
Estimating the Probability of Informed Trading:

A Bayesian approach

1, Jim Griffin1, Jaideep Oberoi∗2, and Samuel D. Oduro3

1Department of Statistical Science, University College, Gower Street, London WC1E 6BT, United

Kingdom. Email: j.griffin@ucl.ac.uk

2Kent Business School, University of Kent, Parkwood Road, Canterbury CT2 7FS, United

Kingdom. Tel: +44 1227 82 3865 Email: j.s.oberoi@kent.ac.uk

3Data Science & Analytics, easyJet Airline Company, Hangar 89, London Luton Airport, Luton,

Berdforshire, LU2 9PF, United Kingdom. Email: Samuel.DuaOduro@easyJet.com

Abstract

The Probability of Informed Trading (PIN) is a widely used indicator of information

asymmetry risk in the trading of securities. Its estimation using maximum likelihood

algorithms has been shown to be problematic, resulting in biased or unavailable es-

timates, especially in the case of liquid and frequently traded assets. We provide an

alternative approach to estimating PIN by means of a Bayesian method that addresses

some of the shortcomings in the existing estimation strategies. The method leads to

a natural quantification of the uncertainty of PIN estimates, which may prove helpful

in their use and interpretation. We also provide an easy to use toolbox for estimating

PIN.
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1. Introduction

The probability of informed trading (PIN) is a widely used measure of information asym-

metry risk introduced in a sequence of papers following Easley and O’Hara (1992). In

particular, the measures in Easley, Kiefer, O’Hara, and Paperman (1996) (EKOP-PIN for

the initials of the authors) and Easley, Hvidkjaer, and O’Hara (2002) (EHO-PIN) have been

frequently applied in studies related to illiquidity risk and informed trading. In this paper,

we propose a Bayesian approach to estimating PIN in order to address well-documented

problems with its estimation using maximum likelihood algorithms. We also provide the

associated code in the form of a toolbox for use by researchers.

The importance of PIN is associated with its implications for trading costs, illiquidity

risk and expected returns (see e.g. the theoretical models of Glosten and Milgrom, 1985;

Kyle, 1985; Easley and O’Hara, 1987, 2004). It is based on the assumption that there are two

types of agents that enter the market to trade: those wishing to exploit superior or private

information (informed traders) and those that wish to trade for other reasons (variously

referred to as uninformed, liquidity or noise traders). In theoretical models, market makers

adjust their bid and ask quotes to reduce the risk of losses from trading against informed

counterparties. As this may affect the expected returns on an asset, PIN has been used as

the main explanatory variable or as a control in a large number of studies. These range from

regressions related to asset pricing to event studies or other market analyses where private

information may be involved. Consequently, the measure itself has undergone scrutiny and

refinement over the years.

In the theoretical model, the key information observed by the market maker to esti-

mate PIN is the order flow. As a result, PIN models specify a distribution for the signed

trades (buys or sells) initiated by informed and uninformed traders and estimate the rele-

vant parameters using the maximum likelihood estimator (MLE). The literature has found

two practical drawbacks with the MLE. Firstly, the estimation algorithm leads too often to

floating-point exceptions when the inputs to the likelihood function (numbers of buy and sell
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trades) are large (see, e.g. Boehmer, Grammig, and Theissen, 2007; Jackson, 2013; Lei and

Wu, 2005; Lin and Ke, 2011; Yan and Zhang, 2012). Secondly, the estimates of some of the

underlying parameters of PIN (from existing MLE algorithms) often fall on the boundary of

the parameter space. It is not clear whether the instances of boundary value solutions for

the parameters arise due to the choice of initial values or due to model misspecification, but

they could lead to bias and instability in PIN estimates.

Problems with the MLE algorithms have been acknowledged since the early work ap-

plying PIN. For instance, Easley and O’Hara (2004) introduce a modified factorization of

the likelihood function to reduce the effects of such problems. Lin and Ke (2011) address

the problems further by using an alternative factorization of the objective function. How-

ever, Yan and Zhang (2012) show that one still needs to choose initial values for the MLE

maximizer carefully in order to achieve stable results. Thus the estimates are likely to be

dependent on the choice of the initial values used by the optimizer, an issue of concern if

the likelihood surface has several local maxima. In our applications, we observed that the

parameter estimates were often very close to the starting values, suggesting the need for

additional care. Other papers have further refined MLE estimation (see, e.g. Gan, Wei, and

Johnstone, 2015), but the underlying issues remain. Our approach sidesteps these issues by

using Bayesian estimation instead.

Several papers use PIN in cross-section or panel regressions (see, e.g. Chen, Goldstein,

and Jiang, 2007; Christoffersen, Goyenko, Jacobs, and Karoui, 2018; Duarte and Young,

2009; Easley et al., 2002; Easley and O’Hara, 2004; Easley, Hvidkjaer, and O’Hara, 2010;

Lai, Ng, and Zhang, 2014; Mohanram and Rajgopal, 2009; Vega, 2006, for just a few.).

When PIN values cannot be calculated, the loss of observations in such regressions can

be significant. Jackson (2013) reports that Easley et al. (2010) “lose firms representing

nearly 24% of the market capitalization of the NYSE and AMEX” while in “Yan and Zhang

(2012), the fraction of market capitalization lost grows from 2% in 1993 to 42% in 2004.”

Lost observations can lead to biased results, especially since larger firms (which have high
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numbers of trades) are more likely to be affected.

Our paper contributes to the literature by addressing estimation problems identified in

previous studies. We use Markov chain Monte Carlo (MCMC) methods to explore the entire

posterior distribution of model parameters in a Bayesian analysis, thereby avoiding the

numerical instability problem faced by MLE maximizers.1 Specifically, we propose a direct

prior for the PIN and then implement a Gibbs sampling algorithm to estimate the model. The

Bayesian approach also provides a natural way of quantifying uncertainty in point estimates

of the PIN (using credible intervals) from its posterior distribution. Most available methods

and the majority of papers in the literature do not pay much attention to the uncertainty of

PIN estimates. Given the potential for model misspecification (see Gan, Wei, and Johnstone,

2017), it may be useful for researchers to be aware of the uncertainty surrounding their point

estimates of PIN. In addition, our approach leads to reliable estimation of PIN at daily

frequency using only 26 intraday observations, as compared to the usual recommendation in

the literature for a minimum of 60 daily observations resulting in quarterly estimates. Higher

frequency estimates offer opportunities to use PIN for more studies, for instance looking at

changes in the measure surrounding corporate event announcements or actions.

The improvement in estimation proposed here matters not simply for its own sake. One

of the debates about PIN is that it does not represent the probability that it purports to

measure (see, e.g. Aktas, De Bodt, Declerck, and Van Oppens, 2007; Duarte and Young,

2009). However, if the bias in PIN is caused by issues such as numerical problems, then the

debate cannot be fully resolved, because the bias will not be well-understood.

It is important to note that PIN over any period is estimated independently of its values

in other periods. Corner solutions and local optima in the chosen optimizer would introduce

instability of a misleading nature, for instance caused simply by a change in volume. In turn,

this would be unhelpful for inference in studies that use PIN for a sequence of dates or periods.

The potential to avoid such sources of instability opens up opportunities to use the measure

1A referee has pointed out a way to understand why the Bayesian procedure avoids corner solutions is
that it involves integration rather than maximization of the posterior.
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in more applications. PIN is usually calculated with the daily numbers of buy and sell trades

over a period of between one quarter and one year. Given the speed of markets, it would

be useful to have, say, a time series of daily estimates of PIN by assuming that news arrives

and is absorbed by markets at shorter intervals than one day. Standard estimation methods

over shorter horizons are considered problematic partly because of the instability of the

estimates, so most studies have been limited to lower frequency cross-sectional applications

of PIN. A notable exception is that of Brennan, Huh, and Subrahmanyam (2018), who used

PIN in an event study setting. In order to achieve this, they first estimate PIN over a longer

period (two months) and then update the estimates using Bayesian updating on a daily

basis. Our approach is more direct and can work over any of the frequencies. In this paper,

we demonstrate how our methodology can be used to produce daily estimates of PIN and

its credible intervals over twelve years for five stocks. We also provide quarterly estimates

over the same period, and in both cases, compare the estimates to those obtained by MLE.

We also conduct a simulation exercise to show that the Bayesian method performs com-

petitively with respect to the MLE, even when the data is simulated from the underlying

model. The caveat to the simulation study is that the observed trades data is known to be

much more challenging than that generated by the underlying model. For instance, Venter

and De Jongh (2006) and Gan et al. (2017) specifically show that the clusters of buy and

sell trades generated by the EHO-PIN model are more differentiated and have a lower scale

compared to the observed data. An additional simulation reported in the Appendix consid-

ers a case where the data is generated from a modified model, making the PIN misspecified

by definition. Although this is not the focus of the paper, the exercise may also help support

the notion that the PIN model, even when biased, can be informative in the contexts in

which it is widely applied.

