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Abstract

Network-based gene prioritization algorithms are designed to prioritize disease-associated genes based on known ones

using biological networks of protein interactions, gene–disease associations (GDAs) and other relationships between

biological entities. Various algorithms have been developed based on different mechanisms, but it is not obvious which

algorithm is optimal for a specific disease. To address this issue, we benchmarked multiple algorithms for their application

in cerebral small vessel disease (cSVD). We curated protein–gene interactions (PGIs) and GDAs from databases and

assembled PGI networks and disease–gene heterogeneous networks. A screening of algorithms resulted in seven

representative algorithms to be benchmarked. Performance of algorithms was assessed using both leave-one-out

cross-validation (LOOCV) and external validation with MEGASTROKE genome-wide association study (GWAS). We found

that random walk with restart on the heterogeneous network (RWRH) showed best LOOCV performance, with median

LOOCV rediscovery rank of 185.5 (out of 19 463 genes). The GenePanda algorithm had most GWAS-confirmable genes in top

200 predictions, while RWRH had best ranks for small vessel stroke-associated genes confirmed in GWAS. In conclusion,

RWRH has overall better performance for application in cSVD despite its susceptibility to bias caused by degree centrality.
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Choice of algorithms should be determined before applying to specific disease. Current pure network-based gene

prioritization algorithms are unlikely to find novel disease-associated genes that are not associated with known ones. The

tools for implementing and benchmarking algorithms have been made available and can be generalized for other diseases.

Key words: network-based gene prioritization; cerebral small vessel disease; protein–protein interaction; disease gene

association; benchmarking

Introduction

‘Guilt by association’ is the most adopted concept in network-

based gene prioritization methods. The underlying principle

is that genes that are closely associated in the protein–gene

interaction (PGI) network tend to be in the same functional

module, thereby giving rise to similar phenotypes [1]. Different

algorithms have been developed and applied to biological inter-

action networks under this principle. These algorithms take a set

of known genes associated with a disease (seed genes) as input

and try to predict or prioritize other potential genes associated

with the disease. Network propagation algorithms were among

the 1st algorithms to be applied on the PGI network in the form

of a random walk with restart (RWR) algorithm [2]. Despite its

early application and simplicity in a theoretical and compu-

tational sense, it showed superior or as good performance to

many algorithms and was often taken as a reference algorithm

[3–5]. The RWR algorithm was later extended to work on the

disease–gene heterogeneous network by either directly expand-

ing the adjacency matrix (RWRH) [6] or allowing propagation on

both the protein/gene network and disease similarity network

(IDLP) [4]. Some other algorithms, like DIAMoND and GenePanda,

find special associations between candidate genes and seed

genes using defined heuristic rules[7, 8]. Recently, the network

embedding method Node2Vec (N2V) has also been used in gene

prioritization [9, 10].

However, the reports describing the algorithms typically

showcased their performance in an example disease or

condition, so that it is not clear for end users who wish to apply

the algorithms to the disease of their interest which algorithm

is the optimal one. To address this issue, we benchmarked

seven representative algorithms for their application in non-

amyloid cerebral small vessel disease (hereafter referred to as

cSVD). CSVD is a term used to describe a variety of pathological

processes that affect the deep small penetrating arteries,

arterioles, venules and capillaries of the brain. The main clinical

phenotypes of cSVD include small vessel ischemic stroke, deep

intracerebral haemorrhage and vascular cognitive impairment

[11, 12]. The overall burden of cSVD is growing as the world’s

population continues to age [13]. Other than management

of hypertension, we currently lack effective treatments to

reduce the risk of cSVD. Hence, pathways involved in cSVD

pathogenesis must be better understood to develop new

effective prevention and treatment strategies. Genetic studies

may offer an opportunity for further insights.

In this article, we performed domain knowledge-lead

curation of PGIs and disease–gene associations to assemble

the input network. Known cSVD-associated genes sum-

marized from a systematic review of familial cSVD were

taken as seed genes [14]. We accessed the performance of

representative network-based gene prioritization algorithms

with cross-validation. The candidate genes prioritized by

best performing algorithms were externally evaluated with

results of genome-wide association study (GWAS) MEGASTROKE

[15, 16].

Methods

The benchmarking pipeline is in three main parts: cura-

tion of PGI and disease–gene networks, implementation

of algorithms and evaluation of algorithm performances

(Figure 1).

Sources of data used as input to the network

For curation of human PGIs, three overall preferences on the

nature of databases were pursued with descending priority: (i)

coverage of seed genes (reviewed by Rannikmäe et al. [14]), (ii)

the objectivity of database and (iii) presence of experimental

evidence to support the interaction. In addition, we made sure

that seed genes were covered in at least one of the databases,

so that algorithms could use this prior information to prioritize

other candidate genes.

