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ABSTRACT
Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences
between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular
crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat
methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free
energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping
by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles,
each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of
precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the
individual free energy differences.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024727., s

I. INTRODUCTION

Once regarded as a rare curiosity, polymorphism is now rec-
ognized as a ubiquitous and important phenomenon from met-
als1 to minerals2 to molecular crystals.3 Polymorphs are dif-
ferent crystal structures for the same molecule or compound.
Different polymorphs have different properties, e.g., different cat-
alytic activities,4–7 different photophysical properties,8–10 different
mechanical properties,11,12 and different thermodynamic stabili-
ties. For active pharmaceutical ingredients (APIs), which are often
formulated as molecular crystals, thermodynamic stability is of
paramount importance. The discovery and characterization of API
polymorphs, especially the most stable forms, is important for ensur-
ing reliable crystallization processes, for making stable products,
and for optimizing solubility and bioavailability.13,14 Polymorph

screening has become integral to pharmaceutical product develop-
ment,15,16 and computational studies are already making important
contributions.17

Ongoing efforts in computational polymorph screening are
directed at three different aspects of the problem. First, crystal struc-
ture prediction seeks to discover all local energy minima in the
enormous space of periodic crystal structures.18–21 Second, thermo-
dynamic property calculations seek to determine relative stabilities
and absolute solubilities for the most stable structures.22,23 Third,
studies of nucleation24–27 and growth kinetics28–30 seek to predict
and control polymorph appearance and crystal growth habits.

This paper focuses on thermodynamic property calculations,
specifically on the relative free energies of different polymorphs.31

The importance of free energies beyond lattice energies is under-
scored by the work of Nyman and Day, who studied 508 organic
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molecules and found that 9% of their polymorphic pairs have
their relative stability reversed (at or below room temperature) on
accounting for entropy.32 Moreover, the observed polymorphs have
free energies that typically differ by only a few kJ/mol, so extremely
accurate models and methods are required to make quantitative
conclusions.31,32

Several methods for computing polymorph free energies have
already been developed. Ab initio calculations can predict free ener-
gies from 0 K lattice energies, zero-point energies, and harmonic
vibration/phonon mode contributions. Ab initio calculations can
be performed for any new compound with no force field devel-
opment, but the predictions are sensitive to the model chemistry,
i.e., to the choice of density functional, basis set, etc.33–35 Recent
advances have targeted high accuracy with state-of-the-art density
functionals, dispersion corrections, and anharmonic vibrational cor-
rections.36–39 For these methods, entropic contributions beyond har-
monic vibrational analyses are challenging because the ab initio
calculations are (at present) too costly for advanced sampling meth-
ods.40,41 However, quasi-harmonic approximations can also be quite
accurate as long as the anticipated structural minimum does not
restructure during molecular dynamics (MD) simulations at/above
the temperature of interest.42

Advanced sampling techniques in molecular simulation are
(at present) limited by force field availability and accuracy. How-
ever, they can fully capture entropic contributions,43–46 even for
anharmonic modes and potentially for hindered rotors as in plas-
tic crystals. Molecular simulations with path integral techniques
can, in principle, account for nuclear quantum effects such as zero-
point contributions. Ultimately, one hopes to combine the strengths
of ab initio calculations and advanced sampling methods by sam-
pling with ab initio molecular dynamics instead of empirical force
fields. Of course, achieving this goal will require extremely efficient
sampling methods.

The first advanced sampling methods for crystal free energies
were Frenkel–Ladd type methods,47 which transform an Einstein
crystal (or an Einstein molecule)48 to the “real” crystal.49 These cal-
culations require many stages of thermodynamic integration or free
energy perturbations, but they are powerful routes to the absolute
free energy. Frenkel–Ladd calculations can also yield polymorph free
energy differences by subtracting the results of two Frenkel–Ladd
calculations. This strategy is prone to errors because two typically
large free energies are being subtracted to obtain a typically small
free energy difference.

