
comparison. In both cases, AcOH bonded onto Mo by chemical adsorption through Cg-
Mo, Os-Mo, and Og-Mo, and by weaker binding through Cy-Mo, where Mo/Np-CNT
resulted in higher binding energy than Mo/Ng-CNT in all strong adsorption circumstances.
Interestingly, dissociative adsorption was observed when AcOH bonded to the Mo/Np-
CNT through Og-Mo, where the molecule decomposed into hydroxyl and acetyl (with the
C-O bond distance of 2.7A) during the adsorption. The dissociative adsorption is common
for molecular hydrogen adsorption over transition metals [54], however the dissociative
AcOH adsorption is observed for the first time. The dissociative adsorption of AcOH
simultaneously led to the largest adsorption energy of -2.61eV over Mo/N,-CNT through
Op-Mo bond. The same Opg-Mo bond also led to the largest adsorption energy of -2.11eV
when AcOH molecule adsorbed on Mo/Ng-CNT. The difference between the adsorption
energies of AcOH on Mo doped Ng- and Np-CNT catalysts is associated with their
electron donation and acceptation properties respectively, where Np-CNT with higher

acidity shows stronger binding to AcOH.

Table 2 Adsorption energy of AcOH on Mo/N-CNTs with different configurations

Ead (AcOH) (eV) Co-Mo Cp-Mo O4-Mo Op-Mo
Mo/N,-CNT -0.58* -2.41 -1.76 -2.61
Mo/Ng-CNT -0.75% -1.99 -1.61 -2.11

*only stable weak adsorption observed
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Fig. 4 Dissociation energy for each bond (blue font) in acetic acid free molecule [4]

The most favourable reaction pathways of AcOH decomposition over Mo/Np-
CNT are shown in Fig. 5, which were determined based on the cleavage energy
calculation for each bond inside the acid molecule, as well as inside the lower fragment
structures (the lowest energy barrier values among all parallel bonds cleavage are shown,
and the details for other parallel reactions are shown in Table S3). The modelling results
predict that the decomposition of AcOH started with the dissociative adsorption,
producing hydroxyl and acetyl fragments. Subsequently, acetyl cracked into CO and
methyl fragments with a small energy barrier of 0.32 eV and reaction energy of -0.68 eV.
Further decomposition of methyl released three H atoms in sequence with the energy
barriers of 1.74 eV, 1.47¢V and 2.54 eV, respectively. Another H cleaved from the
hydroxyl with an energy barrier of 2.03 eV. It is found that over Mo/Np-CNT, the majority
of elementary steps amid the favourable reaction pathway of AcOH decomposition are

endothermic, except the thermodynamically favoured C-C and initial C-O cleavage.
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Fig. 5 Reaction flow of the decomposition of AcCOH over Mo/N,-CNT (Blue font denotes

energy barrier and violet denotes reaction energy)

AcOH did not show dissociative adsorption over Mo/Ng-CNT (Fig. 6 and Table
S1), instead the adsorbed structure underwent facile decomposition to produce acetyl and
hydroxyl with a small energy barrier of 0.21 eV (Table S3), with an exothermic reaction
energy of -0.77 eV. The modeling shows that the C-C bond strength in the adsorbed acetyl
group was reinforced over Mo/N,-CNT, with a shorter bond length of 1.49A compared
to 1.53A over Mo/N,-CNT and 1.51A in free molecule status [4,55], and this change
would be analysed in detail in Section 3.4. As a result, the C=O bond cleaved firstly,
retaining the structure of CH3-C. CH3-C would then decompose into methyl fragment and
carbon atoms with a large energy barrier of 2.47 eV. The cleavage of C=O prior to C-C
was also observed in the decomposition of AcOH over a Mo slab in our previous research
[4]. The release of H atoms from methyl over Mo/Ng-CNT had the energy barriers of 0.36
eV, 0.72 eV and 3.74 eV, respectively. Besides, the cleavage of hydroxyl over Mo/Ng-

CNT required additional energy of 1.58 eV. The cleaved H atoms from the decomposition
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migrate or spill over in real hydrogenation circumstances [56].