Objectivity signified to what extent relationships found for

each protein or gene were not affected by the researchers’ inter-

ests. Databases curating binary protein interactions determined

by yeast-2-hybrid screening are good examples of data sources

with high objectivity, since neither proteins of interest nor rela-

tionships to be observed are preselected. Databases curating

transcription regulation defined by chromatin immunoprecipi-

tation sequencing (ChIP-Seq) are examples of moderate objec-

tivity, since specific transcription factors are chosen to be stud-

ied, but the regulated genes were accessed universally with

RNA sequencing. Both the objectivity and experimental evidence

requirements implied the exclusion of relationships extracted

by literature text-mining methods. An overview of all databases

curated is provided in Table 1.

Binary interactions (protein interaction determined by yeast

two-hybrid screening) were curated from the Human Reference

Interactome (HuRI) database [17]. Transcription regulations

were curated from the Gene Transcription Regulation Database

(GTRD) [18]. Regulations with more than eight (including

eight) binding sites determined by peak calling of ChIP-Seq

signal in the genomic range of 1000 bp up- or down-stream

of transcription start site were selected. Relationships in

biological pathways were curated from Reactome databases

[19]. To cover all the seed genes, additional experimental

confirmed relationships were curated from the String database

with a filter of confidence score ≥350 (Table 1) [20]. Since

curation of GTRD database required both gene and protein

entities on the graph, we created a hybrid protein–gene

network. All entities in PGI were converted to Ensembl gene

ID to allow best compatibility with gene–disease associations

(GDAs).

GDAs were curated from DisGeNet v6.0 using the ‘ALL

gene-disease association’ file [21]. Selected associations were

confined to human evidence with associations GDA scores ≥0.3,

which corresponded to associations curated from evidence-

based databases. The disease similarity (Dsim) score was

extracted from Mimminer [22]. Diseases with similarity score

greater than 0.6 were given an edge in the network. All disease
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Network-based gene prioritization for cSVD 3

Figure 1. Benchmarking workflow of network-based gene prioritization in cSVD. There are three main components of the benchmarking workflow: assembling input

networks, selection of algorithms and validation of algorithms. (i) PGI was assembled with domain knowledge-lead curation of protein/gene interactions from four

databases. DGAs were added to PGI to generate disease–gene heterogeneous networks. (ii) Representative gene prioritization algorithms were selected based on the

originality with the non-network-based algorithms or hybrid algorithms excluded. (iii) Performance of algorithms was assessed with LOOCV and externally validated

with MEGASTROKE GWAS results. Abbreviations: PGI, protein–gene interaction; DGA, disease–gene association; cSVD, cerebral small vessel disease; LOOCV, leave-one-

out cross-validation; GWAS, genome-wide association study. Please see Table 1 for full names of databases and Table 2 for full names of algorithms.

Table 1. Summary information on PGIs and disease–gene associations curated from different data sources

Database Gene/protein Disease Node Interaction Selection/filter

HuRIa 8327 – 8327 19 082 HuRI

GTRDb 8275 – 8275 52 569 Promotor (−1000, +1000); more than 8 binding sites per gene

Reactome 5219 – 5219 29 328 –

String 13 444 – 13 444 91 019 Experimentally confirmed with score ≥350

DisGeNET 7635 8431 16 066 67 993 DGA score ≥0.3

Mimminer – 2646 2646 9840 Similarity score >0.6

Gene network 18 718 – 18 718 183 457 –

Disease–gene network 19 463 10 103 29 566 261 298 –

aHuRI—Human Reference Interatome
bGTRD—Gene Transcription Regulation Database

entities weremapped to ids of the OnlineMendelian Inheritance

in Man database.

Unions of all PGIs with or without GDAs were computed

and non-directed simple networks were generated (Table 1). The

network edge lists and code to extract the relationships were

published at https://github.com/huayu-zhang/gp-bench.

Modularity of GO pathways

Clustering of genes in the same pathways is a known property of

PGI networks. To test whether our curated PGI network had this

property, we extracted groups of genes defined by gene ontology

(GO) terms of biological process and calculated modularity of

GO pathways on the PGI network. Modularity quantifies if the

number of edges among a group of nodes (modules) is lower

or higher than expected. The modularity of GO pathways was

calculated as a two-communitymodularitywith one community

defined by aGOpathway and the other community being the rest

of nodes:

Q =
1

4m
sTBs (1.1)

Bij =

{

Aij −
kikj
2m if i 6= j

0 if i = j
(1.2)

si =

{

−1 if i ∈ GO pathway

1 if i /∈ GO pathway
(1.3)

where Q is the modularity score, m is the number of edges and

ki and kj are the degrees of i-th and j-th nodes.

Graph-based gene-prioritization methods

Algorithm selection

To select algorithms for comparison, a PubMed search for

‘network-based gene prioritization’ was done and 49 articles

were yielded. Additional 77 articles were obtained through

the review of Zolotareva and Kleine [23], 51 of which were

excluded since it was reviewed to be not available. The 75

articles were screened.Non-network-based algorithms or hybrid

algorithms combining network-based approaches and machine

learning approaches were excluded to focus on the network-

based algorithms and improve comparability among algorithms.

