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Abstract 121 

An intracranial aneurysm (IA) is present in 3% of the population. Rupture of an IA leads a to 122 

subarachnoid hemorrhage, a severe type of stroke. In order to discover new genetic loci and 123 

the genetic architecture of IA, we performed a cross-ethnic, genome-wide association study 124 

in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 125 

17 risk loci, 11 of which are new. We reveal a polygenic architecture and are able to explain 126 

more than half of the disease heritability. We show a high genetic correlation between 127 

ruptured and unruptured IAs. A role for endothelial cells in the disease is suggested based 128 

on the function of genes mapped to risk loci and on heritability enrichment analysis. Drug 129 

target enrichment analysis shows pleiotropic effects between IA and anti-epileptic and sex 130 

hormone drugs, which provides insights into IA pathophysiology. Finally, genetic risk for 131 

smoking and high blood pressure, the two main clinical risk factors for IA, plays an 132 
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important role in IA risk and is the main driver of the genetic correlation between IA and 133 

other cerebrovascular traits.  134 

Main 135 

An intracranial aneurysm (IA) is a balloon-shaped dilatation, usually located at a branch of 136 

an intracranial artery. It is present in 3% of the population1. Rupture of an IA causes an 137 

aneurysmal subarachnoid hemorrhage (aSAH), a severe type of stroke. Approximately one 138 

third of patients die, and another third remain dependent for daily life activities2. IA occurs 139 

in relatively young people with a mean age of 50 years and is twice as common in women 140 

over 50 years old compared to men of that age. Genetic predisposition plays an important 141 

role in the disease with an aSAH heritability of 41%, as estimated in a twin study3.  142 

Much is still unknown about the genetic architecture of IA4,5. Family-based studies 143 

identified a number of variants with Mendelian inheritance6-10, but genome-wide 144 

association studies (GWAS) have identified multiple common variants, suggesting a 145 

polygenic model of inheritance5,11-13. The largest GWAS published to date, involving 2,780 146 

cases and 12,515 controls, identified six risk loci11,13. Based on that GWAS, the explained 147 

single nucleotide polymorphism (SNP)-based heritability of IA was estimated as being only 148 

4.1-6.1%, depending on population5. 149 

We aimed to further characterize the genetic architecture of IA by performing a 150 

cross-ethnic GWAS meta-analysis on a total of 10,754 cases and 306,882 controls from a 151 

wide range of European and East Asian ancestries. We included both cases with unruptured 152 

IA and aSAH (i.e. with ruptured IA), enabling us to identify potential risk factors specific for 153 

IA rupture. We also looked for genetic similarities between IA and related traits, including 154 

other types of stroke, vascular malformations and other aneurysms, and analyzed whether 155 
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known risk factors for IA play a causal genetic role. Further, we investigated enrichment of 156 

genetic associations in functional genetic regions, tissue subtypes, and drug classes to 157 

provide insight into IA pathophysiology. 158 

Results 159 

GWAS of intracranial aneurysms 160 

Our GWAS meta-analysis on IA consisted of two stages. The Stage 1 meta-analysis included 161 

all European ancestry individuals and consisted of individual level genotypes from 23 162 

different cohorts, that were merged into nine European ancestry strata, based on 163 

genotyping platform and country. These strata were each analyzed in a logistic mixed 164 

model14 and then meta-analyzed, while also including summary statistics from a population-165 

based cohort study: the Nord-Trøndelag Health Study (the HUNT Study). This resulted in 166 

7,495 cases and 71,934 controls and 4,471,083 SNPs passing quality control (QC) thresholds 167 

(Online Methods, Supplementary Table 1). Stage 2 was a cross-ethnic meta-analysis 168 

including all Stage 1 strata and summary statistics of East Asian individuals from two 169 

population-based cohort studies: The Biobank Japan (BBJ) and the China Kadoorie Biobank 170 

(CKB). This totaled 10,754 cases and 306,882 controls and 3,527,309 SNPs in Stage 2 171 

(Supplementary Table 1).  172 

The Stage 1 association study resulted in 11 genome-wide significant loci (P-value £ 173 

5·10-8, Figure 1, Supplementary Table 2). Transethnic genetic correlation analysis showed a 174 

strong correlation between the Stage 1 meta-analysis of European ancestry and an analysis 175 

including only East Asian ancestry samples (ρg=0.938±0.165, standard error [SE] for genetic 176 

impact and 0.908±0.146 for genetic effect, Supplementary Table 3). Stage 2 increased the 177 

number of genome-wide significant loci to 17 (Table 1, Figure 1). All but two loci (8q11.23, 178 
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rs6997005 and 15q25.1, rs10519203) were also associated with IA in the samples of East 179 

Asian ancestry added in Stage 2 (P<0.05/11) and 2 loci were monomorphic in East Asians 180 

(Table 1). The Stage 2 loci included 11 novel risk loci and six previously reported risk loci11. 181 

We used conditional and joint (COJO) analysis to condition the Stage 1 GWAS summary 182 

statistics on the lead SNP in each locus. We found that none of the loci consisted of multiple 183 

independent SNPs and that each locus tagged a single causal variant (data not shown). 184 

Genomic inflation factors (lambdaGC) were 1.050 for the Stage 1 meta-analysis and 1.065 for 185 

Stage 2 (Supplementary Figure 1a-d, Supplementary Table 4). The linkage disequilibrium 186 

score regression (LDSR) intercept was 0.957±0.008 (SE) for the Stage 1 meta-analysis and 187 