L !
& 1.936V ¢ i
i g 0.76eY bt H =
g-cr ® el
& ¥ gh
MO s it
CNT CNT
He
a @ o : ;
®. w7 0.21eV W W D 036y = oty M b 3 7daV
T 077V | o c o S shyv 005y & 166V (@ |
p. é. wc & sl O P .
Ma Mo Mo Mo Mo Mo
T52.1 TS24 T525 1526
N1 I Ng-CNT I
o-u 1586V =
i 057V @ @
Mo ‘Mo Mo

Fig. 6 Reaction flow of the decomposition of AcCOH over Mo/Ng-CNT (Blue font denotes

energy barrier and violet denotes reaction energy)

In comparison with the free molecular decomposition of AcOH [4], shown in Fig.
4, the cleavage energy of each bond in AcOH has been significantly decreased, suggesting
that both Mo/N-CNT catalysts facilitate the decomposition of AcOH. The modelling
results predict hydroxyl cleavage occurred at the beginning of the AcOH decomposition
over both types of Mo/N-CNTs, which is different from the pathways over pure metal
facets e.g. Mo and Rh [4,57]. Specifically, the formation of acetate is supressed at the
beginning of reaction, and the donation of methyl hydrogens occurs as final steps over

both types of Mo/N-CNT.

Driven by its electrophilicity (electron acceptor) property, Mo/N,-CNT gives rise
to a barrier-free dissociation during the AcOH adsorption, whereas Mo/Ng-CNT leads to
a small energy barrier for the same decomposition. The modelling predicts different
favourable pathways for AcOH decomposition over the two Mo/N-CNTs catalysts.

Mo/Np-CNT favours the C-C cleavage with an energy barrier of 0.32 eV, which is
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significantly lower than that in the reaction over a pure Mo slab with an energy barrier of
4.22 eV. This is in perfect agreement with a commonly reported favourable reaction
pathway for AcOH decomposition [10,14,58], with the merit of few hurdles before the
hydrogen donation, while the release of the four hydrogens from the lower fragments of
methyl and hydroxyl are mostly endothermic processes with higher energy barriers. This
may ease CH4 and CO formation during the hydrogen donation process [10,59]. In
contrast, the release of methyl H and the hydroxyl H show smaller energy barriers over
Mo/Ng-CNT than over Mo/Np-CNT, indicating the dedicated function of Mo/Ng-CNT in
facilitating the dissociation of the C-H bond. However, the hydrogen donation has to first
overcome the early stage decomposition steps with much higher energy barriers such as

C-Oq and C-C cleavages.

3.3 Dehydrogenation of formic acid over Mo/N-CNTs

The adsorption of FA over Mo/N,-CNT and Mo/Ng-CNT in a variety of
configurations was modelled and the adsorption energies are compared in Table 3. The
corresponding configurations are shown in Table S1. The free molecular structure of FA
and the associated BDEs of each bonds are shown in Fig. 7. The results reveal that the
FA molecule binding to the catalyst via a C-Mo bond led to the largest adsorption energies,
for -3.54 eV over Mo/N,-CNT and -2.75 eV Mo/Ng-CNT, respectively, followed by the
binding through the O,-Mo bond over Mo/N,-CNT (-1.75 eV) and Mo/Ng-CNT (-1.55
eV). FA adsorption via the Opg-Mo bond resulted in the lowest adsorption energies
compared to other configurations with energies of -0.81 eV over Mo/Np-CNT and -1.15
eV over Mo/Ng-CNT. Interestingly, the dissociative adsorption was observed for FA
adsorption over both catalysts, which happens to AcOH only over Mo/Np-CNT. The most

favourable reaction pathways for FA adsorption and decomposition in both cases are
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depicted in Fig. 8 and Fig. 9 respectively. More details regarding the parallel reactions

are shown in Table S3.

Table 3 Adsorption energy of FA onto Mo/N-CNTs with different configurations

Adsorption Energy of FA (eV) C-Mo Oq«-Mo Op-Mo
Mo/Np-CNT -3.54 -1.74 -0.81"
Mo/Ng-CNT -2.75 -1.55 -1.15

*only stable weak adsorption observed

Formic acid molecule

Fig. 7 FA molecule with cleavage energy barriers (blue font) in free molecule [4]

Over Mo/Np-CNT, the dissociation amid the adsorption of FA led to the
simultaneous barrier-free cleavage of C-H and C-Og with the adsorption energy of -3.54
eV, producing three lower fragments of bonded CO, hydroxyl and H atom. The other
hydrogen release from hydroxyl showed a 1.98 eV intrinsic energy barrier with the
reaction energy of 0.41 eV. Over Mo/Ng-CNT, the FA molecule underwent analogous
dissociative adsorption without any energy barriers and produced aldehyde and hydroxyl
fragments. The aldehyde H was then cleaved with a small energy barrier of 0.36 eV during
an exothermic reaction with -1.34 eV energy, and the hydroxyl cleavage would release

the other H atom in a -0.49 eV exothermic process, with an energy barrier of 1.57 eV.
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Fig. 8 Reaction flow of the decomposition of FA over Mo/Np-CNT (Blue font denotes

energy barrier, and violet denotes reaction energy)