We also excluded articles if only implementations but not the

original algorithms were described or if the source code was not

provided for redevelopment. The selection resulted in 35 articles

describing different algorithms, among which algorithms

with similar core mechanisms exist. To avoid redundantly

testing similar algorithms, seven representative algorithms with

different mechanisms were selected for benchmarking. Details

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab006/6149293 by U

niversity C
ollege London user on 16 June 2021

https://github.com/huayu-zhang/gp-bench


4 Zhang et al.

Table 2. Summary of network-based gene prioritization methods applied in this study

Abbreviation Name Mechanism Network

RWR Random walk with restart Network propagation Gene–protein network

N2V Node2Vec Graph embedding Gene–protein network

DIAMOnD Disease module detection Seed association Gene–protein network

GenePanda GenePanda Seed association Gene–protein network

RWRH RWR on heterogeneous network Network propagation Disease–gene network

N2VH N2V on heterogeneous network Graph embedding Disease–gene network

IDLP Improved dual label propagation Network propagation Disease–gene network

of algorithm selection process are given in Supplementary Table

S1. A summary of the selected algorithms is given in Table 2.

Notations

For describing the methods, common notations were used. The

PGI network G = (V,E) consists of a node set, V, of n nodes, rep-

resenting individual proteins/genes, and an edge set, E, of node

pairs, representing PGIs. The set of seed nodes was represented

by S, which containedmonogenic risk factors of cSVD. The num-

ber of elements in a set is notatedwith single vertical bars (e.g.
∣

∣

∣S
∣

∣

∣

for number of seed nodes). The network of G is represented by an

n×n adjacency matrix A, and the column-normalized adjacency

matrix was represented by W.

W = AD−1
k (2.1)

where Dk is a diagonal matrix Dk = diag(k) and k is a vector in

which the i-th elements is the degree of i-th node. Adjacency

matrix for GDA network and disease similarity network were

notated with APD and ADD. Bold font was used for notations of

vectors and matrices.

Since the output of different algorithms are not directly

comparable,we also described in the following section hownode

rankswere generated for each algorithm.To streamline the com-

parisons of algorithms, we implement all algorithms in Python

3.7 (https://github.com/huayu-zhang/gp-bench). A summary of

the algorithms is given in Table 2.

Random walk with restart

RWR algorithm was first applied to the human PGI networks

by Kohler et al. [2]. It has since been extended to work on

the disease–gene heterogeneous network [6]. Intuitively, random

walk measures the probability of ending on a particular node if

one starts from the seed nodes. The probability can in turn be

interpreted as a measure of distance from seed nodes with the

network structure taken in consideration. We briefly describe

the principles here. The RWR algorithm is defined as follows:

pt = (1 − r)Wpt−1 + rp0 (2.2)

The initial probability is p0i = 1/

∣

∣

∣S
∣

∣

∣, if i-th node is one of

the seed nodes; otherwise, p0i = 0. The restart probability r

was tuned in range of (0.1–0.9) with steps of 0.2. The process

was repeated until convergence with a practical tolerance of

difference
∥

∥

∥pt − pt−1

∥

∥

∥

1
< 10−8. Elements in the converged pt were

used as the score for ranking all genes:

RWR score = p∞ (2.3)

For random walk on heterogeneous network (RWRH), the

adjacency matrix A and probability vector p0 and pt were

expanded to accommodate disease–gene association and

disease similarities:

Aexpand
=

[

A APD

APD
T ADD

]

(2.4)

p
expand
t =

[

pt
pdiseaset

]

(2.5)

where pdiseaset is the probability vector for all disease nodes. The

expansion allows random walk on both gene/protein nodes and

disease nodes.

Node2Vec

N2V is a network embedding algorithm invented by Grover

and Leskovec [10], which computes a low-dimensional vector

representation for all nodes in a network. Full theoretical back-

ground is not repeated here. Briefly, the vector representation

for each node is optimized in the way that the conditional log-

probability of observing a network neighbourhood (sampled by

random walks described below) is maximized. In other word,

nodes with similar vector representations are likely from similar

neighbourhood in the network, allowing us to find genes closely

related to seed genes. Practically, for each node in V, neighbour-

hood sampling was done by generating nwalks randomwalks with

length lwalks. The number of walks nwalks was tuned in values of

(20, 40, 80), while length of walks lwalks was tuned in values of

(40, 80, 160). The balance between breadth-first search (BFS) and

depth-first search (DFS) was controlled by p (smaller p favours

BFS) and q (smaller q favours DFS). Both p and q were tuned

in values of (0.5, 1, 2). The walks were then used as the input

for Word2Vec, where each walk was treated as a sentence and

each node was treated as a word. Using Skip-gram architecture,

vectorized representation vi was computed for each node i. The

dimension of the vectors d was tuned in values of (64, 128, 256).

Max cosine similarity of a node to seed nodes was used as

the gene-prioritization score of N2V and was used for ranking

candidate genes:

N2V scorei = max

{

vi • vs
‖vi‖2‖vs‖2

, s ∈ S

}

(2.6)

The N2V algorithm could also be applied to heterogeneous

network without modification (N2VH).

