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ABSTRACT

Bridging the gap between symmetric, direct white matter brain connectivity and neural

dynamics that are often asymmetric and polysynaptic may offer insights into brain

architecture, but this remains an unresolved challenge in neuroscience. Here, we used

the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion

processes akin to particles spreading through white matter pathways. The simulated indirect

structural connectivity outperformed direct as well as absent anatomical information in

sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially,

an asymmetric diffusion process determined by the sensitivity of the network nodes to

their afferents best predicted effective connectivity. The outcome is consistent with brain

regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric

network communication models offer a promising perspective for understanding the

relationship between structural and functional brain connectomes, both in normalcy and

neuropsychiatric conditions.

AUTHOR SUMMARY

Measures of white matter connectivity can usefully inform models of causal and directed

brain communication (i.e., effective connectivity). However, due to the inherent differences

in biophysical correlates, recording techniques and analytic approaches, the relationship

between anatomical and effective brain connectivity is complex and not fully understood. In

this study, we use simulation of heat diffusion constrained by the anatomical connectivity of

the network to model polysynaptic (high-order) anatomical connectivity. The outcomes afford

more useful constraints on effective connectivity than conventional, typically monosynaptic

white matter connectivity. Furthermore, asymmetric network diffusion best predicts effective

connectivity. In conclusion, the data provide insights into how anatomical connectomes give

rise to asymmetric neuronal message passing and brain communication.
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Anatomical network diffusion and effective connectivity

INTRODUCTION

Multimodal neuroimaging analyses are expected to improve our understanding of structure-

function relationships in the brain (Toga et al., 2006; Honey et al., 2010; Sporns, 2014);

drawing on measures of structural, functional, and effective brain connectivity (Sporns et al.,

2000; Park & Friston, 2013). However, relating symmetric and static structural connectivity de-

rived from diffusion magnetic resonance imaging (dMRI) to time-varying and context-sensitive

functional dynamics (recorded by functional magnetic resonance imaging, fMRI, electroen-

cephalography, EEG, or magnetoencephalography, MEG) remains an unresolved technical and

conceptual challenge (Honey et al., 2009; Stephan et al., 2009; Pineda-Pardo et al., 2014;

Uludag & Roebroeck, 2014). White matter (WM) pathways are sufficient for communication

between brain regions, but functional brain dynamics can also be mediated through polysy-

naptic connections (Figure 1). Indeed, previous studies suggested the direct structural pathways

inferred using dMRI account for only about 55% of measured resting-state functional connec-

tivity patterns (Koch et al., 2002; Honey et al., 2009; Deligianni et al., 2011; Becker et al.,

2016).

Current measures of anatomical and of resting-state functional connectivity are symmetric in

the sense that they do not enable an assessment of whether one orientation of a pathwaymay be

more prominent than the inverse (Friston, 2011). In contrast, models of effective connectivity

such as dynamic causal models (DCMs) indicate theweights of specific directions of interaction
Effective connectivity:
A measure of the directed (causal)
influence of one neural system over
another using a model of neuronal
interactions.

(Friston et al., 2003), and recent data across species suggest that information about directed,

asymmetric connectivity may more appropriately reflect brain architecture (Kale et al., 2018;

Avena-Koenigsberger et al., 2019; Seguin et al., 2019).

Previous work has analysed the relationships between indirect anatomical connectivity and

resting-state functional connectivity (Honey et al., 2007; Deligianni et al., 2011; Abdelnour

et al., 2014; Becker et al., 2016; Meier et al., 2016; Bettinardi et al., 2017; Liang & Wang,

2017; Abdelnour et al., 2018). Recent graph-theoretic research has demonstrated that conven-

tional, symmetric measures of brain WM architecture contain information on the differential

efficiency of afferent and efferent network communication (Avena-Koenigsberger et al., 2019;

Seguin et al., 2019). Furthermore, asymmetries in predicted communication efficiency were

found to reflect neurobiological concepts of functional hierarchy and were correlated with

directionality in resting-state effective connectivity analysed using spectral dynamic causal

modelling (Seguin et al., 2019). Thus far, formal integration of effective with anatomical con-
Dynamic causal modelling:
A Bayesian framework which is used
to infer causal interactions between
coupled or distributed neuronal
systems (effective connectivity).

nectivity has only been implemented for direct and symmetric measures of structural connec-

tivity (Stephan et al., 2009; Sokolov et al., 2018; Sokolov et al., 2019). The primary motivation

for this study was to develop an integrative approach simulating symmetric and asymmetric

high-order (polysynaptic) structural connectivity and using the outcomes to constrain modelsHigh-order structural connectivity:
Structurally unconnected regions
communicate polysynaptically to
engender indirect connectivity over
multiple hops.

of task-related effective connectivity.

This central aim inspired the use of the graph Laplacian (GL: see Materials and Methods)

Graph Laplacian:
A matrix representation of a graph
that combines node adjacency and
node degree in mathematical
formulation and belongs to spectral
graph theory.

to compute polysynaptic symmetric and asymmetric structural connectivity. The GL is a con-

struct from spectral graph theory and represents the difference between the adjacency (indicat-

ing which network nodes are interconnected) and degree matrices (indicating the number of

nodes connected with each node). The GL can be used to simulate the diffusion of a conserved

quantity of particles over the network (Figure 2 and Supporting Information Video S1; Biggs,

1993). Crucially, the GL approach allows introducing asymmetry (see Materials and Meth-

ods and Supporting Information Figure S1): weighting (normalising) the structural adjacency

matrix to the in-degree implies that each target node has a fixed capacity to be influenced by

other nodes, and its relative sensitivity is determined by the probability of receiving inputs.
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Anatomical network diffusion and effective connectivity

Figure 1. Illustration of the relationship between anatomical and effective brain connectivity.
(A) Two network nodes n1 and n2 can have a structural pathway connecting them (blue double line)
that may underlie causal functional influence of network node n1 over n2 (effective connectivity;
orange arrow). (B) Effective connectivity from n1 to n2 may also be present in the absence of di-
rect structural connectivity, mediated by polysynaptic structural (grey double lines) and effective
connections through hidden nodes n3 and n4 (not specified in the network model). Modelling of
indirect structural connectivity may therefore provide better constraints on effective connectivity
than measures of direct structural connectivity alone.