The paper is organized as follows. The next section provides background in the form of

a brief description of the EHO-PIN model along with the MLE procedure. Section 3 details

the Bayesian procedure for estimation. In Section 4 we demonstrate our results using data
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on five stocks over a twelve year period. Although the ordering is not customary, we then

present simulation results in Section 5, as these results are meant to support our analysis

rather than provide the main illustration. We then briefly conclude.

2. Background

This section provides background on the EHO version of the PIN model and its estimation

under the MLE approach.

2.1. The EHO-PIN Model

In the theoretical market microstructure setting (see e.g. Glosten and Milgrom, 1985),

informed traders act on advantage while uninformed traders buy or sell for reasons other

than the possession of superior knowledge of the fundamental value of the asset. In such a

setting, Easley et al. (1996) and Easley, Kiefer, and O’Hara (1997) estimated models based

on the information structure in Easley and O’Hara (1992). The main idea behind the model

is that an unusual imbalance between buy and sell trades reflects the activity of informed

traders.

The model described by Easley et al. (2002) assumes that within any trading day, the

number of buyer and seller initiated trades from informed and uninformed traders are real-

izations of independent Poisson distributions whose mean depends on whether no news, good

news or bad news occurs on that day (a representation of the model as a probability tree is

provided in Figure 1). We will think about the natural generalisation of the model where

the type of news is fixed over intervals at other frequencies, for example over a 15−minute

interval. As a result, we will substitute the phrase trading period instead of trading day in

this paper. The model assumes that the probability of news (good or bad) in any trading

period is α. Given that there is news, the probability that an asset value will be negatively

affected by the news event is δ (which implies that the probability of a positive effect is
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1 − δ). In any given trading period, liquidity traders are present in the market to either

buy or sell the asset. In a bad news period, informed traders expect an adverse effect on

the value of the asset, and are therefore likely to sell the asset. The order arrivals in a bad

news period are assumed to follow independent Poisson distributions with means µ for the

informed traders, and λb and λs for liquidity buy and sell traders respectively. This implies

that the total numbers of buyer and seller initiated trades in a bad news period are Poisson

distributed with means λb and λs+µ respectively. Similarly, in a good news period, the total

numbers of buy and sell trades are Poisson distributed with means λb+µ and λs respectively.

Finally, in a no news period, informed traders will not participate and the total numbers of

buys and sells are Poisson distributed with means λb and λs respectively. In practice, we

do not observe the arrival of traders or the occurrence of a news event and these must be

inferred from the observable trade data.

[Insert Figure 1 near here]

2.2. MLE Approach

Let Bt and St be the total numbers of buy and sell trades in trading period t, respectively.

The joint likelihood function for a sample of t = 1, . . . , T , trading periods is given as follows

L (Θ|B,S) =

T∏
t=1

[
αδ
e−(µ+λs) (µ+ λs)

St

St!

e−λb (λb)
Bt

Bt!
+ α (1− δ) e

−(µ+λb) (µ+ λb)
Bt

Bt!

e−λs (λs)
St

St!

+ (1− α)
e−λb (λb)

Bt

Bt!

e−λs (λs)
St

St!

]
, (1)

where Θ = (α, δ, µ, λb, λs), B = (B1, . . . , BT ) and S = (S1, . . . , ST ). Easley et al. (2002)

estimate the vector of parameters Θ by maximizing equation 1. In this model the PIN is

defined as

PIN =
αµ

αµ+ λs + λb
. (2)
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This is the ratio of expected informed trading to expected total trades. When we do not

observe whether a trade was initiated by a buy order or a sell order, classification of trades

as buys and sells can be carried out using the information available, for instance by using a

rule based on the Lee and Ready (1991) trade classification algorithm.

However, MLE has been shown to lead to biased samples. In some cases, this results

simply from the size of the numbers that enter the estimator, leading to “NaN” error codes.

As noted by Lin and Ke (2011) and Yan and Zhang (2012), the daily number of trades has

grown large. Therefore it is possible for the likelihood function to produce a number larger

(or smaller) than the largest (smallest) acceptable value of a computer software. However,

we also find that smaller numbers of trades (e.g., when counted at 15−minute intervals) still

lead to less stable estimates than the Bayesian method, when plotted over time. This may

be related to the fact that there are only 26 trading periods of length 15 minutes in a day.

3. The Bayesian Estimation Approach

Our goal is to learn about PIN and its underlying parameters from observed transaction

data. The MLE approach assumes that the model parameters are unknown but fixed. In

Bayesian inference, we express the uncertainty about the unknown model parameters through

the rules of probability. We achieve this through Bayes’ rule which states that the probability

of the parameter set Θ given the observed data is

p(Θ|B, S) =
p(B, S,Θ)

p(B, S)

=
p(Θ) p(B, S|Θ)

p(B, S)

∝ p(Θ) p(B, S|Θ). (3)

The denominator in Equation 3, p(B, S) =
∫
p(Θ) p(B, S|Θ)dΘ, is a normalizing constant.

It guarantees that p(Θ|B, S) is a well defined probability density function. The term p(Θ),
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referred to as the prior density, is not dependent on the data. It is used to express the prior

knowledge and uncertainty about the model parameters before observing the data. The term

p(B, S|Θ), usually referred to as the likelihood function is the probability density function

of the data conditional on the model parameters. In Bayesian inference, the primary object

of interest is p(Θ|B, S), which is referred to as the posterior density. From the posterior

density, we can compute point estimates like the mean and mode as well as credible intervals

for the model parameters. We employ MCMC methods to infer the parameters of the EHO

model. These MCMC methods explore the entire support of the posterior distribution of

the model parameters. In what follows we provide a description of the MCMC methods.

3.1. The Gibbs Sampler

The Gibbs Sampler is an MCMC algorithm which generates a sample from posterior

distributions whose kernels are known standard probability density functions. The algorithm

uses the full conditional distribution of the posterior distribution. If the parameters are

θ1, . . . , θk then the full conditional distribution for θj is p(θj|θ1, . . . , θj−1, θj+1, . . . , θk, y). The

algorithm proceeds by updating each parameter (or block of parameters) in turn from its full

conditional distribution by sampling a value from its full conditional distribution (with all

other parameters set to their current values). Each iteration of the Gibbs sampler involves

updating all parameters. A summary of the Gibbs sampler algorithm is as follows:

• Step 0 : Initialize θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k

• Step 1 : Draw once from p(θ1|θ(0)2 , . . . , θ
(0)
k , y) to obtain θ

(1)
1

• Step 2 : Draw once from p(θ2|θ(1)1 , . . . , θ
(0)
k , y) to obtain θ

(1)
2

• . . .

• Step k : Draw once from p(θk|θ(1)1 , . . . , θ
(1)
k−1, y) to obtain θ

(1)
k

• Repeat Steps 1 to k for say G times to generate G Monte Carlo draws from the full

conditionals.
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The posterior expectation of any function of the parameters can be estimated using the

output from the Gibbs sampler using the Monte Carlo average

E[f(θ1, . . . , θk)|y] =
1

G−G0

G∑
i=G0+1

f
(
θ
(i)
1 , . . . , θ

(i)
k

)

where G0 is a burn-in time that is used to remove the dependence of the θ
(i)
1 , . . . , θ

(i)
k on the

initial values.

3.2. Joint Density Of Buy And Sell Orders

As per the EHO-PIN model, all trading periods can be classified into three types. Let

this classification be labelled Dt, such that

Dt =


1, bad news, with probability ω1 = αδ

2, good news, with probability ω2 = α(1− δ)

3, no news, with probability ω3 = 1− α.

where ωD is the probability of news type D. The model assumes that, when Dt = 1, informed

traders take a short position and liquidity traders either buy or sell the asset for reasons other

than information. Since only liquidity traders make buy trades, the total number of buy

trades (Bt) is Poisson distributed with mean λb. The numbers of sell trades by informed

traders (Sit) and by liquidity traders (Sut ) follow independent Poisson distributions with

means µ and λs respectively. Thus the total number of sell trades (St = Sit + Sut ) follows

a Poisson distribution with mean µ + λs. Using a similar reasoning for each type of news

event, we can state conditional distributions of the numbers of buy and sell trades as

St|Dt = 1 ∼ Pn (µ+ λs)

Bt|Dt = 1 ∼ Pn (λb)

St|Dt = 2 ∼ Pn (λs)

Bt|Dt = 2 ∼ Pn (µ+ λb)

St|Dt = 3 ∼ Pn (λs)

Bt|Dt = 3 ∼ Pn (λb),
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where Pn (.) is the probability mass function of a Poisson random variable.2

The underlying process Dt is not observable but can be inferred from transaction data,

as a missing data problem within the Bayesian framework. Since we do not observe a bad,

good or no news period as well as the arrival of liquidity and informed traders, we employ the

data augmentation procedure to impute these missing observations. We do this by directly

sampling from the posterior distribution of Dt conditional on the available data. For a

detailed review of data augmentation, see Van Dyk and Meng (2001).