Disease module detection algorithm

Disease module detection algorithm (DIAMOnD) was pro-

posed by Ghiassian et al. [7]. The core mechanism of the DIA-

MOnD algorithm is stepwise inclusion of neighbour nodes of

seed nodes based on hypergeometric distribution probability.

The probability quantifies likelihood of observing certain num-

ber of connections to seed nodes based on the degree of the node.
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A lower probability suggests overrepresentation of connections

to seed nodes. At the end of each step, the set of seed nodes

is updated by the newly prioritized candidate node. For each

candidate node at t-th step, probability of any candidate node

connecting exactly to certain number of seed nodes is calculated

based on the hypergeometric distribution:

p =

(

|St|

kst

)(

n − |St|

k − kst

)

(

n

k

) (2.7)

where k is the degree of the candidate node, Stis the set of

seed nodes at t-th step andkst is the number of connections of

the candidate node to St. The candidate node with lowest p is

prioritized and is incorporated in the list of seed node. The rank

of nodeswas given by the order of being selected in this stepwise

gene prioritization process.

An extension which add additional weight to the original

seed genes was given:

p =

(

|St| + (α − 1) |S|

kst + (α − 1) ks

)(

n − |St|

k − kst

)

(

n + (α − 1) |S|

k + (α − 1) ks

) (2.8)

where ks is the number of connections of the candidate node to

S and α (α > 1) is the hyperparameter controlling the weight. The

hyperparameter α was tuned in values of (1, 10, 100).

GenePanda

GenePanda was proposed by Yin et al. [8]. Briefly, in the

GenePanda algorithm, the degree-adjusted distance d
adj

ij between

i-th node to j-th node is calculated:

d
adj

ij = dij/
√

kikj (2.9)

where dij is the shortest path length between i-th node to j-th

node and ki and kj are degrees of i-th node to j-th node. The

GenePanda score is defined as the difference of average adjusted

distance of a node to the whole network to the average adjusted

distance to the seed genes. The GenePanda score for i-th node is

calculated as follows:

GenePanda scorei =

∑

j∈V d
adj

ij

|V|
−

∑

j∈S d
adj

ij

|S|
(2.10)

The GenePanda score was used to rank all nodes.

Improved dual label propagation

Improved dual label propagation (IDLP)was formulated by Zhang

et al. [4] specially for gene prioritization on gene–disease hetero-

geneous networks. IDLP involves back-and-forth network prop-

agation on the PGI network and the disease similarity network.

Before each propagation, PGI network or disease similarity net-

work is updated with knowledge of GDAs, in the way that genes

causing the same diseases get larger edge weight in the PGI

network and disease caused by the same genes get larger edge

weight in the disease similarity network.

For realization of the IDLP algorithm, the PGI network and

disease similarity network were first normalized:

Anorm
= K− 1

2 AK− 1
2 (2.11)

Anorm
DD = K

− 1
2

DD ADDK
− 1

2
DD (2.12)

where KA and KDD are diagonal matrices with node degrees of

PGI network and disease similarity network, respectively.

The IDLP algorithm was realized by repeating the following:

A∗
= Anorm

+ γYYT (2.13)

Y = β (I − α)A∗−1APD (2.14)

A∗
DD = Anorm

DD + γ ′YTY (2.15)

Y = β ′APD

(

I − α′A∗
DD

)

(2.16)

where A∗ and A∗
DD are the updated PGI and disease similarity

networks and Y is the gene–disease relationship matrices to be

learnt, which has same dimensions with AGDA. Y is initialized

with random values. The algorithm should be repeated until Y

converges. In practice,we performed 20 iterations due to the long

runtime of each iteration, caused by the complexity of matrix

inverse calculation. Before the iterations, an extra column was

added to APD representing cSVD, in which rows for seed genes

had value 1; other rows had value 0. The dimension of Y was

adjusted accordingly. The final value of the column representing

cSVD in Y was used to rank all genes.

Evaluation of algorithm performance

Leave-one-out cross-validation

Model performance was internally evaluated using leave-one-

out cross-validation (LOOCV). For each repeat of cross-validation,

one seed node was left-out from the set of seed genes and the

rank of the left-out seed nodewas used as the performancemet-

ric (referred as LOOCV rank). Median andmean values of LOOCV

ranks of seed nodes were calculated as overall performance

metrics. Formethods applied to the gene–disease heterogeneous

network, edges between cSVD and the left-out seed gene were

also removed to prevent data leaking.Gene ranks given by degree

centrality were used as a naive baseline performance.

Random-seed experiments

Random-seed experiments served to evaluate seed-independent

patterns captured by the algorithms. In one trial, a randomly

selected 10 seed genes were taken as the input of algorithms

and the rank of all nodes were obtained. The experiment was

repeated 1000 times, and the median value of the rank of each

node across the 1000 experimentswas calculated and associated

with degree centrality of the nodes. For cSVD-related genes,

distributions of the ranks from 1000 experiments were also visu-

alized. The PGI network was used in a random-seed experiment

because on the PGI network degree of a node can be directly

interpreted in biological sense as the number of interactions a

certain gene has.
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External evaluation using MEGASTROKE GWAS results

The MEGASTROKE GWAS [15, 16] of ‘small vessel stroke (SVS) in

Europeans’ was used to evaluate the gene prioritization results.

