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Abstract 

Pavlovian biases influence instrumental learning by coupling reward seeking with action 

invigoration and punishment avoidance with action suppression. Using a probabilistic go/no-

go task designed to orthogonalize action (go/no-go) and valence (reward/punishment), recent 

studies have shown that the interaction between the two is dependent on the striatum and its 

key neuromodulator dopamine. Using this task, we sought to identify how structural and 

neuromodulatory age-related differences in the striatum may influence Pavlovian biases and 

instrumental learning in 25 young and 31 older adults. Computational modeling revealed a 

significant age-related reduction in reward and punishment sensitivity and marked (albeit not 

significant) reduction in learning rate and lapse rate (irreducible noise). Voxel-based 

morphometry analysis using 7 Tesla MRI images showed that individual differences in 

learning rate in older adults were related to the volume of the caudate nucleus. In contrast 

dopamine synthesis capacity in the dorsal striatum, assessed using 18F-DOPA positron 

emission tomography in 22 of these older adults, was not associated with learning 

performance and did not moderate the relationship between caudate volume and learning 

rate. This multiparametric approach suggests that age-related differences in striatal volume 

may influence learning proficiency in old age.  
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Introduction 

Hardwired interactions between action and valence in learning tasks significantly influence 

choices. These behavioral tendencies can be described as Pavlovian biases and serve to 

accelerate the acquisition of the appropriate behavioral responses in those circumstances most 

commonly encountered during decision making, yet may also corrupt the flexibility of 

learning (Dayan et al. 2006; Gray and Mcnaughton 2000). This is in contrast to instrumental 

learning, which a priori should be based on the contingency between behaviour and outcome, 

that is the stimulus-reinforcement pair and not the response-reinforcement association 

(Williams 1987). 

 

Achieving a reward by performing an action and avoiding punishment by remaining passive 

is typically performed more successfully than not initiating an action to gain rewards or 

performing actions to avoid punishment (Guitart-masip et al. 2012a, de Boer et al. 2018). This 

bias has been previously demonstrated using a probabilistic monetary go/no-go task that 

orthogonalizes, i.e. independently manipulates, action (go/no-go) and valence (win/avoid-

losing) (Guitart-Masip et al. 2011). Furthermore, computational modeling has shown that this 

behavioral moderation can be accounted for in terms of an influence of a Pavlovian system, 

effectively coupling action and valence (Guitart-masip et al. 2012). However, it has been 

recently argued that an instrumental bias may also contribute to this learning asymmetry 

(Swart et al. 2017) implying a facilitated learning of go responses leading to reward, as well 

as an impaired unlearning of no-go responses leading to punishment. Thus both Pavlovian and 

instrumental mechanisms may contribute to action-valence learning whereby instrumental 

learning bias is implemented at the time participants incorporate the observed outcome to 

their action values (Swart et al. 2017), and the Pavlovian bias is implemented at the time of 

choice whereby the expectation of value on a given trial is added to the action value for the go 

choice (Guitart-masip et al. 2012a; Swart et al. 2017; de Boer et al. 2019).  



 

Dopamine is considered to be essential in the process of instrumental learning (Dayan and 

Niv 2008) by encoding reward-prediction errors (RPEs) (as reviewed by Schultz, 1998) and  

also plays an important role in the generation and invigoration of motor responses, including 

actions directed towards rewards and in the avoidance of punishments (Niv et al. 2007; 

Salamone and Correa 2012). Furthermore, human behavioral and functional neuroimaging 

studies specifically designed to orthogonalize action and valence have challenged existing 

views that neural representations in the striatum represent valence, instead demonstrating a 

dominant role in the anticipation of action (for a review see (Guitart-Masip et al. 2014)). 

Moreover, by elevating dopamine using levodopa (L-DOPA), individuals showed a decrease 

in the coupling between action and valence during learning (Guitart-masip et al. 2014), but 

also an increase in functional activity in the striatum related to rewarding actions (Guitart-

Masip et al. 2012b). These studies highlight the importance of orthogonalizing action and 

valence to identify cognitive and neuronal aspects of value representation and action 

selection. However, the exact contribution of striatal dopamine to instrumental and Pavlovian 

control remains unclear.  

 

During aging, numerous cognitive domains (e.g. Grady 2013) including instrumental learning 

become impaired (Mell et al. 2005; Dreher et al. 2008). Age-related differences have been 

linked to functional activity in dopaminergic target regions such as the striatum and prefrontal 

cortex (Fera et al. 2005; Mell et al. 2009; Samanez-Larkin et al. 2010). Furthermore, both 

structural and neuromodulatory changes in the striatum have been previously shown to be 

associated with age-related decline in pursuing reward (Schott et al. 2007; Mohr et al. 2010; 

Di et al. 2014) and changes in the representation of RPE (Mell et al. 2009; Chowdhury 2013; 

Eppinger et al. 2013; Vink et al. 2015). As observed in previous studies designed to 

orthogonalize action and valence, performance in both young (Guitart-masip et al. 2012a; 



Cavanagh et al. 2013; Guitart-Masip et al. 2013) and older adults (Chowdhury et al. 2013) is 

suboptimal in task conditions when Pavlovian and instrumental controllers conflict. As such, 

these two systems may be segregated and compete for behavioral control. Indeed, this notion 

is supported by evidence that instrumental and Pavlovian responses recruit different 

corticostriatal loops (Haber and Knutson 2010). The dorsal striatum is involved in learning 

and performance pertaining to goal-directed and habitual instrumental responding (Liljeholm 

and O'Doherty 2012) whereas the ventral striatum is more involved in Pavlovian learning 

(Reynolds and Berridge 2008; Corbit and Balleine 2011). However, no study to date has 

focused on how age-related structural and neuromodulatory differences in the striatum 

influence action learning in older age using a task that orthogonalizes action and valence.  