Conversely, if we normalise to the out-degree, we assume each node has a fixed capacity to

Spectral graph theory:
A study of the relationship between
a graph and the eigenvalues and
eigenvectors of its Laplacian matrix.

Adjacency matrix:
Square matrix representation of a
graph which is either binary
(presence or absence of connections)
or weighted (showing strength of
connections). influence other nodes, and the relative influence is proportional to efferent particle diffusion.

In our implementation, the GL matrix L is exponentiated and raised to the order τ, exp(L)τ .

At the start of the diffusion process, each node is equipped with a large number of “spikes.”

Each order τ represents a time step of the diffusion process, at which the spikes are distributed

to other nodes at a rate that is proportional to the connection strengths. Each increment of τ

thus indicates an extra path between any two given regions (nodes), via τ − 1 intermediate

nodes (e.g., a third-order connection between two nodes means they are connected via two

other nodes; Figure 1B). In a continuous time interpretation of this process, we can equate

connectivity with the number of spikes accumulated as time progresses. This interpretation is

effectively a constrained diffusion process, where the diffusion coefficients are determined by

the GL and, ultimately, every node is connected to every other node through multiple paths.

This equilibrium distribution is the principle eigenmode of the matrix exponential of the GLEigenmode:
A stable state (i.e., mode) of a
dynamic system in which all parts of
the system oscillate at the same
frequency.

(Figure 2H), revealing which nodes are more strongly involved in the diffusion or propagation

process.

Diffusion simulation approaches capture the propensity of information or particle distribu-

tion along all possible paths in a network, and thus approximate network communicability
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Anatomical network diffusion and effective connectivity

Figure 2. Network diffusion simulated by exponentiation of the matrix exponential of the graph Laplacian. (A) Based on the direct structural
adjacency matrix derived from probabilistic tractography, using Equations 1–4, we created (B) the matrix exponential of the graph Laplacian
(here, normalised to the in-degree). Exponentiation of thematrix exponential of the graph Laplacian simulated diffusion of particles constrained
by the anatomical network and therefore yielded indirect structural connectivity. The 0th order is simply the identity matrix, meaning that each
node (square on the diagonal) is equipped with an equal number of particles (spikes). Each increase in order corresponds to an additional
propagation down another path or edge, and a subsequent distribution of spikes. The (first-order) matrix exponential thus represents the first
small time step of diffusion. (C–G) As time (order) progresses, some nodes receive more particles (input) than others, until this closed system
reaches a state of saturation (equilibrium), corresponding to the principle eigenmode of the graph Laplacian. (H) This eigenmode is visible at
the 64th order (time step of diffusion). The bands reflect how many spikes every node has received (in-degree of each node) and approximate
the principle eigenvectors (Figure 4B). Please see Table 1 for abbreviated region labels.

(Estrada & Hatano, 2008; Crofts & Higham, 2009). Network communicability has alreadyNetwork communicability:
A graph-theoretic measure of the
ease of information propagation in a
network of interconnected regions.

been used to characterise brain networks in normalcy and pathology, and in different species

(Crofts & Higham, 2009; Andreotti et al., 2014; Grayson et al., 2016; Shine et al., 2018).

In addition to routing efficiency representing shortest paths and thus easy and speedy com-
Routing efficiency:
A measure of communication
efficiency, representing the average
inverse shortest path length between
all pairs of nodes in a complex
network.

munication between network nodes, taking into account recurrent neuronal message passing

over multiple paths may afford more optimal approximations of brain dynamics (Bullmore &

Sporns, 2012; Avena-Koenigsberger et al., 2017). Using the matrix exponential of the GL al-

lows a path length-based correction of network communicability (Estrada & Hatano, 2008;

Crofts & Higham, 2009). Previous applications of the GL in neuroscience have suggested it

as a promising tool for modelling neurotransmitter diffusion in the synaptic junction (Barreda

& Zhou, 2011), simulating the spread of neurodegeneration (Raj et al., 2012) and comparing

resting-state functional with structural connectivity (Abdelnour et al., 2014, 2018).