The joint density of buy and sell orders using the data augmentation procedure is

P (Bt, St|Dt,Θ) =

[
f1 (Bt, St,Θ)

]dt,1[
f2 (Bt, St,Θ)

]dt,2[
f3 (Bt, St,Θ)

]dt,3

=

[
e−µµS

i
t

Sit !

e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]dt,1[
e−µµB

i
t

Bi
t!

e−λsλSts
St!

e−λbλ
Bt−Bit
b

(Bt −Bi
t)!

]dt,2

×

[
e−λs (λs)

St

St!

e−λb (λb)
Bt

Bt!

]dt,3
,

where dt,j = 1{Dt=j}, for j = 1, 2, 3. This is obtained by combining the likelihood functions

for the joint densities of buy and sell orders under each of the realizations of Dt. The

derivations of these joint densities are provided in Appendix B.1.

3.3. Prior Distributions And MCMC Sampler

Since we employ a Bayesian approach to estimating the parameters of the PIN model,

it is important to choose appropriate prior distributions for the parameters and write down

the posterior distribution.

2Pn(x; θ) = e−θθx

x!
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3.3.1. Prior distributions

We specify a prior for each of the parameters of the model. The parameters controlling

the mean numbers of informed and uninformed trades are given a hierarchical prior

λs ∼ Ga(a, η), λb ∼ Ga(b, η), µ ∼ Ga(a, η).

where Ga(.) denotes the gamma probability density function. This prior implies that prior

number of buys (sells) on a good (bad) news day follows a Ga(a+ b, η) distribution and the

prior number of buy and sells on a no news data follow Ga(b, η). The proportion of informed

trades on a news day has a beta distribution with parameters a and b. The hyperparameters

a and b can be chosen to tune this prior distribution. The parameter η controls the overall

level of trading and is given a vague, proper prior η ∼ Ga(0.001, 0.001). The parameters α

and δ are both given uniform distributions on the interval (0, 1).

3.3.2. The Markov chain Monte Carlo Sampler

The use of conjugate priors allows the Gibbs Sampler to be easily applied to sample from

the posterior distribution. From Bayes’ theorem, the posterior density for the parameter set

Θ = (α, δ, µ, λs, λb, η) and the classification indicators D = (D1, . . . , DT ) is proportional to

the product of the likelihood and prior. If we denote T1, T2 and T3 as the number of periods

with bad, good and no news arrivals, then the posterior density can be written as

P (Θ, D|B, S) ∝ P (Θ)
T∏
t=1

[
P (Bt, St|Dt,Θ)P (Dt|Θ)

]

= η2a+bµb−1e−ηµλa−1s e−ηλsλa−1b e−ηλbη0.001−1 exp{−0.001η}α1(1− α)1δ1(1− δ)1

×

[
(αδ)T1(α(1− δ))T2(1− α)T3

]
T∏
t=1

[
e−µµS

i
t

Sit !

e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]dt,1

×

[
e−µµB

i
t

Bi
t!

e−λsλSts
St!

e−λbλ
Bt−Bit
b

(Bt −Bi
t)!

]dt,2[
e−λs (λs)

St

St!

e−λb (λb)
Bt

Bt!

]dt,3
. (4)
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The full conditional distributions of the parameters of interest are

α ∼ Be (1 + T1 + T2, 1 + T3) , (5a)

δ ∼ Be (1 + T1, 1 + T2) , (5b)

µ ∼ Ga

(
b+

T∑
t=1

[(Sit)
dt,1 + (Bi

t)
dt,2 ], η + T1 + T2

)
, (5c)

λs ∼ Ga

(
a+

T∑
t=1

[S
dt,1
t − (Sit)

dt,1 + S
dt,2
t + S

dt,3
t ], η + T1 + T2 + T3

)
, (5d)

λb ∼ Ga

(
a+

T∑
t=1

[B
dt,1
t +Bdt,2

t − (Bi
t)
dt,2 +B

dt,3
t ], η + T1 + T2 + T3

)
, (5e)

η ∼ Ga(0.001 + 2a+ b, 0.001 + µ+ λs + λb) (5f)

where T = T1 + T2 + T3 is the total number of trading periods in the sample. In appendix

B.2, we provide the derivation of the full conditional distributions.

The steps of the MCMC sampler to estimate the parameters in our PIN model are given

below.

• Start with classification D(0) of (Bt, St)

• Initialize the parameters Θ(0)=
(
α(0), δ(0), λ

(0)
s , λ

(0)
b , µ(0), η(0)

)
• Repeat for k = 1 to G sweeps

– Repeat for t = 1 to T

∗ If Dt = 1, update B
i(k)
t ∼ Binomial(Bt, µ(k−1)

µ(k−1)+λ
(k−1)
b

)

∗ If Dt = 2, update S
i(k)
t ∼ Binomial(St, µ(k−1)

µ(k−1)+λ
(k−1)
s

)

– Update µ(k)|λ(k−1)
s , λ

(k−1)
b , η(k−1), α(k−1), δ(k−1), B

i(k)
t , S

i(k)
t

– Update λ
(k)
s |λ(k−1)

b , η(k−1), α(k−1), δ(k−1), B
i(k)
t , S

i(k)
t , µ(k)

– Update λ
(k)
b |η(k−1), α(k−1), δ(k−1), B

i(k)
t , S

i(k)
t , µ(k), λ

(k)
s

– Update η(k)|α(k−1), δ(k−1), B
i(k)
t , S

i(k)
t , µ(k), λ

(k)
s , λ

(k)
b

– Update α(k)|δ(k−1), B
i(k)
t , S

i(k)
t , µ(k), λ

(k)
s , λ

(k)
b , η(k)
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– Update δ(k)|Bi(k)t , S
i(k)
t , µ(k), λ

(k)
s , λ

(k)
b , η(k), α(k)

– Compute L1 = logω
(k)
1 −

(
µ(k) + λ

(k)
s + λ

(k)
b

)
+Bt log λ

(k)
b + St log

(
λ
(k)
s + µ(k)

)

– Compute L2 = logω
(k)
2 −

(
µ(k) + λ

(k)
s + λ

(k)
b

)
+ St log λ

(k)
s +Bt log

(
λ
(k)
b + µ(k)

)

– Compute L3 = logω
(k)
3 −

(
λ
(k)
s + λ

(k)
b

)
+ St log λ

(k)
s +Bt log λ

(k)
b

– compute χ = max (L1, L2, L3)

– Compute p1 = eL1−χ

3∑
j=1

eLj−χ
, p2 = eL2−χ

3∑
j=1

eLj−χ
and p3 = eL3−χ

3∑
j=1

eLj−χ

– Update Dt
(k), the classification of (Bt, St) by sampling from the multinomial distribution with

probability (p1, p2, p3),

where p1, p2 and p3 are the probabilities that at the beginning of the trading period there

will be bad news, good news and no news respectively.

The algorithm yields G random samples drawn from the posterior distributions of the

parameters α, δ, µ, λs, λb, and of PIN. Discarding say G0 initial draws of each posterior

sample and taking the average of the remaining, we obtain the estimated central value of

each parameter. As we also have the posterior distributions of the parameters and of PIN,

we can easily view the uncertainty around the PIN estimate as well.

In Appendix A, we provide a description of the BayesPIN toolbox for MATLAB that

accompanies this paper online. This toolbox implements the MCMC algorithm for a given

input of numbers of buy and sell trades.

We next demonstrate the procedure on real data and discuss the advantages of our

approach.
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4. Empirical Illustration

In order to demonstrate the methodology, we estimate PIN for five stocks on a daily basis

over the period 5th January 2004 to 31st December 2015. We also estimate the quarterly

PIN using daily counts of buy and sell trades. To compare the estimates with those from an

MLE package, we use the InfoTrad package available in R (Çelik and Tiniç, 2018).

4.1. Data

The five stocks are IBM, Coca Cola (KO), Boeing (BA), Walt Disney (DIS), and Exxon

Mobil Corporation (XOM), all large highly-traded stocks, but from different industries. We

use millisecond time stamped National Best Bid Offer (NBBO) quotes and trades from

TickData, a high frequency data vendor with expertise on generating NBBO data. Holden

and Jacobsen (2014) argue that NBBO data is likely to contain fewer errors compared with

raw quotes from individual exchanges. The data cover a total of 3, 020 trading days.

In terms of data cleaning procedures, we follow Korajczyk and Sadka (2008) by excluding

all transactions that occurred outside the normal trading hours as well as weekend trades. We

also remove all transactions that had negative prices as well as negative prevailing spreads.

We further exclude all cases where the transaction price was higher (lower) than the ask

(bid) price by more than 50 times the tick size ($0.01), or 50 cents.

The required input for estimating PIN is a sequence of numbers of buy and sell transac-

tions at the chosen trading period frequency. We use the Lee and Ready (1991) algorithm

to classify the individual transactions into buyer and seller initiated trades, which we then

aggregate over 15−minute intervals or daily intervals as required.