Alternative advanced sampling methods drive the transforma-
tion directly from one polymorph to the other by biasing along col-
lective variables. One such method, successfully used by Martoňák
et al.50 and others,45,51 biases the crystal lattice parameters to drive
the polymorph transformation. This method has not been used (and
seems unlikely to work) for typical polymorphs of organic molecules
that have to undergo large scale conformational changes or repack
with entirely different relative orientations and so lose translational
symmetry during the transformation.

A clever alternative known as lattice-switch Monte Carlo
(LSMC) biases an energy gap order parameter to drive the poly-
morph transformation.52,53 The LSMC transformation path is not
easily visualized: one maps thermal displacements atom-by-atom
from the 0 K structure for one polymorph onto the 0 K struc-
ture for the other and then computes the energy difference between

polymorphs with the same displacements to obtain the energy gap.
The energy gap varies from negative values at equilibrium for the
starting polymorph to positive values at equilibrium for the final
polymorph. In previous work, we showed that the LSMC free energy
profiles are superpositions of free energy diabats—one for the start-
ing polymorph and one for the final polymorph with the two diabats
crossing where the energy gap is zero.54 We used (and generalized55)
the Zwanzig–Bennett relation56,57 to calculate Helmholtz and Gibbs
free energy differences (ΔF and ΔG, respectively) between the two
polymorphs.

The LSMC and diabat methods show significant promise, but
nearly all applications have focused on allotropes, i.e., polymorphs
of elemental solids.53,58,59 The one exception is an LSMC calcu-
lation for polymorphs of a united-atom butane model by Bridg-
water and Quigley.60,61 They successfully implemented the LSMC
approach by mapping centers of mass, orientations, and inter-
nal coordinate displacements from one polymorph to another, but
their procedures must be implemented on a case-by-case basis
for different molecules. Moreover, the Jacobian from Cartesian
displacements (differential volume in 3 N dimensions) depends
on the internal coordinates and therefore on the polymorph.
Here, we introduce a general mapping that extends LSMC and
diabat methods to enable calculations in the same manner for
polymorphs of any organic molecular crystals. The procedures
are illustrated with calculations for benzene and carbamazepine
polymorphs.

II. OVERVIEW OF THE DIABAT METHOD
We consider two polymorphs, A and B. A finite-temperature

molecular dynamics (MD) simulation of polymorph A samples con-
figurations near, but displaced from, the 0 K crystal structure of A.
Each configuration visited in state A is decomposed into a reference
0 K configuration and a displacement vector u⃗N . The displacements
are imposed via a one-to-one mapping onto a reference 0 K config-
uration in B. The energy gap is computed by subtracting the energy
of configurations that have exactly the same displacements. Specifi-
cally, the energy gap between the two polymorphs (A and B) is given
by

ΔE(u⃗N) = EA(u⃗N) − EB(u⃗N). (1)

An observed configuration in A is mapped onto a configuration in B
(see Fig. 1) by means of atomic displacements (u⃗N).

LSMC uses regular Monte Carlo moves with a special lattice-
switch move.53,58 The lattice-switch, if accepted, switches the active
system from one polymorph to the other. The Metropolis criteria
used to accept/reject the lattice-switch move (from phase A to B) in
the canonical ensemble58,62 is

Pacc
A→B = min{1, eβΔE}, (2)

where β is 1/kBT. The method samples the free energy barrier
between the two polymorphs along the energy gap order parameter
in a single simulation.

The lattice-switch move is always rejected in the minima of
the free energy basins of the two polymorphs. This is because a
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FIG. 1. A schematic for the carbamazepine molecule where only the carboxam-
ide atoms have been shown for clarity. A configuration from an MD simulation is
compared to the 0 K reference structure to calculate the atomic displacements.
The atomic displacements are then one-to-one mapped and applied to the 0 K
form B structure to yield a mapped configuration in B. The mapping procedure is
described in detail in Sec. III (main text) and Sec. S.1 (supplementary material).

typical equilibrium configuration in A is a highly unfavorable con-
figuration in B (and vice versa). Thus, the value of the energy gap
in the basin of A is highly negative. Clearly, from Eq. (2), lattice-
switch moves are mostly accepted if the system is near states of
ΔE ≈ 0. LSMC typically uses a bias sampling strategy (e.g., transition
matrix Monte Carlo63,64) to bias the simulation to these “gateway”
states.

