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ABSTRACT
The phylogenetic bootstrap is the most commonly used method for assessing statistical1

confidence in estimated phylogenies by non-Bayesian methods such as maximum parsimony and2

maximum likelihood (ML). It is observed that bootstrap support tends to be high in large3

genomic datasets whether or not the inferred trees and clades are correct. Here we study the4

asymptotic behavior of bootstrap support for the ML tree in large datasets when the competing5

phylogenetic trees are equally right or equally wrong. We consider phylogenetic reconstruction as6

a problem of statistical model selection when the compared models are nonnested and7

misspecified. The bootstrap is found to have qualitatively different dynamics from Bayesian8

inference, and does not exhibit the polarized behavior of posterior model probabilities, consistent9

with the empirical observation that the bootstrap is more conservative than Bayesian10

probabilities. Nevertheless bootstrap support similarly shows fluctuations among large datasets,11

with no convergence to a point value, when the compared models are equally right or equally12

wrong. Thus in large datasets strong support for wrong trees or models is likely to occur. Our13

analysis provides a partial explanation for the high bootstrap support values for incorrect clades14

observed in empirical data analysis.15

Key words: Bootstrap, model selection, star-tree paradox, support value16

INTRODUCTION17

Recently Yang and Zhu (2018) characterized the asymptotic behaviors of Bayesian model18

selection in large datasets. When two models are both right or are equally wrong and indistinct,19

the posterior model probability varies among datasets according to a statistical distribution such20

as U(0,1), whereas one might expect it to converge to the point value 1
2 . Even more disturbingly,21

when the two models are equally wrong and distinct, the posterior model probability approaches22

∼ 100% in some datasets and 0% in others. This polarized behavior may be a major reason for23

the observation that in Bayesian analysis of large phylogenetic datasets, posterior probabilities24

for trees or clades are most often close to 100%, whether or not the relationships are correct.25
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For non-Bayesian methods including maximum parsimony (Fitch, 1971), neighbor26

joining (Saitou and Nei, 1987), and maximum likelihood (ML, Felsenstein, 1981), confidence for27

inferred trees or clades is most often assessed using Felsenstein’s (1985) phylogenetic bootstrap.28

An interesting question is whether bootstrap exhibits similar behaviors as the posterior model29

probabilities. In modern phylogenomic studies both posterior probabilities and bootstrap support30

values tend to be ∼ 100%, whether or not the clades or trees are correct. Such results lead to31

widespread mistrust for bootstrap support values in large datasets. For example, Chan et al.32

(2020) wrote that “high bootstrap support did not necessarily reflect congruence or support for33

the correct topology. This study reiterates findings of some previous studies, which demonstrated34

that traditional bootstrap values can produce positively misleading measures of support in large35

phylogenomic datasets.”36

Bootstrap was originally developed by Efron (1979) to calculate the standard error for a37

parameter, by resampling the original data and studying the variation among the bootstrap38

resample datasets. It has since been used to conduct all sorts of analyses in Frequentist statistics,39

such as correction for bias, calculation of standard errors, construction of confidence intervals,40

and performing significance tests (Efron and Tibshirani, 1993; Davison and Hinkley, 1997). In41

phylogenetics, bootstrap was introduced by Felsenstein (1985) to assess the confidence in42

estimated phylogenetic trees. Although it follows the same operational procedure of resampling43

data points from the observed dataset, bootstrap in phylogenetics differs from its use in bias44

correction or in confidence-interval construction, in that a statistical interpretation has been45

illusory despite numerous efforts (Zharkikh and Li, 1992; Hillis and Bull, 1993; Felsenstein and46

Kishino, 1993; Berry and Gascuel, 1996; Efron et al., 1996; Holmes, 2003; Susko, 2009).47

Modifications to the procedure have also been made, including the complete-and-partial48

bootstrap (Zharkikh and Li, 1995), correction for first-order biases (Susko, 2010), or adjustment49

for short branches (Lemoine et al., 2018). These correct for the perceived bias in the procedure or50

to make it agree better with standard ideas of confidence levels and hypothesis testing.51