The present study asks whether measures of simulated symmetric and asymmetric anatom-

ical network diffusion may usefully inform the effective connectivity that underwrites causal

Network diffusion:
A process simulating the propagation
of heat (or information) within a
network.

and asymmetric interactions among distributed neuronal populations.We demonstrate the ap-

proach in the context of fMRI responses of a brain network to emotional body language, using

probabilistic tractography on high angular resolution diffusion imaging (HARDI) data from the

Probabilistic tractography:
Estimation of white matter pathway
trajectories based on diffusion
MRI data. same cohort of normal individuals.
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Anatomical network diffusion and effective connectivity

MATERIALS AND METHODS

Participants

We used fMRI and HARDI data from 17 right-handed, male normal subjects (mean age 27.9

years) from a study on emotional body language processing. The cohort overlapped with that

analysed in previous research (Sokolov et al., 2012, 2014, 2018, 2019). The study was ap-

proved by the Ethics Committee of the University of Tübingen Medical School, Germany. Par-

ticipants provided informed written consent and were financially compensated.

fMRI and HARDI Data Recording and Preprocessing

A 3T scanner (TimTrio, Siemens Medical Solutions, Erlangen, Germany; 12 channel head

coil) was used for recording of three-dimensional T1-weighted structural MRI (magnetisation-

prepared rapid gradient echo, MPRAGE; 176 sagittal slices, TR= 2,300ms, TE= 2.92 ms, TI=

1,100 ms, voxel size = 1 × 1 × 1 mm3), a field map for inhomogeneity correction, HARDI

data (two sessions with 64 diffusion gradient directions per subject; b-value = 2,600 s/mm2,

54 axial slices, TR = 7,800 ms, TE = 108 ms, slice thickness = 2.5 mm, matrix size = 88 ×

88, field of view = 216 mm) and functional echo-planar imaging (EPI; 171 volumes, 56 axial

slices, TR = 4,000 ms, TE = 35 ms, in-plane resolution 2 × 2 mm2, slice thickness = 2 mm,

1 mm gap).

Participants viewed animations of an arm represented by bright dots placed on the head and

main upper limb joints, facing to the right and knocking on an invisible door with different emo-

tional content (happy, angry, neutral; Pollick et al., 2001; Sokolov et al., 2011). In an event-

related design, the participants had to indicate which emotion was expressed by button press

(button assignment counterbalanced between participants). Stimulus duration was 1,000 ms,

and each stimulus category (emotion) was presented 30 times throughout the experiment.

To optimise event-related response function estimation, we applied jittering of stimulus on-

set intervals (between 4,000 and 8,000 ms in steps of 500 ms) and stimulus order pseudo-

randomisation.

Preprocessing of fMRI data was performed using Statistical Parametric Mapping software

(SPM12,Wellcome Centre for Human Neuroimaging, Institute of Neurology, UCL, http://www.

fil.ion.ucl.ac.uk/spm) and included slice timing correction, realignment, unwarping, image co-

registration, segmentation-based normalisation, and smoothing. HARDI data preprocessing

with the FMRIB’s Diffusion Toolbox within the FMRIB Software Library (FSL5, Oxford Centre

for Functional MRI of the Brain, UK, http://www.fmrib.ox.ac.uk/fsl) consisted of brain extrac-

tion (Smith, 2002), motion and eddy current correction, followed by co-registration with the

anatomical reference image and normalisation to Montreal Neurological Institute (MNI) space

using the FMRIB Linear Image Registration Tool (FLIRT; Jenkinson et al., 2002). Gradient di-

rections were adjusted according to the FLIRT parameters.

fMRI Analysis and DCM Specification

Analysis of fMRI data was conducted by first specifying a general linear model (GLM). Trials with

correctly classified emotional expression of point-light knocking (happy, angry, neutral) were

assigned distinct regressors, and regressors of no interest were modelled for trials with incorrect

classification (e.g., neutral stimulus classified as happy), trials with missing responses, six head

motion parameters, and time series from WM and cerebrospinal fluid. The regressors were

convolved with the haemodynamic response function. High-pass filtering was performed (cut-

off 1/256 Hz), and serial autocorrelations were accounted for by a first-order autoregressive
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Anatomical network diffusion and effective connectivity

process (coefficient of 0.2) plus white noise model. The GLM was applied to individual pre-

processed EPI data, and the contrasts happy versus neutral, angry versus neutral, and neu-

tral versus emotional knocking were specified. Individual contrast images were submitted to

second-level random effects analyses, and regional activations (at a p < 0.05 family-wise error

corrected voxel-wise threshold for multiple comparisons) were identified using the automated

anatomical labelling in SPM (Tzourio-Mazoyer et al., 2002) and the NeuroSynth.org database

(http://neurosynth.org; Yarkoni et al., 2011).

A one-state, bilinear, and deterministic DCM with mean-centred inputs and reciprocal ex-

trinsic connections between all nodes (full model) was created for each subject. This DCM

included seven regions showing differential activation with respect to correctly classified emo-

tional expressions of point-light knocking and three regions for activation versus baseline

(Table 1). For each region, time series were extracted as the first eigenvariate of all activated

voxels within a sphere with a radius of 8 mm, centred on each individual maximum (p < 0.05,

uncorrected). The individual maxima were found within 7 mm of the group activation coordi-

nate in every subject. The time series extraction was adjusted to remove effects that were not

related to the task such as motion. According to previous data on the architecture of the brain

network for body motion processing (Sokolov et al., 2018), driving input was specified on the

left middle temporal cortex, right fusiform gyrus, and right superior temporal sulcus. Modulat-

ing input of different emotional content was expressed in the DCM B-matrix (see Supporting

Information Methods) by modelling the influence of the corresponding regressors for happy,

neutral, and angry stimuli on all extrinsic connections in the network, as well as on intrin-

sic coupling within the seven nodes showing differential activation depending on emotional

content (Table 1).

Table 1. The regions forming the analysed network.