In seemingly unrelated research on electron transfer,65,66 free
energy diabats as functions of the energy gap obey the Zwanzig–
Bennett relation,56,57,67–69

FA(ΔE) − FB(ΔE) = ΔE. (3)

In electron transfer, the diabats FA(ΔE) and FB(ΔE) are free ener-
gies of the system restricted to one electronic state. In the context of
polymorphs, the diabats are free energies of the system restricted to
one of the two polymorphs. The Zwanzig–Bennett relation facilitates
the diabat calculations. Upon computing FA(ΔE) at ΔE, the value of
FB(ΔE) is exactly known.

The diabat methods use the Zwanzig–Bennett relation to com-
pute FA(ΔE) and FB(ΔE) for the two polymorphs. Diabat interpo-
lation yields tremendous efficiency advantages over other methods
in cases where the diabats are parabolic. Kamat and Peters used just
two unbiased simulations to compute Helmholtz free energy differ-
ences of the Gaussian core solid. The results were in good agreement
with an independent study that used the multi-stage Frenkel–Ladd
Einstein crystal method.54 However, diabat interpolation fails when
the diabats are not parabolic. The parabolic model for the diabat is an
approximation, and there is a theoretical basis to anticipate parabolic
diabats for typical atomic solids. Additionally, the Zwanzig–Bennett
relation in Eq. (3) is limited to crystals of the same density (volume),
whereas most practical applications require the isothermal–isobaric
(NPT) ensemble.

Kamat and Peters showed that Gibbs free energy diabats using
the order parameter55

ΔQ = EA(u⃗N) − EB(u⃗N) + P(VA − VB) + β−1 ln
VB

VA
(4)

obey a Zwanzig–Bennett-like relation in the NPT ensemble,

GA(ΔQ) −GB(ΔQ) = ΔQ. (5)

As with the Helmholtz version of the Zwanzig–Bennett relation,
Eq. (5) allows us to compute one Gibbs free energy diabat and obtain
the other for free.

Kamat and Peters used short unbiased simulations to construct
preliminary bias potentials to reduce the barrier of the free energy
surfaces. The free energy surfaces for the polymorphs are typically
anharmonic. A parabolic fit to the basin minima (obtained from
unbiased simulations) is used to generate the preliminary bias poten-
tials. If the true free energy surface were perfectly parabolic, the
preliminary biases flatten the free energy surface, so a single simu-
lation can sample the complete range of the order parameter. For
most cases, the preliminary bias potentials only partially flatten the
landscape, but they still reduce the computational effort required to
sample the full pathway from one polymorph to the other. Kamat
and Peters demonstrated moderate efficiency advantages compared
to the standard LSMC framework for the body-centered cubic and
hexagonal close-packed phases of zirconium.55 In this work, we
extend the diabat method to non-orthorhombic crystals of flexi-
ble molecules. The mapping procedure we propose is system inde-
pendent and easy to implement. We demonstrate the method for
benzene and carbamazepine molecular crystals. We also discuss the
efficiency advantages of the method.

III. MOLECULAR CRYSTALS
In this section, we demonstrate the method for molecular crys-

tals of the two molecules shown in Fig. 2. Benzene was selected to
illustrate the method for a plastic crystal with symmetric and/or
degenerate configurations. Carbamazepine was selected to illus-
trate that the method can be applied to complex pharmaceutical
molecules.