SVS is a synonym for cSVD used in the MEGASTROKE study.

Single nucleotide polymorphisms (SNPs) were mapped to

genes based on their genomic locations (±1000 bp of the gene

region). The genes were indexed with Ensembl gene IDs to

remain consistent with the gene prioritization output. P-values

for all SNPs within the top 200 genes found in the MEGASTROKE

summary statistics were extracted. To determine a significance

threshold for the genes shortlisted by the algorithms, false dis-

covery rate (FDR)-adjusted P-values were calculated for all SNPs.

Those genes with a significant proportion of SNPs (determined

using a one-sample t-test) which passed the FDR-adjusted P-

value threshold of P <0.05 were considered to be validated

within MEGASTROKE.

The MEGASTROKE study identified seven genes associated

with the SVS phenotype. We used this list of seven genes as the

other way of performance validation. The median rank, number

of hits in top 10% of predictions and the list of hits were obtained

as performance metrics.

The same validation procedure was applied to degree cen-

trality ranks to obtain a naive baseline performance.

Results

Domain knowledge led curation of PGIs

The knowledge-lead curation of human PGIs resulted in a PGI

network with 18 718 distinct proteins and 183 457 interactions

with the largest connected components covering 18 664 proteins

(Table 1, Figure 2A). A heavy tail distribution of degrees was

observed (Figure 2B).Different PGI databases each have a distinct

contribution to the total number of proteins, with a different

extent of overlapping between the databases (Figure 2C). The

overlap of interactions, however, was to a lesser extent, since

biologicalmeaning of interactions fromdifferent databaseswere

different (Figure 2D). In particular, only two interactions were

found in both HuRI and GTRD databases, which is consistent

with the fact that transcriptional regulation mostly does not

involve binary interaction between two proteins. To test if the

curated network displays known functional properties of PGI

networks, modularity scores of GO pathway proteins were cal-

culated and compared to randomly chosen groups of protein.

Indeed, higher modularity scores compared to randomly chosen

protein groups were observed (Figure 2E).

Characteristics of cSVD genetic risk factors on human
PGI network

To assess the (PGI) network-based properties of known mono-

genic risk factors (seed genes) of cSVD, we calculated centrality

measurements of nodes representing the seed genes.Most (8/10)

seed nodes had degree centralities above networkmedian. Six of

the seed nodes had eigenvector centralities above the network

median. All seed nodes had betweenness centrality above the

network median (Figure 3A, Table 3). In addition, six of the seed

nodes had a clustering coefficient above the network median.

To know the relative positions of seed nodes in the human

PGI network, pairwise distances of seed nodes defined by short-

est path length or RWR were calculated (Figure 3B–C). COL4A1

and COL4A2 genes were two of the six subunits of the type IV

collagen and were, therefore, neighbours. PITX2, NOTCH3 and

FOXC1 genes, all of which are involved in NOTCH signaling path-

way, formed another cluster. The lysosome biogenesis regulator

gene, TREX1, clustered with CTSA gene, which is a lysosome

peptidase. COLGALT1 was clustered with either CTSA or loosely

with the COL4A1/COL4A2 cluster, depending on the distance

metric used. ADA2 and HTRA1 were not in proximity with any

other seed nodes in the human PGI network.

Evaluation of network-based gene prioritization
methods on cSVD with LOOCV

Performance of gene prioritization algorithms was firstly eval-

uated with LOOCV. On the PGI network, RWR had the best

performancewith amedian LOOCV rank of 1356.5 in seed nodes,

followed by N2V with a median rank of 2165 (Table 4). DIAMoND

and GenePanda failed to achieve comparable performance.Next,

we evaluated algorithms that were applicable on the protein/dis-

ease heterogeneous network. RWRH achieved the best perfor-

mance with a median LOOCV rank of 185.5 in seed nodes,

followed by N2VH with a median rank of 820.5. Performance of

the IDLP algorithm was not comparable to RWRH and N2VH.

Performance of RWR and N2V algorithms was both dramatically

improved by using the heterogeneous network.

Patterns could be observed on the variance of LOOCV ranks

of seed genes. Seed genes,which belonged to clusters defined by

network-based distancemeasures, tended to have better LOOCV

rank. COL4A1 and COL4A2 were ranked in the top 40 genes in

most algorithms. NOTCH3, FOXC1 and PITX2 had better ranks

in two RWR-based algorithms. Seed genes with higher degree

centrality, like CTSA, NOTCH3 and PITX2, also tended to have

better LOOCV rank in the RWR algorithm.

Random-seed experiments

Contributions to results of gene prioritization come from seed-

dependent (choice of seeds) and seed-independent sources

(intrinsic properties of the network). Here, we sought to study

the influence of degree centrality on gene prioritization results.