MNI Coordinates

Anatomical label X Y Z z-value Cluster size

Happy vs. neutral

R superior temporal sulcus (STS) 50 −38 8 5.82 186

R caudate nucleus (CAU) 10 18 4 5.46 120

Angry vs. neutral

L midcingulate cortex (MCC) − 6 −6 −48 5.21 192

L anterior cingulate cortex (ACC) − 8 50 18 5.08 168

L insula (INS) −28 14 −16 4.87 134

Neutral vs. emotional

Cerebellar vermis, lobule IX (CRB) 0 −46 −48 6.02 206

R amygdala (AMY) 26 −4 −26 5.93 182

Active (stimulation vs. baseline)

L middle temporal cortex (MTC) −404 −784 −48 5.90 362

R fusiform gyrus (FFG) 18 −36 12 5.78 238

R retrosplenial cortex (RSP) − 6 −54 4 5.72 267

Note. Seven regions with differential activation to emotional expressions of point-light knocking and three

regions showing activation not modulated by emotional content (at a p < 0.05 family-wise error corrected

voxel-wise threshold for multiple comparisons) were included in the analysis. Regional labels are provided

along with coordinates in MNI space, corresponding z-values, and cluster sizes.
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Direct Structural Adjacency Matrix

Individual preprocessed and normalised HARDI data were submitted to Bayesian Estimation of

Diffusion Parameters Obtained using Sampling Techniques with modelling of Crossing Fibres

(BEDPOSTX; Behrens et al., 2007) in FSL to obtain diffusion parameters for each voxel. Prob-

abilistic tractography with crossing fibres (PROBTRACKX; step length = 0.5 mm, number

of steps = 2,000, number of pathways = 5,000, curvature threshold = 0.2, modified Euler

integration; Behrens et al., 2007) was performed for each DCM node as a seed, and the other

DCM nodes as classification targets. The fibre pathway outputs were visually controlled for

plausibility. Structural connection strength between a seed region i and a classification target

region j was obtained by averaging the number of streamlines connecting every voxel in i

to one voxel of j, across both directions of tractography. Further averaging across all subjects

provided a symmetric group structural adjacency matrix (Figure 2A). We eschewed thresh-

olding and considered weighted adjacency matrices. Each element of the group adjacency

matrix Z was normalised to represent direct structural connection strength or probability ϕ,

relative to the greatest connection strength within the matrix. The between-region elements of

matrix Z were used to inform models of effective connectivity by direct structural connectiv-

ity, and for GL-based simulation of network diffusion to obtain measures of indirect structural

connectivity.

Graph Laplacian

We used the GL matrix L to construct a connectivity operator simulating diffusion of a con-

served quantity (heat, spikes) along direct and indirect pathways between the network nodes of

the structural adjacency matrix Z. As per definition, each column of the GL matrix L express-

ing probabilities ϕ of extrinsic structural connections has to sum to zero, which consequently

applies to any linear mixture of the columns of L.

To achieve this, we set the leading diagonal elements of L to the negative sum of the corre-

sponding column of Z (Supporting Information Figure S1):

L = Z − D (1)

where D is the degree matrix Di,i = ∑
n
i=1 Zi,j.

We obtained our connectivity operator by calculating the matrix exponential Γ of L:

Γ = exp(L) = ∑
∞

k=1

1

k!
Lk (2)

Subsequent exponentiation of Γ simulated distribution of particles (spikes) and thus yielded

indirect, high-order structural connectivity ψ after every time step τ:

Ψ(τ) = Γτ (3)

Γ0 corresponds to the identity matrix, and the first order of the matrix exponential of the

GL Γ1 represents the distribution of particles ψ(1) after a first time point of diffusion τ = 1

(Figure 2B). With every increase of τ (order of Γτ ), another time step is calculated and indirect

connections ψ(τ)i,j between nodes i and j become apparent or reinforced. Inherently, this sim-

ulated distribution of a conserved quantity constrained by the structural connectivity saturates

after a certain, unknown number of diffusion steps. We tested our hypothesis that this state of

equilibrium or saturation would provide the most informative priors on effective connectivity
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by comparing DCMs with indirect structural connectivity priors at different time steps (orders)

τ of the GL diffusion process.

Furthermore, we hypothesised that simulated network diffusion on asymmetric structural

adjacency matrices may introduce more plausible constraints on asymmetric effective brain

connectivity. Accordingly, we introduced three variants of the adjacency matrix Z as the ba-

sis for the diffusion process (Supporting Information Figure S1): (1) the symmetric adjacency

matrix Z normalised to its maximum, (2) asymmetric Z′ normalised along the rows, and (3)

asymmetric Z′ normalised along the columns in the following way:

Z′ =
Z

W
(4)

with normalisation of Z to its out-degree (setting the sum of weights in each column to unity)

when the diagonal degree matrix is Wi,i = ∑
n
i=1 Zi,j and normalisation of Z to its in-degree

(sum of weights in each row set to unity) for Wi,i = ∑
n
j=1 Zi,j. When normalising to the out-

degree, we assume that each node has a fixed capacity to influence other nodes, and that the

relative influence is proportional to the efferent diffusion process along structural pathways.

Conversely, normalisation to the in-degree means that each target node has a fixed capacity

to be influenced by other nodes and its relative sensitivity is determined by the probability

of receiving input during the diffusion process. In what follows, we describe the evaluation

of which indirect structural connectivity ψ(τ) within each of the three plausible normalisa-

tion schemes underlying the diffusion operator Γτ afforded the best constraints on effective

connectivity.

Integration of Structural Connectivity with Dynamic Causal Modelling

After defining prior beliefs about the effective connectivity parameters, the estimation of DCMs

affords posterior estimates of the parameters as well as the evidence for the respective model

(Friston et al., 2003, Supporting Information Methods). The priors for extrinsic (off-diagonal;

between-region) connections in dynamic causal modelling form a multivariate normal dis-

tribution, defined by a vector of expectations and a prior covariance matrix Σy. By default,

the prior expectation is zero and the variance is equal across all extrinsic connections. The

greater the prior variance, the further the connectivity parameters can deviate from their prior

expectation of zero.