A. Benzene
Molecular crystals pose new challenges to the diabat approach.

In particular, symmetric molecules that can rotate or jump between
degenerate configurations within the crystal pose difficulties for
the atom-to-atom mapping procedure. In principle, any one-to-one

FIG. 2. The planar benzene molecule (left) is symmetric about the center of mass.
The carbamazepine molecule (right) has no symmetry apart from the flipping of
the amide group as the aromatic rings are not co-planar.
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FIG. 3. (a) Benzene polymorph I (Pbca, Z = 4, Z′ = 0.5) with lattice parameters (in
Å) a = 7.28, b = 9.20, c = 6.68, and α = β = γ = 90○.75 (b) Benzene polymorph III
(P21/c, Z = 2, Z′ = 0.5) with lattice parameters a = 5.41, b = 5.37, c = 7.53, α = γ
= 90○, and β = 110○.76 Figures are rendered in Mercury.77 The red and blue axes
represent lattice edges a and c, respectively.

mapping should work, but, in practice, the Zwanzig–Bennett rela-
tion is a perturbation result and its accuracy is best when small ΔQ
changes in one phase correspond to small ΔQ changes in the other.
Molecular symmetry needs special handling to give the smallest ΔQ
changes for the polymorphs involved.

Benzene is one of the simplest molecules that present all the
challenges. It has five experimentally observed polymorphs,70–72 and
up to seven possible stable phases have been reported at finite tem-
perature using a classical forcefield.51 Here, we compute the free
energy difference between polymorphs I and III (Fig. 3) with the
OPLS-AA (optimized potentials for liquid simulations all atom)
forcefield73,74 (see the supplementary material for computational
details).

For atomic solids, ΔQ was computed by directly mapping atom
displacements from one phase to the other. Directly mapped Carte-
sian displacements, however, work poorly for crystals of symmetric
molecules that can switch between degenerate configurations in the
crystal lattice. In such cases, the displacements mapped directly from
one phase to another distort the molecular structure, as shown in
Fig. 4. Bridgwater and Quigley encountered the same problem, and
they used an internal coordinate mapping in their LSMC study of
solid butane phases.60

To overcome the problem in Fig. 4, we define a local coor-
dinate system for each benzene molecule. First, we construct the
vectors from the center of mass of the molecule to carbon atoms 1
and 3, w⃗1, w⃗2 in reference phase I and W⃗1, W⃗2 in reference phase
III, as shown in Fig. 5. The linearly independent set of vectors
(w⃗1, w⃗2, w⃗2

× w⃗1) is used to construct an orthonormal basis set
(⃗b1,⃗b2,⃗b3) with Gram–Schmidt orthogonalization.78 For all other
atoms in the molecule, displacements from the reference position in
polymorph I are resolved with respect to the new orthonormal basis.
These displacements are then imposed on an analogously defined
set of orthonormal basis vectors for a corresponding molecule in
polymorph III (see the supplementary material for details). The pro-
cedure is repeated for all the molecules in phases I and III. A rotation
of the molecule i in its local plane in phase I maps as a local rotation
of the molecule i in phase III. Details on the construction of the local

FIG. 4. The t = 0 structures are reference structures of I and III. An unbiased
simulation in phase I can lead to a configuration shown at t1. A 180○ rotation of
the benzene molecule in phase I places the atoms into a perfectly acceptable
configuration. The same Cartesian displacements applied to a benzene molecule
in phase III cause severe distortions because the benzenes in phases I and III are
oriented differently.

coordinate system and the mapping procedure are available in the
supplementary material.

Collective translational motion, however, can still lead to a high
energy configuration in the mapped phase, as shown in Fig. 6, where
displacements that are easy in one phase map to high energy atom
overlaps in the other phase. We prevent the atom overlaps by adding
a system-independent and exactly removable bias. Specifically, we
use harmonic restraints on all the atoms. The lattice-switch and/or
diabat calculations are performed with these harmonic restraints
turned on so that the lattice-switch moves involve only small dis-
placements. We must then turn the restraints off at the ends of
the paths. Accordingly, our thermodynamic path, shown in Fig. 7,
mixes the diabat approach with the Frenkel–Ladd approach. Addi-
tionally, unlike the Frenkel–Ladd approach, the Lennard-Jones and
electrostatic interactions need not be turned off.