 

In this study we hypothesized an age-related decrease in reinforcement learning using a 

probabilistic go/no-go task (Guitart-Masip et al. 2012), is associated with both an age-related 

decline in striatal volume and synthesis capacity of dopamine in older adults. Firstly, we 

assessed younger and older adults' performance in a task that orthogonalizes action and 

valence using a computational model with a constant Pavlovian bias parameter. In a second 

step, we assessed how structural age-related differences in the striatum may influence 

learning using high-resolution structural magnetic resonance imaging (MRI) at 7 Tesla (T) in 

younger and older adults. Finally, we used 18F-FDOPA-PET to assess how interindividual 

variability in dopamine synthesis capacity in the striatum, may impact performance in older 

adults.  

 

Materials and Methods 

Participants  



A total of 56 participants were recruited as volunteers by our department, the German Center 

for Neurodegenerative Disease (DZNE), Magdeburg. We included 25 healthy young adults 

(mean age = 24.16, SD = 2.16; 12 females and 13 males) and 31 older adults between 62 and 

78 years old (mean age = 68.58, SD = 4.50; 19 females and 12 males), who were previously 

screened for contraindications for 7 Tesla MRI scanning (tattoos, tinnitus, pacemaker, 

metallic implants, etc.). Furthermore, 22 of the older adults (mean age = 68.93, SD = 4.41; 10 

females and 12 males) also underwent [18F-FDOPA-PET. One subject that underwent 

FDOPA-PET declined to undergo the 7 Tesla MRI scan. All subjects performed an 

instrumental learning task (orthogonalized go/no-go task) and underwent a 7T MRI scan on 

the same day. On a separate visit, all older adults undertook a 3T MRI scan and were asked to 

complete a neuropsychological test battery, with the aim of excluding cognitive impairment 

and depression. The battery included a Mini Mental State Test (MMSE) (Folstein et al. 1975), 

(mean 29.6; SD 0.67), the Stroop Test (Glaser and Glaser 1982) and the Logical Memory Test 

I and II as part of the Wechsler memory scale. Furthermore, participants performed part of the 

Test of Attentional Performance (TAP), which measured alertness and divided attention 

(Leclercq and Zimmermann 2004). In addition to these tests, volunteers were asked to 

complete the Freiburger Personality Inventory and Beck Depression Inventory II (Beck et al. 

1996). One subject from the older group was excluded after showing a positive score in the 

depression screening (BDI II = 16 points) leaving a total of 30 older adults. All older adults 

were examined by a physician to exclude for any history of neurological or psychiatric 

disorders. All participants provided written consent according to the declaration of Helsinki 

and were compensated for transport costs and travel time. The study was approved by the 

Ethics Committee of the Faculty of Medicine, Otto-von-Guericke University of Magdeburg.  

 

Go/no-go task 



All subjects completed a probabilistic monetary go/no-go task as previously described 

(Guitart-Masip et al. 2012a). The goal of the task for the participant was to maximize reward 

and minimize punishment. The task consisted of four trial types depending on the identity of 

the fractal cue presented at the beginning of the trial:  

1. Go to win (GW): to press a button in order to gain a reward 

2. Go to avoid losing (GAL): to press a button in order to avoid punishment 

3. No go to win (NGW): not pressing a button to gain reward  

4. No go to avoid losing (NGAL): not pressing a button to avoid punishment 

The participants wouldn't know at the beginning of the test, which image corresponded to 

which condition and had to learn them by trial and error. At each trial a cue appeared on the 

screen for 1000 ms and after an interval marked by a cross (250 – 3500 ms), the subject was 

presented with a circle and had to press the button (go) within 1500 ms (Figure 1), or 

withhold the action (no-go). The button to be pressed was an arrow on a keyboard. 

Participants had to press the left arrow if the circle appeared on the left side of the screen or 

the right arrow if it appeared on the right side of the screen. After each trial a feedback in the 

form of an arrow was shown: a downward red arrow signaled a loss of 1 Euro, a horizontal 

yellow bar represented a neutral outcome, an upward green arrow signified a reward of 1 

Euro. After feedback was displayed, the cue for the following trial proceeded. 

The task consisted of 240 trials and each image was shown 60 times (60 trials for each 

condition). The outcome was probabilistic, in win trials 80% of correct choices and 20% of 

incorrect choices were rewarded (the remaining 20% of correct and 80% of incorrect choices 

leading to no outcome), while in lose trials 80% of correct choices and 20% of incorrect 

choices avoided punishment. Before starting the task, the probabilistic nature of the task was 

explained to the participants in detail by showing a scheme of the probabilistic possibilities. A 

short training session was completed, in order to familiarize with the buttons and the speed of 



the trials, but without showing the cues that would appear in the actual task. During the 

training session the participant was asked to complete 10 practice trials by pressing a button 

each time a target circle appeared on the left or right side of the screen. Participants were also 

informed that whilst their reward at the end of the task may be higher, they would receive a 

maximum reward of 15 Euros and a minimum of 5 Euros. Earnings were displayed at the end 

of the session. 

