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Abstract 

 

The failure to develop effective therapies for paediatric glioblastoma (pGBM) and 

diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. 

We aimed to quantitatively map assess the extent to which this was present in these 

tumours through subclonal genomic analyses, and to determine whether distinct 

tumour subpopulations may interact to promote tumorigenesis by generating novel 

subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced 

cases revealed multiple tumour subclones, spatially and temporally co-existing in a 

stable manner as observed by multiple sampling strategies. We isolated 

genotypically and phenotypically distinct subpopulations which we propose co-

operate to enhance tumorigenicity and resistance to therapy. Inactivating mutations 

in the H4K20 histone methyltransferase KMT5B (SUV420H1), present in <1% of 

cells, confer an abrogated DNA repair pathway and increased invasion/migration of 

neighbouring cells, in vitro and in vivo, through chemokine signalling and modulation 

of integrins. These data indicate that even rare tumour subpopulations may exert 

profound effects on tumorigenesis as a whole, and may represent a novel avenue for 

therapeutic development. Unravelling the mechanisms of subclonal diversity and 

communication in pGBM/DIPG will be an important step to overcoming barriers to 

effective treatments. 
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Introduction 

 

Paediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) are a 

highly heterogeneous group of high grade glial tumours with no effective treatments 

1. Integrated molecular profiling 2-7 has revealed unique, specific and highly recurrent 

mutations in genes encoding histone H3 variants to mark robust subgroups of pGBM 

and DIPG with distinct age of onset, anatomical distribution, clinical outcome, 

histopathological and radiological features 8,9. A paradigm shift away from 

extrapolating from inappropriate adult GBM data, and towards a more paediatric 

biology-specific approach to developing novel therapies, has been a major positive 

consequence of the discovery of these novel mechanisms of tumorigenesis 10-12. 

 

Despite these advances in our understanding of the unique biological drivers of these 

diseases 13, an additional major challenge to improve outcomes for children with 

these tumours is likely to overlap with morphologically similar tumours in adults - their 

extensive intratumoral heterogeneity 14. This has been demonstrated spatially by the 

application of genomic analyses of topographically distinct areas of the tumour at 

resection 15, through longitudinal studies of tumour progression and recurrence 16, 

and through single-cell RNA sequencing of bulk primary tumour specimens 17. All of 

these analyses suggest the presence of multiple co-existing tumour subclones which 

may play important roles in the proliferative and invasive capacities of the tumour, as 

well as cell fate decisions in response to the tumour microenvironment and selective 

pressure associated with therapeutic intervention. To date, the relative contributions 

to the tumorigenic phenotype of these subclones is unclear, as is to what extent they 

interact during the tumour’s evolutionary history – key factors in understanding the 

implications for novel treatment strategies 18. 
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In adult GBM, multiple subclones may also be marked by differential, mutually 

exclusive gene amplification events present in an individual tumour 19-21, an 

observation also reported in isolated specimens of DIPG 22,23. In these examples, 

cells harbouring distinct receptor tyrosine kinase gene amplifications were found 

intermingled throughout tumour specimens in a manner which suggested an 

environment conducive to the co-existence of multiple cellular subpopulations 19-21. 

Two-dimensional mapping of these subclones across specimens showed some 

evidence of a predilection of certain subclones for perivascular niches, invasive 

tumour fronts, or on the periphery of necrotic areas 19,20. In evolutionary biology terms 

this stable co-existence in conjunction with a degree of specialisation appears to 

imply co-operativity 24. This posits a selective advantage for an interactive cellular 

network and promotes biological diversity within a tumour population as an important 

driver of the malignant phenotype in these cancers.  

 

With pGBM and DIPG harbouring considerably fewer somatic mutations than adult 

GBM 13, we sought to investigate the possibility of tumour heterogeneity reflecting co-

operation of subclones, in what we consider to be an ideal model system for cancers 

sharing these histologies. Through an integrated approach of single and multiple 

sequencing strategies of patient samples coupled with in vitro isolation of subclonal 

populations, we propose that biological diversity is selected for across time and 

space, with genotypically and phenotypically distinct tumour compartments working 

together to enhance key tumorigenic features such as invasion and migration.  
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Results  

 

Paediatric GBM and DIPG are comprised of multiple subclones 

We re-analysed whole genome and exome sequencing from 142 published pGBM 

and DIPG specimens, for which matched germline data was available, from recently 

published studies 2-7. We calculated the cancer cell fractions (CCF) for all somatic 

single nucleotide variants (SNVs) and small insertions/deletions (InDels), taking into 

account the implied tumour cell percentage, overall ploidy, local copy number 

alterations and loss of heterozygosity 25,26 (Supplementary Table S1). In almost all 

cases, we observed a complex inferred subclonal architecture suggestive not of a 

single clonal expansion, but of multiple co-dominant subclonal populations, 

regardless of tumour location (n=93 DIPG, n=20 other midline, n=29 cerebral 

hemispheres) or histone mutation subgroup (n=10 H3.3 G34R (H3F3A), n=61 H3.3 

K27M (H3F3A), n=23 H3.1 K27M (HIST1H3B, HIST1H3C), n=48 histone wild-type) 

(Figure 1A). Despite this variability in the fraction of any tumour harbouring a given 

mutation, at a gene level there were certain recurrent mutations that were found to 

be consistently clonal (H3F3A, HIST1H3B/C, ATRX, NF1), those predominantly 

clonal, but with some subclonal examples (ACVR1, TP53), and those frequently 

found in subclonal populations (ATM, PIK3R1, PPM1D, PDGFRA, BRAF, PIK3CA) 

(Figure 1B). These data provide important evidence for the likely timing of these 

mutations during tumour evolution. Using the EXPANDS package 27,28 we used the 

sequencing data to predict an absolute number of subclones present in each tumour 

sample, deriving a median number of 6 (range 1-14), with more than 85% of cases 

appearing to harbour 3-10 subclones (Figure 1C) (Supplementary Table S2). The 

percentage of clonal alterations ranged from 100% (n=1) to 5.2% (median=35.0%) 

(Supplementary Figure S1A). There was a direct relationship between the overall 

mutational burden (number of somatic coding SNVs) and number of subclones 

(Pearson r2=0.2188, p=4.36x10-9), though with several outliers. (Figure 1D). There 
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were no differences in subclonal number between different anatomical sites (Figure 

1E), despite the differing survival times of tumour location  29. pGBM with H3.3 G34R 

mutations had a significantly elevated number of subclones compared with other 

tumours (median=8.5, p=0.044, t-test), whilst there were significantly fewer in infant 

patients (<3 years at diagnosis; median=4, p=0.0108) (Figure 1E). Plotting the 

number of subclones against hazard ratios for overall survival in a similar manner to 

that described in a pan-cancer analysis 28, we identified cases harbouring more than 

10 subclones to have the worst prognosis (relative risk = 3.3) (Supplementary Figure 

S1B). Although patients with H3.3 G34R mutations had a better prognosis 

(p=3.94x10-6, log-rank test), tumours with >10 subclones nonetheless showed a 

trend towards a shorter survival time, (p=0.068, log-rank test) (Figure 1F). In 

multivariate analysis including location, age and subgroup, only H3.3 K27M 

mutations (p=0.000082, Cox proportional hazards model), and a number of 

subclones greater than 10 (p=0.0082) were independent predictors of shorter 

survival (Supplementary Figure S1C). 

 

The tumour cohort studied is heavily enriched in DIPG samples, and due to the 

unresectability of these lesions, were comprised of a mixture of pre-treated biopsy 

samples and post-treatment autopsy samples obtained post-mortem 2,3,5-7. We 

observed no systematic differences in subclonal architecture when comparing 

samples taken at these differing timepoints, regardless of diagnosis or histone 

mutation status (Supplementary Figure S1D). We were able to assess this directly for 

eight cases for which paired pre- and post-treatment sequencing data was available. 

By plotting the change in major subclonal tumour proportion over time, we observed 

changes in the proportion of individual subpopulations in response to therapy and 

tumour evolution; in all cases however, several significant populations remained 

unchanged, and both before and after treatment the tumour was inferred to harbour 

multiple subclones, suggesting either equivalent fitness of multiple subclones, or 
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pressures restricting the ability of any given clone to sweep to fixation 

(Supplementary Figure S1E).  

 

DIPG cells escape the pons early during tumour evolution 

More direct evidence for the presence of multiple, genetically distinct subclones 

could be seen from sequencing 36 topographically distinct samples from 12 different 

patients (Supplementary Table S3). Comparing the CCFs from across a given 

tumour sample clearly demonstrated both the ubiquitous presence of presumed 

driver alterations (histone mutations, NF1) (Supplementary Figure S2A) but also a 

range of mutations private to only one portion of the tumour - of note, each distinct 

tumour region itself was inferred to harbour multiple subclones.  