In the calculations, we start with the average volume crystal
structures for the two polymorphs as obtained from equilibration
simulation at 250 K and 1 bar (see the supplementary material
for details). We ignore the contribution from volume fluctuations
but account for the change in average volumes. See Sec. S.9 of the
supplementary material for evidence that the fluctuations are negli-
gible compared to the change in average volumes.

First, form I is reversibly transformed to form IS where all the
atoms of the molecule have harmonic restraints (subscript S denotes
the springs). Similarly, form III is reversibly transformed to IIIS.
Each benzene molecule can rotate among six degenerate minimum
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FIG. 5. The local coordinate system for each molecule helps to map local changes
in phase I to phase III with similar distortions in both phases.

energy configurations in states I and III. The harmonic restraints
bias sampling toward just one of these minima. However, the other
minima are accounted for upon reversible growth and removal of
the springs in the paths from I to IS and IIIS to III. For crystals
with large barriers between local minima, it may be necessary to use
replica exchange methods to enhance sampling while growing and
dissolving the springs.

The diabat approach is used to compute the free energy dif-
ference between IS and IIIS. We use the Zwanzig–Bennett relation
to calculate the Landau free-energies of IS and IIIS. The potential
energy functions of IS and IIIS have an additional spring energy term
relative to the potential energy functions of I and III. The Gram–
Schmidt based mapping procedure, however, causes the spring ener-
gies to exactly cancel out while computing ΔQ for forms IS and IIIS
(see Sec. S.2 in the supplementary material). Thus, the Zwanzig–
Bennett equation is equally valid for forms IS and IIIS,

GIS(ΔQ) −GIIIS(ΔQ) = ΔQ. (6)

We now describe the procedure for calculating the free energy
difference along path 2 in our thermodynamic path (Fig. 7). Unbi-
ased simulations are run for both phases (IS and IIIS). Estimates
for the local free energy surface are used to construct bias poten-
tials for umbrella sampling the free energy surfaces (see Sec. S.4 in
the supplementary material). The order parameter ΔQ requires
periodic interruption of molecular dynamics to simulate the two
phases simultaneously. The Langevin thermostat in LAMMPS equi-
librates to an incorrect temperature when combined with dynam-
ics that is restarted every single time step. We fix this problem

FIG. 6. Two molecules in phase I are one-to-one mapped to generate the corre-
sponding lattice-switch configuration in phase III. The shift in the center of mass
of the molecules in phase I is applied into phase III, as described in Sec. S.1
of the supplementary material. The collective translation motion in phase I is an
energetically unfavorable configuration in phase III.

by using a custom implementation of the Langevin algorithm (see
Sec. S.5 for a discussion on the cause and a fix for the problem).
The histograms obtained from umbrella sampling are stitched using
WHAM79–81 followed by unweighting to remove the effect of the
preliminary bias. As shown in Fig. 8, the solid points are obtained
from using the Zwanzig–Bennett relation on the umbrella sampled
solid lines. Clearly, near the intersection region, the solid lines pass
through the solid points, validating the method. Boltzmann expo-
nentiation of the free energy curves followed by numerical inte-
gration over the order parameter and taking the logarithm yields
the free energy difference. The calculated free energy difference
between the crystal structures IS and IIIS (at 250 K and 1 bar)
is 0.1931 ± 0.0002 kcal/mol. We perform two very different con-
sistency checks for the obtained result. We umbrella sample the
Landau free energies [GA(ΔQ) and GB(ΔQ)] without using prelimi-
nary weights (which requires more windows) to obtain a free energy
difference of 0.192 99 ± 0.000 07 kcal/mol. We also dissolved the
non-bonded and bonded interactions in the structures IS and IIIS
to obtain an Einstein crystal from both phases. The estimated value
of the free energy difference from this route is 0.197± 0.004 kcal/mol
(see the supplementary material for details). Clearly, the free energy
differences calculated in three different ways are in good agreement
with each other. The contributions from paths 1 and 3 must be added
to this result to get the total Gibbs free energy difference between
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FIG. 7. The harmonic restraints are
turned on in path 1. The diabat method
is used to calculate the free energy dif-
ferences along path 2. The harmonic
restraints are then reversibly removed.
We only show springs on some atoms for
clarity. Relevant equations for the indi-
vidual paths are summarized above (see
the supplementary material for details).
The diabat approach yields umbrella
sampled free energy surfaces [G(ΔQ) vs
ΔQ for IS and IIIS], as discussed in Fig. 8.
The free energy difference between crys-
tal structures IS and IIIS is obtained by
using numerical integration to calculate
the quantity inside the logarithm.