 

     FIGURE 1 NEAR HERE 

Figure 1. Paradigm of the probabilistic monetary go/no-go task. The fractal images indicate 

the respective four different conditions. On go trials, subjects needed to press a button 

according to the side where the circle appeared. On no-go trials they needed to withhold a 

response. An upward arrow symbolized reward (originally in green) and a downward arrow 

symbolized losses (originally in red). Horizontal bars (originally in yellow) corresponded to a 

neutral outcome. On the right-hand side, probability outcomes were displayed after go 

responses (go; top), and after withholding an action (no-go; bottom). 

 

Statistical analysis of learning performance 

In order to determine the differences of choice patterns between age groups, we performed a 



logistic multi-level analysis using the lme4 package (Bates et al., 2014) in R 3.4.3 (“Kite-

Eating Tree”) (R Developement Core Team, 2015). The analysis estimated the probability of 

choosing a go response in the four task-conditions based on different predictors. Predictors for 

each trial included valence (win/avoid losing), action (go vs. no-go), as well as time (trial 

number) and group (young/older). Using the model with the best data fit, the fixed-effect 

predictors included all of the four predictors mentioned above, and their possible interactions. 

Subsequently, random effects for action, valence and trial and their possible interactions were 

included. This model was compared to other versions of the logistic regression model using 

the Bayesian Information Criterion using the R function BIC. 

 

Computational modeling of learning behaviour using the go/no-go task 

We fit choice behavior to a set of 6 nested reinforcement learning (RL) models incorporating 

different RL hypothesis. The base model was a Q-learning algorithm (Sutton and Barto 1998) 

that used a Rescorla-Wagner update rule to independently track the action value of each 

choice given each fractal image (Qt(go) and Qt(nogo)) with learning rate (𝜀) as a free 

parameter. In the model, the probability of choosing one action on trial t was a sigmoid 

function of the difference between the action values scaled by a slope parameter that was 

parameterized as sensitivity to reward. This basic model was initially augmented with an 

irreducible action noise parameter also known as a lapse rate (𝜉) (Talmi et al. 2009) and then 

further expanded by adding a static bias parameter to the value of the go action (b). The 

model was then augmented by adding a fixed Pavlovian value of 1 to the value of the go 

action as soon as the first reward was encountered for win cues, and a fixed Pavlovian value 

of -1 to the value of the go action as soon as the first punishment was encountered for loss 

cues. This fixed Pavlovian value was weighted by a further free parameter (Pavlovian 

parameter) into the value of the go action (𝜋). Note that this definition of the Pavlovian value 



is different from the definition in previous studies that have used this task (Guitart-masip et al. 

2012a; de Boer et al. 2019), as model comparison demonstrated it a better fit than a variable 

Pavlovian value updated on a trial-by-trial basis. The state (action independent) values for 

each fractal image were updated on every trial using a Rescorla-Wagner update rule with the 

same learning rate as the update of the action values. Finally, the model including the static 

action bias and the Pavlovian bias were augmented by including different sensitivities for 

reward and punishment. Full equations are provided in the Supplemental Material. 

 

Model fitting procedure and comparison 

As in previous reports (Huys et al. 2011; Guitart-Masip et al. 2012a) we used a hierarchical 

Type II Bayesian (or random effects) procedure using maximum likelihood to fit simple 

parameterized distributions for higher level statistics of the parameters. Since the values of 

parameters for each subject are ‘hidden’, this employs the Expectation-Maximization (EM) 

procedure. For each iteration, the posterior distribution over the group for each parameter is 

used to specify the prior over the individual parameter fits on the next iteration. All six 

computational models were fit to the data using a single distribution for all participants. This 

fitting procedure was, therefore, blind to the existence of different groups with putatively 

different parameter values. Before inference, all parameters except the action bias were 

suitably transformed to enforce constraints (log and inverse sigmoid transforms). Six 

modeling parameters were extracted for each individual, namely reward sensitivity, 

punishment sensitivity, Pavlovian bias, action bias, learning rate and lapse rate (irreducible 

noise).  

Models were compared using the integrated Bayesian Information Criterion (iBIC) as 

described in detail in Huys et al. (2011) and Guitart-Masip et al. (2012a), where small iBIC 

values indicate a model that fits the data better after penalizing for the number of data points 



associated with each parameter (Table 1). Comparing iBIC values is akin to a likelihood ratio 

test (Kass R. E. and Raftery A. E. 1995).  

Non-parametric Mann-Whitney U tests were applied ad-hoc to assess for age-related 

differences in the modeling parameters. To correct for the effect of multiple comparisons, we 

applied a statistical threshold of p < 0.008 (i.e. Bonferroni-corrected p < 0.05 for 6 tests). 

Furthermore, we performed partial Pearson’s correlations using age and sex as covariates, to 

investigate the relationship between modeling parameters and measures of global cognition 

assessed using the neuropsychology test battery. The significance threshold was set at p < 

0.05 following Bonferroni correction for multiple comparisons as described in the 

Supplementary Material. 