The implications were explained in detail in the Discussion

section. To measure the dependency on degree centrality, we

simulated 1000 experiments with 10 randomly selected seed

genes. Association of the median rank of each gene in 1000

simulations with degree centrality of the node representing the

gene was examined. For RWR, lower median rank of a gene in

random-seed experiment was associated with higher degree

centralities, meaning that nodes with higher degree centrality

got better rank regardless of chosen seed genes (Figure 4A). The

same trend was not observed for N2V (Figure 4B).We then took a

deeper look at the distribution of rank for seed genes of cSVD in

random-seed simulations. In RWR, ranks of seed genes from the

random 10-seed experiment were narrowly distributed, where

in N2V, the distribution was wider (Figure 4C and D).

External validation of gene prioritization results in
MEGASTROKE GWAS

We next validated the top 200 predictions of the algorithms with

MEGASTROKE GWAS results. The top predictions of GenePanda

had the most genes that could be validated in GWAS (90/200),

followed by N2VH and N2V (70/200 and 53/200; Table 5). RWRH

achieved the best rankings for the seven confirmed SVS-

associated genes from the MEGASTROKE study (median rank

1840 with 4/7 among top 10% predictions) (Table 5). Like the

observation in LOOCV, more GWAS-validated genes in the top
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Network-based gene prioritization for cSVD 7

Figure 2. Domain knowledge-guided curation of human protein–gene–disease interaction and assembly of interaction networks. (A) The human PGI network. (B) A heavy

tail distribution of degree centrality in PGI network. (C) Venn diagram showing overlaps of genes among databases. (D) Venn diagram showing overlaps of interactions

among databases. (E) Modularity of network by GO term ontologies.

200 predictions were observed for RWR and N2V algorithms

when the heterogeneous network was used. Including disease–

gene association in the network improved the performance in

rankingGWAS-confirmed genes for RWRbut not forN2V.The full

list of prioritized genes and their significance in MEGASTROKE

GWAS can be found in the Supplementary Table S2 and S3.

Discussion

In the current study, we applied network-based gene prioriti-

zation algorithms to shortlist new candidate genes for cSVD. A

domain knowledge-lead curation of PGIs was done as the input

network. To select themost suitable algorithm,we benchmarked

seven algorithms and observed good performance for RWRH and

N2VH in LOOCV. Given the total number of genes and proteins in

the heterogeneous network (19 463), the median ranks of redis-

covery in LOOCV for RWRH (185.5) translate to 50% of disease-

causing genes enriched in the top 0.95% (185.5/19 463) of candi-

date genes. In the following tests of the two algorithms,we found

that N2V algorithm was less prone to pick up seed-independent

patterns. External validation of the algorithms using MEGAS-

TROKE GWAS identified several genes within the top 200 can-

didate genes that were associated with small vessel stroke,

indicating that there is a certain degree of agreement between
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Figure 3. Properties of monogenic risk factors of cSVD in PGI network. (A) Centralities: degree, eigenvector, betweenness, closeness, clustering coefficient. (B) Pairwise

distances of seed nodes: shortest path length. (C) Pairwise distances of seed nodes: RWR distance.

Table 3. Metrics of seed genes in PGI network

Vertex Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality Clustering coefficient

TREX1 2.03E-03 1.67E-03 1.91E-04 3.17E-01 3.84E-02

COL4A1 5.88E-04 5.08E-04 2.82E-05 2.79E-01 9.09E-02

COL4A2 5.88E-04 7.54E-05 1.22E-05 2.64E-01 1.64E-01

PITX2 2.24E-03 5.46E-03 1.27E-04 3.41E-01 1.16E-01

FOXC1 6.95E-04 3.59E-03 1.26E-05 3.25E-01 2.18E-01

NOTCH3 1.98E-03 2.43E-03 8.82E-05 3.17E-01 1.07E-01

HTRA1 2.67E-04 2.18E-04 1.14E-05 2.70E-01 0.00E+00

ADA2 5.34E-05 1.03E-03 0.00E+00 2.91E-01 0.00E+00

CTSA 3.42E-03 2.57E-03 1.04E-03 3.27E-01 2.28E-02

COLGALT1 5.34E-04 3.07E-03 4.29E-05 3.25E-01 1.78E-01

Seed median 6.41E-04 2.05E-03 3.56E-05 3.17E-01 9.88E-02

Seed mean 1.24E-03 2.06E-03 1.55E-04 3.06E-01 9.34E-02

Graph median 3.74E-04 1.17E-03 7.99E-06 3.06E-01 8.67E-02

Graph mean 1.05E-03 2.84E-03 1.27E-04 2.99E-01 1.83E-01

network-based algorithms and GWAS. The PGI network and the

pipeline for algorithmbenchmarkingweremade available online

(https://github.com/huayu-zhang/gp-bench).