Its interpretation aside, phylogenetic bootstrap is the most widely used procedure for52

assessing the confidence in estimated phylogenies by non-Bayesian methods. Felsenstein’s 198553

paper is a citation classic in all sciences. For Bayesian methods, the posterior probability for the54

inferred tree provides a natural measure of uncertainty (Rannala and Yang, 1996), and bootstrap55

is in theory not needed in Bayesian inference. However, the sensitivity of Bayesian model choice56

to the prior (O’Hagan and Forster, 2004) and the polarized behavior of Bayesian model selection57

under model misspecification (Yang and Zhu, 2018) have prompted the application of bootstrap58

in Bayesian model selection as well, leading to methods such as Bayesian bagging (Rubin, 1981;59

Weng, 1989; Huggins and Miller, 2020). It is important to study the asymptotic behavior of60

phylogenetic bootstrap. Earlier simulation studies suggest that the phylogenetic bootstrap may be61

conservative, and that 70% (instead of 95%) means strong support (e.g., Hillis and Bull, 1993). It62

has been noted that bootstrap support is numerically less extreme than posterior model63

probabilities (e.g., Huelsenbeck and Rannala, 2004; Yang and Rannala, 2005).64

In this paper we explore the asymptotic behavior of phylogenetic bootstrap when the data65

size increases. We consider phylogenetic reconstruction as a statistical model selection problem,66

and treat phylogenetic trees as nonnested statistical models (rather than different values of a67

parameter in a well-specified model). We present an asymptotic theory for bootstrap model68

probability under different scenarios in the Appendix, and in the main paper illustrate the theory69

using canonical problems that are analytically tractable. We discuss phylogenetic reconstruction70

problems in the case of three or four taxa to illustrate the general theory.71

SUMMARY OF ANALYTICAL RESULTS72

Following Felsenstein and Kishino (1993) and Efron et al. (1996), we consider bootstrap as a73

general approach to assessing the confidence in the selected model in a model-selection problem.74
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Bootstrap in model selection75

The data are an independently and identically distributed (i.i.d.) sample of size n, x =76

{x1, · · · ,xn}, from the true data-generating model g(X). We compare K models, H j, j = 1, · · · ,K.77

Model H j specifies the density f j(X |θ j) with parameters θ j. Let θ̂ j be the MLE of θ j under78

model H j given data x. When n→ ∞, θ̂ j→ θ j∗, where θ j∗ minimizes the Kullback-Leibler (K-L)79

divergence from model H j to the true model,80

D j =
∫

g(X) log
g(X)

f j(X |θ j∗)
dX . (1)

If H j is correct, θ j∗ will be the true parameter values, with D j = 0. Otherwise if H j is wrong, θ j∗81

will be the best-fitting or pseudo-true parameter values, with D j > 0. In this paper we focus on82

the case where all K models have the same K-L divergence to the true model. Two models f1 and83

f2 are said to be equally right if D1 = D2 = 0, and equally wrong if D1 = D2 > 0. If two models84

are unidentifiable at their pseudo-true parameter values, that is, if85

f1(X |θ1∗) = f2(X |θ2∗) for almost every X , (2)

they are said to be indistinct. This can occur when both models are right (with D1 = D2 = 0) or86

when both are wrong (with D1 = D2 > 0). Otherwise if equation (2) does not hold for some X of87

nonzero measure, the models are said to be distinct. This can occur only if both models are wrong88

(with D1 = D2 > 0).89

The model selected by ML is the one that achieves the greatest log likelihood, ` j(θ̂ j) =90

log f j(x|θ̂ j). To assess the confidence on the selected model, we calculate the bootstrap91

probability. Let x∗b = {x∗b1, . . . ,x
∗
bn} be a bootstrap sample, formed by resampling with92

replacement n times from the original data x. Let θ̂ ∗b be the MLE from a bootstrap sample x∗.93