0.982±0.008 for the East Asian subset. This indicated that in all GWAS analyses, observed 188 

inflation was due to polygenic architecture. 189 

Conditioning the Stage 1 GWAS summary statistics on GWAS summary statistics for 190 

systolic and diastolic blood pressure (BP, Neale lab summary statistics [URLs]) using multi-191 

trait conditional and joint (mtCOJO) analysis resulted in one additional genome-wide 192 

significant locus (rs2616406, P=6.221e-08 in the Stage 1 GWAS, P=4.499e-9 after mtCOJO 193 

with BP). mtCOJO with smoking pack-years summary statistics, or including genetic risk 194 

scores (GRSs) for smoking (cigarettes per day)15 or blood pressure related traits16 did not 195 

result in additional loci (data not shown). 196 

Characterization of GWAS loci 197 

An overview of the genic position, alleles, effect size and P-value of the strongest 198 

association per locus is shown in Table 1. We used summary statistics-based Mendelian 199 

randomization (SMR), co-localization analysis using eCAVIAR, and transcriptome-wide 200 

association study (TWAS, URLs) to annotate potential causative genes in these loci 201 

(Supplementary Tables 5-9, Supplementary Figure 2). A description of this annotation 202 
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process is described in the Supplementary Note. Since SMR, eCAVIAR and TWAS all require 203 

LD reference panels, we limited the annotation to the loci identified in the European 204 

ancestry Stage 1 GWAS meta-analysis. This resulted in 11 potential causative genes on six 205 

unique loci: SLC22A5/SLC22A4/P4HA2 (chr5), NT5C2/MARCKSL1P1 (chr10), FGD6/NR2C1 206 

(chr12), PSMA4 (chr15) and BCAR1/RP11-252K23.2 (chr16) (Table 1, Supplementary Table 207 

5). Although we did not find evidence for involvement of SOX17 in the chr8 locus, previous 208 

studies did find functional evidence for SOX1717,18. Therefore, we annotated the chr8 locus 209 

as SOX17.  210 

In the Stage 2 GWAS, six additional loci were identified: 6q16.1, 10q23.33, 11p15.5, 211 

12p12.2, 12q21.22, and 20p11.23. Due to the combined European and East Asian LD 212 

structures, these loci cannot reliably be mapped to genes using the above-mentioned 213 

techniques. Of the six additional loci, four have previously been linked to blood pressure, 214 

namely 6q16.1 (rs11153071)19, 10q23.33 (rs11187838)20, rs11044991 (12p12.2)21, and 215 

rs2681492 (12q21.22)21,22. A detailed description of the genes and loci is found in the 216 

Supplementary Note.  217 

The potentially causative gene FGD623 plays a role in angiogenesis and defects may 218 

lead to a compromised formation of blood vessels. FGD6 is a vascular endothelial cell (vEC) 219 

signaling gene, involved in stress signaling in vECs24. Loss-of-function mutations in THSD1 220 

and SOX17, which both have key roles in vECs, lead to subarachnoid hemorrhage in animal 221 

models7,17,25,26. BCAR1 is a ubiquitously expressed gene which protein product is a sensor for 222 

mechanical stress27. The PSMA4 locus is known for associations with a number of smoking 223 

and respiratory system traits28-31. 224 
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Predictors of IA rupture 225 

We assessed whether genetic risk factors differed between ruptured and unruptured IA, 226 

using stratified GWAS analysis. The number of cases with unruptured IA was small (N=2070). 227 

Therefore, in addition to performing a stratified GWAS on patients with a ruptured 228 

aneurysm versus patients with an unruptured IA (aSAH-vs-uIA), we also performed a 229 

stratified GWAS on only patients with ruptured IA versus controls (aSAH-only) and a 230 

stratified GWAS on only patients with an unruptured IA versus controls (uIA-only) 231 

(Supplementary Table 4, Supplementary Figure 1e-j). Overall, 69% of IA cases had a 232 

ruptured IA and 28% an unruptured IA while 3.8% had an unknown rupture status. The 233 

aSAH-only and uIA-only GWASs identified a number of genome-wide significant loci, all of 234 

which reached genome-wide significance in the Stage 1 and 2 GWAS meta-analyses on IA. In 235 

the aSAH-vs-uIA GWAS, we found no genome-wide significant loci. Furthermore, genetic 236 

correlation analysis showed a high correlation of 0.970±0.133 (SE) between ruptured and 237 

unruptured IA (Supplementary Table 3). Together these findings indicate a strong similarity 238 

in genetic architecture between ruptured and unruptured IA.  239 

SNP-based heritability 240 

We estimated the SNP-based heritability of IA to be 21.6±2.8% (SE) on the liability scale with 241 

LDSR (tool named LDSC32, URLs) and 29.9±5.4% using SumHer33 (URLs, Table 2). This 242 

corresponds to an explained fraction of the twin-based heritability (h2=41%3) of 53-73% 243 

depending on the method used (LDSC or SumHer). We used a life-time risk for unruptured 244 

IA of 3%1 for the conversion to the liability scale. Since this GWAS was an admixture of 245 

patients with ruptured and unruptured IA, this prevalence may not be representative of the 246 

whole study population. Therefore, we calculated liability scale heritability using a range of 247 

life-time risk values (Supplementary Figure 3a). This shows that also when using lower life-248 
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time risk estimates (K), the explained SNP-based heritability is substantial (K=0.02: 249 

h2=19.3±2.5% [LDSC], 26.8±4.8% [SumHer]; K=0.01: 16.3±2.1% [LDSC], 22.6±4.1% [SumHer]).  250 