In Table 1, we provide a summary of the number of buyer and seller initiated trades for

the assets over the two intervals. It can be observed that the daily buyer and seller initi-

ated trades for these assets are large enough to potentially cause floating point exceptions.

Corresponding scatter plots of numbers of buy and sell trades are shown in Figure 2 for the
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daily frequency and in Figure 3 for the 15−minute frequency. The median number of buys

exceeds the median number of sells for all of the stocks. The median number of buy trades

ranges between 12, 199 and 35, 894 across the 5 stocks at the daily level, and between 380

and 1, 165 at the 15-minute frequency.

Asset Sampling Freq. Min Median Mean Max

BA Daily Buys 785 12,199 12,717 109,214
Sells 646 11,221 11,806 103,212

15 minutes Buys 14 380 491 15,866
Sells 1 351 456 16,091

DIS Daily Buys 1,086 19,185 20,195 186,073
Sells 980 16,543 17,432 138,201

15 minutes Buys 12 607 780 31,128
Sells 7 522 673 28,220

IBM Daily Buys 1,582 12,953 14,043 76,662
Sells 1,510 12,837 13,826 66,627

15 minutes Buys 3 410 542 11,427
Sells 7 407 534 12,478

KO Daily Buys 1,343 20,375 20,675 112,876
Sells 1,298 17,766 17,925 117,509

15 minutes Buys 20 636 798 19,397
Sells 22 549 692 18,277

XOM Daily Buys 1,716 35,894 39,807 260,535
Sells 1,593 31,283 35,640 245,164

15 minutes Buys 27 1,165 1,537 27,425
Sells 12 1,025 1,376 24,066

Table 1: Numbers of buy and sell trades counted at two frequencies

[Insert Figures 2 and 3 near here]

In our data set there are transactions on each trading day, though when sampling at

15−minute intervals there are some periods in which either there is no buy or no sell (but

not both). In order for the algorithm to work, there should be a minimum of 1 trade (buy

or sell) in every trading period.
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4.2. Daily PIN estimation results

For each day, we estimate the PIN using trading periods of 15 minutes. We summarize

and plot both the MLE benchmark and the Bayesian estimates below. For the Gibbs sampler,

we chose the number of sweeps (G) to be 25, 000 with a burn-in (G0) of 5, 000.

As a benchmark, we provide the MLE estimates using the R package InfoTrad (see

Çelik and Tiniç, 2018) in Table 2. We use the Yan and Zhang (2012) grid search approach

with likelihood function factorization proposed by Lin and Ke (2011), which are accepted

in the literature so far to perform best on empirical data. The corresponding results for the

Bayesian approach are provided in Table 3.

Parameter Statistic BA DIS IBM KO XOM
α Min 0.038 0.038 0.038 0.038 0.038

Median 0.269 0.308 0.269 0.269 0.286
Mean 0.282 0.293 0.280 0.289 0.292
Max 0.810 0.731 0.808 0.836 0.846

δ Min 0.000 0.000 0.000 0.000 0.000
Median 0.250 0.250 0.235 0.250 0.000
Mean 0.379 0.364 0.377 0.373 0.297
Max 1.000 1.000 1.000 1.000 1.000

µ Min 29.1 31.7 38.2 27.2 53.2
Median 498.6 704.2 552.8 769.9 1328.7
Mean 596.9 876.3 667.4 942.0 1614.8
Max 8302.2 25574.6 5187.1 14489.4 13859.6

λs Min 36.6 50.6 71.5 48.1 89.1
Median 386.7 566.1 436.2 607.8 1101.1
Mean 405.7 607.4 479.1 626.6 1271.5
Max 3969.7 5315.4 2449.5 4327.1 9429.4

λb Min 37.4 41.7 52.8 47.6 71.9
Median 388.2 610.3 418.4 645.8 1124.4
Mean 411.8 651.6 456.4 665.3 1275.3
Max 2335.3 5580.8 2730.8 3818.0 8406.7

PIN Min 0.024 0.023 0.021 0.022 0.022
Median 0.122 0.124 0.122 0.123 0.120
Mean 0.123 0.124 0.121 0.123 0.121
Max 0.316 0.295 0.301 0.342 0.326

Table 2: Summary of maximum likelihood estimates over the 3020 day sample period
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Parameter Statistic BA DIS IBM KO XOM
α Min 0.071 0.071 0.071 0.071 0.071

Median 0.290 0.321 0.286 0.321 0.321
Mean 0.309 0.322 0.306 0.321 0.321
Max 0.929 0.929 0.928 0.929 0.837

δ Min 0.044 0.043 0.037 0.039 0.041
Median 0.349 0.339 0.334 0.373 0.250
Mean 0.426 0.420 0.415 0.428 0.367
Max 0.963 0.963 0.957 0.963 0.950

µ Min 28.5 32.2 37.8 27.9 51.1
Median 476.2 670.9 527.6 723.2 1245.6
Mean 548.6 792.8 615.5 840.3 1456.3
Max 8301.8 23529.0 5151.9 12332.3 13062.5

λs Min 4.9 13.9 72.5 28.0 89.9
Median 377.9 556.4 434.3 595.0 1084.9
Mean 401.2 595.9 476.3 613.2 1253.1
Max 3969.8 5315.5 2449.7 4327.0 9429.4

λb Min 38.0 42.6 6.8 47.9 72.7
Median 391.6 612.3 415.8 648.8 1125.2
Mean 413.7 657.8 456.6 671.6 1284.7
Max 2335.4 6126.8 2730.8 3306.1 8251.9

PIN Min 0.055 0.047 0.039 0.052 0.039
Median 0.138 0.135 0.134 0.137 0.127
Mean 0.143 0.139 0.137 0.140 0.132
Max 0.437 0.433 0.508 0.494 0.312

Table 3: Summary of Bayesian estimates over the 3020 day sample period

In our sample, the MLE approach of Yan and Zhang (2012) with the Lin and Ke (2011)

factorization is successful in producing a PIN estimate for each day. However, the proportion

of days on which δ is estimated as 0 or 1 (corner solutions) varies between 34% for KO and

50% for XOM. This is despite the fact that the size of inputs (numbers of buy and sell trades

over 15−minute intervals) that are used for daily estimation is much smaller than those

used over the typical two-three month period (using daily counts). In contrast, the Bayesian

results show no trading day with corner solutions for δ, as expected.

We can review the results plotted over time (Figure 4), and also as a histogram (Figures

5 and 6). The histograms are plotted on the same scale for comparison. In each of these
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figures, the data we are plotting are the daily estimates of PIN for each of the stocks. It

is important to note that the daily values are estimated independent of each other. Yet,

plotted as a time series, the contrast between the stability and smoothness of the two sets

of estimates is clearly noticeable.

[Insert Figures 4, 5 and 6 near here]

Finally, we can quantify the daily variation in PIN estimates by calculating the size of the

daily changes over the entire sample. We calculate the absolute value of the daily changes

in PIN estimates for each stock, and then report the median, mean and variance of these

changes in Table 4. The table confirms the relative stability of the Bayesian PIN estimates.

The average (median or mean) size of the daily change in MLE PIN estimates is between

25% and 48% larger than that of the Bayesian PIN estimates. The variance of these changes

is between 37% and 68% larger for the MLE estimates relative to the Bayesian estimates.

Statistic Method BA DIS IBM KO XOM
Median MLE 0.04225 0.04143 0.03912 0.04253 0.04386

BayesPin 0.03292 0.03073 0.03028 0.02880 0.03098
Mean MLE 0.05101 0.04906 0.04776 0.0505 0.05180

BayesPin 0.04089 0.03738 0.03659 0.03643 0.03765
Variance MLE 0.00155 0.00143 0.00138 0.00150 0.00159

BayesPin 0.00113 0.00095 0.00092 0.00095 0.00095

Table 4: Comparison of daily absolute changes in PIN estimates

4.2.1. Patterns of difference between MLE and PIN estimates

In order to understand the differences between the daily estimates from the MLE and

Bayes algorithms, we plot the histogram of these differences. One potential source of differ-

ence identified by the literature is the occurrence of corner solutions in parameter estimates.

To evaluate this source, we split the observations into two groups - one for which the MLE

estimate of δ is either 0 or 1, the other for which it is not on the boundary. Looking at the
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histograms for the five assets in Figure 7, we can see that there is a clear difference between

the two sets of observations. On days when there is no corner solution, the Bayesian and ML

estimates are more likely to agree, with their differences concentrated on zero and spread

evenly around that value. On the other hand, the ML estimates are much more dispersed

around the Bayesian estimates, and biased relative to these estimates, on days which δ is

either 0 or 1. We have used a criterion based on a documented example of a numerical

problem with the ML estimates, and can see clearly that this specific numerical problem

leads to a relatively higher proportion of extreme differences between the two estimates. We

argue this is supportive evidence for the relative reliability of the Bayesian estimates.