Here we follow the convention of using the superscript ∗ to indicate a bootstrap sample, and the94

subscript ∗ for the true or pseudo-true parameter values. We assume that θ j∗, θ̂ j, and θ̂ ∗j are inner95

points in the parameter space. The proportion of bootstrap replicates in which model j is the96

optimal model is the bootstrap probability or bootstrap support Pj for model j. For example, in97

the case of two models, the bootstrap probability for model H1 is98

P1(x) = P
{

log f1(x∗|θ̂ ∗1 )> log f2(x∗|θ̂ ∗2 )
∣∣x}≈ 1

B ∑
b
I`1(θ̂

∗
1 )>`2(θ̂

∗
2 )
, (3)

where ` j(θ̂
∗
j ) = log f j(x∗|θ̂ ∗j ) is the log likelihood value for model j, calculated at the MLE (θ̂ ∗j )99

and where the indicator function IA is 1 if A is true or 0 otherwise. Note that P1 is a function of x100

and is a random variable. We are interested in the asymptotic distribution of P1 when x varies.101

In phylogenetics, the models under comparison are the tree topologies for the given set of102

species, while each data point corresponds to one site or one column in the alignment. While the103

bootstrap is applicable as long as the inference method is statistically consistent (Felsenstein,104

1985), we focus on ML in this paper. In phylogenetics, bootstrap is commonly used to attach105

support values for clades or splits on the phylogeny, calculated as the proportion of bootstrap106

trees that contain the splits. Here we focus on the bootstrap probability for the whole model. In107

the case of simple trees with three or four species with only one internal branch, the two108

measures are equivalent. We assume that the number of bootstrap replicates B is large so that the109

sampling errors due to limited number of bootstrap replicates is negligible.110
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The asymptotic behavior of bootstrap model selection under different scenarios111

We develop an asymptotic theory of bootstrap model selection in the Appendix. In general, when112

equally right or equally wrong models are compared, bootstrap model probabilities have a113

non-degenerate distribution. In the case of two equally wrong and distinct models, the bootstrap114

model probability P1 has the distribution U(0,1).115

The case of two equally wrong and distinct models with no parameters provides valuable116

insights into the differences between bootstrap and Bayesian methods. The log-likelihood ratio117

between the two models is118

∆ = log
f1(x)
f2(x)

, ∆
∗ = log

f1(x∗)
f2(x∗)

, (4)

for the original data x and the bootstrap resample data x∗, respectively. Each of these is a sum of n119

i.i.d. terms. Thus E(∆) = nE log f1(X)−nE log f2(X) = n(D2−D1) = 0 (Equation 1). Let120

σ
2 = V

{
log

f1(X)

f2(X)

}
=
∫

g(X)

[
log

f1(X)

f2(X)

]2

dX . (5)

When n→ ∞, ∆∼ N(0,nσ2) and ∆∗|x∼ N(∆,nσ2), according to the central limit theorem. Thus121

P1 = P{∆∗ > 0|x}= Φ
(

∆√
nσ

)
→ U(0,1), (6)

where Φ is the cumulative distribution function (CDF) for N(0,1).122

In Bayesian comparison of two equally wrong models with no parameters, ∆ is the log123

Bayes factor. With equal prior probabilities (1
2 for each model), this is related to the posterior124

model probability through ∆ = log P1
1−P1

or P1 =
e∆

e∆+1 . As ∆ behaves like a random walk when n125

increases, it is nearly impossible for ∆ to be in a small interval around 0, say, −5 < ∆ < 5 which126

corresponds to 0.007 < P1 < 0.993. In other words, for large n, the posterior probability will be 0127

in half of the datasets and 1 in the other half. This polarized behavior also occurs when the128

compared models, equally wrong and distinct, have parameters as the Bayes factor is dominated129

by the random-walk term (Yang and Zhu, 2018). The analysis here suggests that bootstrap130

probability has a qualitatively different behavior, as it contrasts ∆∗ for the bootstrap sample with131

∆ for the original data.132

1. ILLUSTRATIVE EXAMPLES133

We present several simple examples to illustrate the asymptotic behavior of bootstrap model134

probability under different scenarios when the data size n→ ∞. In the first two examples two135

models are equally wrong and distinct, and the bootstrap probability P1 varies among datasets136

like a random number, P1 ∼ U(0,1) (Equation 6).137

Problem 1 fair-coin paradox, with equally wrong models and no parameters.138

Suppose a coin is fair with the true probability of heads to be p = 0.5, and we flip the coin n139

times to compare two models H1 : p = 0.4 and H2 : p = 0.6. The dataset is x = {x1, . . . ,xn},140

where xi takes the value 1 for heads and 0 for tails, and has the bernoulli distribution. The data141

can be summarized as the proportion of heads in n tosses, x̄, which is approximately normal142