A substantial SNP-based heritability is also found for ruptured IA (SAH-only, 251 

h2=0.140±0.020) and unruptured IA (uIA-only, h2=0.223±0.044). The difference between the 252 

heritability estimates could suggest differences in genetic architecture, but estimates 253 

depend on the prevalence estimate (Supplementary Figure 3b-c), meaning these differences 254 

should be interpreted with caution.   255 

Enrichment of genomic regions 256 

To understand the disease mechanisms of IA, we applied several heritability enrichment 257 

analyses using LD-score regression (LDSR). Partitioning on functional genomic elements 258 

showed a clear enrichment of heritability in regulatory elements, including enhancer and 259 

promoter histone marks H3K4me1, H3K27Ac and H3K9Ac, super enhancers, and DNAse I 260 

hypersensitivity sites (Figure 2a). Such enrichment of regulatory elements in the genome is 261 

also seen in other polygenic traits and indicates that the architecture of IA is also 262 

polygenic34. Partitioning heritability per chromosome further supported a polygenic 263 

architecture as heritability was associated with the number of SNPs on a chromosome 264 

(Figure 2b).  265 

Tissue-specific LDSR did not show enrichment for any tissue (Supplementary Tables 266 

10 and 11). We then performed cell-type enrichment analysis using single-cell RNA-267 

sequencing (scRNAseq) reference data derived from mouse brain35. No enrichment was 268 

found using a scRNAseq dataset of mouse brain blood vessels36 (Supplementary Table 12). 269 

Using a larger dataset defining cell-types in the mouse brain35, we found enrichment in 270 

‘endothelial mural cells’, which is a combined set of vascular endothelial and mural cells 271 
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(enrichment=2.31±0.41 [SD], P=1.65·10-3, Figure 2c), and in midbrain neurons 272 

(enrichment=2.23±0.37, P=6.56·10-4).  273 

LD-pruned enrichment analysis using GARFIELD showed that genes specific for blood 274 

vessels were enriched (Figure 2d, Supplementary Table 13), further supporting the role of 275 

promoters and enhancers (Figure 2e).  276 

Causal genetic roles of blood pressure and smoking 277 

To assess which phenotypes causally influence the risk of IA, we performed generalized 278 

summary statistics-based Mendelian randomization (GSMR) using summary statistics for all 279 

phenotypes available in the UK Biobank (Supplementary Table 14). We used the Stage 1 280 

summary statistics excluding the UK Biobank data as outcome. In this analysis, we chose a 281 

stringent value for the multiple testing threshold of 376, which was the number of traits 282 

passing the GSMR quality control parameters. Sixteen traits were statistically significant 283 

after correction for multiple testing (Figure 3a). All statistically significant traits were related 284 

to either smoking or blood pressure (BP), which are the two main clinical risk factors for 285 

unruptured IA and aSAH1,37,38. To determine whether genetic predisposition for smoking and 286 

BP were causal genetic risk factors independent of one another, we conditioned the Stage 1 287 

GWAS summary statistics on GWAS summary statistics for smoking and BP using multi-trait 288 

conditional and joint analysis (mtCOJO). We used summary statistics for both systolic BP 289 

(SBP) and diastolic BP (DBP) combined to condition on BP and summary statistics for pack-290 

years to condition on smoking (Figure 3a, Supplementary Table 14). All GSMR effects 291 

diminished after conditioning on either BP or pack-years, and remained when conditioning 292 

on the other risk factor. The mtCOJO method itself did not affect the effect size estimates as 293 

conditioning on standing height did not affect the estimates. These findings provide strong 294 
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evidence that the genetic predisposition for BP and smoking are independent genetic causes 295 

of IA (Figure 3b). 296 

Since the phenotype values of the exposure traits were inverse rank-normalized, the 297 

GSMR effect size of SBP (βxy = 1.058±0.187) and pack-years (βxy = 0.973±0.236) cannot easily 298 

be interpreted. Therefore, we performed an additional GSMR analysis for BP with an 299 

updated version of the UK Biobank GWAS, including raw phenotype values for quantitative 300 

traits (Supplementary Table 15). For BP traits, the GSMR analysis resulted in an effect size 301 

estimate of 0.095± 0.019 for DBP and 0.047± 0.011 for SBP, meaning an 8-12% increase in IA 302 

risk per mmHg increase of DBP and a 3.7-6% increase in IA risk per mmHg increase of SBP, 303 

assuming a linear effect of BP on IA liability. In addition, age at high BP diagnosis had a 304 

significant GSMR effect (P= 1.79·10-4, βxy=0.163±0.044), indicating an increase in IA risk of 305 

13-23% for each year of additional high BP exposure. We did not include smoking 306 

quantitative traits, because these were not normally distributed (data not shown) and 307 

could, therefore, lead to a biased effect estimate. 308 

We then tested whether the effects of smoking and BP were different between 309 

ruptured (SAH-only) and unruptured IA (uIA-only, Supplementary Table 16). The GSMR 310 

effect sizes followed the same trend for all phenotypes, but ‘Hypertension (Self-reported)’ 311 

had a stronger effect on ruptured IA (SAH-only: bxy=6.74±0.61 [SE], all IA: 2.97±0.42, uIA-312 

only: 2.38±0.70), while amlodipine use had a weaker effect on unruptured IA and became 313 

statistically non-significant (uIA-only: bxy=4.77±3.90, P=0.22, all IA: bxy=11.4±2.10, P=5.25·10-314 

8, SAH-only: bxy=13.1±2.60, P=5.25·10-7). Although the effect of self-reported hypertension 315 

on SAH-only was stronger, conditioning on blood pressure using mtCOJO mitigated the 316 

effect (bxy=1.02±0.45, P=0.024, data not shown). Since the power to detect GSMR effects in 317 

the uIA-only sample is much lower compared to all IA and SAH-only due to limited sample 318 
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size, further investigation is required to make inferences about genetic risk factors for 319 

rupture. 320 

Traits influencing female hormones are suggested to play a role in aSAH risk39. Only 321 

two female hormone-related traits had enough genome-wide significant risk loci to pass 322 