4.3. Quarterly PIN estimation results

In order to estimate a series of quarterly PIN values, we use aggregated buy and sell

numbers over a day for all trading days in each calendar quarter. While large scale studies

involving PIN use annual estimates (see, e.g., Easley et al., 2002), other applications use

frequencies as low as quarterly (see, e.g., Christoffersen et al., 2018). The first PIN estimate is

for January - March 2004, which uses all the trading days up to and including March 31, 2004.

This procedure leads to 48 quarterly PIN estimates. Tables 5 and 6 provide summaries of the

quarterly PIN estimates computed using the MLE and BayesPin approaches respectively.

The proportion of the quarterly MLE PIN estimates in which the estimate of δ is a corner

solution (either 0 or 1) varies between 29% for BA and 48% for XOM. These proportions

are similar to the daily case, although the size of the aggregate numbers of buys and sells is

much larger over the course of a day, potentially leading to more computational issues. This

also suggests that the size of the numbers may not necessarily be the only cause of numerical

issues with the ML estimator. Given that there are 48 quarterly observations, potentially

having half of the PIN estimates based on a corner solution is clearly a matter for concern.

As in the daily case, we plot the two series together over time in Figure 8, for each of

the assets. In the figure, we also plot the 95% credible interval of PIN using the Bayesian
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Parameter Statistic BA DIS IBM KO XOM
α Min 0.016 0.016 0.033 0.115 0.109

Median 0.315 0.276 0.254 0.347 0.432
Mean 0.295 0.277 0.257 0.362 0.416
Max 0.500 0.625 0.519 0.813 0.828

δ Min 0.000 0.000 0.000 0.000 0.000
Median 0.095 0.043 0.179 0.046 0.000
Mean 0.316 0.224 0.324 0.149 0.150
Max 1.000 1.000 1.000 1.000 1.000

µ Min 611.8 712.6 867.6 490.5 798.9
Median 8023.8 11705.6 10185.6 11531.7 16313.5
Mean 10453.9 16762.6 10046.0 11298.8 19901.4
Max 97221.6 87730.8 39088.0 29440.9 82423.1

λs Min 1819.4 2246.7 3261.7 2187.3 3709.0
Median 12046.6 18124.6 13963.9 20082.2 30902.5
Mean 11077.5 16986.1 13041.6 17660.6 34933.1
Max 25289.5 42301.8 33056.2 41275.3 130761.0

λb Min 1972.5 2321.4 3046.1 2271.4 3478.4
Median 12312.6 19019.3 12750.1 19278.7 32371.2
Mean 11233.7 17325.4 12743.3 16986.2 32531.0
Max 23365.2 39863.6 30985.3 35381.7 87822.2

PIN Min 0.010 0.011 0.021 0.047 0.055
Median 0.096 0.088 0.085 0.103 0.106
Mean 0.099 0.094 0.085 0.115 0.120
Max 0.170 0.195 0.148 0.305 0.311

Table 5: Summary of quarterly maximum likelihood estimates over sample period

approach. Although the two series agree on the direction of changes in many cases, we can

see that in the case of the latter half of the sample for BA and DIS, there are some extreme

opposing spikes in the MLE PIN. For completeness, we again report absolute changes and

variance over time of the two sets of estimates for each stock in Table 7, although at the

quarterly level, it is not our goal to emphasize relative stability to the same extent. The

average (median or mean) size of the daily change in MLE PIN estimates is between 31%

and 63% larger than that of the Bayesian PIN estimates. The variance of these changes is

between 74% and 139% larger for the MLE estimates relative to the Bayesian estimates.

More so, Figure 8 suggests that there are certain quarters when the MLE estimates are
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Parameter Statistic BA DIS IBM KO XOM
α Min 0.045 0.079 0.076 0.141 0.121

Median 0.328 0.333 0.267 0.354 0.428
Mean 0.312 0.323 0.274 0.369 0.402
Max 0.498 0.562 0.522 0.636 0.727

δ Min 0.031 0.030 0.033 0.027 0.020
Median 0.194 0.087 0.207 0.136 0.048
Mean 0.321 0.226 0.317 0.270 0.199
Max 0.967 0.913 0.965 0.977 0.972

µ Min 611.8 713.9 874.2 490.5 798.9
Median 7765.2 10932.9 9577.9 11101.9 15953.7
Mean 9200.9 13252.1 9577.4 10875.2 19199.0
Max 60115.3 87731.0 39084.2 28440.0 67034.5

λs Min 1819.4 2246.5 3261.6 2183.3 3708.9
Median 11917.4 18210.1 13917.9 19592.8 32028.9
Mean 11090.3 16960.5 13233.0 17055.6 34243.4
Max 25289.7 42301.5 33056.2 31361.1 101370.2

λb Min 1970.3 2322.5 3043.8 2271.6 3479.7
Median 12300.2 18117.2 13277.1 19231.3 31644.8
Mean 11180.5 16997.8 12506.2 17670.4 34151.3
Max 23365.3 39863.6 27580.2 46149.5 137345.2

PIN Min 0.055 0.041 0.036 0.042 0.044
Median 0.083 0.088 0.075 0.080 0.079
Mean 0.089 0.092 0.075 0.092 0.090
Max 0.136 0.192 0.114 0.197 0.191

Table 6: Summary of quarterly Bayesian estimates over sample period

not only outside the credible interval, they also have sharp drops to values near zero or sharp

increases. It is, however, reassuring that the two methods do tend to move similarly except

in the extreme cases identified above.

[Insert Figure 8 near here ]
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Statistic Method BA DIS IBM KO XOM
Median MLE 0.02772 0.03753 0.02612 0.04202 0.03665

BayesPin 0.01911 0.02298 0.01694 0.02958 0.02793
Mean MLE 0.03288 0.04474 0.03013 0.05237 0.05207

BayesPin 0.02249 0.02958 0.01968 0.03941 0.03651
Variance MLE 0.00060 0.00140 0.00038 0.00273 0.00262

BayesPin 0.00025 0.00080 0.00022 0.00125 0.00123

Table 7: Comparison of absolute changes in quarterly PIN estimates

5. Simulation Study

In this section we carry out two simulation exercises to evaluate whether the Bayesian

estimation performs comparably to the MLE algorithm. As we use the InfoTrad package

(see Çelik and Tiniç, 2018) for comparison to the Bayesian algorithm, we follow the format

of the exercises provided alongside the package.

5.1. Fixed PIN at varying trade intensities

For the first simulation, we generate 1, 000 sets each of 60 observations (corresponding

to one quarter), at varying trade intensities with the following parameters: α = 0.5, δ =

0.5, µ = 0.2k, λb = λs = 0.4k, where k = {100, 500, 1000, ..., 5000}. The values of these

parameters are adopted from the exercises published by Çelik and Tiniç (2018) and Gan

et al. (2015), in order to be as consistent as possible with the existing methodology. For

each trading period, we draw a value from the binomial distribution with parameter α and

δ respectively to determine whether it was a good news day, bad news day, or no news day.

We then draw Poisson random values corresponding to the relevant intensity levels for each

case, using the parameters µ, λb and λs. Thus we have a total of 11, 000 simulated sample

sets. Scatter plots of the buy and sell trades generated from this simulation at 6 different

intensities are shown in Figure 9. We can see, in comparison to the scatter plots in Figure 2,
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the difference between the empirical and theoretical versions of the Buy-Sell pairs. In order

to discriminate between different levels of α, we also repeat the above exercise with α = 0.25

and α = 0.75.

For each 60 day sample, we estimate PIN using the BayesPIN toolbox, as well as the

InfoTrad package with various specifications. We specify the MLE estimation with the Gan

et al. (2015) algorithm and the Yan and Zhang (2012) approach, each with both the Lin

and Ke (2011) and the Easley et al. (2002) likelihood factorization (GWJ-LK, GWJ-EHO,

YZ-LK, and YZ-EHO). We use all combinations of the specifications because, by design, we

should expect the clustering based methods (GWJ) to work best based on the data we have

generated.

The overall performance results are in Table 8. We can see that the BayesPIN algorithm

performs favorably with the best of the MLE alternatives, viz. the clustering algorithm of

Gan et al. (2015) combined with the Lin and Ke (2011) factorization (GWJ-LK). In general,

this factorization works better in the MLE case than all others. As expected, the Yan and

Zhang (2012) approach also performs well (YZ-LK). It is also interesting that there are far

fewer corner solutions in the MLE results with the simulated data, suggesting that we should

treat the performance from simulations with a small degree of caution. In the case of α = 0.5,

only the YZ-EHO algorithm generates 158 values of 0 or 1 for α or δ, out of 11, 000 cases.

Similarly for α = 0.75, it produces 191 such estimates. In the case of α = 0.25, apart from

the 150 corner solutions produced by the YZ-EHO algorithm, the GWJ-EHO, GWJ-LK,

and YZ-LK respectively produce 6, 4, and 22 corner estimates.