 

Table 1 

Model no. Model parameters No. of parameters Likelihood Pseudo-R2 iBIC 

1 ε, ρ 2 -6,111 0.33 12,260 

2 ε, ρ, ξ 3 -6098 0.33 12,254 

3 ε, ρ, ξ, b 4 -5724 0.37 11,523 

4 ε, ρwin, ρlose, ξ, b 5 -5563 0.39 11,220 

5 ε, ρwin, ρlose,  ξ, b, πfluct 6 -5467 0.40 11,048 

6 ε, ρwin, ρlose,  ξ, b, πconstant 6 -5431 0.41 10,975 

 

Model comparison of the six models tested to account for the behavioral data. The winning 

model is highlighted in bold font. Parameters: ε, learning rate; ρwin, weighting of reward on 

win trials; ρlose, weighting of punishments on lose trials; ξ, irreducible noise; b, action bias; 

π, Pavlovian bias; iBIC, integrated Bayesian information criterion. 

 

Structural magnetic resonance imaging 



All young adults (n = 25) and 30 older adults (after excluding 1 case for depression) 

underwent a T1-weighted high-field scan using 7 Tesla MRI, which provided high-resolution 

structural images of the whole brain. T1-weighted images at high-resolution reduce partial 

volume effects and allow accurate discrimination between grey matter (GM) and white matter 

(WM) used to delineate subcortical areas such as the striatum. The T1-weighted 3D-

MPRAGE MRI data was acquired for each subject, using a Siemens MAGNETOM 7.0 Tesla 

MRI scanner and a Nova Medical (Willmington, MA) 32-channel head-coil. Each three-

dimensional magnetisation-prepared rapid gradient echo (3D-MPRAGE; voxel size 

0.8×0.8×0.8 mm3) image was acquired using the following acquisition parameters: echo time 

(TE) was 2.09 ms, repetition time (TR) was 2000 ms and flip angle was 5°. Furthermore, 

inversion time was 1050 ms, receiver bandwidth was 230 Hz/pixel and echo spacing 6.1 ms. 

3D matrix dimensions were 320×320×224 (straight-sagittal slice orientation with 0.5-mm 

inter-slice gap), 7/8 partial Fourier, and 0.8×0.8×0.8 mm3 voxel size. GRAPPA was also 

enabled with acceleration factor of 2 and 32 reference lines.  

In order to aid coregistration to PET images, all older participants that volunteered to undergo 

FDOPA PET also underwent a separate MRI session within a period of 12 months from the 

FDOPA PET scan. This was conducted on a Siemens Verio 3 Tesla system using a standard 

Siemens 32-channel phased-array head coil for reception. T1-weighted 3D-MPRAGE images 

were acquired using the following parameters: inversion time was set to 1100 ms, flip angle 

was 7°, time to echo was 4.37 ms, receiver bandwidth was 140 Hz/pixel, echo spacing was 

11.1 ms, and repetition time was 2500 ms. The 3D matrix dimensions were 256x256x192 (0.5 

mm interslice gap), 7/8 partial Fourier, and 1 x 1 x 1mm3 voxel size. GRAPPA was also 

enabled with acceleration factor of 2 and 24 reference lines 

 

Voxel-based morphometry 



Analysis and processing of 7T MPRAGE images were performed to assess the association 

between striatal volume and the task modeling parameters. We used the CAT12 toolbox 

(cat12 r938, Structural Brain Mapping group, Jena University Hospital, Jena, Germany) 

implemented in SPM12 (Statistical Parameric Mapping software; Wellcome Trust Centre for 

Neuroimaging, London, UK) run in MATLAB R2014b (Mathworks, Sherborn, MA, USA). In 

CAT12, all MPRAGE images were initially bias corrected and segmented into grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF). Scans were visually inspected to 

exclude artefacts and then underwent a sample homogeneity check to identify potential 

outliers. Subsequently, GM and WM segments were warped to a common template using 

DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) 

(Ashburner 2007). To account for the volume changes induced by normalisation, GM 

segments were multiplied by the Jacobian determinants of the deformations. Finally, GM and 

WM maps were smoothed using a Gaussian kernel at 6 mm full width at half maximum.  

The voxel-based GM analysis was performed on all computational modeling parameters. A 

General linear model (GLM) was specified in SPM12, using the normalized GM segments 

and selected modeling parameter, as a regressor of interest, using the remaining modeling 

parameters, sex and total intracranial volume (TIV, calculated using CAT12) as covariates. 

The GM segments and the modeling parameters for each group were entered separately into a 

GLM to assess for age-related interactions between groups. All voxel-based hypothesized 

relationships were tested using t-tests generated in a GLM. All results were displayed using 

an uncorrected threshold of p < 0.001 without selecting a cluster threshold.  

The initial VBM analyses were restricted to the striatum comprising the caudate, putamen and 

nucleus accumbens. The striatal regions of interest in 0.5 mm MNI152 space (Montreal 

Neurological Institute, McGill University, Canada) were obtained from FSL version 5.0 

(http://fsl.fmrib.ox.ac.uk) and co-registered to the template image provided in CAT12. In a 

http://fsl.fmrib.ox.ac.uk/


further exploratory analysis we expanded the analysis to include the fronto-striatal network, 

comprising prefrontal cortex, cingulate cortex as well as the surrounding medial cortex, 

pallidum, substantia nigra/ventral tegmental area (SN/VTA) and the hippocampus. The 

fronto-striatal mask was created using segmentations from the built-in neuromorphometrics 

atlas in CAT12.  

 

18F-FDOPA-PET 

PET data from 22 older participants were acquired with a Biograph mCT (Siemens) PET/CT 

scanner in 3D mode. After a low-dose transmission CT for attenuation correction, a list-mode 

emission recording lasting 60 min was started simultaneously with i.v. injection of 200 MBq 

of F-18-FDOPA as a slow bolus. The emission data were reconstructed into 20 dynamic 

frames (3×20 s, 3×1 min, 3×2 min, 3×3 min, 7×5 min, 1×6 min) using the iterative 

reconstruction algorithm of the system software and isotropic voxel size of 2 mm.  