The reactions involved in FA decomposition over both catalysts are facilitated
through lower intrinsic energy barriers compared to the free molecule scenario (Fig. 7).
The model also predicts that Mo/N-CNTs give rise to different favourable reaction
pathways of FA decomposition in comparison with common catalysts [19,60,61]. Instead
of the formation of carboxylic or formate intermediates, the dehydroxylation reaction
occurs at the beginning, giving rise to facile hydrogen donation at the early stage. The
dehydroxylation is also reported to take place over the Cu (111) facet, but normally with
a higher energy barrier [6]. Compared to the decomposition of FA over pure Mo [4],
Mo/N-CNTs exhibit better performance in terms of facilitating hydrogen donation by

lowering the energy barriers and by decreasing the number of reaction steps.
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Fig. 9 Flow chart for the decomposition reaction of FA over Mo/Ng-CNT (Blue font
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The two H atoms in the FA molecule show different readiness for donation over
the catalysts. Modelling results predict that the H-C bond is more likely to cleave over
Mo/N-CNTs compared to the hydroxyl H. Especially, N, doped CNT induces barrier-free
H release during the adsorption, which is comparable to H» dissociation over the transition
metal surface. The C-H bond cleavage was unfavourable in some circumstances, €.g. over
a Mo slab or a Pd/C catalyst [4,62], but it turns out to be much facile over both catalysts
in this study. In comparison, the release of hydroxyl H is more difficult than aldehyde H,
therefore leading to the peak energy barrier of FA decomposition over both Mo/N-CNTs.
It is found also that Mo/Ng-CNT leads to a smaller energy barrier for the release of
hydroxyl H than Mo/N,-CTN does. But it is also noteworthy that the dissociative

adsorption energy of FA over Mo/Np-CNT is much larger than that for Mo/Ng-CNT,
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which could potentially contribute to the consequent cleavage of hydroxyl and the

hydrogen donation (migration) by preventing the formation of H>O [19].

The modelling has predicted different potentials of hydrogen donation for FA and
AcOH. Despite the larger number of H atoms in AcOH, FA has a greater potential for in-
situ hydrogen donation over both Mo/N-CNTs catalysts, especially in mild temperature
conditions. This is mainly attributed to the facile cleavage of the C-H bond during the
initial step of interaction between FA and Mo/N-CNT catalysts, as shown in Fig 8 and

Fig 9.

3.4 Electron density difference (EDD) and atomic charge analyses for typical groups

The reaction modelling results indicate that Mo/Ng-CNT and Mo/Np-CNT show
different performances in facilitating hydrogen donation by affecting the decomposition
of typical groups. Specifically, Mo/Ng-CNT is capable of preferentially activating O-H
and C-H bonds, and Mo/Np-CNT would enable the ready cleavage of the C-C bond. To
gain new insights into the interaction between the catalysts and reactants, an electron
density difference (EDD) analysis was carried out on the typical intermediate groups of
acetyl, methyl and hydroxyl over both catalysts, as shown in Fig. 10, 11 and 12. Atomic
charge was also calculated and assigned to each atom as an indicator for interatomic

covalency (Table S4).

The analysis reveals that N, and Ng give rise to different electronegativity effects
towards the lower fragment groups, and this is consistent with the catalytic property of
both doping types. For the acetyl over Mo/N,-CNT, electron loss and enrichment were
both found around Cg, and mainly electron enrichment around methyl and oxygen is

observed. As aresult, Cg and methyl tend to be electronically neutral prior to the cleavage,
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evidenced by the net group charges of 0.01 and 0.00, respectively (Table S4). In the case
of Mo/Ng-CNT, Mo had less electron loss, but there was more electron enrichment to
make the Cg absolute electric neutral (charge = 0.00), owing to less electron enrichment
on Ng and the delocalised electron compensation from Ng. However, fewer electrons were
found to migrate to the methyl group in this circumstance, leading to an overall positive
charge (0.08) for the methyl in acetyl over Mo/Ng-CNT. The electronic analyses elucidate
the modelling results that the cleavage of the C-C bond is much more facilitated by
Mo/Np-CNT; the catalyst enables more electrons loss on Mo, so that it reinforces the Mo-
Cp bond. Simultaneously, it gives rise to electron enrichment on Cp and the methyl group,
which eventually reduces the strength of the C-C bond and makes it ready to cleave. This
is confirmed by the difference in the C-C bond length (1.526A and 1.490A) over the two
catalysts, as shown in Fig. 10. Such a mechanism is also supposed to contribute to the
stabilisation of the Mo-Og bond and the consequent dissociative adsorption of AcOH over
Mo/Np-CNT, where C-Og cleaves. Besides, the results also imply that methyl cleavage
from acetyl in these circumstances tends to be homolytic, evidenced by the atomic charge