In Figure 10, we show the histogram of PIN estimates for α = 0.5 at varying intensities

(each containing 1, 000 simulated samples as described above) for the Bayesian algorithm

alongside the GWJ-LK estimates. The Bayesian algorithm performs well at all intensities.
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Method Statistic α δ µ λs λb PIN
α = 0.25

GWJ-LK MSE 0.0040 0.0189 116.4 18.7 18.2 0.0002
MAE 0.0476 0.1083 8.1 3.2 3.2 0.0104

GWJ-EHO MSE 0.0072 0.0247 49585.4 75135.8 54092.9 0.0018
MAE 0.0639 0.1215 129.5 152.2 134.2 0.0254

YZ-LK MSE 0.0039 0.0189 116.4 18.6 18.3 0.0006
MAE 0.0476 0.1083 8.1 3.2 3.2 0.0203

YZ-EHO MSE 0.4877 0.1951 143111.6 912902.1 1587633.3 0.0353
MAE 0.6928 0.4381 264.6 813.8 978.7 0.1374

BayesPIN MSE 0.0036 0.0137 116.3 18.6 18.2 0.0002
MAE 0.0467 0.0931 8.1 3.2 3.2 0.0100

α = 0.5
GWJ-LK MSE 0.0045 0.0089 62.6 20.8 20.4 0.0002

MAE 0.0529 0.0751 5.9 3.4 3.4 0.0107
GWJ-EHO MSE 0.0075 0.0120 44640.9 32470.4 57796.5 0.0031

MAE 0.0676 0.0850 121.2 121.9 136.8 0.0338
YZ-LK MSE 0.0045 0.0089 62.6 20.8 20.4 0.0013

MAE 0.0529 0.0751 5.9 3.4 3.4 0.0319
YZ-EHO MSE 0.2045 0.1899 131656.3 873448.6 1410405.9 0.0213

MAE 0.4467 0.4308 264.2 792.6 856.9 0.1067
BayesPIN MSE 0.0042 0.0077 62.5 20.8 20.4 0.0002

MAE 0.0510 0.0701 5.9 3.4 3.4 0.0103
α = 0.75

GWJ-LK MSE 0.0660 0.0056 47.9 22.8 23 0.0023
MAE 0.2501 0.0598 5.1 3.6 3.6 0.0467

GWJ-EHO MSE 0.0789 0.0090 36071.2 37459.9 63907.4 0.0071
MAE 0.2711 0.0735 113.1 132.5 144.5 0.0610

YZ-LK MSE 0.0660 0.0056 47.9 22.8 23 0.0080
MAE 0.2501 0.0598 5.1 3.6 3.6 0.0887

YZ-EHO MSE 0.2082 0.1896 113532.4 830222.1 1035560.4 0.0204
MAE 0.4538 0.4296 249.5 768.1 702.8 0.1066

BayesPIN MSE 0.0615 0.0051 47.9 22.8 23.0 0.0021
MAE 0.2415 0.0571 5.1 3.6 3.6 0.0450

Table 8: Comparison of parameter estimation methods for simulated datasets with varying
trading intensities, at three levels of α and fixed δ = 0.5

5.2. Randomly generated parameters

The second exercise is to simulate 5, 000 random combinations of the parameters using

the following rules: First generate 3 sets of uniform random numbers for each of the 5, 000
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data sets we wish to generate. We use the first random number to represent α, the second

to represent δ, and the third to represent µ, whereby λb = λs = 0.5(1 − µ). The last three

parameters are multiplied by 2, 500 to obtain the respective intensities. Scatter plots of 6

randomly chosen samples from the 5, 000 generated are provided in Figure 11 to demonstrate

the range of possible scenarios.

Method Statistic α δ µ λs λb PIN
GWJ LK MSE 0.0203 0.0232 34881.6 948.6 163.6 0.0012

MAE 0.0644 0.0896 31.4 4.3 3.8 0.0182
EHO MSE 0.0633 0.0789 1165664 124492.9 202829.8 0.1149

MAE 0.1655 0.1943 807.2 258 330.4 0.2312
YZ LK MSE 0.0178 0.0231 35696.1 170 116.4 0.0583

MAE 0.0607 0.0896 30.2 3.5 3.5 0.1598
EHO MSE 0.2767 0.1775 1254183.1 268256.4 792743.2 0.0941

MAE 0.4400 0.3610 910.9 400.3 668.1 0.2309
BayesPIN MSE 0.0101 0.0134 34312.7 284.8 128.1 0.0010

MAE 0.0535 0.0770 35.5 3.7 3.5 0.0176

Table 9: Performance of alternative estimation algorithms on simulated data

Once again, we see that the Bayesian algorithm is comparable to the MLE estimators

(see Table 9 and Figure 12). Note that in these results we have excluded three cases because

the YZ-EHO and YZ-LK algorithms did not produce an estimate. In addition, the two LK

factorization algorithms still produced values of either 0 or 1 for α or δ. Specifically, GWJ-

LK produced 35 corner solutions for α and 209 for δ, while the YZ-LK produced respectively

101 and 538 corner solutions.

6. Conclusion

We have shown a Bayesian method that can provide estimates of PIN using small data

sets at higher frequency, as well as over longer periods for stocks with very large numbers

of trades. This method avoids the non-convergence and other computational problems of

optimization functions underlying MLE routines. We know from previous literature that
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two of the challenging parameters to estimate using MLE are α (the probability of news

arrival) and δ (the probability that the news is bad). We have also found that the MLE

algorithm gives us a boundary value of either zero or one in a considerable number of cases,

particularly for δ. The Bayesian methodology, on the other hand, does not suffer from this

corner solution problem. The Bayesian approach is also not sensitive to the initial values in

the way that is known to be the case for the MLE approach.

One consequence of the MLE estimation problem is that independently estimated values

of PIN for each day could swing back and forth over time on account of numerical issues. In

the empirical illustrations, we demonstrated that the Bayesian estimation works well even at

a daily frequency using intraday data sampled over only 26 trading periods of 15−minutes

each. The ability to estimate PIN in this manner offers new opportunities to apply the

measure in studies involving time-varying information asymmetry risk.
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Appendix A. The BayesPin Toolbox

In what follows we provide details of the BayesPin toolbox written in Matlab that

accompanies this paper. The toolbox calculates PIN based on the Easley et al. (2002), and

Easley et al. (1996) models. The command for invoking the toolbox is

BayesPin(trades,model,sweeps,burnin,confidence).

The inputs of the toolbox are described as follows

• trades: a dataframe holding the aggregate buy and sell trades.

• model: Either of the Easley et al. (1996), Easley et al. (2002) models (i.e EKOP96,EHO2002).

• sweeps (optional): the number of iterations for the Gibbs Sampler (the default is set

at 25, 000). This has to be large enough to ensure convergence of the Markov chain.

In our example, we used 10, 000.

• burnin (optional): This is the number of initial iterations for which the parameter

draws should be discarded. This is to ensure that we keep the draws at the point where

the MCMC has converged to the parameter space in which the parameter estimate is

likely to fall. This figure must always be less than the sweeps (the default is set at

5, 000).

• confidence (optional): A number indicating the level of tolerance for computation

of credible interval (the default is 5 for a 95% credible interval)

The output of the toolbox will be a list of the following

• The posterior estimates of the model parameters and the PIN.

• The standard deviations of the posterior draws of parameters and PIN.

• The lower credible limit of the posterior distribution for each parameter and PIN.

• The upper credible limit of the posterior distribution for each parameter and PIN.

• A Geweke statistic for each parameter and PIN.

• A p-value of the Geweke statistic for each parameter and PIN.
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• The stored posterior distribution of each parameter and PIN as a matrix.

We provide below an illustrative example of daily parameter estimates and PIN for the

Easley et al. (2002) model.
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A.1. Matlab Implementation

In what follows it is assumed that the user of the toolbox have saved the folders of the

toolbox into a personal folder with sub-folder Results.

%#########################################################################

% EXAMPLE : Calculation of Cross-Sectional PIN

%#########################################################################

clc

dir=[pwd,’\’,mfilename]; %Working directory

cd (dir) %Change to working directory

%import aggregated buy and sell trades

trades = importdata(‘sampleData.txt’);

model = ‘EHO2002’; % PIN Model of interest (i.e EKOP96, EHO2002)

sweeps = 10000; %Specify number of iterations

burnin = 1000; %This has to be smaller than sweeps

confidence = 5; %Confidence level for credible interval

[est, stored_parameter_draws]= BayesPin(trades, model, sweeps, burnin, confidence);

est; %View the estimates

%Save summary of posterior estimates over estimation period

filename = strcat(dir, ’\Results\’, model, ’_CrossSection_PIN’, ’.csv’);

writetable(est, filename, ’Delimiter’, ’,’, ’QuoteStrings’, true, ’WriteVariableNames’,

true, ’WriteRowNames’, true)

% Inspect the posterior distributions and trace plots of parameters and PIN

if string(model)==’EKOP96’ labs = {’\alpha’, ’\delta’, ’\mu’, ’\epsilon’, ’PIN’};

else labs = {’\alpha’, ’\delta’, ’\mu’, ’\lambda_{s}’, ’\lambda_{b}’,’PIN’};

end
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N = size(stored_parameter_draws, 2)

nbins=20;

%save plot as jpeg

hf=figure(’Visible’,’on’);

for i=1:N

subplot(2,N,i)

hist(stored_parameter_draws(:,i),nbins);axis tight

title(labs{i})

subplot(2,N,i+N)

plot(stored_parameter_draws(:,i));axis tight

title(labs{i})

end

saveas(hf,strcat(dir,’\Results\’,model,’_PosteriorDist_Tracer.jpg’))
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Appendix B. Derivation of joint density and full con-

ditionals

In this appendix, we provide the derivations of the posterior density and full conditionals

for the parameters.