GSMR quality control. These were ‘age when periods started (menarche)’ and ‘had 323 

menopause’. Neither of these showed a causal relationship with IA in the GSMR analysis 324 

(Supplementary Table 14). 325 

Drivers of genetic correlation with vascular traits 326 

To identify traits correlated with IA, we analyzed Stage 1 summary statistics using LDHub40. 327 

LDHub includes a subset of the summary statistics used for GSMR and a number of summary 328 

statistics from publicly available sources. Traits that showed correlations that reached the 329 

Bonferroni threshold for multiple testing (p=0.05/464) included several blood pressure (BP)-330 

related traits, including diastolic BP (DBP) (ρg=0.223, P=5.40·10-9) and systolic BP (SBP) 331 

(ρg=0.256, P=1.34·10-8) and smoking traits, such as pack-years (ρg=0.330, P=7.87·10-8) 332 

(Supplementary Table 17).  333 

We used LDSR to calculate the genetic correlation of IA with other stroke subtypes -  334 

ischemic stroke (IS)41 and intracerebral hemorrhage (ICH) - , with other vascular 335 

malformation types - intracranial arteriovenous malformation (AVM)42 and cervical artery 336 

dissection43 - , and with abdominal aortic aneurysm (AAA)44. For IS, a correlation of 337 

0.195±0.079 (P=0.014) was found with IA (Figure 3c, Supplementary Table 3). After 338 

conditioning the IA GWAS on either BP or on pack-years, which are clinical risk factors for 339 

both IS and IA1,37,38,45, the correlation was no longer statistically significant and reduced to 340 

0.121±0.081 for BP and 0.147±0.084 for pack-years. The correlation disappeared after 341 

conditioning on both risk factors (ρg=0.009±0.083, P=0.916). When conditioning on an 342 
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unrelated but heritable trait (standing height), the correlation remained (ρg=0.238±0.081, 343 

P=0.003). No genetic correlation was found for any of the IS subtypes. 344 

We found a statistically significant genetic correlation between IA and ICH (ρg= 345 

0.447±0.184, P=0.015), which was mainly driven by deep ICH (ρg=0.516±0.198, P=0.009), 346 

and not by lobar ICH (P=0.534). After conditioning the IA GWAS on either BP or pack-years, 347 

which are also important risk factors for ICH46, the correlation with deep ICH decreased 348 

(ρg=0.288±0.189 for BP and 0.234±0.192 for pack-years) and was no longer statistically 349 

significant. Conditioning on height had a much smaller effect (ρg=0.380±0.196). 350 

A genetic correlation was found between IA and AAA (ρg=0.302±0.105, P=0.004). 351 

Conditioning on pack-years strongly reduced the correlation between IA and AAA 352 

(ρg=0.173±0.117, P=0.138), whereas BP did not (ρg=0.264±0.117, P=0.024).  353 

There was no genetic correlation between IA and carotid artery dissection 354 

(ρg=0.151±0.180, P=0.401); whereas for vertebral artery dissection and the combined set of 355 

vertebral and carotid artery dissection, a larger, albeit non-statistically significant, estimate 356 

was observed (ρg=0.281±0.159, P=0.077 and ρg=0.174±0.149, P=0.066, respectively) 357 

(Supplementary Table 3). For AVM, a negative SNP-based heritability was estimated, which 358 

could be due to the small sample size of this GWAS (1,123 cases and 1,935 controls). 359 

Therefore, we performed a lookup of all SNPs identified in the Stage 1 and 2 IA GWAS in the 360 

summary statistics of the AVM GWAS42 but were unable to replicate any of these SNP 361 

associations (P<0.05/17) (Supplementary Table 18).  362 

Drug target enrichment 363 

To identify pleotropic pathways between IA and other diseases that contain known drug 364 

targets, we assessed enrichment in genes targeted by drugs and drug classes47. Gene-based 365 

P-values were calculated with MAGMA, resulting in 29 genes that passed the Bonferroni 366 
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threshold for multiple testing (P<0.05/18106, Supplementary Table 19). The anti-367 

hypertensive drugs ambrisentan and macitentan showed a statistically significant 368 

enrichment (P=1.35·10-5, Supplementary Table 20) which was driven by a single gene 369 

(EDNRA). Drug class enrichment analysis showed that drugs in the classes ‘anti-epileptics’ 370 

were enriched (area under the curve [AUC]=0.675, P=8·10-5, Supplementary Table 21). The 371 

most statistically significant enriched drugs within this class are blockers of Na+ and Ca2+ 372 

channels, namely phenytoin, zonisamide and topiramate48 (Supplementary Table 20). These 373 

channels are important in blood pressure regulation, as well as in several other biological 374 

mechanisms. The other enriched drug class is ‘sex hormones + modulators of the genital 375 

system’ (AUC=0.652, P=2.02·10-4). We also used MAGMA to study enrichment in gene 376 

pathways, but found no statistically significant results (Supplementary Table 22). 377 