 

The collection of DIPG samples at autopsy represented a unique opportunity to 

evaluate the spatial heterogeneity of these tumours. For one case (QCTB-

R091/R092), distinct low-grade and high-grade components were manually dissected 

and found to harbour key oncogenic mutations in one, and not the other region (e.g. 

PIK3CA H1047R in grade IV and not grade II) in addition to ubiquitous drivers such 

as ACVR1 (Supplementary Figure S2B). It has previously been shown that these 

diffusely infiltrating lesions may be found outside the pons and spread throughout the 

central nervous system at the time of death 30. Multi-sample sequencing strategies 

allowed us to again identify early driver events present throughout the tumour cells of 

an individual patient (H3F3A, HIST1H3B), as well as those occurring only at the point 

of escape of cells from the brainstem, such as mutations in WNK2, known to play a 

role in glioma cell migration and invasion 31 (Supplementary Figure S2C). Across 

multiple sites in multiple samples (Figure 2, Supplementary Figure S3, 

Supplementary Table S3), mapping SNVs and copy number aberrations (CNAs) 

revealed branching evolutionary trajectories. This was particularly evident in the most 

extensively sampled cases (Figure 2), where distinct branches highlighted the 
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profound laterality of tumour evolution, whilst tumour cells found in midbrain, 

cerebellar and thalamic regions were seen to diverge early from the pontine mass. 

Whilst the difference in mutational profiles may be a result of invasive cells cycling 

more slowly, the presence of convergent or parallel evolution in key oncogenic 

drivers such as PIK3CA, NF1, MKI67, NOTCH1 and DMNT3A  (Supplementary 

Figure S3) strongly suggests a predominantly early evolutionary divergence of cells 

which subsequently migrated outside the pons.  

 

In vitro isolation of genotypically and phenotypically distinct subclones 

To determine whether the subclonal tumour cell populations present in pGBM and 

DIPG represented functionally distinct entities (rather than simply reflecting 

stochastic alterations occurring as a result of increasing genetic instability), we 

devised a methodology to isolate and expand single tumour cells under stem cell 

conditions, referred to as ‘stem-like’ cells, in both two- 32 (2D) and three-dimensional 

(3D) culture 33 for further analysis (Figure 3A). Using this approach, we identified 

three primary patient-derived H3.3 K27M mutant samples (two DIPG, one thalamic 

pGBM) (Supplementary Figure S4) from a well-characterised panel of six cultures 

(Supplementary Figure S5A,B) to readily form single cell-derived colonies in both 2D 

and 3D, at rates varying between 7.5-20.8% cells (Figure 3B). Colonies isolated from 

SU-DIPG-VI were identified using high-content image analysis (Figure 3C,F) and 

displayed highly variable growth characteristics in vitro when grown as 3D 

neurospheres (Figure 3D) and 2D on laminin (Figure 3G). When sequenced at high 

depth using a custom designed targeted panel (Supplementary Table S4), in addition 

to ubiquitously shared mutations (e.g. H3F3A, TP53), around half the colonies 

harboured a series of shared mutations not seen in the remainder (e.g. PRSS1, 

CHD3), whilst most were also found to contain a series of private events restricted to 

individual cell populations, including genes associated with cell shape and motility 

(FLNC, CTTN, RANGAP1) (Figure 3E,H). Individual laminin-grown colonies with fast 
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(A-D10), intermediate (A-B8) and slow (A-E6) growth rates (Figure 3I) were seen to 

have significantly differing capacities for invasion into matrigel (Figure 3J) and 

migration on fibronectin (Figure 3K) in vitro. Thus, individual tumour samples contain 

a dynamic diversity of overlapping genotypic and phenotypic populations in the stem-

like cell compartment.  

 

Rare tumour subclones can harbour pathogenic variants driving differing phenotypes 

For HSJD-DIPG-007, we could utilise the ability to isolate these genetically and 

phenotypically distinct subclonal populations to investigate the role of individual 

genotypes without needing to artificially engineer the cells. We identified a single cell-

derived neurosphere colony (NS-F10) to harbour a private mutation in the histone H4 

methyltransferase KMT5B (SUV420H1) (Figure 4A), which was found to be present 

in the original bulk primary culture in only 2/678 reads (0.295%) (Figure 4B). This 

mutation results in the acquisition of a stop codon at amino acid position 187 

(R187*), predicted to truncate the protein. Examining published sequencing datasets, 

we identified another case of pGBM from Schwartzentruber et al. 4, PGBM18, to 

harbour a subclonal R699* truncating mutation of KMT5B in 12.2% reads (Figure 

4B), demonstrating this is not a unique observation. By digital droplet PCR, we 

confirmed that this mutation was present in (8060/16196) 49.77% of droplets from 

NS-F10 (assuming heterozygosity, this reflects presence in 99.64% cells), 108/22512 

(0.48%) reactions of the original culture, and absent (not significantly different from 

normal human astrocyte control, 1/18484, 0.009%) from a ‘natural isogenic’ 

(confirmed by exome sequencing) counterpart subclone NS-F8 (Figure 4C). The 

KMT5B mutant (NS-F10) and wild-type (NS-F8) subclones did not show appreciable 

differences compared to each other, or the heterogeneous original bulk HSJD-DIPG-

007 cells, in terms of morphology or immunophenotype (Supplementary Figure S5C). 

The methyltransferase encoded by the gene is predominantly involved in 

dimethylation, and to a lesser extent, trimethylation 34, of histone H4K20, and 
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consequently by immunofluorescence we observed a reduction in H4K20me2 in NS-

F10 compared to HSJD-DIPG-007 bulk cells and NS-F8 (Figure 4D). An unbiased 

drug screen of all three colonies against 80 chemotherapeutic and targeted agents 

(Supplementary Figure S6A-C) (Supplementary Table S5) revealed significantly 

enhanced sensitivity to multiple chemotypes of PARP inhibitors of the KMT5B mutant 

NS-F10 compared to wild-type NS-F8 and HSJD-DIPG-007 bulk cells (10-30 fold 

difference for olaparib, SF50 1nM vs 11nM and 31nM; 4.5 fold difference for 

talazoparib, SF50 1nM vs 3.833nM and 3.799nM, NS-F10 vs. NS-F8 and HSJD-

DIPG-007 bulk population ANOVA p<0.001 in each case) (Figure 4E). Notably, when 

subclones were co-cultured, rather than a dilution effect dependent on the relative 

proportions, mixed cultures were similarly insensitive as the heterogeneous bulk 

population (Figure S6D). Thus the mutation appears to confer a loss of function to 

these cells, presumably due to an abrogated DNA repair process associated with 

loss of H4K20me2 (but not H4K20me3 or total H4, Supplementary Figure S6E) and 

recruitment of 53BP1 34.  

 

Distinct infiltrative phenotypes of genotypically divergent DIPG subclones in vivo.  

RNA sequencing analysis of the subclones revealed elevated gene expression in 

NS-F10 cells of a range of genes associated with remodelling the extracellular matrix 

(Figure 4F) (Supplementary Table S6). These included the fibronectin receptors 

alpha-3 and alpha-5 integrin, with differential protein expression validated by 

immunofluorescence and immunohistochemistry (Figure 4G). Although there was a 

slightly enhanced growth capability of the heterogeneous HSJD-DIPG-007 bulk cells 

(Figure 4H), NS-F10 and NS-F8 subclones were similar, though we did observe 

significant differences in invasion into matrigel (Figure 4I) and migration on 

fibronectin (Figure 4J), even after growth had been controlled for. This absence of 

alpha integrin expression likely underlies the inability of NS-F8 to migrate on 

fibronectin; of note, NS-F8 neurospheres also harboured a significantly reduced 
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migratory capacity compared with NS-F10 on a range of other substrates including 

tenascin-C, laminin and matrigel (Supplementary Figure S6F). In all instances, the 

mixed population bulk HSJD-DIPG-007 cells were significantly more migratory than 

either subclone.  

 

The KMT5B wild-type NS-F8 cells had significantly reduced invasive and migratory 

capacities, which could be reversed (unlike the KMT5B mutant NS-F10 cells) upon 

culture with conditioned media from the HSJD-DIPG-007 bulk cells (Figure 4K), 

suggesting the presence of expressed factors absent from the isolated NS-F8 

cultures. These cells also differentially responded to the chemokine CXCL2 in terms 

of a significantly enhanced migration on fibronectin (Figure 4K). This C-X-C ligand 

was chosen as one of the most differentially expressed genes by RNA sequencing 

analysis in NS-F10 (and HSJD-DIPG-007 bulk) compared to NS-F8 (Figure 4F). 