PET data from 22 older adults were analysed fully automatically using a MATLAB/SPM8 

script comprising the following steps. First, reconstructed frames were converted from 

DICOM to NIFTI format using the dcm2nii routine of the MRIcron software package 

(https://www.nitrc.org/projects/mricron). Second, frames 7 - 20 (4 - 60 min p.i.) were 

corrected for head motion between frames using the ‘Realign’ tool in SPM8 (Statistical 

Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, UK). The realign 

transformation of frame 7 was applied to frames 1 - 6 (0 – 4 min p.i.), as these early frames 

did not provide sufficient anatomical information to reliably determine head motion. Third, 

the dynamic PET frames were coregistered to the individual 3D-MPRAGE MRI using the 

‘Coregister’ tool of SPM8. The integral of PET frames 7 – 20 was used as source image, the 

3D-MPRAGE MRI was used as target image for coregistration. The resulting rigid body 

transformation was applied to each of the realigned PET frames. Fourth, time activity curves 

https://www.nitrc.org/projects/mricron


of caudate nucleus, putamen and nucleus accumbens, separately for left and right hemisphere, 

were determined by transferring the contours from automatic segmentation of these striatal 

regions in the subject’s 3D-MPRAGE MRI using the FIRST algorithm (Patenaude et al. 

2011) in FSL version 5.0 from the MRI to the coregistered PET frames. The time activity 

curve of the cerebellum (excluding vermis) was extracted using a mask from the WFU Pick 

Atlas (Maldjian et al. 2003). The inverse of the elastic transformation from subject space to 

the anatomical space of the Montreal Neurological Institute (MNI) obtained by the 

‘normalization’ tool of SPM8 was used to map the cerebellum mask to the subject’s PET 

frames. Fifth, dopamine synthesis capacity (Ki) was estimated for each striatal subregion by 

the slope of the tissue slope-intercept plot of its time activity curve (Patlak and Blasberg 

1985). The cerebellum (excluding vermis) was used as reference region. Frames recorded 

between 5 and 60 min were used for the linear fit (Hoshi et al.).  

In order to investigate the relationship between behavioral performance, modeling parameters 

and regional dopamine synthesis capacity (Ki), partial Pearson’s correlations using age and 

sex as covariates, were performed using a significant threshold of p< 0.008 (i.e. Bonferroni-

corrected p < 0.05 for 6 tests). All analyses were performed in Statistical Package for Social 

Science (IBM SPSS statistics), version 23. 

 

 

Results  

Behavioral Results  

Overall, participants were better at learning go responses compared to no-go responses 

evidenced by increased responding to go vs. no-go cues over trials (z = 61.1; p < 0.0001). As 

expected, cue valence (win vs lose cues) also influenced responding (z = -26.6; p < 0.0001). 



Participants were better at learning go and no-go responses coupled to wins compared to 

losses evident by the significant interaction between action and valence (z = 22.0; p < 

0.0001). Furthermore a significant difference in learning go vs. no-go cues was observed 

between groups whereby older adults demonstrated a significant decrease in go vs. no-go 

learning (z = -43.5; p < 0.0001) compared to younger adults. A significant age-related 

difference was observed between groups for the interaction between action and valence, 

whereby older adults demonstrated reduced preference for learning go responses coupled to 

wins vs. losses (z = -14.2; p < 0.0001) compared to younger adults.   

 

 

 

 

 

FIGURE 2 NEAR HERE 

Figure 2. Go/no-go task performance in young and older adults: Proportion of “go” 

responses across the task is shown respectively for younger (A) and older (B) participants for 

each condition. Young participants learnt better to make active choices to gain rewards (go to 

win), than to avoid losing (go to avoid losing); the proportion of inappropriate “go” 

responses in “no-go” conditions was furthermore higher across the task when inaction was 

necessary to gain a reward (no-go to win), than to avoid punishment (no go to avoid losing) 

(A). Older adults also learnt better to make active choices to gain rewards; however unlike 

younger adults, demonstrated similar learning curves for passive (no-go) conditions 



independent of valence (B). Proportion of “go” responses (+/- s.e.m.) in the four task 

conditions indicating significant differences between young and older adults. Values are 

mean  s.e.m.  

 

 

 

Computational modeling parameters  

The previously described reinforcement learning (Q-learning) model was used to fit 

performance of this task on the current data set. The parameters’ medians of the two age 

groups for the 6 parameters of the winning model were compared using non-parametric Mann 

Whitney U tests (see Figure 3 and Supplementary Table 1), demonstrating a significant age-

related difference in reward sensitivity (p < 0.001) and punishment sensitivity (p < 0.001). 

Age-related differences in learning rate (p = 0.024) and lapse rate (p = 0.032) were also 

observed, however these effects did not survive Bonferroni correction for multiple 

comparisons (corrected significant p value < 0.008). To investigate whether differences in the 

modeling parameters were related to more intact cognitive function in older adults, we 

correlated each parameter with neuropsychological measures (namely the Stroop Test, 

Logical Memory I and II and test of attentional performance revealing no significant results 

Supplementary tables 2 – 7). Furthermore no significant correlation between each modeling 

parameter was observed taking the whole sample together (Supplementary table 8a) or within 

the young and older groups separately (Supplementary table 8b and 8c) 



 

 

     FIGURE 3 NEAR HERE 

Figure 3. Comparison of modeling parameters between young and older adults. Reward and 

punishment sensitivity are shown on a different scale. A non-parametric analysis was 

performed using Mann Whitney U tests to assess for age-related differences in modeling 

parameters across groups. A significant age-related difference in punishment and reward 

sensitivity was observed between groups (** p < 0.01 following Bonferroni correction for 

multiple comparisons). Values indicate the mean and interquartile range. 