Discussion 378 

We identified 11 novel risk loci for IA and confirmed six previously identified risk loci, 379 

making a total of 17 risk loci for IA. A SNP-based heritability of 21.6% was found, explaining 380 

over half of the total heritability. We showed strong evidence that the majority of IA 381 

heritability is polygenic. Our results further highlight several major features of the genetic 382 

architecture of IA. First, we identified endothelial cells as a key cell type in IA risk. Second, 383 

we showed that, out of 375 tested traits, smoking and BP predisposition were the main 384 

genetic risk factors for IA. Third, we showed that the main drivers of the genetic correlation 385 

between IA and other stroke types and between IA and abdominal aortic aneurysms are 386 

genetic predisposition for smoking and blood pressure. Last, we found pleiotropic 387 

characteristics of anti-epileptic drugs and sex hormones with IA. 388 
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Through gene-mapping incorporating gene expression datasets and distinct 389 

bioinformatics analyses, we were able to identify 11 potential causative genes within 6 of 390 

the Stage 1 risk loci. Many of these genes have known or putative roles in blood vessel 391 

function and blood pressure regulation. We found heritability enrichment in genes that are 392 

specifically expressed in a combined set of endothelial and mural cells, and not in other 393 

vascular cell types. Together, the identified potential causative genes and heritability 394 

enrichment analyses suggest an important role of the vascular endothelial cell (vEC) in IA 395 

development and rupture. 396 

Through genetic correlation and formal causal inference methods, we established 397 

that genetic predisposition for smoking and BP are the most important independent genetic 398 

risk factors for IA1. First, using causal inference with GSMR, we showed that genetic 399 

predisposition for these traits drives a causal increase in IA risk. Then, using multi-trait 400 

conditional analysis, we showed that smoking and high BP are causative of IA, independent 401 

of one another. By using non-transformed continuous systolic blood pressure (SBP) and 402 

diastolic blood pressure (DBP) measures in the UK Biobank, we estimated the increase in IA 403 

risk per 1 mmHg increase of SBP to be 3.7-6%, and that of DBP to be 8-12%. These strong 404 

effects provide genetic evidence for clinical prevention by lowering blood pressure. Since 405 

smoking dose is not normally distributed, we were not able to estimate a quantitative effect 406 

of smoking on IA, but this has been done before using non-genetic methods49-51. Future 407 

studies that model risk prediction using polygenic risk scores should determine whether the 408 

polygenic risks of genetic risk factors for IA are clinically relevant risk factors for the disease. 409 

We found that genetic correlations of IA with ischemic stroke (IS) and deep 410 

intracerebral hemorrhage (ICH) are mainly driven by genetic predisposition for smoking and 411 

BP. For ICH, conditioning on smoking and BP did not completely mitigate the genetic 412 
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correlation with IA, suggesting additional shared genetic causes. For vertebral artery 413 

dissection, a substantial, but not statistically significant correlation with IA was found, 414 

whereas this was absent in carotid artery dissection. We showed that the genetic 415 

correlation between IA and AAA was driven by smoking, but not by BP. This implies that IA is 416 

more dependent on BP compared to AAA. This observation could be a result of different 417 

ratios of unruptured and ruptured aneurysms included in the two GWASs. The AAA GWAS 418 

consists of mainly unruptured AAA44, and while the role of BP on AAA rupture is clear, the 419 

effect on developing AAA is a matter of debate52.  420 

One of the main aims of IA research is to prevent rupture of IA and thus avoid the 421 

devastating consequences of aSAH. We performed various analyses in an attempt to 422 

identify genetic predictors specific for IA rupture. Instead, we found a very strong genetic 423 

correlation between ruptured and unruptured IA. These analyses together indicate that the 424 

common variant genetic architecture of ruptured and unruptured aneurysms are strikingly 425 

similar. 426 

The heritability of unruptured IA has never been studied in twins, and may, 427 

therefore, not be an optimal estimate for IA heritability. One twin study estimated the 428 

heritability of aSAH at 41%3. Our finding that the genetic architecture of uIA and aSAH are 429 

similar suggests that this heritability estimate may also be accurate for unruptured IA. This 430 

means that in European ancestry populations, 53 to 73% of the heritability of IA can be 431 

explained by variants tagged in this GWAS.  432 

Using transethnic genetic correlation, we found a remarkable similarity of genetic 433 

architecture between the European ancestry and East Asian ancestry GWASs of more than 434 

90.8±14.6% (SE). This indicates that the majority of common-variant genetic causes are the 435 

same, regardless of ancestry. However, since the LD structures remain distinct, current 436 
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methods for summary statistic-based enrichment analysis cannot effectively account for 437 

population-specific variation in a cross-ethnic GWAS. 438 

Drug class enrichment showed pleiotropic characteristics of anti-epileptic drugs and 439 

sex hormones with the genetic association of IA. It has been suggested that sex hormones 440 

might play a role in IA39, potentially explaining why women have a higher IA risk than men1. 441 

However, as causal inference analysis with GSMR did not show evidence for the 442 

involvement of female hormones, further investigation is required. Enrichment of the anti-443 

epileptic drug class may indicate shared disease mechanisms between IA and epilepsy. The 444 

main mechanism of anti-epileptic drugs is through blocking Na+ and Ca2+ ion-channels48. 445 

Together with other ion channels, these play essential roles in contraction and relaxation of 446 

the blood vessels53. Mutations in the ion-channel gene PKD2 (TRRP2) are known to cause IA. 447 

This gene product, along with other members of the TRP gene family, regulates systemic 448 

blood pressure through vasoconstriction and vasodilation54,55. More research on the effect 449 

of anti-epileptics on vascular tension and blood pressure will enhance our understanding of 450 

the disease-causing mechanisms. Furthermore, this could help to identify methods of IA 451 

prevention using anti-epileptics or related drugs. 452 

In conclusion, we performed a GWAS meta-analysis on IA identifying 11 new risk loci, 453 

confirming 6 previously identified risk loci and explaining over half of the heritability of IA. 454 