The priors also contribute to the calculation of the model evidence—the quantity usedModel evidence:
The model evidence, or marginal
likelihood, represents the probability
of observing the measured data
under a certain model and is used
for Bayesian model comparisons.

to compare DCMs—which is the trade-off between model accuracy and complexity. In this

context, complexity is defined as the discrepancy between prior assumptions and posterior es-

timates, where greater complexity decreases model evidence. Optimising the priors according

to measures of structural connectivity may therefore increase model evidence, through a re-

duction of model complexity (Stephan et al., 2009; Sokolov et al., 2019).

However, the precise relationship between structure and function is unknown and likely

varies for different networks. Previous research provided support for the intuition that the

strength of direct structural connections relates to the prior effective connectivity in a posi-

tive monotonic fashion (Stephan et al., 2009; Sokolov et al., 2018, 2019). This means that for

lower structural connection strengths, the prior variance shrinks to a small value, precluding

strong effective connectivity. Conversely, for greater structural connection strengths, our prior

belief that the effective connectivity is close to zero can be relaxed by increasing the prior

variance.

Based on this rationale, to assess the utility of direct structural connectivity as priors for

effective connectivity, we used our previously developed structurally informed parametric
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empirical Bayes (si-PEB) approach (Sokolov et al., 2019) to obtain the reduced prior covari-

ance Σy red from the probability ϕ for direct structural connectivity encoded in the symmetric

structural adjacency matrix Z normalised to its maximum:

Σy red =
Σy max

1 + exp(α − δ ∗φ)
(5)

where maximum prior covariance is determined by the hyperparameter Σy max (range from

0.0625 to 0.25 in four equal steps), the sigmoid slope by δ (range from 0 to 16 in eight equal

steps) and sigmoid shift by α (range −2 to 2 in eight equal steps). This hyperparameter space

yielded 405 different mappings or models per network.

For indirect structural connectivity, across the three normalisation schemes (see Equation 4),

by assuming a simple linear positive relationship, we mapped the logarithm of indirect struc-

tural connection probability ψ(τ) afforded by the τ-th order of the diffusion operator Γτ to the

prior covariance as follows:

Σy red = Σy min + δ ∗ (log(ψ(τ)− e−b) + b) (6)

Here, similar to Equation 5, the three-dimensional hyperparameter model space is spanned by

the hyperparameters τ (range 1–64 in seven equal steps for both networks), Σy min (represent-

ing the default prior covariance, range 0.0156–0.0625 in seven equal steps for both networks),

and δ (sigmoid slope; range 0–0.25 in seven equal steps). The space thus contains 512 differ-

ent models per normalisation scheme, or 1,536 models in total. The use of log-transformed

structural probabilities ψ(τ) is motivated easily by noting that most structural connections

have a log normal distribution, and indeed have an exponential dependency upon distance

(Markov et al., 2013). Here, b is a small number that ensures the prior variance Σy min over

effective connectivity is lower bounded; in the absence of structural connectivity: Σy red =

Σy min.

Crucially, both model spaces (for direct and indirect structural connectivity) include flat

mappings (i.e., δ = 0), where structural constraints do not matter and Σy red is the same across

all extrinsic connections, thus representing an intrinsic control (null hypothesis) for the as-

sumption that structural constraints usefully shape effective connectivity.

Model Estimation and Evaluation

As we analysed second-level measures of structural connectivity, we used parametric empiri-

cal Bayes (PEB) (Friston et al., 2015; Supporting Information Methods) to make inferences on

effective connectivity at the group level. PEB is a hierarchical model, in which the average

group connectivity acts as an empirical prior on individual connectivity (Friston et al., 2016).

PEB estimation thus represents an iterative process between individual and group effective

connectivity. Therefore, PEB properly partitions within- and between-subject random effects

(Zeidman et al., 2019) and is robust to local minima problems (Friston et al., 2016). The indi-

vidual DCMs were estimated using the PEB scheme with a prior variance of 0.5 for all extrinsic

connections. Subsequently, the prior PEB variance of each extrinsic connection was adapted

(reduced) using Equations 5 and 6 for measures of direct and indirect structural connection

strengths, respectively.

The search for the models with the greatest evidence was afforded by Bayesian model re-

duction (BMR) (Friston et al., 2016; Supporting Information Methods). This recently introduced

statistical device enables analytical evaluation of large model spaces in a matter of seconds,

based on the estimation of a single, so-called “full” model. In contrast, the use of conven-

tional dynamic causal modelling would have required separate estimation of each of the 1,941
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alternative models (estimated processing duration: 1,300 days). By comparing the log evi-

dences of the different models, we assessedwhether effective connectivity was better explained

by (1) indirect as opposed to direct measures of structural connectivity, (2) a particular order

of the connectivity operator Γτ, and (3) a particular normalisation scheme of the structural ad-

jacency matrix underlying Γ. Very strong evidence that one model provides a better account

for the observed data than another is concluded from a relative log-model evidence of three

(Penny, 2012), corresponding to a posterior probability of 95% or above.

RESULTS

Anatomical Network Diffusion Outperformed Direct Pathways in Sculpting Effective Connectivity

We assessed the value of simulated indirect (high-order) anatomical connectivity afforded by

network diffusion under the GL for sculpting effective connectivity, relative to models informed

by direct structural connectivity and to DCMs without anatomical information.