Thus we have a model whereby paracrine signalling between subclones underlies 

the co-operative interactions observed in mixed populations. 

 

In line with in vitro data, phenotypic differences were also recapitulated in vivo, where 

both bulk cell populations and NS-F10 subclones formed diffusely infiltrating tumours 

within 23-24 weeks after orthotopic implantation in the pons of NOD-SCID mice, 

whereas NS-F8 lesions were significantly less infiltrative and conferred a lower 

tumour burden, even after 30-32 weeks, despite there being little difference in 

proliferative capacity and immunophenotype in the brains (Figure 5A). NS-F8 

tumour-bearing mice also had a longer survival (median=205 days NS-F8 versus 

141.5 days (NS-F10) and 169 days (bulk), p=0.0236, log-rank test) (Figure 5B). 

Tumours from heterogeneous bulk cells were confirmed by ddPCR to harbour a low 

subclonal frequency of KMT5B R187* mutation (0.23%) (Figure 5C), showing no 

significant selective pressure against the heterogeneous population. Thus even rare 

tumour cell subclonal populations may have different behaviours in vitro and in vivo 
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of importance to key phenotypic features of DIPG which currently preclude effective 

treatments.  

 

Notably, we observed similar results in a second model. A slower-growing subclone 

of SU-DIPG-VI in vitro, A-E6, formed a less cellular tumour (Figure 5D) and had an 

extended survival when grown orthotopically in vivo of more than 118 days longer 

than a rapidly proliferating, highly invasive subclone (A-D10) and 154 days longer 

than the unselected bulk culture (p=0.037, log-rank test) (Figure 5E). 

 

DIPG subclones co-operate to enhance tumorigenic phenotypes  

To explore the nature of these subclonal interactions, we differentially labelled and 

co-cultured genotypically and phenotypically distinct subclones from two DIPG 

samples – A-E6 and A-D10 from SU-DIPG-VI (Figure 6A-D), and NS-F8 and NS-F10 

from HSJD-DIPG-007 (Figure 6E-H). When cultured in equal proportions having 

been re-plated as single neurospheres, although there was little difference in 

observed growth rates (Figure 6A,6 E), there was a marked enhancement of invasion 

and migration conferred on the poorly motile subclones by co-culture with their more 

invasive/migratory counterpart (Figure 6B, 6C, 6F, 6G). In both models, cell labelling 

allowed us to demonstrate that this was not a simple dilution effect of the mixture, but  

that the specific subclones otherwise lacking a pronounced ability to invade into 

matrigel (Figure 6D) or migrate on fibronectin (Figure 6H) were seen to have 

significantly enhanced phenotypes, clearly co-localised and moving in concert 

alongside their natural isogenic pairs (Supplementary Videos S1, S2). In vivo, co-

cultured NS-F8/NS-F10 were found to retain their mixed proportions and infiltrate 

more extensively throughout the CNS than NS-F8 alone (Supplementary Figure 

S6G), conferring shorter survival on mice harbouring these orthotopic tumours 

(p=0.045, log-rank test) (Supplementary Figure S6H). Thus we conclude that there 

exists an actively maintained co-operative network of subclones within DIPGs that 
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depend on strongly positive interactions to elicit the highly aggressive clinical 

phenotypes seen in children with this incurable disease.  
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Discussion 

 

Widespread intratumoral heterogeneity in human cancer has become a prevalent 

theme in high-throughput sequence analysis of tumour specimens, with critically 

important implications for the success of therapeutic targeting 35. Less attention has 

been given to the functional implications of this subclonal diversity and the 

interactions between distinct tumour subpopulations. Here we utilise pGBM and 

DIPG as cancer types with a relatively low mutational burden, yet a high degree of 

heterogeneity, to isolate these genotypically and phenotypically different 

compartments, and provide evidence that subclonal diversity is selected for due to 

co-operative interactions which promote tumorigenesis.  

 

Single cell-derived colonies were established and expanded under stem cell culture 

conditions, though without marker pre-selection, in contrast to a recent approach 36. 

Phenotypic differences were observed in terms of morphology, growth, migration and 

invasion which could be linked directly to concurrent genotypic differences in the 

subclones. These properties, first identified through high-content screening during 

initial expansion, were maintained upon re-passaging in short-term culture, indicating 

inherently fixed characteristics in markedly different tumour cell subpopulations. 

Single nucleotide variants differing among single-cell derived colonies could be found 

at low frequencies in the original tumour mass, and thus were reflecting not an 

acquired artefact of the culture conditions but instead a propensity of genotypically 

distinct subclones to harbour stem-like properties, further evidenced through their 

tumorigenic capacity in vivo. It has previously been proposed that a branched 

Darwinian evolution model integrated with a hierarchy of multiple cancer stem cell 

populations may help explain the spatial and temporal characteristics of observed 

intratumoral heterogeneity 37, with evidence provided in leukaemia 38 and solid 

tumours 39-41. 
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In our models, the differing phenotypes of individual subclones were substantially 

less prominent than heterogeneous unsorted primary cultures, with enhanced 

growth, invasion and migration properties of mixed populations of cells supporting 

the interpretation of sequencing analyses suggesting that subclonal diversity is 

selected for spatially 42,43 and temporally 44 in these tumours. For such stable co-

existence to be maintained during tumour evolution, a degree of co-operativity is 

implied. In our example, we isolate ‘natural isogenic’ subclonal populations differing 

by a key loss-of-function mutation in an H4K20 methyltransferase, in which the more 

migratory mutant cells are able to confer such properties on their wild-type 

counterparts, seemingly at least in part through expression of key chemokines such 

as CXCL2. A similar concept of ‘co-operative invasion’ was first identified in 

melanoma 45, whereby phenotypically distinct subpopulations of cells were found to 

co-migrate, a phenomenon also observed in DIPG in our genotypically distinct cells. 

Likewise, a recent elegant paper making use of lentiviral-transduced triple negative 

breast cancer cell line allowed for reconstruction of an aggressive phenotype in vivo 

using only two co-operating subclones – those overexpressing IL-11 and VEGFD 46. 

Such a mechanism obviates the need for clonal selection to drive tumorigenesis, and 

predicts for the maintenance of intratumoral heterogeneity we observe. Notably, the 

proportion of cells which harbour these more enhanced phenotypes may be low, and 

therefore remain unidentified in bulk tumour profiling studies, though still play a 

critical role in tumour development and maintenance. 

 

pGBM harbouring H3.3 G34R/V mutations were found to harbour a higher mutational 

burden and a greater subclonal diversity than other tumour subgroups. Although the 

mechanisms are not known, this likely reflects an underlying DNA repair defect 

associated with the inability of the mutant H3K36 to be trimethylated, disrupting its 

important role in mismatch repair 47,48. Despite this, they do not have the mutational 
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burden of hypermutator cases with biallelic mismatch repair deficiency, for whom 

immune checkpoint inhibitors appear to offer an exciting new therapeutic option 49. It 

is not clear therefore that G34R/V cases would benefit from a similar strategy. 

Unfortunately no H3.3 G34R/V cultures were available for our study, and the majority 

of our functional work was focused on H3.3 K27M mutant DIPG samples, which were 

more amenable to single cell-derived colony formation in our assay than other 

tumour genotypes (though it is not clear whether this reflects imperfect culture 

conditions for these subgroups). It has previously been shown that these diffusely 

infiltrating lesions may be found outside the pons and spread throughout the central 

nervous system at the time of death 30. Reconstructing phylogenies through 

sequencing of tumour cells spread throughout the brain at autopsy indicates an early 

escape of migratory cells from the pons prior to the rapid proliferative expansion 

occurring by the time of presentation and treatment. This has important implications 

for locally delivered therapies, and re-opens the debate for the use of whole brain 

irradiation upfront in children with DIPG. The later acquisition of convergent 

mutations in genes controlling key signalling pathways associated with proliferation 

at these distant sites also underlies the challenges in preventing tumour recurrence 

and/or metastasis at anatomically distinct sites in the central nervous system 50.   