We found strong evidence for a polygenic architecture. Through gene-mapping and 455 

heritability enrichment methods, we discovered a possible role for endothelial cells in IA 456 

development. We showed that the genetic architecture of unruptured and ruptured 457 

aneurysms are very similar. The well-known clinical risk factors, smoking and hypertension, 458 

were identified as main genetic drivers of IA. These risk factors also explained most of the 459 

similarity to other stroke types, IS and deep ICH, which could open a window for clinical 460 
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prevention. We also found pleiotropic effects between IA and anti-epileptic drugs, which 461 

require further investigation to understand the shared mechanisms of IA and epilepsy. Our 462 

findings represent a major advance in understanding the pathogenesis of IA and a 463 

significant step towards the development of effective genetic risk prediction and prevention 464 

of IA development and subsequent aSAH in the future. 465 

Online Methods 466 

Recruitment and diagnosis 467 

Detailed cohort descriptions are given in the Supplementary Note. In brief, all IA cases have 468 

a saccular IA, in which we included both cases with ruptured-thus with aSAH- and 469 

unruptured IAs confirmed using imaging. Patients with conditions known to predispose to 470 

IA, including autosomal dominant polycystic kidney disease, Ehlers-Danlos disease and 471 

Marfan’s syndrome, were excluded. All controls were unselected controls. Controls were 472 

matched by genotyping platform and country on cohort-level. 473 

Genotype data quality control 474 

Cohorts for which individual level data were available are specified in Supplementary Table 475 

1. An overview of inclusion and exclusion criteria, data collection and genotyping methods 476 

for each cohort are given in the Supplementary Note. Genotypes were lifted to reference 477 

genome build GRCh37. An extensive QC was performed on each cohort, described in detail 478 

in the Supplementary Note. Cohorts were merged into strata based on genotyping platform 479 

and country. An overview of strata compositions is given in Supplementary Table 1. Next, 480 

QC was performed on each stratum, outlined in the Supplementary Note. Genotypes were 481 

imputed against the Haplotype Reference Consortium (HRC) release 1.1. After imputation, 482 

another set of QC steps was taken, which is described in the Supplementary Note. An 483 



 21 

overview of the number of SNPs, cases and controls excluded in the QC is shown in 484 

Supplementary Table 1.  485 

Individual level association analysis 486 

For each stratum, single-SNP associations were calculated using SAIGE (0.29.3)14. SAIGE uses 487 

a logistic mixed model to account for population stratification and saddle point 488 

approximation to accurately determine P-values even in the presence of case-control 489 

imbalance. Details on how these steps were performed are described in the Supplementary 490 

Note.  491 

Meta-analysis 492 

We meta-analyzed association statistics from our individual level SAIGE analysis with 493 

association statistics prepared by other groups who used the same analysis pipeline. There 494 

were two meta-analysis stages: Stage 1, including all individual level data and the European 495 

ancestry summary statistics (HUNT Study), and Stage 2 including all individual level data and 496 

all summary statistics (HUNT Study, China Kadoorie Biobank, Biobank Japan). Summary 497 

statistics that were generated by other groups were cleaned prior to meta-analysis, as 498 

described in the Supplementary Note. We used METAL (release 2011-03-25)56 for the 499 

inverse-variance weighted meta-analysis across all studies. Only SNPs present in at least 500 

80% of the strata were included.  501 

Conditional analysis 502 

To investigate whether a genome-wide significant locus consisted of multiple independent 503 

signals we used GCTA-COJO. COJO uses GWAS summary statistics and the LD structure of a 504 

reference panel to iteratively condition GWAS summary statistics on top SNPs. We used 505 

control samples from stratum sNL2 (Doetinchem Cohort Study) as a reference panel for LD 506 
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estimation. We used a stepwise approach to condition on the top independent SNPs with 507 

P<5·10-8 and minor allele frequency (MAF) > 0.01. In addition, we conditioned the summary 508 

statistics on the identified top independent hits to determine if any additional signal 509 

remained. 510 

Genetic risk score analysis 511 

To investigate the effect of genetic risk for blood pressure (BP) and smoking on IA, we used 512 

its genetic risk scores (GRS) as covariates in a SAIGE association model. Summary statistics 513 

for BP-related traits16 and cigarettes per day (CPD)15 were obtained. SNPs to include in the 514 

GRS models were determined using different LD thresholds by clumping (R-squared of 0.1, 515 

0.2, 0.5, 0.8 or 0.9). Individual level GRS were calculated using plink v1.9. The optimal 516 

models were selected based on the highest fraction of variance explained (adj.r.squared 517 

from lm() in R/3.6.1). An optimal R-squared of 0.1 and 0.9 were selected for BP and CPD, 518 

respectively. A set of 20,000 individuals from the UK Biobank, including all IA cases, was 519 

used to train the model. Individual levels GRSs using the optimized set of SNPs was used as a 520 

covariate in an association analysis using SAIGE. 521 

eQTL-based gene mapping 522 

We used eCAVIAR57 to determine colocalization of GWAS hits with eQTLs. Vascular and 523 

whole blood eQTLs from GTEx v7 were used. eCAVIAR used SNP Z-scores and LD correlation 524 

values to calculate a colocalization posterior probability (CLPP) of a trait GWAS locus and an 525 

eQTL. eCAVIAR requires an LD matrix to determine colocalization of eQTLs and GWAS hits. 526 

We calculated LD in SNPs 1MB on both sides of the SNPs with lowest Stage 1 GWAS P-value, 527 

using European ancestry Health and Retirement Study (HRS dbGaP accession code 528 

phs000428.v2.p2) samples as a reference. Multiple causal SNPs were allowed. 529 
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TWAS is a method to perform differential expression analysis with eQTL-based 530 

predicted transcript levels. We used a summary statistics-based approach integrated in 531 