For indirect structural connectivity, we used a sigmoid function (Equation 6) with the hyper-

parameters δ (slope; range 0–0.25 in seven equal steps) and Σy min (lower boundary on prior

variance; range 0.0156–0.0625 in seven equal steps) to map the log-transformed group con-

nectivity values provided at eight different, equally distributed orders τ of the diffusion process

(from 1 to 64) onto prior variance of second-level effective connectivity.

Figure 3. Mapping indirect anatomical to effective connectivity priors. (A) The mapping from indirect structural connectivity to prior
second-level variance for the optimal combination of hyperparameters τ = 64, δ = 0.15, and Σy min = 0.05. (B) BMR affords the poste-
rior probability for each model informed by indirect structural connectivity relative to a full, uninformed model with a uniform prior variance
of 0.5 for all extrinsic (between-region) connections. Higher luminosity represents greater posterior probability. At every time step (order τ) of
the graph Laplacian, Equation 6 is applied to map the resulting structural connectivity to prior variance on second-level effective connectivity,
defined by the sensitivity hyperparameter δ. The posterior probabilities computed from the log model evidences are shown for the optimal
prior second-level variance (Σy min = 0.05). The important aspect of this distribution is that the highest posterior probabilities (brightest grids)
are observed for a sensitivity hyperparameter δ substantially greater than zero (that would mean structural connectivity does not provide useful
constraints) and for higher orders τ of indirect structural connectivity.
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A grid search over the 1,536 candidate models resulting from the diffusion process un-

der three normalisation schemes (symmetric, weighted to the out-degree, weighted to the in-

degree) using BMR (overall computation time 5.98 seconds) indicated the best constraints on

effective connectivity were provided by the largest order (τ = 64) of a GL normalised to the

in-degree. The structure-function mapping at this order was governed by the hyperparameters

δ = 0.15 and Σy min = 0.05 (Figure 3).

This model clearly outperformed models informed by direct anatomical connectivity (log-

evidence difference 33.13 in favour of indirect structural connectivity) and those without

anatomical information (log-evidence difference 35.3 in favour of indirect structural connec-

tivity). Very strong evidence that one model provides a better account for the observed data

than another is concluded for a log-evidence difference of three or above (Penny, 2012).

The Graph Laplacian Principle Eigenmode Aligned with Effective Connectivity

As shown in Figure 3B, the evidence for DCMs of effective connectivity informed by indi-

rect structural connectivity priors increased with progression of the particle diffusion process

simulated by the GL, saturating at orders above τ = 50, corresponding to the principle eigen-

mode of the GL. This suggests the structural connectivity that matters for dynamical coupling

and effective connectivity is best conceived in terms of reciprocal message passing over long

(polysynaptic) paths, or periods of time.

Normalisation Schemes: Afference Matters

Bayesian model comparison (Penny, 2012) across the three normalisation schemes provided

consistently very strong evidence in favour of normalisation to the in-degree (log-evidence dif-

ference between this and the next probable normalisation scheme: 3.06; Figure 4). This result

Figure 4. The role of asymmetry. (A) The bars represent the posterior probabilities of the most probable model in each of the three different
normalisation schemes (to the maximum, to the out-degree and to the in-degree). This analysis indicated very strong evidence in favour of
normalisation to the in-degree (posterior probability 96%). (B) The bars illustrate the first GL eigenvectors for each node (equivalent to the
horizontal bands in the equilibrium state, Figure 2H). They showed that the midcingular cortex (MCC), superior temporal sulcus (STS), middle
temporal cortex (MTC), and insula (INS) received most particles during the diffusion process (in descending order). (C) Crucially, these four
network nodes were also those with the highest functional input (in-degree) based on effective connectivity. Here, the functional input (bars)
for each node was defined as equalling the sum of squared weights over the respective rows of the effective connectivity matrix. Taken together,
this indicates that effective connectivity is best constrained by the input sensitivity of the network nodes in the diffusion process simulated by
the GL. Please see Table 1 for all abbreviated region labels.
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implied that effective connectivity is best predicted by the relative sensitivity of nodes to in-

coming information or afference and confirmed our hypothesis that introduction of asymmetry

in the diffusion process may offer a more plausible characterisation of asymmetric brain

dynamics.

When examining how the principle eigenmode of the GL normalised to the in-degree re-

lated to the functional afference of each node, one can see that the four nodes receiving the

greatest input during the GL diffusion process (midcingular cortex (MCC), superior temporal

sulcus (STS), middle temporal cortex (MTC) and insula (INS)) were also those with the highest

functional in-degree based on effective connectivity (Figure 4). This further speaks to the utility

and construct validity of the GL approach to inform effective by indirect structural connectivity.

Permutation Testing

Randompermutations (n = 256) of the network nodes in the adjacency matrix (thereby preserv-

ing the distribution of edge weights) were used to assess how often a random structural adja-

cency matrix would afford a greater log-model evidence than reported above (after optimising

the normalisation, order, and sigmoid hyperparameters). This permutation testing suggested

Figure 5. Permutation testing with random structural adjacency matrices. In order to assess how
often the graph Laplacian diffusion process over a random structural adjacency matrix would pro-
duce a log evidence greater than that afforded by the true structural adjacency matrix, 256 matrices
were formed by randomly permuting the network nodes, thereby preserving the symmetry and dis-
tribution of edge weights. The histogram shows the distribution of maximum log evidences over
these different models (under in-degree normalisation). The dashed line corresponds to a threshold
of p = 0.05 (a significant result should be located to the right of this line), while the solid line is the
observed log evidence for the best empirical model. The result indicates the improvement in model
evidence afforded by the true tractography matrix is significant (p = 0.01) in a classical sense, with
respect to a null distribution based on permutation testing.
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the improvement in evidence afforded by applying the GL to the actual structural adjacency

matrix was significant in a classical sense (p = 0.01), with respect to a null distribution of

largest log-model evidences (Figure 5).