 

Analysis of brain morphometric differences 

The voxel-wise comparison between young and older adults was performed using the 

computational modeling parameters. Using a mask restricting the analysis to the striatum, we 

observed that differences caudate nucleus volume between young and older adults was related 

to learning rate (F-contrast; 57 voxels right; 127 voxels left; see Figure 4A-C; Table 2). By 

testing for the direction of this brain-behavioral association we demonstrated, that the volume 

of the caudate nucleus was associated with higher learning rate in older compared to younger 

adults (not shown). In fact, the volumes of the left (r = 0.55, p = 0.002; Figure 4D) and right (r 



= 0.87, p< 0.001; Figure 4E) caudate nucleus in older adults positively correlated with 

learning rate whereas only a weak negative correlation between the right caudate nucleus 

volume (r = -0.42, p = 0.04) and learning rate was observed in younger adults. 

We further performed a regression analysis in older adults to explore how the modeling 

parameters were associated with striatal volume within the older group, which revealed a 

significant positive correlation between learning rate and bilateral caudate nucleus (448 

voxels caudate right; 184 voxels caudate left, see Figure 4F-H, Table 2). However, no such 

positive correlation was observed within the younger group, which displayed a negative 

correlation between the right caudate nucleus volume and learning rate. No significant main 

effect of learning rate with caudate volume was observed across the whole group.  

As previously described, we performed an additional exploratory voxel-based analysis using a 

more comprehensive mask including the pallidum, insula, prefrontal cortex, cingulate cortex, 

the surrounding medial cortex, SN/VTA and hippocampus. The regression analysis further 

revealed a significant positive correlation between the left pallidum and learning rate in older 

adults (Supplementary Table 9).  

Setting the Pavlovian bias, action bias, lapse rate, reward and punishment sensitivity as 

regressors of interest revealed no significant differences in the striatum both within and 

between groups. However, a significant cluster in the bilateral insula was observed in younger 

adults setting lapse rate as a parameter of interest (see Supplementary Table 10). Finally, no 

significant effects in WM were observed. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  

 
 MNI coordinates   

No. of 

voxels x (mm) y (mm) z (mm) Structure F Z p(cluster) p(peak) 

 

127 -15 -9 21 Left caudate 10.74 3.55 0.008 < 0.001 

       58 15 21 12       Right caudate 11.09 3.61 0.057 < 0.001 

         

No. of 

voxels x (mm) y (mm) z (mm) Structure t Z p(cluster) p(peak) 

 

448 -15 -9 21 Left caudate 4.62 4.10 < 0.001* < 0.001 

 

184 15 21 12 Right caudate 4.61 4.09 < 0.009 < 0.001 

 

 

 



Voxel based morphometry results for learning rate in the striatum in MNI space. Displayed 

are all clusters > 30 voxels. F statistics refer to structural differences between young and 

older adults and T statistics refer to regression analyses in older adults with respect to 

learning rate. * refers to clusters that survived family wise error correction (p(FWE) < 0.05). 

All displayed results were significant at peak-level (p(peak) < 0.001). Key: MNI, Montreal 

Neurological Institute.  

 

 



 

    

Figure 4. Voxel-based morphometry (VBM) analysis in young and older adults revealed an 

age group by learning rate interaction with caudate volume (sagittal (A), coronal (B) and 

axial (C) view), suggesting a difference in the association between volume and learning rate 

between both age groups. More specifically, the volume of the caudate nucleus was 

associated with higher learning rate in older compared to younger adults (not shown). The 

volumes of left (D) and right (E) caudate nucleus in older adults (in orange) positively 



correlated with learning rate whereas a weak negative correlation between the right caudate 

nucleus volume and learning rate was observed in younger adults (in green). Thin lines 

represent 95% confidence intervals. A regression analysis in older adults demonstrated that 

individual variability in learning rate positively correlated with bilateral caudate volume. 

Results are presented in sagittal (F), coronal (G) and axial (H) views using MNI coordinates 

at p < 0.001, uncorrected threshold. 

 

Dopamine synthesis capacity 

We assessed the relationship between task performance, computational modeling parameters 

and synthesis capacity of dopamine in the dorsal (caudate nucleus and putamen) and ventral 

striatum (nucleus accumbens) of older adults. In contrast to the voxel based morphometry 

(VBM) results, we found no significant relationship between task performance or learning 

rate with synthesis capacity of dopamine (Ki) in the caudate nucleus. A correlation between 

synthesis capacity in right caudate nucleus and lapse rate was detected (r = 0.49, p = 0.04), 

but did not survive Bonferroni correction for multiple comparisons. Furthermore, mean 

cluster values of the bilateral caudate of the brain-behavioral analysis with learning rate did 

not correlate with dopamine synthesis capacity in this region and thus did not moderate the 

relationship between caudate volume and learning rate.  