FUSION58. We used the 1000 Genomes LD weights provided by FUSION, and vascular and 532 

blood eQTL datasets provided on the FUSION reference webpage (URLs). Default settings 533 

were used for all other options. 534 

SMR59 was used to highlight genes the expression of which has a causal influence on 535 

IA risk. eQTL reference datasets from vascular tissues and blood provided by the creators of 536 

SMR were used. These include: CAGE, GTEx V7 (aorta, coronary artery, tibial artery and 537 

whole blood) and Westra (URLs). eQTLs with a p-value below 5.10-8 were selected. The MAF 538 

cutoff was set at 0.01. European ancestry samples from the HRS were used as LD reference 539 

panel. Both the single SNP and multi-SNP approaches were used. 540 

eCAVIAR, TWAS and SMR results were used to annotate genes to genome-wide 541 

significant GWAS loci identified in the Stage 1 GWAS meta-analysis. This approach is 542 

explained in more detail in the Supplementary Note. 543 

SNP-based heritability 544 

To calculate SNP-based heritability, we used LDSC (1.0.0)32 to perform LD-score regression 545 

(LDSR), and we used SumHer33. LDSC makes the assumption that the contribution of each 546 

SNP to the total SNP heritability is normally distributed and not affected by MAF or LD. 547 

SumHer is the summary statistics based equivalent of an LD-adjusted kinship (LDAK) method 548 

to estimate SNP heritability and, instead, assumes that heritability is higher for low MAF 549 

variants and lower in high LD regions. In addition, SumHer models inflation due to residual 550 

confounding as a multiplicative parameter, whereas LDSC models this additively (the LDSR 551 

intercept). Heritability estimates were converted to the liability scale using effective sample 552 
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size. More details and the rationale of these analyses are described in the Supplementary 553 

Note. 554 

Functional enrichment analysis using LDSC 555 

To assess enrichment of heritability in functional annotations, tissues, chromosomes and 556 

minor allele frequency (MAF) bins, we used stratified LD-score regression with LDSC60. 557 

When available we used the publicly available partitioned LD scores for pre-defined 558 

annotations provided by the LDSC authors (URLs), otherwise we calculated our own LD 559 

scores using European ancestry samples from the 1000 Genomes (1000G) project. To 560 

further assess cell type-specific enrichment, we used a method introduced by Skene et al35. 561 

For this analysis, we used single-cell RNA sequencing (scRNAseq) gene expression data 562 

derived from mouse brain to define gene sets specific to cell types in brain35 and brain blood 563 

vessels36. A detailed description of the rationale and parameters is given in the 564 

Supplementary Note. 565 

Functional enrichment analysis using GARFIELD 566 

The GWAS functional enrichment tool GARFIELD v261 was used to explore regulatory, 567 

functional and tissue-specific enrichment of the GWAS summary statistics. It determines 568 

whether GWAS SNPs reaching a certain P-value threshold are enriched in annotations of 569 

interest compared to the rest of the genome while accounting for distance to nearest 570 

transcription start site, MAF and LD. We used the default annotations provided by the 571 

authors to test enrichment in tissues (URLs). We tested enrichment of SNPs passing P-value 572 

thresholds for every log10-unit between 0.1 and 10-8. A more detailed description of the 573 

method is given in the Supplementary Note. 574 
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Genetic correlation 575 

We assessed correlation between IA and other traits using LDHub and LD-score regression 576 

(LDSR) with LDSC. To assess genetic correlation between IA and many non-stroke-related 577 

traits, we used LD Hub40. This platform uses LDSR to assess genetic correlation with a large 578 

number of publicly available GWASs. For the correlation of IA and other stroke subtypes, we 579 

obtained summary statistics for All Stroke (AS), Cardioembolic Stroke (CE), Any Ischemic 580 

Stroke (AnyIS), Large Artery Stroke (LAS), Small Vessel Disease (SVD)41, Deep, Lobar, and 581 

combined Intracerebral Hemorrhage (ICH)62, carotid- and vertebral artery dissection43, 582 

Arteriovenous Malformation (AVM)42 and Abdominal Aortic Aneurysms (AAA)44. We used 583 

LDSC to calculate genetic correlation. LD scores from European ancestry individuals from 584 

1000G were calculated for SNPs in the HapMap 3 SNP set and used to calculate genetic 585 

correlation. Since the heritability estimate was negative for AVM, due to the small sample 586 

size, we performed a SNP lookup of the Stage 2 IA loci that passed the multiple testing 587 

threshold (P<5·10-8) from the GWAS of AVM42. 588 

Conditional genetic correlation 589 

We used mtCOJO to condition Stage 1 IA GWAS summary statistics on summary statistics 590 

from the Neale lab UK Biobank GWAS release 1 (URLs) for smoking and blood pressure (BP) 591 

following a method described previously63. The resulting summary statistics were then used 592 

to calculate genetic correlation between IA, conditioned on another trait, and other vascular 593 

diseases. LD scores supplied by LDSC (eur_w_ld_chr/[chr].l2.ldscore.gz) were used. 594 

European ancestry control samples from stratum sNL2 (from the Doetinchem Cohort Study) 595 

were used as an LD reference panel. All other settings were left as default. 596 
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Trans-ancestry genetic correlation 597 

Popcorn version 0.9.964 was used to assess genetic correlation between IA cohorts of 598 

European and East Asian ancestry. Popcorn uses separate LD score reference panels per 599 

ancestry to account for differences in LD structure between cohorts. We used LD scores 600 

provided by the authors of the Popcorn tool (URLs) for European and East Asian descent 601 