analyses of the corresponding transition states (Fig.S6).
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Fig. 12 EDD analyses (threshold value: +/- 0.2 electrons/A%) of the hydroxyl groups
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Regarding the adsorbed methyl, electron enrichment around carbon was observed
when it was adsorbed on Mo/N,-CNT, mainly resulting from the electron loss of Mo. In
contrast, the methyl group in bulk gained more electrons over Mo/Ng-CNT (Table S4),
revealing the effect of the delocalised electron from graphitic doping of N. It is
noteworthy that not only the C atom, but also the H atoms are electron enriched in such
circumstance, resulting in near charge neutrality of the H atoms and consequently
facilizing the hydron donation, analogues to those in the H> molecule. More obvious
activation of the C-H bond over Mo/Ng-CNT can be observed in Fig. 11 based on the
increased Mo-C-H bond angle (to 115.0°), compared to that over Mo/Np-CNT and 109.5°
in common CHj3" tetrahedron structure. The results are in line with the reaction modelling
results, and also suggest that methyl is more likely to release hydrogen through homolytic
cleavage over Mo/N-CNTs (this is also evidenced by the atomic charge analyses of the
corresponding transition states in Fig.S6), benefiting from the electron enrichment

between C-H.

For the adsorbed hydroxyl, less electron loss (more electron back donation) to the
H atom was found to take place over Mo/Ng-CNT, as shown in Fig. 12. The adsorbed
structures also exhibit stronger bent (to be 129.1°) of  MoOH over Mo/Ng-CNT,
compared to that (137.7°) over Mo/Np-CNT, indicating O-H is more activated in this case,
with strengthened covalent character of the Mo-OH bond [63]. The release of hydroxyl
H is thus facilitated compared to that over Mo/N,-CNT. Nevertheless, even though Mo

has similar electron loss to that binding to the methyl group, the hydroxyl H is not charge
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neutrality, but carries positive charges over both catalysts (Table S4). This may be
because of the large electronegativity of oxygen, giving rise to higher energy barriers for
the homolytic cleavage (Fig. S6) of H-O* than *CH»-H. The homolytic cleavages of
hydroxyl during acid decomposition would require more electron enrichment. This agrees

with the reaction modelling results shown in Fig. 5 and Fig. 6.

Generally, the results of EDD analyses in this study suggest that Mo/N,-CNT
would facilitate the C-C cleavage, and Mo/N-CNT favours the cleavage of H contained

bonds, eventually benefiting the in-situ H donation.

4. Conclusions

This study provided predictions of the hydrogen donation behaviour of bio-acids
over the metal loaded N-doped CNTs by DFT calculation. Ten different transition metals
and six CNT-based catalysts were modelled. Adsorption modelling indicated that the
Mo/Np-CNT catalyst gave rise to the strongest binding with the adsorbed acid molecule,
followed by Mo/CNT and Mo/Ng-CNT. The reaction modelling of the decomposition of
AcOH and FA was carried out based on the catalysts of Mo/N,-CNT and Mo/Ng-CNT,
with the emphasis on the H related bond cleavages. The results revealed that Mo/N-CNTs
significantly lowered the decomposition energy barriers for both AcOH and FA, while
different types of N doping gave rise to various reaction pathways. The most favourable
reaction pathways for the decomposition of AcOH over Mo/Np-CNT and Mo/Ng-CNT
were CH;COOH — CH3;CO — CH3 — CH2; — CH — C, and CH;COOH — CH3;CO —
CH;C — CH3; — CH> — CH; — C, respectively. In comparison, FA experienced barrier-

free decomposition and released hydrogen through HCOOH — H + CO + OH, during its

adsorption over Mo/N,-CNT. Over Mo/Ng-CNT, FA underwent similar dissociative
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adsorption through HCOOH — HCO + OH, where aldehyde H could be released with a

small energy barrier of 0.36 eV. The hydroxyl H release exhibited larger energy barriers
over both catalysts. Further electronic analyses revealed that Mo/Np-CNT would
selectively facilitate the homolytic cleavage of the C-C bond, whereas Mo/Ng-CNT would
promote the homolytic cleavage of C-H and O-H, through electron enrichment. The
modelling work also predicted that FA has more superior hydrogen donating capability
than AcOH over the Mo/N-CNT catalysts due to lower energy barriers, suggesting the in-
situ hydrogen donation of FA would potentially occur in milder conditions than that of

AcOH.
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