Network-based prioritization algorithms are based on dif-

ferent assumptions and mechanisms. If the assumptions or

the mechanisms do not fit with the underlying biology and
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Table 4. Performance of algorithms in LOOCV

LOOCV rank Rank

RWR N2V DIAMOnD GenePanda RWRH N2VH IDLP Degree

centrality

TREX1 3006 3907 naa 5408 1429 4539 18 103 2643.5

COL4A1 29 20 2344 22 21 19 18 201 7505.5

COL4A2 30 20 177 5 31 21 16 574 7505.5

PITX2 523 2035 na 4698 78 131 236 2326

FOXC1 1515 2157 na 3652 54 126 15 323 6792.5

NOTCH3 1198 4710 na 10 439 76 816 18 925 2727

HTRA1 8731 1871 269 14 636 293 825 949 11 076.5

ADA2 15 307.5 10 750 na 9380.5 18 206 15 555 10 011 17 226

CTSA 1037 3951 na 4418 993 3427 17 603 1255

COLGALT1 3302 2173 1960 4393 6197 4632 10 016 7923

Median 1356.5 2165 na 4558 185.5 820.5 15 948.5 7149

Mean 3467.85 3159.4 na 5705.15 2737.8 3009.1 12 594.1 6698.0

aThe DIAMOnD algorithm is a stepwise prioritization algorithm. The maximum steps were set to 5000, so that LOOCV rank of some seed genes is not available (na).

Table 5. Validation of gene prioritization results by MEGASTROKE GWAS

SNP Gene Sig. genes in GWAS

Algorithm (Sig./total) (Sig./total) Median rank Hits@10% Hits list

RWR 411/3110 25/200 5251 2/7 ICA1L, SEMA4A

N2V 1139/3027 53/200 4526 1/7 SEMA4A

DIAMOnD 47/2649 3/200 na 0/7

GenePanda 1859/2918 90/200 8544 1/7 ZCCHC14

RWRH 784/2767 45/200 1840 4/7 SH3PXD2A, SEMA4A,

ICA1L, ZCCHC14

N2VH 1597/2590 70/200 5979 1/7 SH3PXD2A

IDLP 603/3700 41/200 9318.5 1/7 ZCCHC14

Degree centrality 385/2144 31/200 7697 0/7

genetic basis of diseases, we will observe suboptimal perfor-

mance of the algorithms. The overall assumption of the algo-

rithms that are benchmarked in this article is the ‘guilt-by-

association’ principle [23]. In a biomedical sense, the princi-

ple can be approximately translated to ‘a gene which interacts

with known disease-causing genes has a better chance to be a

potential disease-causing gene’. This assumption is partly true,

if we consider that genes work as components of biological

pathways and functional modules [1]. Therefore, variations in

one of the components could lead to similar disease pheno-

types. However, the assumption does not cover situations in

which none of the genes belonging to a responsible pathway

or functional module is known or if the genetic structure of

the disease is more sporadic than clustered. Indeed, clustered

(according to network-based distance metrics) genes tend to

have better LOOCV rank in our study. The IDLP algorithm addi-

tionally assumes the smoothness of the adjacency matrix (edge

weights smoothed by network propagation) of the PGI network

and disease similarity network, which is not necessarily true.

During the derivation of the algorithms, certain diseases were

normally taken as example cases, demonstrating the (superior)

performance of the algorithm. It is possible that the mecha-

nism of certain algorithms fits better with the genetic structure

of the example disease. For example, the DIAMOnD algorithm

finds next candidate genes among the neighbours of the seed

gene set updated to the current step, which naturally favours

diseases with disease-causing genes forming large clusters on

the PGI network in rediscovery analysis. Indeed, the DIAMOnD

algorithm had superior performance over RWR in lysosomal

storage disease, of which the disease-causing genes have one of

the highest z-score for forming connected components [7]. As for

cSVD, the seed genes are in different clusters or isolated, explain-

ing poor performance for the DIAMOnD algorithm in LOOCV. In

summary, we would recommend comparison of multiple algo-

rithms before network-based gene prioritization methods are

applied to a certain disease. In addition, combination of multiple

methods (or ‘ensemble’ from the machine learning term) may

help to cancel out intrinsic bias of a single algorithm. Relevant

researchhas been done for breast cancer [24], but the subsequent

issue onhowensemblemethods should be chosenwould require

a systemic study.

The PGI network can be supplemented with disease–gene

interactions and disease–disease similarity relationships to cre-

ate a heterogeneous disease–gene network. It was previously

found that using the heterogeneous network improved per-

formance of some network-based gene prioritization methods

[24, 25]. However, such findings have not been confirmed for

network embedding algorithms such as N2V. In our experiment,

we observed substantial improvement of performance in LOOCV

for N2V using the heterogeneous network, indicating that N2VH

could also utilize information of existing disease–gene associa-

tions to infer new ones.

The choice of data sources for the input network plays an

important role in network-based gene prioritization methods.