(EUR_EAS_all_gen_[eff/imp].cscore). We calculated the genetic correlation for both genetic 602 

impact and genetic effect. 603 

Mendelian randomization 604 

To infer causal genetic effects of exposure traits on IA (the outcome), we used GSMR63. We 605 

used a meta-analysis of all European ancestry strata, except the UK biobank (stratum sUK2), 606 

as outcome. As exposures we used summary statistics of 2419 traits analyzed using UK 607 

Biobank data, prepared by the Neale lab, release 2017 (URLs). For a second GSMR run with 608 

raw quantitative phenotypes we used the 2019 GWAS release from the same group. GSMR 609 

was run using the GCTA wrapper (v1.92.2). More details on the method and settings are 610 

described in the Supplementary Note. 611 

In order to determine which of the top significant GSMR traits were independent 612 

genetic causes of IA, the Stage 1 GWAS summary statistics were conditioned on the top 613 

traits, i.e. smoking and blood pressure (BP). Conditioning was done using mtCOJO as 614 

described in the Conditional genetic correlation section of the Online Methods. 615 

Drug target enrichment 616 

Drug target enrichment analysis was performed according to a previously described 617 

method47. Gene-wise P-values were calculated with MAGMA v1.06 using a combined 618 

approach of average and top P-values per gene region. Gene-set analysis was performed 619 
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using MAGMA, with pathways curated from MSigDB65,66, TargetValidation (URLs), and with 620 

drug-target sets described previously47. Drug-class enrichment analysis was performed using 621 

a Wilcoxon-Mann-Whitney test. Drug gene-set P-values were tested for enrichment in drug-622 

classes. Enrichment was expressed as the area under the curve (AUC). AUCs were compared 623 

between drug gene-sets within a drug class and all other drug gene-sets.  624 
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Figure legends 917 

Figure 1. GWAS meta-analysis association results.  918 

SAIGE logistic mixed model association P-values of the Stage 1 (upwards direction) and 919 

Stage 2 (downwards direction) GWAS meta-analyses. The horizontal axis indicates 920 

chromosomal position. The vertical axis indicates -log10(P-value) of the association. The 921 

dotted lines indicate the genome-wide significance threshold of P=5·10-8. Lead SNPs of each 922 

locus are highlighted with a diamond, and SNPs in close proximity (±500Kbp) are colored in 923 

pink or purple, depending on chromosome index parity. Labels are gene or locus names 924 

annotated using SMR, eCAVIAR and TWAS, or prior information of IA-associated genes. 925 

Labels or loci identified only in the Stage 2 GWAS are shown in red.   926 

 927 

Figure 2. Heritability and functional enrichment analyses.  928 

a) Partitioned LDSR enrichment analysis of regulatory elements. Labels indicate type of 929 

regulatory element or histone mark used to define regulatory region positions. On the 930 

horizontal axis, the relative enrichment of an element compared to the rest of the genome 931 

is shown. The bold line at enrichment=1 indicates the Null value of no enrichment. Red 932 

points indicate a significant enrichment of P<0.05 divided by the number of annotations 933 

(52), blue indicates a nominally significant enrichment of P<0.05, and grey indicates P>0.5. 934 

b) Partitioned LDSR heritability analysis per chromosome. On the horizontal axis the 935 

proportion of SNPs per chromosome is shown. On the vertical axis the proportion of SNP-936 

based heritability. The blue line is the regression line of heritability proportion regressed on 937 

proportion of SNPs. c) Partitioned LDSR enrichment analysis of scRNAseq brain cell types. 938 

Coloring and labelling are the same as for a). d) GARFIELD analysis of tissues. On the 939 
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horizontal axis, the enrichment of annotations is shown; on the vertical axis, the 940 

corresponding -log10(P-value). Dashed line indicates the significance threshold of P=0.05 941 

divided by the number of annotations in that category. e) GARFIELD analysis of regulatory 942 

regions defined by histone modifications. Coloring and labelling are the same as for d). In all 943 

sub-plots, error bars denote standard error. 944 

 945 

Figure 3. Cross-trait analyses.  946 

a) GSMR analysis of UK Biobank predictors on the Stage 1 IA GWAS, conditioned on traits 947 

depicted by column labels with mtCOJO. Numeric values are the GSMR effect sizes. The top 948 

13 traits are pressure-related traits. The bottom three traits are smoking-related. Text is 949 

colored black if the GSMR effect was statistically significant beyond the Bonferroni 950 

threshold (P<0.05 divided by the number of traits that passed quality control [376]); if not, 951 

text is grey. Square fill colors indicate -log10(P-value) of the GSMR effect. All 16 traits that 952 

pass the multiple testing threshold for significance in the unconditioned analysis are shown. 953 

BP: blood pressure. b) Causality d further explaining the analyses of a. GSMR analysis 954 

showed that genetic risk for smoking and BP are causative of IA. Using mtCOJO, it was found 955 

that the genetic factors associated with BP and smoking cause IA through independent 956 

mechanisms. c) Genetic correlation analysis with LDSR. Genetic correlation estimates are 957 

indicated by color and numeric value. Axis labels on the left denote the trait used for 958 

genetic correlation analysis with IA. Labels on the top denote the trait for which the Stage 1 959 

IA GWAS was conditioned using mtCOJO. Text color and symbols indicate P-value bin for 960 

genetic correlation. Stars and points indicate significance bin. P<0.001: red and ‘***’, 961 

P<0.01: black and ‘**’, P<0.05: black and ‘*’, P<0.1: dark grey and ‘·’, P⩾0.1: light grey. IS: 962 

ischemic stroke. ICH: intracerebral hemorrhage. AAA: abdominal aortic aneurysm. 963 
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