 

In summary these data demonstrate that pGBM and DIPG harbour a complex 

admixture of genotypically and phenotypically distinct stem-like cells driving a 

functionally-based intratumoral heterogeneity. Understanding how the derived 

subclones interact and adapt to the tumour microenvironment, and to therapy, will be 

a key requirement in order to maximise patient benefit from existing treatment 

options. Future strategies aimed at disrupting these interactions may represent a 

novel therapeutic approach in these diseases. 
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Legends for figures  

Figure 1 – Paediatric GBM and DIPG harbour a complex subclonal architecture. (A) 

Inferred heterogeneity. Representative images (from n=142) of six cases of pGBM 

and DIPG from different anatomical locations and with different histone H3 mutation 

status. For each case, a CIRCOS plot is given highlighting somatic SNVs and InDels 

(outer ring), DNA copy number changes (red=gain, blue=loss) and loss of 

heterozygosity (yellow) on the inner rings, and intra-/inter-chromosomal 

translocations inside the circle (orange). The CCF for each somatic coding mutation 

is plotted as a histogram with a kernel density overplotted. In all cases, in addition to 

a peak of mutations present in 100% cells (clonal) there is a complex pattern of 

subclonal mutations (<95% CCF) forming multiple peaks at low frequencies within a 

given tumour. (B) Gene-level clonality. Violin plot of CCFs for a given series of gene 

mutations across all 142 independent cases of pGBM and DIPG (H3.3 G34R/V, 

n=10; H3.3 K27M, n=61; H3.1 K27M, n=23; ATRX, n=22; NF1, n=4; ACVR1, n=27; 

TP53, n=; ATM, n=5; PIK3R1, n=8; PPM1D, n=11; PDGFRA, n=7; BRAF, n=5; 

PIK3CA, n=15). The shaded area represents a CCF of 95-100% to indicate a clonal 

mutation. Purported drivers such as histone H3 mutations, ATRX and NF1 are 

almost wholly found to be clonal (though there are single outliers in some instances). 

Other genes such as PIK3CA, BRAF and PDGFRA are frequently found to be 

mutated in smaller subclonal compartments of the tumours. Kernel densities of CCFs 

are plotted for all samples harbouring a given mutation (number of independent 

cases listed on figure). (C) Subclonal architecture. The number of subclones present 

in 142 pGBM and DIPG is calculated from somatic mutation data using the 

EXPANDS package27, and ordered first by the number of subclones (coloured using 

a rainbow palette) and then by the proportion of the tumour defined by the major 

clone in each tumour. A single case was found to be clonal, with more than 85% 

cases harbouring between 3-10 subclones. (D) Mutational burden. Dotplot of the 

number of somatic coding SNVs (y axis) against the number of subclones (x axis), 
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demonstrating a significant positive relationship (Pearson r2=0.2188, p=4.36x10-9, 

n=142 independent samples). The horizontal bar represents the median value. 

Individual tumours are coloured by their histone H3 mutation status, with outliers 

often seen to harbour H3.3 G34R (blue). (E) Clinical and molecular correlates of 

subclonal numbers. Boxplots highlighting no differences in the number of subclones 

on the basis of anatomical location, but an increased number in H3.3 G34R tumours 

(p=0.044, t-test), and a reduced number in infant cases (<3 years, p=0.0108, t-test) 

across all n=142 independent samples. The thick line within the box is the median, 

the lower and upper limits of the boxes represent the first and third quartiles, the 

whiskers 1.5x the interquartile range, and individual points outliers. (F) Prognostic 

implications. Kaplan-Meier curves demonstrating H3.3 G34R tumours have a longer 

overall survival than other pGBM and DIPG (p=3.94x10-6, log-rank test), however 

despite the association of this subgroup with an increased number of tumour 

subclones, an elevated subclonal diversity shows a clear trend towards shorter 

survival across all pGBM and DIPG (p=0.068, log-rank test). Comparisons we made 

including all n=142 independent samples. * p<0.05. **p<0.01. 

 

Figure 2 – DIPGs infiltrate the brain through branching evolution and genotypic 

convergence. (A) Multi-region sampling. Thirteen different tumour-harbouring regions 

of HSJD-DIPG-010 were sampled post-mortem, from within and outside the pons. 

Scale bar = 100µm. (B) Exome sequencing was carried out for all regions, with CCFs 

plotted as a heatmap for all variants found in at least one specimen, with anatomical 

location highlighted and colour-coded. (C) Phylogenetic trees were reconstructed 

using neighbour-joining algorithms based upon the nested subpopulation 

phylogenies calculated as part of EXPANDS, with clearly evident laterally-directed 

evolution and early escape from the pons of tumour cells found in distinct anatomical 

sites. (D-F) Eight different tumour-harbouring regions of HSJD-DIPG-014 subjected 
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to the same analysis. (G-I) Eight different tumour-harbouring regions of HSJD-DIPG-

015 subjected to the same analysis. Scale bar = 100µm.m 

 

Figure 3 – Isolation of genotypically and phenotypically diverse single stem-like cell-

derived subclones of paediatric GBM and DIPG. (A) Isolation of subclonal 

populations. Experimental schema for disaggregation of heterogeneous mixtures of 

patient-derived tumour cells, flow sorting into single cells in 96-well plates, and 

allowing colonies to form as either 2D cultures adherent on laminin, or 3D 

neurospheres, all under stem cell conditions. Individual subclonal colonies are 

subjected to high-throughput phenotypic analysis and targeted resequencing, and 

further cultured for detailed in vitro and in vivo mechanistic comparison with 

heterogeneous bulk populations. (B) Clonogenicity. Percentage of single cells which 

formed colonies under 2D laminin and 3D neurosphere stem cell conditions are given 

for six pGBM and DIPG primary patient-derived cell cultures, labelled by anatomical 

location and histone H3 mutation subgroup. (C) 3D neurosphere culture from single 

cell-derived colonies from SU-DIPG-VI assessed by Celigo S imaging cytometer. (D) 

Growth of single cell-derived colonies over time, assessed as diammeter of 

neurosphere, labelled and colour-coded. (E) Targeted sequencing contingency plot 

of somatic mutations identified as common to all subclones (blue), shared amongst 

certain subclones (yellow) and private to individuals (red). (F) 2D laminin culture from 

single cell-derived colonies from SU-DIPG-VI assessed by Celigo S imaging 

cytometer. (G) Growth of single cell-derived colonies over time, assessed as 

diammeter of neurosphere, with subclones taken for later analysis highlighted: A-D10 

(fast, purple), A-B8 (intermediate, pink) and A-E6 (slow, violet). (H) Targeted 

sequencing contingency plot of somatic mutations identified as common to all 

subclones (blue), shared amongst certain subclones (yellow) and private to 

individuals (red). Gene names are coloured to highlight private mutations in selected 

subclones, or common to A-D10 and A-B8 (brown). (I) Growth. Time-course for 
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growth of selected subclones re-plated and grown over 160 hours, highlighting 

statistically significant differences among subclones and heterogeneous bulk cell 

populations of SU-DIPG-VI (blue). Representative images at 72 hours are provided 

from the Celigo S cytometer, with tumour cells marked in green. Data derived and 

representative images taken from n=3 independent experiments. Scale bar = 500µm. 

(J) Invasion. Time-course of invasion of cells into a matrigel matrix over 72 hours, 

either as percentage of the total area in the field of view covered by invading cells, or 

as a percentage of time zero. Representative images given at 72 hours, with extent 

of tumour cell invasion marked in green. Data derived and representative images 

taken from n=3 independent experiments. Scale bar = 500µm. (K) Migration. Time-

course of tumour cell migration onto matrigel over 72 hours, either as percentage of 

the total area of the well covered by migrating cells, or as a percentage of time zero. 

Representative images given at 72 hours, with extent of tumour cell migration 

marked in green. Data derived and representative images taken from n=3 

independent experiments. Scale bar = 500µm. * p<0.05. **p<0.01. ***p<0.001. All 

graphs represent mean +/- standard deviation.   

 

Figure 4 – Rare DIPG subclones with pathogenic somatic variants driving the 

cellular phenotype. (A) Targeted sequencing. Contingency plot of common (blue), 

shared (yellow) and private (red) somatic mutations in single cell-derived 

neurospheres from primary patient-derived cell culture HSJD-DIPG-007. NS-F10 is 

the only subclone to harbour a mutation in KMT5B. (B) Pile-up representation of 

sequencing reads aligning to the KMT5B locus at 11q13.2. The R187* (c.559G>A) 

variant is highlighted in red (boxed for clarity) and is present in 2/678 reads of original 

heterogeneous sample. Cartoon representation of mutations identified in HSJD-

DIPG-007 (c.559G>A, R187*, present in 0.47% total reactions by ddPCR) and 

MCGL-PGBM184 (c.2095G>A, R699*, present in 12.2% total reads by exome 

sequencing). Amino acid position labelled, and SET domain coloured blue.  (C) 



 

27 

Digital droplet PCR. Plot of assay for KMT5B wild-type (x axes) and R187* mutation 

(y axes) for normal human astrocytes, heterogeneous bulk cells, and subclones NS-

F10 and NS-F8. Mutant reads are present in 49.77% droplets from NS-F10, equating 

to 99.64% cells harbouring a heterozygous mutation. They are absent from 

astrocytes and NS-F8, though are found in 0.48% droplets from the original bulk 

preparation. Taken from n=3 independent experiments. (D) Immunofluorescence. 