DISCUSSION

This study makes several contributions to the understanding of structure-function relationships

in the brain. Based on previous research (Kale et al., 2018; Avena-Koenigsberger et al., 2019;

Seguin et al., 2019), we hypothesised that asymmetric polysynaptic anatomical connectiv-

ity would better predict the directed causal dynamics between neuronal populations (effec-

tive connectivity) than conventional (i.e., symmetric and monosynaptic) information on WM

pathways. The introduction of the GL allowed us to parameterise a diffusion process on the

structural graph, providing symmetrically and asymmetrically weighted adjacency matrices

of increasing order. Of note, other methods for modelling network communication based on

structural connectomes can inherently inform on asymmetry. Such approaches include navi-

gation (Seguin et al., 2018), search information (Goni et al., 2014), linear transmission models

(Misic et al., 2015), and diffusion efficiency (Goni et al., 2013). The novel approach presented

here enables hypotheses to be tested about the mapping from indirect anatomical connec-

tivity to effective connectivity via a (variational) Bayesian framework. Using a dataset with

fMRI and HARDI measures, we found that high-order structural connectivity simulated using

the GL greatly improved the evidence for DCMs of effective connectivity, compared to DCMs

informed by direct structural connectivity and anatomically uninformed models. Most impor-

tantly, input sensitivity during the diffusion process best predicted effective connectivity.

We introduced a computationally efficient approach to map indirect anatomical to

effective connectivity, using hierarchical PEB models and BMR for DCMs (Friston et al., 2016;

Zeidman et al., 2019). This procedure is designed to account inherently for possible variations

in network architecture, normalisation scheme, value of anatomical information and mapping

between structural and effective connectivity, for any given study and context. By definition,

effective connectivity is determined by the context, such as the specific experimental task or

cognitive set (Friston et al., 2003). For this reason, we would not expect a universally optimal

set of priors on effective connectivity that could explain cognition per se. We sought to provide

an efficient method for finding the best effective connectivity priors for any specific context, in-

formed by indirect anatomical connectivity. An interesting future question will be whether the

utility of the GL approach to assess indirect structural connectivity generalises to models of ef-

fective connectivity for resting-state data. The value of understanding asymmetric coupling be-

tween functionally related regions at rest, through combination of neuronal and observational

models such as those used by dynamic causal modelling, has become increasingly recognised

(Friston et al., 2014; Razi et al., 2015, 2017). Recent work has already linked asymmetries in

indirect anatomical connectivity to resting-state effective connectivity (Seguin et al., 2019).

Using high-quality dMRI along with task-related and resting-state fMRI datasets such as

from the Human Connectome Project (Van Essen et al., 2013) may contribute to further test

and refine the outlined approach and conclusions, complementing previous research on these

datasets (Seguin et al., 2019). Furthermore, it will be of interest to perform large-scale analyses

integrating the structural connectome with whole-brain effective connectivity using the re-

cently introduced regressive dynamic causal modelling (Frassle et al., 2018). Such approaches

may also help to inform generative models of how WM pathways give rise to brain dynam-

ics (Robinson, 2012; Deco et al., 2013; Sanz Leon et al., 2013; Melozzi et al., 2017; Messe
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et al., 2018), and to better understand how network dynamics may shape cognitive function

and behaviour (Aertsen et al., 1994; Gerraty et al., 2018; Sokolov et al., 2018). Relating the

diffusion properties of brain networks to their functions in extension of previous approaches

based on direct anatomical connectivity (Deco et al., 2012; Senden et al., 2012; Hermundstad

et al., 2014) may further improve our conceptualisation of distributed information processing

in the brain.

Endowing the GL diffusion process with asymmetry clearly outperformed a symmetric dif-

fusion process in sculpting effective connectivity, suggesting that ensemble dynamics in the

brain may be shaped by the sensitivity of regions to their distributed input. These findings agree

with and extend recent work on resting-state functional connectivity in macaques and humans

showing that synchrony between nodes does not only depend on their direct or second-order

connectivity, but also the similarity of afferents they receive from the entire network and other

adjacent network characteristics (Adachi et al., 2012; Goni et al., 2014; Bettinardi et al., 2017).

Consequently, densely connected regions may not necessarily be in a best position to influ-

ence or to be influenced by other regions (Avena-Koenigsberger et al., 2017). This follows from

the fact that being locked into dense subgraphs may preclude a more widespread sensitivity to

distributed dynamics (Pillai & Jirsa, 2017). Clarifying whether and why some networks may be

better characterised in terms of their nodes’ sensitivity to inputs as opposed to their capacity

to influence other nodes is a promising avenue for future research on normal and altered brain

network function that can be pursued formally by the procedure described here.