A positive correlation was also observed between percentage of correct answers in GW 

(actions pertaining to reward) and dopamine synthesis capacity in right (r = 0.54, p = 0.02) 

and left putamen (r = 0.47, p = 0.04), as well as between Pavlovian bias and dopamine 

synthesis capacity in the right nucleus accumbens (r = 0.47, p = 0.04). However these 

correlations did not survive Bonferroni correction for multiple comparisons (see 

supplementary Table 11).  

 



 

 

Discussion 

The aim of the study was to investigate how structural and neuromodulatory differences in the 

striatum modulate the impact of valence on learning action invigoration and inhibition 

(Guitart-Masip et al. 2011). Older adults demonstrated poorer performance in the probabilistic 

go/no-go task compared to younger adults. Assessment of striatal GM volume, revealed a 

significant group interaction between learning rate and volume of the caudate nucleus. Most 

importantly, differences in learning rate within the group of older adults, correlated with 

changes in volume but not dopamine synthesis capacity of the bilateral caudate nucleus. 

These findings suggest that structural age-related changes to the caudate may underlie 

learning deficits in aging.  

 

Consistent with previous studies, instrumental learning of action-valence associations 

(Guitart-masip et al. 2012a; Chowdhury 2013) was better for non-conflicting (GW and 

NGAL) versus conflicting conditions (NGW and GAL) in both young and older adults. 

Computational modeling using a task-specific reinforcement learning-model with a constant 

Pavlovian bias revealed older adults demonstrated a significant age-related decrease in 

reward and punishment sensitivity and a marked (albeit non-significant) reduction in the 

learning and lapse rate compared to younger adults. Although the behavioral analysis did 

show that the probability of choosing an action was differentially contingent on valence 

between groups, no difference in the Pavlovian bias was observed between young and older 

adults. This suggests that the age-related differences in the impact of valence on learning are 

better captured by the attenuation of reward and punishment sensitivity in older adults.  

The primary motivation of the study was to investigate how the structural integrity of the 

striatum in ageing may influence instrumental learning and Pavlovian biases in younger and 



older adults. In particular, we explored the neural substrates underlying age-related 

differences in learning using computational modeling and VBM. In a comparison of young 

and older adults, we found age-related differences in bilateral caudate nucleus volume related 

to learning rate. Furthermore, we found a positive correlation between caudate nucleus 

volume and learning rate in older adults, whilst a weak and unilateral negative correlation 

between caudate volume and learning rate was observed in younger adults. 

Collectively these results demonstrate that reduced learning in older adults strongly relates to 

the structural integrity of the caudate nucleus. According to reinforcement learning theories, 

the caudate nucleus, as part of the dorsal striatum (DS), has previously been linked to 

instrumental conditioning and action value representation (Samejima 2005; Seo et al. 2012). 

This contrasts with the ventral striatum VS, which has classically been linked to Pavlovian 

conditioning and expected value representation (O’Doherty et al. 2004; Schmidt et al. 2012). 

More specifically, it has been suggested that the caudate nucleus may be implicated in goal-

directed behavior and thus may directly mediate instrumental learning performance 

(Liljeholm and O'Doherty 2012). Moreover, a previously conducted functional MRI study in 

young adults using a variation of this task that does not require learning (Guitart-Masip et al. 

2011), demonstrated an association between the anticipation of action value and activity in the 

DS and suggests the DS may be crucial for evaluating the weight of an action. Thus it is 

conceivable that degeneration to the DS, i.e. as a result of normal aging, could impair 

instrumental learning performance. Furthermore previous studies have shown age-related 

reductions in RPE representation, and thus learning, and not reward value representation, may 

be responsible for poorer performance in older adults using other reward-based probabilistic 

tasks (Chowdhury et al., 2013; Samanez-Larkin et al. 2014). In summary, our findings are 

consistent with the role of the DS in action value learning and indicate structural age-related 

differences in this brain region impair action learning in older age. On the contrary, no clear 

relation between DS volume and learning was observed within the group of young adults.   



 

The use of high-field MRI represents a novel aspect of our study and strengthens the VBM 

results since the increased signal to noise ratio at 7T permits superior differentiation of GM 

from WM in both cortical and subcortical areas (Duyn 2012; Plantinga et al. 2014). 

Furthermore, direct comparisons of T1-weighted images acquired at 7T compared to lower 

field strength scans, have confirmed better edge detection power in the basal ganglia region 

and more precise GM segmentation in subcortical regions such as the striatum using ultra 

high-field MRI (Cho et al. 2010). Through our multimodal neuroimaging approach, we were 

able to assess structural differences and dopamine synthesis capacity in the striatum in the 

same older adults. In doing so we revealed that the positive correlation between the structural 

integrity of the caudate nucleus and learning rate was not supported by a comparable 

correlation with dopamine synthesis capacity. This discrepancy may suggest that differences 

in the rate of learning from rewards and negative outcomes may not be dependent on 

dopamine.  However the lack of association between learning rate and dopamine synthesis 

capacity may have also been influenced by the limited sample size. 

 

Considering a large body of literature stressing a role for dopamine in reinforcement learning, 

the findings presented might seem controversial. According to an influential RPE model, 

changes in phasic dopamine signals reflect RPE (Schultz 1998, 2002) that are reported to the 

striatum, where positive RPE reinforce rewarded actions and negative RPE extinguishes 

unrewarded actions (Frank et al. 2004). Moreover, there is ample genetic and 

pharmacological evidence supporting an involvement of dopamine in learning (Fossella et al. 