Heterogeneous bulk HSJD-DIPG-007 cells and subclones were stained using an 

antibody directed against H4K20me2 (green), or total H4 (red), with nuclei stained 

with DAPI (blue). Reduced expression  of H4K20me2 is observed in KMT5B mutant 

NS-F10 cells. Representative images taken from n=3 independent experiments. 

Scale bar = 50µm. (E) PARP inhibition. Effect on cell viability (surviving fraction on y 

axes) of treatment of heterogeneous bulk cells and subclones with increasing 

concentrations of two different PARP inhibitors (x axes, log10 scale). ANOVA was 

used to test for significance of NS-F10 versus NS-F8 and HSJD-DIPG-007 bulk 

culture for talazoparib and olaparib. *** all p values <0.001. Data derived from n=3 

independent experiments. (F) RNAseq. Heatmap of gene expression analysis from 

RNA sequencing data highlighting differential expression in KMT5B mutant NS-F10 

subclones compared to wild-type NS-F8. The most highly elevated genes included a 

range of extracellular matrix remodellers (represented in gene set enrichment 

analysis by the gene set “BOWIE RESPONSE TO EXTRACELLULAR MATRIX”) and 

numerous secreted chemokines (gene set “REACTOME CHEMOKINE 

RECEPTORS BIND CHEMOKINES”). KMT5B itself is also differentially expressed. 

All cell preparations were sequenced n=1, and statistical comparisons made by Gene 

Set Enrichment Analysis using the Kolmogorov-Smirnov test (p) with multiple 

correction testing using the False Discovery Rate (q). (G) Immunofluorescence of 

bulk HSJD-DIPG-007 cells and subclones stained using an antibody directed against 

alpha-5 integrin (red). Nuclei are stained with DAPI (blue). Immunohistochemistry of 

embedded bulk HSJD-DIPG-007 cells and subclones stained using an antibody 
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directed against alpha-5 integrin, and counterstained with haematoxylin. 

Representative images taken from n=3 independent experiments. Scale bar = 50µm. 

(H) Growth. Neurosphere growth of HSJD-DIPG-007 and derived subclones seeded 

with different cell densities showing significantly elevated growth in the 

heterogeneous bulk cells, but not among subclones. Data derived and representative 

images taken from n=3 independent experiments. Scale bar = 500µm. (I) Invasion. 

Time-course of tumour cell invasion into matrigel over 72 hours, as a percentage of 

time zero using the Celigo S cytometer. Representative images given at 72 hours, 

with extent of tumour cell invasion marked in green. Data derived and representative 

images taken from n=3 independent experiments. Scale bar = 500µm. (J) Migration. 

Time-course of tumour cell migration onto a fibronectin matrix over 72 hours, as a 

percentage of time zero using the Celigo S cytometer. Representative images given 

at 72 hours, with extent of tumour cell migration marked in green. Data derived and 

representative images taken from n=3 independent experiments. Scale bar = 500µm. 

(K) Migration in response to stimulation with either conditioned media from HSJD-

DIPG-007 heterogeneous bulk cells, or the chemokines CCL2 and CXCL2. Values 

are given as a percentage of unstimulated cells at 24 hours using the Celigo S 

cytometer. Representative images are given, with extent of tumour cell migration 

marked in green. Data derived and representative images taken from n=3 

independent experiments. Scale bar = 500µm. All comparisons carried out by 

ANOVA, * p<0.05. **p<0.01. ***p<0.001. All graphs represent mean +/- standard 

deviation.   

 

Figure 5 – Distinct infiltrative phenotypes of genotypically divergent DIPG subclones 

in vivo. (A) Tumour burden and infiltration. Heterogeneous HSJD-DIPG-007 bulk 

cells and NS-F10 and NS-F8 subclones were implanted directly into the pons of 

NOD-SCID mice and tumours allowed to form over 8 months. At weeks 23/24, bulk 

cells and NS-F10 formed diffusely infiltrating tumours throughout the brain, as seen 
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by haematoxylin and eosin staining as well as immunohistochemistry with anti-

human nuclei antigen (HNA), whereas NS-F8 had formed considerably less 

infiltrative lesions even at 30 weeks. Representative images from a total of n=4 mice 

per group. Scale bar = 1000µm (inset scale bar = 50µm). (B) Survival. Tumour-

bearing animals implanted with NS-F8 subclones had significantly longer survival 

than heterogeneous HSJD-DIPG-007 bulk cells and NS-F10 (p=0.0236, log-rank 

test, n=4 mice per group). * p<0.05. (C) Digital droplet PCR. Plot of assay for KMT5B 

wild-type (x axes) and R187* mutation (y axes) for normal human astrocytes and 

tumours from mice implanted with heterogeneous bulk cells, and subclones NS-F10 

and NS-F8. Mutant reads are present in 51.33% droplets from NS-F10 and 0.23% 

droplets from the original bulk preparation. Taken from n=3 independent 

experiments. (D) Tumour burden and infiltration. Heterogeneous SU-DIPG-VI bulk 

cells and A-D10 and A-E6 subclones were implanted directly into the pons of nude 

mice and tumours allowed to form over 8 months. At week 10, bulk cells and A-D10 

formed highly cellular, infiltrating tumours, as seen by haematoxylin and eosin 

staining as well as immunohistochemistry with anti-HNA, whereas A-E6 had formed 

considerably less cellular lesions even at 14 weeks. Representative images from a 

total of n=8 mice per group. Scale bar = 1000µm (inset scale bar = 50µm). (E) 

Survival. Tumour-bearing animals implanted with A-E6 subclones had significantly 

longer survival than heterogeneous SU-DIPG-VI bulk cells and A-D10 (p=0.037, log-

rank test, n=8 mice per group). 

 

Figure 6 – DIPG subclones co-operate to enhance tumorigenic phenotypes 

Individual subclones of SU-DIPG-VI (A-D) and HSJD-DIPG-007 (E-H) were 

differentially labelled and cultured either as pure populations or mixed in equal ratios. 

(A) Growth of co-cultured (yellow) and mono-cultured E6 (green) and D10 (red) cells 

plated as single neurospheres after 96 hours, measured as diammeter of the sphere, 

with representative images provided from the Celigo S cytometer under phase 
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contrast and fluorescence. Data derived and representative images taken from n=3 

independent experiments. Scale bar = 500µm. (B) Invasion of co-cultured (yellow) 

and mono-cultured E6 (green) and D10 (red) into matrigel over 72 hours, with area 

assessed by ImageJ software from representative images provided from the Celigo S 

cytometer under phase contrast and fluorescence. Co-cultures and D10 have 

significantly enhanced invasive capabilities compared to E6. Data derived and 

representative images taken from n=3 independent experiments. Scale bar = 500µm. 

(C) Migration of mono- and co-cultured E6 (green) and D10 (red) on matrigel, 

assessed by the number of differentially labelled distant cells at 24 hours, with 

representative images provided from the IncuCyte Zoom live-cell analysis system 

under phase contrast and fluorescence. Cells from individual subclones have 

enhanced migratory properties when cultured together compared to alone. Data 

derived and representative images taken from n=3 independent experiments. Scale 

bar = 500µm. (D) Confocal microscopy analysis of invasion of mono- and co-cultured 

E6 (green) and D10 (red) into matrigel after 4 days, with nuclei stained with DAPI. 

Poorly motile E6 cells are found to invade further and in greater numbers alongside 

D10 cells than when cultured alone. Representative images taken from n=3 

independent experiments. Scale bar = 200µm. (E) Growth of co-cultured (yellow) and 

mono-cultured NS-F8 (green) and NS-F10 (red) cells plated as single neurospheres 

after 96 hours, measured as diammeter of the sphere, with representative images 

provided from the Celigo S cytometer under phase contrast and fluorescence. Data 

derived and representative images taken from n=3 independent experiments. Scale 

bar = 500µm. (F) Invasion of co-cultured (yellow) and mono-cultured NS-F8 (green) 

and NS-F10 (red) into matrigel over 72 hours, with area assessed by ImageJ 

software from representative images provided from the Celigo S cytometer under 

phase contrast and fluorescence. Co-cultures and NS-F10 have significantly 

enhanced invasive capabilities compared to NS-F8. Data derived and representative 

images taken from n=3 independent experiments. Scale bar = 500µm. (G) Migration 
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of mono- and co-cultured NS-F8 (green) and NS-F10 (red) on fibronectin, assessed 

by the number of differentially labelled distant cells at 48 hours, with representative 

images provided from the IncuCyte Zoom live-cell analysis system under phase 

contrast and fluorescence. Cells from NS-F8 have enhanced migratory properties 

when cultured with NS-F10 compared to alone. Data derived and representative 

images taken from n=3 independent experiments. Scale bar = 500µm. (H) Confocal 

microscopy analysis of migration of mono- and co-cultured NS-F8 (green) and NS-

F10 (red) on fibronectin after 3 days, with nuclei stained with DAPI. Poorly motile NS-

F8 cells are found to migrate further and in greater numbers alongside NS-F10 cells 

than when cultured alone. Representative images taken from n=3 independent 

experiments. Scale bar = 200µm. All comparisons carried out by ANOVA, * p<0.05. 