polymorphs I and III (see Fig. 7 for a summary of equations used
in paths 1–3). The values are 0.153 ± 0.005 kcal/mol and 0.157
± 0.006 kcal/mol calculated from the diabat method and Frenkel–
Ladd method, respectively (benzene form I is more stable than III).
Paths 1 and 3 are common to the diabat method and the Frenkel–
Ladd method and used a combined simulation time of 80 ns. The
simulation time used for path 2 in the diabat method is 5–7 ns
and 115 ns using the Einstein crystal method (see Sec. S.7 in the
supplementary material for simulation details). The total simulation
time (on adding paths 1–3) is 87 ns for the diabat method compared

FIG. 8. The free energy curves (diabats) as a function of the order parameter for
benzene crystals IS and IIIS. The axes are dimensionless. The black solid lines
are obtained from umbrella sampling along ΔQ. The solid points (shown as yellow
and green dots) are obtained by using the Zwanzig–Bennett relation [Eq. (6)], i.e.,
by subtracting/adding the ΔQ-coordinate to the points on the solid line. The figure
clearly shows that near the intersection of the two free energy surfaces, the solid
lines perfectly pass through the points theoretically predicted. n represents number
of molecules (400 for benzene). The temperature is 250 K.

to the 195 ns used in the Einstein crystal method. Clearly, the simula-
tion time required for path 2 is significantly lowered but the creation
and dissolution of springs in paths 1 and 3 are bottlenecks for further
efficiency gains.

B. Carbamazepine
Carbamazepine (Fig. 9) has five reported polymorphs in the

Cambridge Structural Database.82,83 In forms I–IV, carbamazepine
assembles in hydrogen-bonded dimer motifs, whereas form V is a
catemeric84,85 polymorph where the carboxamide group hydrogen
bonds to two different neighbors. The novel form V polymorph has
only been produced by templating carbamazepine crystal growth on
an isostructural carbamazepine analog crystal.86 The stability order
of the well-studied forms I–IV at high temperatures follows the rank
order of melting: I > IV > III > II.87 This differs from the stability
order at 0 K, which is approximated from melting enthalpy data:
III > I > IV > II.87 Thus, form III is thermodynamically the most
stable polymorph at lower temperatures in agreement with lattice

FIG. 9. The two vectors from the center of mass of the carbamazepine molecule
used to construct the local coordinate system (using the same procedure as
described previously).
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energy calculations at 0 K.88 Form III is enantiotropically related to
form I (and also form IV) with the second most stable polymorph at
0 K, form I, being the most stable form above 351 K.89