B.1. Joint density

First, we write down the joint densities of buy and sell orders conditional on the realiza-

tion of Dt.

Bad News Event (Dt = 1)

The model assumes that the number of sell trades from informed traders and the total

number of sell trades are both generated from Poisson distributions. It can easily be shown

that conditioning on the total number of sell trades, the number of sell trades by informed

traders follows a binomial distribution with St trials and success probability µ/µ+λs. Sell

trades initiated by uninformed traders are then calculated as Sut = St−Sit . The trade arrival

distributions in the event of bad news are therefore given as

St|Dt = 1 ∼ Pn (µ+ λs)

Sit |St, Dt = 1 ∼ Bin

(
St,

µ
µ+λs

)
.

Bt|Dt = 1 ∼ Pn (λb) ,

The probability of the numbers of different types of buy or sell trades in the event of bad
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news is

f1
(
Bt, S, S

i
t ,Θ
)

= P
(
Bt, St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
Sit |St, Dt = 1,Θ

)
P (St|Dt = 1,Θ)

=

(
St
Sit

)
e−(µ+λb+λS)

Bt!St!
λb
BtλS

St

(
µ

λS

)Sit
=
e−λb (λb)

Bt

Bt!

(
St
Sit

)(
µ

µ+ λS

)Sit( λS
µ+ λS

)St−Sit e−µ+λSt (µ+ λS)St

St!

=

(
St
Sit

)
e−(µ+λb+λS)

Bt!St!
λb
BtλS

St−SitµS
i
t

=
e−µµS

i
t

Sit !

e−λbλBtb
Bt!

e−λSλ
St−Sit
S

(St − Sit)!
. (6)

As expected, Equation 6 is a product of Poisson processes for the buy trades and sell trades

by uninformed traders, and the sell trades by informed traders.

Good News Event (Dt = 2)

Using similar arguments to those above, the distributions of the numbers of different types

of trades in the event of good news can be written as follows

Bt|Dt = 2 ∼ Pn (µ+ λb),

Bi
t|Bt, Dt = 2 ∼ Bin

(
Bt,

µ
µ+λb

)
.

St|Dt = 2 ∼ Pn (λs) ,

The probability of the numbers of different types of buyer or seller initiated trades is

f2 (Bt, St,Θ) =P (Bt, St|Dt = 2,Θ)

=P (St|Dt = 2,Θ)P
(
Bi
t|Bt, Dt = 2,Θ

)
P (Bt|Dt = 2,Θ)

=
e−µµB

i
t

Bi
t!

e−λsλSts
S!

e−λbλ
Bt−Bit
b

(Bt −Bi
t)!
. (7)

No News Event (Dt = 3)
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With the assumption that there is no informed trader activity during a “no news” period,

all trades are attributable to uninformed traders. Hence we have Bt|Dt = 3 ∼ Pn (λb) and

St|Dt = 3 ∼ Pn (λs) as the distributions of the number of buys and sells respectively. The

probability of the number of buyer and seller initiated trades is

f3 (Bt, St,Θ) =P (Bt, St|Dt = 3,Θ)

=P (St|Dt = 3,Θ)P (Bt|Θ)P (Bt|Dt = 3,Θ)

=
e−λs (λs)

St

St!

e−λb (λb)
Bt

Bt!
. (8)

Putting Equations 6, 7 and 8 together, we obtain the joint probability function

P (Bt, St|Dt,Θ) =

[
f1 (Bt, St,Θ)

]dt,1[
f2 (Bt, St,Θ)

]dt,2[
f3 (Bt, St,Θ)

]dt,3

=

[
e−µµS

i
t

Sit !

e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]dt,1[
e−µµB

i
t

Bi
t!

e−λsλSts
St!

e−λbλ
Bt−Bit
b

(Bt −Bi
t)!

]dt,2

×

[
e−λs (λs)

St

St!

e−λb (λb)
Bt

Bt!

]dt,3
, (9)

B.2. Derivation of Posterior Distributions

Posterior Density

In Bayesian inference, the posterior distribution is proportional to the product of the

prior distribution and the likelihood function of the parameters. Using the prior distributions

provided in Section 3.3.1 and the likelihood function, we obtain the posterior density of buys

and sells:
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P (Dt,Θ|Bt, St) is proportional to

P (Θ)

T∏
t=1

[
P (Bt, St|Dt,Θ)P (Dt|Θ)

]

= P (Θ)
T∏
t=1

[[
αδ
e−µµS

i
t

Sit !

e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]d1[
α(1− δ)e

−µµB
i
t
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t!

e−λsλSts
St!

e−λbλ
Bt−Bit
b

(Bt −Bi
t)!

]d2

×
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= P (Θ)

[
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]
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i
t

Sit !

e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]d1[
e−µµB

i
t

Bi
t!

e−λsλSts
St!

e−λbλ
Bt−Bit
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e−λs (λs)
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e−λb (λb)
Bt

Bt!

]d3

= η2a+bµb−1e−ηµλa−1s e−ηλsλa−1b e−ηλbη0.001−1e−0.001ηα1(1− α)1δ1(1− δ)1
[

(αδ)T1(α(1− δ))T2(1− α)T3

]

×
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e−µµS

i
t
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e−λbλBtb
Bt!

e−λsλ
St−Sit
s

(St − Sit)!

]d1[
e−µµB

i
t

Bi
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e−λsλSts
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e−λbλ
Bt−Bit
b

(Bt −Bi
t)!

]d2[
e−λs (λs)

St

St!

e−λb (λb)
Bt

Bt!

]d3
(10)

Full Conditional Distributions

In order to use the Gibbs sampler we need the full conditionals of the parameters of interest.

In order to use the Gibbs sampler we need the full conditionals of the parameters of interest,

Θ = (α, δ, µ, λs, λs, η). Using Equation 10 we derive below the full conditional distributions

of the parameters.

Full Conditional for news impact parameter η

Similarly, the full conditional distribution for η is derived as follows :

P (η|.) ∝ η2a+bµb−1e−ηµλa−1s e−ηλsλa−1b e−ηλbη0.001−1e−0.001η

∝ η0.001+2a+be−η(0.001+µ+λs+λb) (11)

The expression in equation 11 is the kernel of a gamma distribution therefore the full
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conditional distribution of η ∼ Ga

(
0.001 + 2a+ b, 0.001 + µ+ λs + λb

)
.

Full Conditional for informed trader arrivals parameter µ

P (µ|.) ∝ µb−1e−ηµ
∏T

t=1

[
e−µµS

i
t

Sit !

]d1[
e−µµB

i
t

Bit!

]d2

∝ e−µ(T1+T2)µb−1e−ηµµ

T∑
t=1

(Sid1t +B
id2
t )

T∏
t=1

[
Sit !

]d1[
Bit!

]d2
∝ e−µ(T1+T2)µb−1e−ηµµ

T∑
t=1

(
S
id1
t +B

id2
t

)

∝ e−µ(T1+T2+η)µ
b+

T∑
t=1

(
S
id1
t +B

id2
t

)
−1

(12)

This is the kernel of a gamma distribution hence the full conditional distribution of µ

can be written as µ ∼ Ga

(
b+

T∑
t=1

(
Sid1jt +Bid2

jt

)
, η + T1 + T2

)
.

Full Conditional for uninformed buy trader arrivals parameter λb

P (λb|.) ∝ e−ηλbλa−1b

∏T
t=1

[
e−λbλ

Bt
b

Bt!

]d1[
e−λbλ

Bt−B
i
t

b

(Bt−Bit)!

]d2[
e−λb (λb)

Bt

Bt!

]d3

=
e−λbηλa−1

b e−(T1+T2+T3)λbλ

T∑
t=1

(Bd1t +B
d2
t −Bid2t +B

d3
t )

b∏T
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[
Bt!

]d1[
(Bt−Bit)!

]d2[
B!

]d3
∝ e−(T1+T2+T3+η)λbλ

T∑
t=1

(
B
d1
t +B

d2
t −B

id2
t +B

d3
t

)
+a−1

b (13)

As before this full conditional distribution has the kernel of a gamma distribution therefore

λb ∼ Ga

(
a+

T∑
t=1

(
Bd1
t +Bd2

t −Bid2
t +Bd3

t

)
, η + T1 + T2 + T3

)
.
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Full Conditional for uninformed sell trader arrivals parameter λs

P (λs|.) ∝ λa−1s e−ηλs
∏T

t=1

[
e−λsλ

St−S
i
t

s

(St−Sit)!