**p<0.01. ***p<0.001. All graphs represent mean +/- standard deviation.   

 



 

32 

Online Methods 

 

Published sequencing data 

Raw data was obtained from the European Genome-phenome Archive 

(https://www.ebi.ac.uk/ega/home) from five published sequencing studies, and 

provided under data access agreement from the St. Jude Children’s Research 

Hospital – Washington University Pediatric Cancer Genome Project (accession 

number EGAS00001000192 6,7), The Hospital for Sick Children (EGAS00001000575 

2) and the McGill University – DKFZ Pediatric Brain Tumour Consortium 

(EGAS00001000226 4 and EGAS00001000720 3). We additionally included data 

from our own study (EGAS00001000572 5) and from four cases collected via the ICR 

(South West London MREC-approved study 10/H0803/126 with full consent) 

included in a recent International Cancer Genome Consortium (ICGC) study 

(EGAS00001001139 51), all of which were additionally part of a recent genomics 

meta-analysis by our group 29, processed data from which are housed at 

https://www.pedcbioportal.com. In total, we obtained whole genome (n=70) or exome 

(n=72) data from 142 pGBM and DIPG patients for whom matched germline data 

was available, six of whom additionally had data from paired longitudinal sampling. 

The median age was 6.8 years at diagnosis and the median survival 11.45 months 

(Supplementary Table S2). 

 

Patients and samples 

All patient material studied under South West London Research Ethics Committee 

approval. We obtained longitudinal paired samples from two patients from the Centre 

Hospitalier Régional et Universitaire Hautepierre, Strasbourg, France; five DIPG 

patients with multiple sampling taken at autopsy from the Hospital San Joan de Deu, 

Barcelona, Spain; five DIPG patients with multiple sampling taken at autopsy from 

Stanford Medical School, Stanford, CA, USA; three cases with multiple samples from 
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the Queensland Children’s Tumour Bank, Brisbane, Australia; one case each with 

multiple samples from St Georges Hospital and Kings College Hospital, London, UK 

(Supplementary Table S3), all of which were collected locally after informed consent. 

The four previously sequenced patients were obtained from the Chinese University of 

Hong Kong, China (n=3) and University Hospital Sousse, Tunisia (n=1). DNA was 

extracted from frozen tissue by homogenisation prior to following the DNeasy Blood 

& Tissue kit protocol (Qiagen, Crawley, UK). DNA was extracted from FFPE material 

from either 20µm ribbons (n=2-4 per sample) or 5µm sections cut onto slides (n=10 

per sample). Slides were hydrated through an ethanol series prior to manual 

microdissection into a tube using a sterile fine needle. All tissue was incubated 

overnight with proteinase K at 56ºC with a further incubation for 3 hours the following 

morning, prior to following the QIAamp DNA FFPE tissue kit protocol (Qiagen, 

Crawley, UK) using 360µl of Buffer AL, 360µl of ethanol and eluted using 25µl of 

10mM Tris buffer at pH8.5 for 7 minutes. Matched normal DNA was extracted from 

blood samples using the DNeasy Blood & Tissue kit (Qiagen, Crawley, UK). 

Concentrations were measured using a Qubit fluorometer (Life Technologies, 

Paisley, UK), with at least 400ng sent for exome sequencing at the Tumour Profiling 

Unit, ICR, London, UK using the 50Mb Agilent SureSelect platform (Agilent, Santa 

Clara, CA, USA), and paired-end-sequenced on an Illumina HiSeq2000 (Illumina, 

San Diego, CA, USA) with a 100bp read length. The average median coverage was 

148x for the tumour exomes and 108x for tumour genomes.  

 

Sequence analysis  

For both published and newly generated raw sequencing data, reads were aligned to 

the hg19 build of the human genome using bwa v0.7.5a (bio-bwa.sourceforge.net), 

and PCR duplicates removed with PicardTools 1.5 (pcard.sourceforge.net). Somatic 

single nucleotide variants were called using the Genome Analysis Tool Kit v3.3-0 

based upon current Best Practices using local re-alignment around InDels, 
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downsampling and base recalibration with variants called by the Unified Genotyper 

(www.broadinstitute.org/gatk/). Structural variants were called from whole genome 

data using Breakdancer (http://breakdancer.sourceforge.net) filtered to remove 

commonly multi-mapped regions to identify somatic breakpoints separated by a 

minimum of 10kbp involving at least one Ensembl gene. Variants were annotated 

using the Ensembl Variant Effect Predictor v71 

(www.ensembl.org/info/docs/variation/vep) incorporating SIFT (sift.jcvi.org) and 

PolyPhen (genetics.bwh.harvard.edu/pph2) predictions, COSMIC v64 

(www.sanger.ac.uk/genetics/CGP/cosmic/) and dbSNP build 137 

(www.ncbi.nlm.nih.gov/sites/SNP) annotations. Somatic variants used for further 

subclonal analysis (non-synonymous and synonymous) were covered by at least 10 

reads in both tumour and normal sequences. Copy number was obtained by 

calculating log2 ratios of tumour/normal coverage binned into exons of known genes, 

smoothed using circular binary segmentation (www.bioconductor.org) and processed 

using in-house scripts. To infer the proportion of tumour cells in each sample to carry 

any given mutation, we calculated the cancer cell fraction (CCF) for each somatic 

variant25. Briefly, we determined the somatic allele-specific copy number profiles 

using read depth from whole genome / exome sequencing as above analysed by 

ASCAT26, which also provided for an estimate of the non-neoplastic cell 

contamination of the sample as well as the overall ploidy of the tumour. Loss of 

heterozygosity (LOH) was also calculated using ASCAT based upon a minor allele 

frequency <0.2. Allele-specific copy number, LOH and tumour cell purity were then 

used to calculate the cancer cell fraction (CCF) which estimates the percentage of 

tumour cells carrying each mutation25, and truncated to 100% where experimental 

variability in sequence reads produced a value greater than this figure. Intratumoral 

heterogeneity and the number and frequency of sub-populations within individual 

tumour samples were calculated with the EXPANDS algorithm using evolutionary 

biology principles including the Shannon and Simpson indices, and allowing for the 
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concept that subclones may share a subset of variants that may be nested within 

each other 27. This used copy number-corrected variant allele frequencies of all 

somatic coding mutations clustered based on their cell-frequency probability 

distributions, and subject to pruning, to assign individual mutations to predicted sub-

populations 27. For multi-region samples from the same patient, distance matrices 

derived from the cancer cell fractions of non-synonymous somatic coding mutations 

in each sample were used to construct phylogenies based upon neighbour-joining 

algorithms utilising the nested subpopulation calculated as part of EXPANDS, and  

visualized using the ape package (v3.1-4) in R. For paired longitudinal samples taken 

pre- and post-treatment, we fitted a kernel density estimate for the tumour variant 

allele frequencies at both timepoints and identified co-segregating clusters using a 

heatmap visualisation of the resulting biplot 52. A customised R function identified the 

x and y co-ordinates of each cluster centroid which served as an estimate of the 

number and relative composition of major subclones present in each sample. These 

were plotted pre- and post-treatment with coloured lines highlighting the inferred 

relationship between each cluster. 

 

Cell culture 

pGBM and DIPG patient-derived cultures were established either immediately after 

collection (biopsy, resection or autopsy) or from live cryopreserved tissue, with 

authenticity verified using short tandem repeat (STR) DNA fingerprinting 5 and 

certified mycoplasma-free. SU-DIPG-IV and SU-DIPG-VI has been published 

previously 11,33. Newly established cultures were first minced with the use of a sterile 

scalpel followed by gentle enzymatic dissociation with LiberaseTL (Roche Life 

Science) for 30 min at 37°C. Red blood cells were then lysed by using the AKC lysis 

buffer (Life Technologies), and tumour cell passed twice through a 70-µm filter. Cells 

were grown under stem cell conditions, either as two-dimensional (2D) adherent 
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cultures on laminin 32, or as three-dimensional (3D) neurospheres 33. Cortical pGBM 

cultures ICR-G358 and HSJD-GBM-01 were cultured in a serum-free medium 

composed of the neural stem cell culture medium RHB-A (StemCells, Inc. 