N(1
2 ,

1
4n). H1 is favored if x̄ < 1

2 , and this happens in half of the datasets.143

Given x, the bootstrap sample x∗b = {x∗b1, · · · ,x∗bn}, where x∗bi is bernoulli with probability144

x̄, can be summarized as the bootstrap sample mean x̄∗, which is approximately normal, with145

x̄∗|x∼ N(x̄, x̄(1−x̄)
n ) ≈ N(x̄, 1

4n). The bootstrap sample x∗b favors model H1 if and only if x̄∗ < 1/2.146

Thus147
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Fig. 1. Histogram/density of bootstrap model probability P1 in comparisons of two models. (A) Problem 1 (the fair-coin paradox)
in which a fair coin (with p = 0.5) is tossed n times to compare two equally wrong and distinct models: p = 0.4 and p = 0.6. (B)
Problem 2 in which the true model is N(0,1) while the two compared models, N(µ,1/τ1) and N(µ,1/τ2) with τ1 < 1 < τ2, are
equally wrong and distinct. (C) Problem 3 (the fair-balance paradox) where the true model is N(0,1) and the two compared
models, N(µ,1/τ), µ < 0 versus N(µ,1/τ), µ > 0, are equally right (if τ = 1) or equally wrong and indistinct (if τ 6= 1). (D)
Problem 4 (equally right models). The true model is N(0,1) while the two compared models, N(µ,1) versus N(0,1/τ), are both
right. Black dashed line is for the expensive simulation generating x and x∗, the red dashed line is for simulation generating x̄ and
s2, while blue solid line is for the analytical approximation by Equation 14. The insets characterize the problems, with the true
models represented as filled circles and the pseudo-true parameter values as empty circles, while the lines represent the parameter
space for each model. The settings are n = 105,B = 3×104, and R = 105 for problem 1, n = 104,B = 3×104, and R = 104 for
problem 2, n = 104,B = 3×104, and R = 104 for problem 3, and n = 104,B = 103, and R = 104 for problem 4.

P1 = P{x̄∗ < 1
2

∣∣x} ≈Φ

(
1/2−x̄√

1/(4n)

)
→ U(0,1), as n→ ∞. (7)

Thus P1 varies like a random number among datasets (Fig. 1A). Alternatively we have ∆ =148

`1− `2 = 2n(x̄− 1
2) log 0.4

0.6 ∼ N(0,nσ2) and ∆∗|x∼ N(∆,nσ2), with σ = log 0.4
0.6 , so that Equation149

6 gives P1 ∼ N(0,1).150

Problem 2 Normal distribution, equally wrong and distinct models with free151

parameters. Suppose the true model is N(0,1) and we consider H1 : N(µ,1/τ1) and152

H2 : N(µ,1/τ2), where µ is a free parameter while the precisions τ1 and τ2 are given with153

log(τ2/τ1) = τ2− τ1 so that the two models are equally wrong (D1 = D2 > 0) (Yang and Zhu,154

2018). We use τ1 = 0.25 and τ2 = 2.58666. Under each model, the pseudo-true parameter value is155

µ∗ = 0 and H1 and H2 are two equally wrong and distinct models. Note that H1 is over-dispersed156

and H2 is under-dispersed. Under the model N(µ,1/τ) with known τ , the log likelihood is157