]d1[
e−λsλ

St
s

St!

]d2[
e−λs (λs)

St

St!

]d3
= λa−1

s e−ηλse−(T1+T2+T3)λsλ

T∑
t=1

(Sd1t −Sid1t +S
d2
t +S

d3
t )

s∏T
t=1

[
(St−Sit)!

]d1[
St!

]d2[
St!

]d3
∝ e−λs(T1+T2+T3+η)λ

T∑
t=1

(
S
d1
t −S

id1
t +S

d2
t +S

d3
t

)
+a−1

s (14)

The expression in equation 14 is the kernel of a gamma distribution therefore the full condi-

tional distribution of λs ∼ Ga

(
a+

T∑
t=1

(
Sd1t − Sid1t + Sd2t + Sd3t

)
, η + T1 + T2 + T3

)
.

Full Conditional for news arrival parameter α

The full conditional distribution for α, P (α|.), is derived as follows

P (α|.) ∝ αT1(1− α)T2α1(1− α)1

∝ αT1+T2+1(1− α)T2+1, (15)

which is the kernel of a beta distributions

α ∼ Be
(

1 + T1 + T2, T3 + 1

)

Full Conditional for news impact parameter δ

Similarly, the full conditional distribution for δ is derived as follows :

P (δ|.) ∝ δT1(1− δ)T2δ1(1− δ)1

∝ δT1+1(1− δ)T2+1. (16)
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The expression in Equation 16 is the kernel of a beta distribution so

δ ∼ Be
(

1 + T1, 1 + T2

)

It can be observed that the estimates of α and δ are highly dependent on the correct

classification of news event period.
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Appendix C. Additional simulation exercise

To produce an alternative dataset that is not directly generated from the EHO-PIN

model, we rely on an insight in Venter and De Jongh (2006), who introduced the Poisson

Inverse Gaussian distribution in the EKOP-PIN model. To produce buy and sell trade pairs

that are correlated but conditionally independent, we use a random unit inverse gaussian

scaling factor on the trade arrival intensity parameters.

We generate 1, 000 sets each of 60 observations (corresponding to one quarter), at varying

trade intensities with the following parameters: α = 0.5, δ = 0.5, µ = 0.2k, λb = λs = 0.4k,

where k = {100, 500, 1500, ..., 8500}. For each trading period, we draw a value from the

binomial distribution with parameter α and δ respectively to determine whether it was a

good news day, bad news day, or no news day. For each draw of Poisson trader arrivals in a

given trading period in a particular sample path, we first scale all three intensity parameters

(µ, λb, λs) by a random draw (each trading period) from an inverse gaussian distribution with

expected value 1 and scale parameter 9. Note that we rescale the random inverse gaussian

draws in order to ensure the mean of the scaling factor on each sample path is 1. We then

draw Poisson random values corresponding to the relevant scaled intensity levels for each

case. Thus we have a total of 10, 000 simulated sample sets. The data generated from this

model still produces distinct clusters, but less so than those produced by the EHO-PIN

model. In Figure 13, we present scatter plots of buy and sell pairs from 6 samples from

the simulated dataset. We then estimate the PIN model on the simulated data from this

exercise, using both MLE and BayesPIN. As in the main simulation, we repeat the exercise

with two other values for α ∈ {0.25, 0.75}.

We naturally expect the results to be biased, but we find that the Bayesian and the best

ML estimators still discriminate between the three different levels of PIN (using t-tests and

ranksum tests not reported here, but available from the authors). The Bayesian estimator

again performs very well, providing additional simulation evidence of the features we have

observed in the empirical estimation.
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Method Statistic α δ µ λs λb PIN
α = 0.25

GWJ-LK MSE 0.0159 0.0827 275444.3 33347.4 34161.9 0.0032
MAE 0.1041 0.2664 363.9 111.7 112.3 0.0538

GWJ-EHO MSE 0.0289 0.0549 386121.7 879044.5 883760.9 0.0022
MAE 0.1129 0.1905 449.5 578 580.1 0.0377

YZ-LK MSE 0.0171 0.1006 287970.9 38682.5 39069.9 0.0054
MAE 0.1084 0.2977 372.7 120.4 120.8 0.0696

YZ-EHO MSE 0.4657 0.1805 453438.0 1828762.2 3746100.5 0.0212
MAE 0.6623 0.4161 512.0 1132.2 1408.7 0.0945

BayesPIN MSE 0.0180 0.0742 241163.0 37502.1 34876.2 0.0036
MAE 0.1128 0.2528 344.9 117.7 112.4 0.0573

α = 0.5
GWJ-LK MSE 0.0216 0.0379 441256.7 14997.4 15408.1 0.0008

MAE 0.1275 0.1685 507.9 82.2 82.1 0.0241
GWJ-EHO MSE 0.0262 0.0577 380058.8 1088283.2 1379179.8 0.0042

MAE 0.1340 0.1944 445.2 660.5 727.9 0.0542
YZ-LK MSE 0.0213 0.0417 444504.2 16086.0 16313.1 0.0016

MAE 0.1261 0.1782 509.6 84.8 84.4 0.0350
YZ-EHO MSE 0.1978 0.1751 495265.1 2091915.0 3114217.3 0.0119

MAE 0.4353 0.4068 523.0 1193.1 1184.0 0.0789
BayesPIN MSE 0.0190 0.0323 418192.9 14669.1 14798.4 0.0008

MAE 0.1192 0.1556 495.9 79.9 80.2 0.0252
α = 0.75

GWJ-LK MSE 0.1066 0.0206 519382.4 8547.9 8313.9 0.0003
MAE 0.3167 0.1177 564.0 63.8 62.8 0.0134

GWJ-EHO MSE 0.0470 0.0663 362286.6 1404685.0 2391455.1 0.0080
MAE 0.1775 0.2124 431.4 764.6 958.6 0.0748

YZ-LK MSE 0.1065 0.0210 521833.9 8663.4 8452.1 0.0005
MAE 0.3164 0.1191 564.2 64.4 63.3 0.0171

YZ-EHO MSE 0.0483 0.1738 608385.0 2041920.5 2932617.8 0.0111
MAE 0.2126 0.4048 559.7 1179.8 1054.0 0.0813

BayesPIN MSE 0.1027 0.0174 502205.7 8188.8 7987.9 0.0003
MAE 0.3114 0.1086 556.3 62.4 61.5 0.0125

Table 10: Comparison of parameter estimation methods for varying α and fixed δ = 0.5 for
UIG Scale
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Fig. 1. Tree diagram for Easley et al. (2002) model
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Fig. 2. Scatter plot of daily buy and sell trades
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Fig. 3. Scatter plot of 15−minute sampled buy and sell trades
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(e) XOM

Fig. 4. Daily PIN estimates from intraday data using the InfoTrad package and the Bayesian
algorithm
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Fig. 5. Histogram of Daily PIN estimates from intraday data using the InfoTrad package
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Fig. 6. Histogram of Daily PIN estimates from intraday data using the Bayesian algorithm
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Fig. 7. Histograms of the differences between daily Bayesian and MLE Pin estimates.
Note: The darker shaded areas (blue) represent the regular cases while the lighter shaded areas (gold)

represent corner solutions in MLE.
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Fig. 8. Quarterly BayesPin estimates from daily aggregated buys and sells with credible
intervals.
Note: The solid lines (blue) represent the BayesPin estimates while the dashed lines (red) represent MLE

PIN estimates. The grey shaded region is the credible interval for the BayesPin estimates.
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Fig. 9. Scatter plot of simulated buy and sell trades at varying trade intensities, with α = 0.5,
δ = 0.5, µ = 0.2, and λb = λs = 0.4, so that PIN= 0.11. 60, 000 pairs are generated at each
intensity.
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Fig. 10. Histogram of estimates of PIN at 6 different trade intensities. The blue (darker)
columns represent the BayesPIN algorithm and the yellow (lighter) columns the MLE esti-
mates with GWJ algorithm and LK factorization. The true value in each case is 0.11.
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Fig. 11. Scatter plot of randomly selected sets of 60 simulated buy and sell trades where
parameters are randomly drawn, at trade intensity 2500

Note: Each case represents different combinations of values of the parameters, shown above the panels.
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Fig. 12. Scatter of three sets of PIN estimates: for the Bayesian algorithm and two MLE
approaches.
Note: We simulated 5, 000 sets of 60 observations of buy and sell trades by drawing uniform random values

corresponding to α, δ, and µ/2500. The remaining trade intensity 2500(1− µ) was allocated equally between

uninformed buy and sell intensitiesλb and λs.
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Fig. 13. Scatter plot of simulated buy and sell trades at varying trade intensities scaled by a
random Unit Inverse Gaussian scaling factor, with α = 0.5, δ = 0.5, µ = 0.2, λb = λs = 0.4,
and ψ = 9, so that PIN= 0.11. 60, 000 pairs are generated at each intensity.
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