Cambridge, UK) supplemented with human bFGF (20ng/mL), human-EGF 

(20ng/mL), human PDGF-AB (20ng/ml) (Miltenyi Biotec Ltd. Bisley, UK), and heparin 

(2ng/mL) (Stem Cell Technologies, Vancouver, BC, Canada). Thalamic H3.3 K27M 

pGBM QCTB-R059 and DIPGs HSJD-DIPG-007, SU-DIPG-IV and SU-DIPG-VI were 

cultured in a serum-free medium designated as ‘‘Tumor Stem Media (TSM)’’ as 

previously described 11, consisting of 1:1 Neurobasal(-A) (Invitrogen, Carlsbad, CA), 

and DMEM:F12 (Life Technologies), supplemented with HEPES, NEAA, Glutamaxx, 

Sodium Pyruvate (Life Technologies) and B27(-A) (Invitrogen, Carlsbad, CA), human 

bFGF (20ng/mL), human-EGF (20ng/mL), human PDGF-AA (10ng/mL) and PDGF-

BB (10ng/mL) (Shenandoah, Biotech, Warwick, PA) and heparin (2ng/mL) (Stem Cell 

Technologies, Vancouver, BC, Canada).  

 

Establishment of single cell colonies 

Primary cultures were single cell flow sorted into the inner 60 wells of 96 well plates 

using a BD FACSAria I (SORP) instrument (BD) equipped with an automated cell 

deposition unit. Single cells were dropped in 100µl/well of the same media as 

described above, with the addition of penicillin and streptomycin (Life Technologies). 

Two 96-well flat bottom plates (Greiner Bio-one) were collected for 2D adherent 

culture and one 96 well round bottom ultra low attachment plate (Corning) was 

collected for 3D neurosphere culture. The outer 16 wells were filled in with 200µl/well 

of PBS to avoid evaporation of medium. 96 well plates were incubated at 37°C, 5% 

CO2, 95% humidity and cells re-fed twice weekly with 10-20µl of medium/well. Fully 

automated image analysis of single cell-derived colonies in 2D and 3D was carried 

out on a Celigo S cytometer (Nexcelom Inc.) 53. At indicated time points, 96 well 
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plates were scanned and images acquired and growth assessed using the 

Confluence application for 2D adherent culture on laminin, and the Tumoursphere 

application for determining the diammeter of the neurospheres. Single cell-derived 

adherent colonies were collected when they reached approximately 80% confluency, 

while the neurospheres were collected at around 700-800µm diameter. On collection 

day, 10% of the cells were used to expand individual subclonal cultures, with the 

remaining 90% used for DNA extraction after overnight incubation with proteinase K 

and RNase A using the QIAamp DNA micro kit (Qiagen), and eluted using 25µl of 

10mM Tris buffer pH8.5 for 5 minutes prior to quantitation. A minimum of 50ng DNA 

was used for targeted resequencing using a custom Agilent SureSelect panel of 435 

genes recurrently mutated in pGBM / DIPG or including all members of the histone 

gene family (Supplementary Table S4). 

 

 

 

High throughput / content image analysis 

3D invasion assays were performed as previously described 53,54, with some 

modifications.  Briefly, a total of 100µl medium was removed from ULA 96-well 

round-bottomed plates containing neurospheres of 250-300µm in diameter (given the 

different growth rate among the bulk cells and the single cell-derived colonies, cell 

densities were adjusted in order to obtain similar size neurospheres). 100μl of 

matrigel was gently added to each well (6 replicates) and plates were incubated at 

37°C, 5% CO2, 95% humidity for 1hr. Once the matrigel solidified, 100μl/well of 

culture medium was added on top. Starting from time zero, and at intervals up to 72 

hours, automated image analysis was carried out on a Celigo S imaging cytometer 

using the Confluence application. The degree of cell spreading in the matrigel was 

measured and the data plotted either as percentage of total area in the field of view 
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covered by invading cells, or as percentage of initial size of each neurosphere at time 

zero (n=3). 3D migration assays were similarly performed as previously described 

53,55, with some modifications. Briefly, flat-bottomed 96-well plates (Greiner Bio-one) 

were coated for 2hrs at room temperature with 50µl/well of fibronectin, laminin, 

tenascin, (Sigma-Aldrich) 10µg/ml in PBS with calcium and magnesium, or 125µg/ml 

matrigel (Corning) in culture medium in absence of growth factors. Once coating was 

completed, a total of 200µl/well of culture medium was added to each well. For 

stimulation assays, CCL2, CXCL2 (20ng/ml and 50ng/ml in TSM medium starved of 

all growth factors and B27 supplement) or medium harvested after five days culture 

of heterogeneous HSGD-DIPG-007 cells were used. A total of 100μl medium was 

removed from ULA 96-well round-bottomed plates containing neurospheres of 250-

300µm in diameter, and the remaining medium including the neurosphere were 

transferred into the pre-coated plates. Starting from time zero, and at intervals up to 

72 hours, automated image analysis was carried out on a Celigo S cytometer using 

the Confluence application. The degree of cell spreading on the different matrices 

was measured and data plotted either as percentage of total area in the well covered 

by migrating cells or as a percentage of the initial size of each neurosphere at time 

zero (n=3). 

 

Digital droplet PCR 

Digital droplet PCR was carried out on genomic DNA extracted from normal human 

astrocytes, heterogeneous HSJD-DIPG-007 bulk cells and subclones NS-F10 and 

NS-F8 using primers designed to detect KMT5B R187* (forward: 

GGCAATATTTCAAATCCACTGTCAGTT; reverse: GCAGGGTATACCATTTAAAGT 

CATTATCAATTTTTTTT) on a QX200 digital PCR platform (Bio-Rad). Reporter 

sequences were CAAACATTCGCAAATA (VIC, wild-type) and 

CAAACATTCACAAATAA (FAM, mutant). Briefly, the 20µL reactions consisted of 10 
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µL ddPCR™ Supermix for Probes (No dUTP, Bio-Rad), primers and probes at the 

same molar concentrations as used in qPCR, DNA up to 50ng, and molecular 

biology grade water. Each reaction was homogenised and partitioned into a 

theoretical maximum of around 23,000 droplets by creating an emulsion with Droplet 

Generation Oil for Probes (Bio-Rad). The 0.85nl droplets were then amplified using 

standard PCR cycling parameters and an annealing temperature of 60°C in 

accordance with the manufacturer’s recommendations. At endpoint, the fluorescence 

of each individual droplet was read on the Droplet Reader to identify presence or 

absence of mutant and wild-type target sequences. The QuantaSoft program (v1.4) 

fitted the droplet counts to the Poisson distribution in order to enumerate the DNA 

copies, from which the DNA concentration and mutant fraction could be calculated.  

 

Drug screening 

An in-house drug library encompassing 80 drugs either used in clinical practice or in 

late-stage development was used for screening. Each compound was dissolved in 

100% dimethyl sulphoxide (DMSO) to give 5mM stocks and then diluted to 0.5, 0.05, 

0.005 and 0.0005mM stocks in 96-well two-dimensional matrix plates. Daughter 

plates in 384-well format were prepared from these 96-well two-dimensional matrix 

racks using the Hamilton Microlab Star robotic platform. Compounds were stored 

under a nitrogen atmosphere using a StoragePod (Roylan Developments, 

Leatherhead, UK). Cells were seeded (1500 cells/well) into 384-well plates using a 

MultiDrop Combi Dispenser (Thermo Fisher Scientific, Leicestershire, UK) and 

allowed to form neurospheres as described above. Replicate cell plates were then 

loaded onto Microlab Star screening platform and drug plates were serially diluted in 

complete tumour stem cell medium before being added to the cell plates. The final 

drug concentrations used for each drug were 1000, 500, 100, 50, 10, 5, 1 and 0.5nM. 

The final DMSO concentration in all wells was 0.2% (v/v). Controls included 0.2% 

(v/v) DMSO (negative) and 10μM staurosporine (positive, Sigma-Aldrich). After 
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incubation in drug-containing media for 5 days, cell viability was quantified with 

CellTiter-Glo (Promega) using a Victor X5 Multi-label plate reader luminescence 

protocol (Perkin Elmer, Waltham, MA, USA). Luminescence data from each well was 

normalised to the median signal from DMSO-containing wells to calculate the 

survival fraction. Plate-centred data from each screen were standardised by the use 

of a Z score statistic, where Z=0 represents no effect on viability and negative Z 

scores represent loss of viability. Z scores were calculated using the Median 

Absolute Deviation (MAD) of all effects in each cell line 56,57. Selective differential hits 

were validated individually using a wider range of concentrations using CellTiter-Glo 

as a read out of cell viability, in pure populations as well as mixed co-cultures, and 

surviving fractions calculated as before. 