`=−n
2

log(2π)+
n
2

logτ− τ

2

n

∑
i=1

(xi−µ)2, (8)

with µ̂ = x̄. Thus `1 > `2 if and only if (τ2− τ1)∑
n
i=1(xi− x̄)2 > n log(τ2/τ1) or if and only if158

s2 = 1
n ∑

n
i=1(xi− x̄)2 > 1. We have ns2 ∼ χ2

n−1 ≈ N(n−1,2(n−1)).159
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Given x, the bootstrap sample x∗ favors H1 if the sample variance s2∗ > 1. We have160

ns2∗/s2
∣∣x∼ χ2

n−1 ≈ N(n−1,2(n−1)). For large n, re-sampling from the empirical distribution161

represented by the observed data x is approximately equivalent to sampling from the continuous162

distribution N(x̄,s2). Thus163

P1 = P{s2∗ > 1
∣∣x} ≈Φ

(
((n−1)/n)s2−1√

2(n−1)/n2

)
→ U(0,1), as n→ ∞. (9)

This is confirmed in Fig. 1B.164

Alternatively we have ∆ = `1− `2 =
n
2(τ2− τ1)(s2−1) ∼ N(0,nσ2) and ∆∗

∣∣∆∼165

N(∆,nσ2), with σ = 1√
2
(τ2− τ1), so that P1 = P{∆∗ > 0

∣∣x} ∼ N(0,1).166

If the two compared models are both right (with D1 = D2 = 0) or are equally wrong and167

indistinct (with D1 = D2 > 0), then P1 varies among datasets according to a nondegenerate168

distribution, which may and may not be U(0,1)), as illustrated in the next two examples.169

Problem 3 (fair-balance paradox with two equally right or equally wrong and170

indistinct models). The true model is N(0,1) and the two compared models are N(µ,1/τ),171

µ < 0 and N(µ,1/τ), µ > 0, with τ given. If τ = 1, the two models are equally right. If τ 6= 1, the172

two models are equally wrong (because of the assumed incorrect variance) and indistinct173

(because the pseudo-true parameter value µ∗ = 0 under each model). Model 1 is favored if and174

only if the sample mean x̄ < 0. As x̄∼ N(0,1/n) and x̄∗|x∼ N(x̄,1/n), we have175

P1 = P{x̄∗ < 0|x}= Φ(−
√

nx̄)→ U(0,1), as n→ ∞. (10)

This is confirmed in Fig. 1C.176

Problem 4 Normal-distribution example with an infinite spike at 1
2 in the P1177

distribution. The true model is N(0,1) and the two compared models are N(µ,1) and N(0,1/τ).178

In H1, µ∗ = 0 while in H2, τ∗ = 1, so the two models are equally right. The data x may be179

summarized as the sample mean x̄ and sample variance s2 = 1
n ∑i(xi− x̄)2. The MLE of the180

parameter is µ̂ = x̄ under H1 and τ̂ = n/∑x2
i = 1/(s2 + x̄2) under H2. The log-likelihood values181

are182

`1(µ̂) =−1
2 ∑(xi− x̄)2 =−1

2ns2,

`2(τ̂) =−n
2 log

(1
n ∑x2

i
)
− n

2 =−n
2 log(s2 + x̄2)− n

2

(11)

Thus `1 > `2 if and only if183

x̄2 > es2−1− s2 ≈ 1+(s2−1)+ 1
2(s

2−1)2− s2 = 1
2(s

2−1)2, (12)

or if and only if184

|x̄|> 1√
2
|s2−1|. (13)

A large deviation of x̄ from 0 supports H1, whereas a large deviation of s2 from 1 favors H2. Also185

x̄∼ N(0, 1
n) and s2 ∼ 1

n χ2
n−1 ≈ N(n−1

n , 2(n−1)
n2 ) or 1√

2
(s2−1)∼ N(0, 1

n), and x̄ and s2 are186

independent. Thus Equation 13 holds and H1 is the selected model in half of the datasets.187

Given x, we have x̄∗|x∼ N(x̄,s2/n)≈ N(x̄, 1
n) and 1√

2
(s2∗−1)

∣∣∣x∼ N
( 1√

2
(s2−1), 1

n

)
and188

x̄∗ and s2∗ are conditionally independent. Let z1 =
√

nx̄ and z2 =
√n

2(s
2−1), with z1 and z2 from189

N(0,1). Let z∗1 =
√

nx̄∗ and z∗2 =
√n

2(s
2∗−1), with z∗1|x∼ N(z1,1) and z∗2|x∼ N(z2,1) to be190

conditionally i.i.d. Then191

P1 = P{|z̄∗1|> |z̄∗2|
∣∣x}. (14)
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This problem is analyzed in the SI text, available on Dryad at192

https://doi.org/10.5061/dryad.7m0cfxprw. The limiting distribution of P1 when n→ ∞ is193

f (P1) =− log |2P1−1|. (15)