Previous studies relied on either single curated PGI databases

or curation of multiple sources [7, 26]. We believe that the

source of PGI should be carefully selected for several reasons: (i)

reliability of estimation of algorithm performance in LOOCV can
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Figure 4. Dependency of rank on node degree. (A) Degree dependency of median random-seed node rank (all nodes) in RWR. (B) Degree dependency of median random-

seed node rank (all nodes) in N2V. (C) Distribution of ranks of seed genes in random-seed experiments on RWR. (D) Distribution of ranks of seed genes in random-seed

experiments on N2V.

be influenced by the degree centrality (number of interactions of

a node) of seed nodes.We demonstrated that, for algorithms like

RWR and its variations, LOOCV ranks of nodes were positively

correlated with their degree centralities, regardless of choice of

seed nodes. In other words, performance of RWR-like algorithms

would appear to be better in LOOCV just by having higher degree

centralities for the seed nodes, which does not necessarily

reflect true ability for the algorithm to predict new candidate

genes. Since known disease-associated genes tend to attract

more research interests, including literature-based PGIs would
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disproportionately increase degree centrality of seed genes,

resulting in over-estimation of RWR-like algorithms. In this

article,we attempted to avoid such over-estimation by preferably

curating PGIs obtained from high-throughput methods, where

the chance of a gene to be researched was not based on

researchers’ own interests. However, we could not completely

exclude other experimental evidence curated in the STRING

database, due to the need to include all seed genes in the PGI

network. (ii) Careful choice of data sources enables discoveries

of poorly researched genes. Like the argument in the previous

point, the systematically higher ranks of high degree genesmean

prioritization would be biased towards well-researched genes,

if data sources subjected to researchers’ interest are included.

On the other hand, omics data from high-throughput methods

are not subjected to the bias towards well-researched genes,

giving poorly researched genes a fair chance to be prioritized.

(iii) Different types of interactions have different biological

meanings. Controlling the source of PGI makes it possible to

utilize different types of interactions in gene prioritization,

although few currently available network-based algorithms

allow this.

Given the possible over-estimation of performance assess-

ment by LOOCV, we also validated the algorithm using GWAS

results. Since all approaches are limited in their own ways in

identification of disease-associated genes, it is not possible to

evaluate the performance of algorithms against the hypothetical

‘ground truth’. Nonetheless, we could see either if top predic-

tions of the algorithms overlap with genes with significantly

correlated SNPs from GWAS or if better ranks are observed for

GWAS-confirmed genes. All algorithms but DIAMOnD and RWR

had more validated genes in top 200 predictions than the naive

predictions by degree centrality. RWRH, N2V, N2VH and RWR

algorithms had better median rank of seven GWAS-confirmed

genes than the expected median. RWRH and N2VH algorithms

both contained the SH3PXD2A gene in their top 200 predictions.

This gene has been found to be associated with any stroke and

SVS in MEGASTROKE (at genome-wide significance and sugges-

tive significance, respectively) and with periventricular hyperin-

tensity in brain MRI imaging [25, 26]. In addition, the RWRH algo-

rithm included four of the seven GWAS-confirmed genes in top

10% of prediction. These observations suggest that thesemodels

are able to capture the biological mechanisms involved in SVS

and shortlist candidate genes that could be used to develop a

greater understanding of the pathophysiology of SVS,despite the

room for improvement in both reliability and precision.

There are several limitations of this study. Firstly, this study

only compared selected network-based gene prioritization

methods for cSVD, so that, for example, machine learning-

based algorithms were not included. Secondly, the methods

applied in this study did not utilize or (in the off-the-shelf

form) did not allow the use of other information, such as other

types of omics data like tissue-specific gene expression. Thirdly,

network-based gene prioritization tools take the concept of a

gene or a protein as the base entity, while, in reality, a gene or a

protein involves a cascade of complex biological activities, such

as splicing, transcriptional regulation, translational regulation,

etc. The currentmethods need improvement to both incorporate

the complexity of the information and to increase the resolution

of entities (e.g. to a base pair in the genome). Thirdly, GBA-based

algorithms rely on the prior information given by seed genes,

whichmeans these algorithmswill not performwell for diseases

with no or limited known associating genes or when the known

disease-associating genes do not form a homogenous cluster.

In such case, using genes in relevant functional pathways as

seed genes provides another chance to use network-based

algorithm for gene prioritization. To integrate the extension

of including genes in a relevant functional pathway as seed

information, future studies need to determine how pathway

genes can be integrated (as seed genes or as new relationships

in the graph) and the implications of different strategy. Finally,

a reliable validation method for benchmarking the algorithms

is still lacking, as we reasoned that the LOOCV was prone to

over-estimation of the performance and results of GWASwill not

cover all disease-associated genes by nature. Future work should

aim at tackling these limitations to improve the performance

and reliability of network-based gene prioritization algorithms.

Key Points

• Random walk with restart with disease–gene hetero-

geneous network has overall better performance for

application in cerebral small vessel disease despite its

susceptibility to bias caused by degree centrality.
• Choice of network-based gene prioritization meth-

ods should be made for the target disease since the

performance of these methods is disease dependent.
• Weprovide the integrated pipeline to benchmark com-

monly used algorithms for quick start of algorithm

comparison and evaluation.
• Network gene prioritization methods based on ‘guilt-

by-association’ principle are unlikely to find disease-

associated genes outside the functional clusters of

currently known ones.

Supplementary Materials

Supplementary files are available online at Briefings in Bioinfor-

matics.
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