 

RNA sequencing 

RNA was extracted by following the RNeasy Mini Kit protocol (Qiagen), quantified on 

a 2100 Bioanalyzer (Agilent Technologies), and sequenced on an Illumina GA-II 

genome analyser as 100bp paired end reads. RNA sequences were aligned to hg19 

and organised into de-novo spliced alignments using bowtie2 and TopHat2 

(https://ccb.jhu.edu/software/tophat).  Raw read counts and fragments per kilobase 

per million reads mapped (FPKPM) were calculated for all known Ensembl genes in 

assembly v74 using bedtools (http://bedtools.readthedocs.org) and Cufflinks 

(http://cole-trapnell-lab.github.io/cufflinks/). 

 

Immunofluorescence  

pGBM and DIPG cells were grown either adherent on laminin pre-coated 8 well-

chamber slides (Cole Palmer) or in suspension as neurospheres in T75 cm2 tissue 

culture flasks. Cells on chamber slides were fixed with 4% paraformaldehyde at room 

temperature for 10 minutes and washed three times with phosphate buffered saline 

(PBS) solution. Neurospheres were collected into conical tubes, centrifuged for 10 
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min at 900rpm, washed once with PBS and after a further centrifugation, were fixed 

in 4% paraformaldehyde overnight 4°C and then embedded into agarose as 

previously described53. Paraffin-embedded neurospheres were sectioned using a 

microtome at 4µm thickness. Cells were permeabilised with 0.5% Triton X-100 

solution for 10 minutes at room temperature and then blocked with appropriate 

serum according to the species of secondary antibody for 1 hour at room 

temperature. Primary antibodies directed against nestin (MAB5326 clone 10C2, 

Millipore, 1:400), SOX2 (3579, Cell Signalling, 1:400), GFAP (Z334, Dako, 1:50), 

CNPase (MAB326 clone 11-5B, Millipore, 1:200), TUJ-1 (MMS-435P, Covance, 

1:2000), Olig-2 (Ab9610, Millipore, 1:200), and Musashi-1 (Ab5977, Millipore, 1:200) 

were added and incubated overnight at 4ºC. Cells were then washed in PBS three 

times and incubated with Alexa Fluor488/555-conjugated secondary antibodies 1 

hour at room temperature. For anti-H3K27me3, (9733, Cell Signalling, 1:100) and 

anti-alpha-5 integrin (ab15031, Abcam, 1:100), samples were incubated at 37ºC for 

20 minutes followed by a secondary antibody incubation at 37ºC for 20 minutes.  

Nuclei were counterstained with DAPI, samples mounted with Vectashield (Vector 

Laboratories) and examined using a Leica DM2500 fluorescence microscope or a 

Zeiss LSM700 confocal microscope.  

 

Co-culture experiments 

Laminin-adherent cultures and neurospheres were dissociated and filtered through a 

40µm cell strainer to remove residual clumps. Single cell suspensions were then 

incubated with CellTracker™ Red CMPTX (D10 and NS-F10) or CellTracker™ 

Green CMFDA (E6 and NS-F8 (Life Technologies) at final concentration of 5µM 

following the manufacturer’s instructions for suspension culture. Control unstained 

cells were incubated with an equivalent amount of DMSO. Once the staining protocol 

was completed, cells were washed once in complete medium, counted and seeded 

into 96 well round bottom ULA plates (Corning) at 1000 cells/well either in 
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monoculture or in co-culture (50:50), and allowed to form a single neurosphere per 

well (n=6). One or two days post seeding, migration assays were performed on 

fibronectin- (NS-F10 and NS-F8) or matrigel- (D10 and E6) coated 96 well flat bottom 

plates (Essen Bioscience) and brightfield and fluorescent images images were 

acquired on an IncuCyte ZOOM® (Essen Bioscience). Images of a region of interest 

of identical size across all the replicates (n=6) were imported into ImageJ software 

and the number of cells migrated (at 12hrs for D10 and E6 and 48hrs for NS-F10 and 

NS-F8) were manually counted using the cell counter plugin and normalised to the 

cell ratio (100% for the monocultures and 50% for the co-cultures). Growth was 

assessed using the Celigo S as above, whilst invasion was measured as a measure 

of area covered using ImageJ upon image calibration using a 1mm graticule. Time 

lapse videos were also acquired using a Zeiss LSM700 confocal microscope with 

images acquired every 30 min. 

 

In vivo orthotopic xenograft 

All experiments were performed after review by the Animal Welfare and Ethical 

Review Board at Institute of Cancer Research, in accordance with the UK Home 

Office Animals (Scientific Procedures) Act 1986, the United Kingdom National 

Cancer Research Institute guidelines for the welfare of animals in cancer research 

and the ARRIVE (animal research: reporting in vivo experiments) guidelines. A single 

cell suspension from heterogeneous bulk cells or subclones (HSJD-DIPG-007, NS-

F10, NS-F8 or co-culture, in matrigel; SU-DPG-VI, A-D10 and A-E6, in media) was 

prepared immediately prior to implantation in four to eight NOD-SCID (HSJD-DIPG-

007 and subclones) or nude (NCr-Foxn1nu) mice (SU-DIPG-VI and subclones) 

randomly allocated per group at P35. Animals were anesthetized with 

ketamine/xylazine (100 mg/kg / 5 mg/kg) and maintained under 1% isoflurane. The 

cranium was exposed via midline incision under aseptic conditions and 1 x 1 mm 

deep hole is drilled through the skull to the dura. Mice were placed in a stereotactic 
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apparatus and 200,000 cells in 5µl were stereotactically implanted in the pontine 

area using a digital pump at infusion rate of 2 µL/min and 31-gauge Hamilton syringe. 

Coordinates used were 1.0 mm lateral to midline, 0.8 mm posterior to lambda, and –

4 mm deep to cranial surface. At the completion of infusion, syringe needle was 

allowed to remain in place for a minimum of 2 min, then slowly manually withdrawn to 

minimize backflow of the injected cell suspension. Mice were followed for up to 8 

months and were sacrificed upon deterioration of condition and tissue taken for 

further analysis. Mouse brains were collected and fixed in 10% buffered formalin 

solution for 48 hours prior to division into four parts and embedding in paraffin. 4µm-

thick sections were cut and stained with haematoxylin and eosin (H&E). For 

immunohistochemistry, sodium citrate (pH 6.0) heat-mediated antigen retrieval was 

performed and staining was carried out using antibodies directed against human 

nuclear antigen (HNA) (MAB 4383, Millipore, 1:100), human GFAP (M0761 clone 

6F2, Dako, 1:300), H3K27me3 (9733, Cell Signalling, 1:100),and Ki67 (M7240, 

DAKO, 1:100). All primary antibodies were diluted into 1% Tris buffer solution with 

0.05% Tween-20, except Ki67 which was diluted into Dako antibody diluent and 

staining was performed using an autostainer. Anti-human GFAP was incubated for 

30 min, anti-H3K27me3 and anti-HNA for 1 hour, all at room temperature.  

EnvisionTM detection system (DAKO K5007) was used for Ki-67 staining, whereas for 

all the others, Novocastra Novolink Polymer Detection Systems Kit (Leica Biosystem 

RE-7150) was used. Slides were then mounted using Leica CV Ultra mounting 

medium and assessed by an experienced pathologist (SP) blinded to cell identity. 

 

Statistical analyses 

Statistical analysis was carried out using R 3.3.0 (www.r-project.org) and GraphPad 

Prism 7. Comparisons between groups of continuous variables employed Student’s t-

test or the analysis of variance (ANOVA) test. Univariate differences in survival were 
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analysed by the Kaplan-Meier method and significance determined by the log-rank 

test. Multivariate analyses were carried out using the Cox proportional hazards 

model. All analyses were two-sided, and a p value of less than 0.05 after multiple 

testing correction was considered significant. 

 

Life Sciences Reporting Summary 

Further information on experimental design and reagents is available in the Life 

Sciences Reporting Summary. 

 

Code availability 

All custom scripts for data processing are available upon request. 

 

Data Availability  

All new sequencing data are deposited in the European Genome-phenome Archive 

(https://www.ebi.ac.uk/ega/home) under accession number EGAS00001001436. 
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