The density is symmetrical around 1
2 , is 0 at 0 and 1, and has an infinite spike at 1

2 , with194

the mean 1
2 and variance 1

36 . This is confirmed by simulation in Fig. 1D. The simulation is done195

in two ways. In the first, data x is sampled from N(0,1), and given x bootstrap samples x∗b are196

generated, with x̄∗ and s2∗ calculated to apply Equation 14. In the second approach, x̄∼N(0,1/n)197

and ns2 ∼ χ2
n−1 are sampled, and then x̄∗ ∼ N(x̄,s2/n) and ns2∗/s2 ∼ χ2

n−1 are generated to select198

the model for the bootstrap sample using Equation 14. Both approaches produce the same results199

as Equation 15.200

Problem 5 multivariate normal-distribution example. The true model is the201

(K−1)-variate normal distribution N(µ,Σ), with mean vector µ = (µ1, · · · , µK−1) where µ1 =202

· · ·= µK−1 = 0 and variance matrix Σ which has 1 on the diagonal and −1/(K−1) on the203

off-diagonal. The data are an i.i.d. sample of size n, x = {xi j}, i = 1, · · · ,n; j = 1, · · · ,K−1. Also204

let xiK = −(xi1 + · · ·+ xi,K−1) and µK =−(µ1 + · · ·+µK−1). We use the data to compare K205

models. Model H j, j = 1, · · · ,K, assumes µ j > µk for any k 6= j. The model has K−1 free206

parameters: µ1, · · · ,µK with the constraint µ1 + · · ·+µK = 0. The variance is assumed to be207

known, cΣ. The models are equally right if c = 1 and equally wrong if c 6= 1. An alternative208

formulation of the problem is to have only one parameter in model H j: µ j > µk with209

µk =−µ j/(K−1) for all k 6= j.210

Let x̄ = {x̄ j} and x̄∗ = {x̄∗j}, with211

x̄ j =
1
n ∑

i
xi j, x̄∗j =

1
n ∑

i
x∗i j, j = 1, · · · ,K, (16)

be the sample means from dataset x and from bootstrap sample x∗, respectively. Then212

x̄∼ N(µ, 1
nΣ) and approximately x̄∗|x∼ N(x̄, 1

nΣ). Without the constraint under each model H j:213

µ j > µk, the MLEs of µ are the sample means. With the constraint, H j is the selected model if x̄ j214

is the greatest among x̄1, · · · , x̄K . The bootstrap probability for model H1 given data x is215

P1 = P(x̄∗1 > x̄∗2, · · · , x̄∗1 > x̄∗K|x). (17)

Now for any j 6= k,216

σ
2
jk = V(x̄ j− x̄k) =

2
n −2 · 1

n · (−
1

K−1) =
2
n ·

K
K−1 . (18)

Let z = (z2, · · · ,zK)
T and z∗ = (z∗2, · · · ,z∗K)T , with z j =

x̄1−x̄ j
σ1 j

and z∗j =
x̄∗1−x̄∗j

σ1 j
, j = 2, · · ·K. We have217

V(z j) = 1,
Cor(z j,zk) = Cov(x̄1− x̄ j, x̄1− x̄k)/(σ1 jσ1k)

= [V(x̄1)−2Cov(x̄1, x̄ j)+Cov(x̄i, x̄ j)]/(σ1 jσ1k)

= 1
n(1+

1
K−1)

/
(2

n
K

K−1) =
1
2 .