2002). Furthermore, neurocognitive models of Parkinsonism imply that learning in PD 

patients is impaired due to reduced dynamic dopaminergic modulation required for positive 

and negative RPE (Frank 2005) and numerous studies suggest that dopamine mediated basal 



ganglia pathways are required for reward and punishment-based learning (Kravitz et al. 2012; 

van der Schaaf et al. 2013 ). However, at least one study has shown how manipulation of 

dopamine levels in humans using L-DOPA or dopamine antagonists only affects learning 

through rewards (Pessiglione et al. 2006). Most importantly, computational modeling 

approaches using alternative instrumental learning tasks that provide a more subtle approach 

to differentiate between learning and asymptotic performance have shown that dopamine 

agonists or antagonists do not influence the learning rate latent variable (Eisenegger et al. 

2014; Lee et al. 2015), despite modulating functional activation in the striatum. These 

findings suggest that dopamine may not always be the main influencer of learning rate in 

reinforcement learning tasks and may rather relate to exploitation of rewards (Shiner et al. 

2012; Smittenaar et al. 2012; Averbeck and Costa 2017). Nonetheless, interindividual 

differences in baseline dopamine may also impact these pharmacological effects evident by a 

previous study demonstrating Bromocriptine can enhance reward-based reversal learning in 

young adults with relatively low striatal dopamine synthesis capacity, yet can paradoxically 

impair it in those with high dopamine synthesis capacity (Cools et al. 2009). 

 

In line with the controversial role of dopamine, a recent study using a similar task in 

Parkinson’s disease patients, revealed dopaminergic medication had no overall effect on 

learning, although “on” medication state influenced learning patterns promoting NGW and 

inhibiting GAL (van Wouwe et al. 2017). Another study delivers further proof of the 

uncertain role of dopamine in this context, showing L-DOPA leads to improved performance 

in the NGW condition and decreases the strength of the Pavlovian bias (Guitart-Masip et al. 

2013). In this study the authors speculated that the decreased coupling between action and 

valence with L-DOPA, could be a result of increased working memory and executive 

functions as a result of increased dopamine in the prefrontal cortex. Furthermore additional 



neuromodulators should also be considered. For example serotonin has been attributed a role 

in behavioral inhibition (Dayan and Huys 2009; Guitart-masip et al. 2014) and learning from 

punishment (Crockett et al. 2012, den Ouden et al. 2013), while acetylcholine has also been 

shown to finely tune representations of reward (Suzuki and Amaral 2004) 

 

Some important methodological limitations should be considered on interpretation of these 

findings. Firstly, VBM analysis at 7T has been challenged, due to greater field 

inhomogeneities and GM volume estimation differences when compared to 3T (Belaroussi et 

al. 2006) although GM volume definition in the basal ganglia has proved to be reliable (Seiger 

et al. 2015). In order to reduce field inhomogeneities we applied a bias correction step and 

carefully inspected all GM segmentations. Second, the SN/VTA demonstrates poor contrast in 

T1-weighted images and is not reliably segmented in GM. Additional MRI sequences 

demonstrating superior contrast in these regions e.g. using T2*-weighted images or 

Quantitative Susceptibility Maps at 7 T (Deistung et al. 2013; Betts et al. 2016) would be 

desired to further identify the role of the midbrain in instrumental learning. Third, whilst 

VBM is thought to identify volumetric variations, the nature of GM differences identified by 

this method are still poorly understood and could also depend on neuronal size or density, 

dendritic arborization or even changes in the neurophil (Mechelli et al. 2005). Furthermore, 

we acknowledge our limited sample size for both VBM and PET analyses may have led to an 

overestimation of significance due to noisy measures (Loken and Gelman 2017), but 

conversely may have also limited our ability to detect an association between dopamine 

synthesis capacity and the modeling parameters. Finally, we acknowledge that it is difficult to 

interpret differences in absolute Pavlovian bias values across subjects since these values are 

contingent on each individual’s reward/punishment sensitivity. 

 



In the future it would be desirable to extend these findings using alternative dopaminergic 

tracers i.e. to assess how age-related change in postsynaptic receptor density may influence 

Pavlovian learning in ageing. Indeed negative correlations with age have been previously 

reported for D1 (Wang et al. 2008; Bäckman et al. 2009) and D2-like receptor density in the 

striatum (Antonini et al. 1993), as well as for presynaptic dopamine transporter (DAT) (van 

Dyck et al. 1995; Erixon-Lindroth et al. 2005). More specifically, recent work identified an 

association between the variability of striatal D1 receptor density, in particular in the DS, and 

behavioral measures using a variant of the same go/no-go task (de Boer et al. 2019). However 

these effects did not appear to be influenced by age. In future, pharmacological intervention 

studies targeting additional neuromodulatory systems would also be desirable in order to 

determine the role of acetylcholine and serotonin in Pavlovian learning.  

 

Using a combination of structural MRI, f-DOPA PET and computational modeling, we 

identified a dissociation between structural and neuromodulatory influences on Pavlovian 

learning using a go/no-go task that orthogonalizes action and valence. Our study revealed that 

age-related differences in the caudate nucleus were associated with learning rate, 

demonstrating the structural integrity of the dorsal striatum may be an important neural 

substrate underlying learning deficits in old age. No significant relationship between striatal 

dopamine synthesis capacity and learning rate was observed suggesting that learning in older 

age might depend more on structural compared to neuromodulatory age-related differences in 

the striatum.  
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