The results presented here agree with and extend previous research employing network

communication models (Avena-Koenigsberger et al., 2019; Seguin et al., 2019). These studies

inferred the ease of sending and receiving information from undirected structural connec-

tomes. The differences between send and receive efficiencies were mapped onto functional

brain topography and the outcomes of separate resting-state effective connectivity analyses. For

instance, anatomical connectivity-based classification suggested that unimodal areas such as

the primary visual cortex or sensorimotor cortices were predominantly sending information,

whereas multimodal regions were mainly receivers (Seguin et al., 2019). The diffusion effi-

ciency approach, described as the (inverse) mean first passage time of a Markov chain process

(Goni et al., 2013; Seguin et al., 2019), is similar to in-degree normalisation. In contrast to the

present work, diffusion efficiency is derived using a matrix of transition probabilities. Nonethe-

less, measuring diffusion efficiency in a structural adjacency matrix yielded similar results,

revealing regional variability in input sensitivity and a rather uniform capacity to influence

other regions (Seguin et al., 2019). Future investigations are needed to fully explore the impli-

cations of the various measures to model diffusion processes.

The other important finding was that higher orders and the principle eigenmode of the GL

afforded better priors on effective connectivity than lower GL orders. This indicated that WM

connections and distributed neural dynamics give rise to brain communication through recur-

rent neuronal message passing over multiple paths. GL eigenmodes and eigenvalues are closely

related to network communicability, representing the ease of information transmission along

all possible paths in a network (Estrada & Hatano, 2008; Crofts & Higham, 2009; Andreotti

et al., 2014; Grayson et al., 2016; Shine et al., 2018). GL eigenmodes of structural adjacency

matrices exhibit a high degree of similarity between healthy subjects, as well as consistent and

meaningful alterations in developmental and virtual agenesis of the corpus callosum (Wang

et al., 2017). Laplacian eigenvalue spectra have been used for cross-species comparison of

anatomical networks and revealed specific characteristics of neural networks as opposed to

other network classes (de Lange et al., 2014). Furthermore, the anatomical graph energy
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(connectedness measure representing the sum of all absolute GL eigenvalues) has been shown

to be significantly lower in patients with Alzheimer’s disease than in controls (Daianu et al.,

2015). A greater number of apolipoprotein E4 gene copies predicted this reduction in graph

energy. The use and interpretation of metrics such as eigenmodes and eigenvalues afforded by

diffusion processes simulated by the exponentiation of a GL matrix could lead towards con-

sideration of more global network characteristics beyond the conventionally assessed single

hub or subgraph properties.

In clinical research, truly integrative computational, graph theoretic, or even simple correl-

ative analyses of multimodal connectivity remain rather sparse. However, the assessment and

comparison of network communicability using the GL may be of potential relevance to clinical

neuroscience. Implementation of the GL in patients to assess how local and global changes in

anatomical connectivity affect functional dynamics may shed new light on pathophysiology.

Other comparative network measures afforded by the GL are topological similarity, persis-

tent homology and graph diffusion distance (Hammond et al., 2013a; Bettinardi et al., 2017;

Liang & Wang, 2017). Furthermore, simulation of network diffusion by means of the GL has

been used to predict neuronal spreading and resulting brain atrophy patterns in Alzheimer’s

and frontotemporal dementia (Raj et al., 2012) and to infer sources of disease propagation in

mild cognitive impairment and Alzheimer’s dementia (Hu et al., 2016). Ultimately, the global

measures afforded by the GL may be used towards assessment of the relationships between

connectivity and behaviour at the network level (Sokolov et al., 2018). As efficiency and ease-

of-use are of primary significance in everyday clinical practice, this relatively straightforward

and rapid approach could potentially afford useful network biomarkers in neurological and

psychiatric disorders.

Dynamic causal modelling for fMRI has contributed to establishing or refining various

neuroanatomical and neurobiological concepts and hypotheses in functional realms such as

reading, mental imagery, memory retrieval, or body language reading (Chow et al., 2008;

Sokolov et al., 2012; Dijkstra et al., 2017; Ren et al., 2018; Sokolov et al., 2018). Inclusion of

electrophysiological data from EEG, MEG, or intracranial recording (David et al., 2013;

Almashaikhi et al., 2014; Proix et al., 2017), which enable more detailed biophysical modelling

due to their high temporal resolution, may offer additional insight. Indeed, structure-function

relationships appear to depend on different timescales of functional dynamics. Changes over

periods of several minutes largely reflect underlying anatomical connectivity, whereas dynam-

ics lasting a few seconds do so to a lesser degree (Honey et al., 2007; Shen et al., 2015; Cabral

et al., 2017). Interestingly, resting-state functional connectivity data derived from simultaneous

EEG and fMRI outperforms fMRI data alone in modelling structural connectivity, when compar-

ing these predictions to actual dMRI measures (Wirsich et al., 2017). Network models based

on anatomical connectivity and driven by EEG source activity accurately predict individual

fMRI resting-state patterns and reproduce neurophysiological phenomena and mechanisms

observed with different imaging modalities (Schirner et al., 2018). GL approaches to struc-

tural connectivity have also been used to improve EEG source localisation (Hammond et al.,

2013b). Another potentially exciting development could be the computational modelling of

sparse impulse stimulations as input in the GL diffusion process, similar to that implemented

for modelling of disease propagation sources (Hu et al., 2016). This could further approximate

the neuronal model within dynamic causal modelling (Friston et al., 2003) and information

flow in the brain.

In summary, we have studied symmetric and asymmetric diffusion processes based on

anatomical connectivity to optimise prior constraints on models of directed effective connec-

tivity. Bayesian model comparison indicated the best effective connectivity priors are provided
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by indirect, high-order structural connectivity determined by the regional sensitivity to inputs

that would be seen under equilibrium states of particle diffusion within an anatomical net-

work. This may speak to a reappraisal of how we characterise the anatomical connectome,

when trying to understand asymmetric functional dynamics arising from structure of the sort

measured in neuroimaging.
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