We study all the forms at 300 K and 1 atm using an AMBER-
GAFF forcefield.90,91 We use a simple, force-field independent ther-
modynamic test to estimate error bars associated with our sam-
pling procedures. We first calculate pairwise free energy differences
between the polymorphs. N polymorphs have N!/(2!(N-2)!) diabat
pairs. The combinatorial costs grow quickly, so we completed this
analysis for only the first four polymorphs to reduce the compu-
tational effort (see the supplementary material for a partial set of
calculations that include form V). From the pairwise free energy dif-
ferences, we construct closed paths (see Fig. 10) starting/ending at
IS with three forms in each path. For four forms, there are a total
of three such paths that start/end at IS. The free energy differences
are state functions and theoretically must be zero in a closed loop,
regardless of the force field used. This allows us to use the residuals
to estimate the error bars associated with sampling during the dia-
bat calculations. The theoretical mean for the distribution of residual
error in free energy changes is 0.0 kcal/mol. The total free energy

FIG. 10. Pairwise free energy differences in kcal/mol for polymorphs IS–IVS of
carbamazepine calculated at 300 K and 1 atm using the diabat method (path 2 in
Fig. 7). The harmonic spring restraints acting on all the atoms in the crystals are
omitted for clarity, and their thermodynamic effects counteracted in paths 1 and 3
(see Fig. 7).

changes calculated for the three closed loops are 0.021 kcal/mol,
0.004 kcal/mol, and −0.007 kcal/mol, respectively.

We first calculate the standard deviation (sx) for the three resid-
ual free energies (using a mean 0) obtained after completing the
circuits. The standard deviation associated with the mean is sx/

√

3,
which yields 0.007 kcal/mol. This is the standard error associated
with our pairwise free energy differences.

The harmonic restraints on the crystals are then dissolved (see
the supplementary material) and free energies for carbamazepine
polymorphs reported with respect to form III. The resulting rela-
tive Gibbs free energies for carbamazepine polymorphs I, II, IV, and
V at P = 1 atm and T = 300 K are 0.494 kcal/mol, 0.862 kcal/mol,
1.738 kcal/mol, and 0.082 kcal/mol, respectively, with a standard
error of ±0.007 kcal/mol. This error estimate does not include error
from the AMBER-GAFF force field. We predict that at 300 K and
1 atm, form III is the most stable, followed by V, I, II, and IV. The
relative free energy for form I estimated from experimental solubility
data89,97 is 0.08 ± 0.02 kcal/mol (see Sec. S.10 in the supplementary
material for details). The relative polymorphic energy differences for
a static lattice (0 K) and at 300 K are compared with other estimates
in Fig. 11 and Sec. S.11 in the supplementary material. Tempera-
ture reduces the metastability of all forms relative to form III in
both the diabat method and when estimated by rigid-molecule lat-
tice dynamics but to different extents. More accurate estimates of
the underlying potential energy surface, either based on the molec-
ular charge density or periodic dispersion-corrected density func-
tional electronic structure calculations, suggests that this is the main

FIG. 11. Stability of carbamazepine polymorphs from static (0 K) lattice energy
differences and at 300 K calculated via different methods. The diabat method
(this work) uses the AMBER-GAFF force field. The rigid molecule distributed
intermolecular force-field calculations (DIFF) uses the rigid-molecule harmonic lat-
tice phonons92 and lattice energy calculated using DMACRYS.93 The electronic
lattice energy calculations correspond to the crystal structures optimized using
CASTEP94 with the PBE functional and TS dispersion correction,95 with the energy
reevaluated with the MBD∗ dispersion correction.96 The last data points are the
relative experimental stability inferred from enthalpy of melting data.87
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source of error in the estimated free energy differences. Addition-
ally, stability inferred for crystals at finite temperatures from energy
minimized 0 K structures depends on the value of the lattice energy
at those minima, and it is common for organic molecules to have
multiple lattice energy minima that correspond to the same finite
temperature structure.98,99 The experimental study provides 4!/(2!(4
− 2!)) = 6 pairwise free energy rankings, e.g., III more stable than
I, IV more stable than II, etc. The AMBER-GAFF force field in
combination with our diabat approach correctly ranks the stability
in five of these six pairs. One pair is qualitatively wrong (we mis-
takenly predict that II is more stable than IV). The diabat method
proposed here can estimate the free energy differences using the
dynamics of the molecule, as given by the potential energy surface
(force field). For many molecular crystals, the dynamical motion can
be very anharmonic, the thermal expansion is usually anisotropic,
and the isolated molecule modes are modified by the intermolec-
ular forces in a very polymorph specific manner. Thus, the diabat
method should give considerably more realistic free energies for
many pharmaceutical crystals than harmonic lattice dynamics meth-
ods. However, in practice, the improvement in the physical basis of
the calculation methodology may be less important than the accu-
racy of potential energy surfaces that can be used. This implemen-
tation of the diabat method is sufficiently computationally feasible
that it should be extendable to quite large, flexible pharmaceutical
molecules, given the availability of a suitable force field. Addition-
ally, it may not always be necessary to include paths 1 and 3 to avoid
intermolecular overlaps. Indeed, these steps (the largest source of
error in our calculation) were not needed in the previous calcula-
tions of Bridgwater and Quigley.60 As computer power improves,
the diabat method could be applied to estimate relative free ener-
gies of many observed and hypothetical polymorphs generated by
crystal structure prediction methods.20,100 Although the LSMC and
diabat approaches are conceptually different from established meth-
ods, they are not intrinsically difficult to implement. With a few
minor modifications to existing simulation packages, they might
rival Frenkel–Ladd methods on accuracy, efficiency, and ease of
implementation.

IV. CONCLUSION
We extended the diabat method to enable the calculation of

Gibbs free energy differences between polymorphs for molecular
crystals. The diabat method uses lattice-switch energy gaps and a
Zwanzig–Bennett relation to compute free energy diabats between
the two polymorphs. The new extensions for molecular crystals
use a one-to-one Gram–Schmidt based mapping of displacements
and harmonic restraints to limit the size of atom displacements.
We used an unbiased simulation of each polymorph to create a
preliminary bias potential. The free energy on the biased (and
partly flattened) surface was then umbrella sampled to efficiently
obtain the two free energy diabats. The same sampling and map-
ping procedures are readily applied to polymorphs of any molecular
crystal.

The Gibbs free energy differences were calculated for poly-
morphs I and III of benzene and for a nearly complete set of paths
between polymorphs of carbamazepine. For benzene, we compared
the results to Frenkel–Ladd calculations. For carbamazepine, we

constructed multiple thermodynamic paths from form I to two other
polymorphs and back to form I so that the accumulated free energy
change should be zero. These calculations allowed us to assess the
accuracy of the diabat method and advanced sampling procedures
with no contributions from force field error. Using 5 ns of the total
simulation time for each pair of polymorphs, the error in computed
free energies per polymorph pair is of the order 0.005 kcal/mol–
0.007 kcal/mol for both the benzene and carbamazepine systems.
Additionally, the procedure can be repeated at different tempera-
tures to calculate relative free energy differences between a poly-
morphic pair to establish stability relationships (as a function of
temperature).

For carbamazepine, the AMBER-GAFF force field results also
correctly ranked the stability (at 300 K and 1 atm) in five of six
polymorph pairs. Through continued development of diabat free
energy tools, we hope to make the sampling aspects of polymorph
free energy calculations so efficient that they can (in the future) be
performed with state-of-the-art ab initio molecular dynamics101–103

and path integrals for nuclear quantum effects.104–107

SUPPLEMENTARY MATERIAL

The supplementary material contains details on the construc-
tion of the local coordinate system, a discussion on the spring
energies in the mapped configurations, computational details, a dis-
cussion on umbrella sampling using biasing forces, Langevin ther-
mostatting combined with periodic restarts, diabats from pairwise
calculations for benzene and carbamazepine polymorphs, thermo-
dynamic integration calculations, relative lattice energies for carba-
mazepine polymorphs, a discussion on the contribution to the free
energy from volume fluctuations, calculation of relative stability of
carbamazepine polymorphs (forms I and III) from experimental sol-
ubility data, and computational details for the different ab initio
methods discussed in Fig. 11.
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