(19)

Thus z∼ N(0,Σ0) and z∗|x∼ N(z,Σ0), where Σ0 is a (K−1)× (K−1) variance matrix with 1 on218

the diagonal and 1
2 on the off-diagonal. Thus219

P1 = P(z∗2 > 0, · · · ,z∗K > 0|x) = Φ(z2, · · · ,zK). (20)
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Fig. 2. Marginal and joint distributions of P1,P2,P3 for problem 5 (the multivariate normal example with K = 3). The three
corners in the plots correspond to points (1, 0, 0), (0, 1, 0), and (0, 0, 1), while the center is ( 1

3 ,
1
3 ,

1
3 ). The number of replicates is

R = 106, with n = 106 and B = 103.
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Fig. 3. Marginal distribution of P1 in comparisons of K equally right or equally wrong and indistinct models based on the normal
distribution of Problem 5 (K = 3 in A and 6 in B). The sample size is n = 104. The number of simulated replicates is R = 104,
with B = 103, but the ‘theoretical’ distribution is based on simulating 106 replicates and using Equation 21.

As x̄∗j − x̄∗k = (x̄∗1− x̄∗k)− (x̄∗1− x̄∗j), the bootstrap probabilities for all K models given data220

x are221 
P1
P2
...

PK

=


Φ(z2,z3, · · · ,zK)

Φ(−z2,z3− z2, · · · ,zK− z2)
...

Φ(−zK,z2− zK, · · · ,zK−1− zK)

 (21)

For example, in the case of K = 3, a fast way of simulating the limiting distribution of222

(P1,P2,P3) is thus to generate (z2,z3)∼ N
((0

0

)
,
(

1 0.5
0.5 1

))
and then calculate (P1,P2,P3) by223

Equation 21. This is confirmed by the slow simulation of generating x and then x∗ in Fig. 2. The224

joint distribution of (P1,P2,P3) has peaks at the three corners, and is nearly flat around the center.225

By symmetry P1 has mean 1
3 , and by numerical integration using Equation 20, P1 has SD =226

0.25904. The probability that one of the models is strongly supported is close to 0 (table 1).227

Fig. 3A&B shows the marginal distribution of P1 when K = 3 and 6.228

Even though (P1,P2,P3) do not converge to the point value (1
3 ,

1
3 ,

1
3 ), extreme bootstrap229

support values are not highly frequent. Bootstrap probabilities are thus qualitatively different230

from Bayesian model probabilities.231
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Table 1. Proportions of data replicates with very high bootstrap probability (P1) in the multivariate normal example (Problem 5)

K 2 3 4 5

P{P1 > 0.90} 0.100 0.023 0.008 0.004
P{P1 > 0.95} 0.050 0.008 0.003 0.001
P{P1 > 0.99} 0.010 0.001 0.000 0.000

Figure 1
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Fig. 4. The star tree T0 and three binary rooted trees T1,T2, and T3 for (A) three or (B) four species. Branch length parameters,
shown next to the branches, are measured by the expected number of changes per site. The star tree is used to generate data, which
are analyzed by ML to compare the three binary trees.

2. BOOTSTRAP IN PHYLOGENETICS232

We consider ML reconstruction of phylogenies of three or four species (Fig. 4), under the JC233

model (Jukes and Cantor, 1969). We simulate data to verify the asymptotic theory and compare234

with Bayesian results from Yang and Zhu (2018).235

Case A (Fig. 5A&A’) involves equally right models. This is the star-tree paradox analyzed236

previously (Lewis et al., 2005; Yang and Rannala, 2005; Yang, 2007a; Susko, 2008). We use the237

rooted star tree T0 for three species with t = 0.2 (Fig. 4A) to generate datasets to compare the238

three binary trees. The JC model (Jukes and Cantor, 1969) is used both to generate and to analyze239

the data. The molecular clock (rate constancy over time) is assumed as well, so that the240

parameters in each binary tree are the two node ages (t0 and t1), measured by the expected241

number of nucleotide changes per site. The best-fitting parameter values are t0∗ = 0 and t1∗ = 0.2242

for each of the three binary trees, so that the three binary trees are equally right models.243

Case B (Fig. 5B&B’) involves equally wrong models that are indistinct. This is similar to244

case A except that the JC+Γ model (Jukes and Cantor, 1969; Yang, 1993) is used to generate245

data, with different sites in the sequence evolving at variable rates according to the gamma246

distribution with shape parameter α = 1. The data are then analyzed using JC (equivalently to247

JC+Γ with α = ∞), giving t0∗ = 0 and t1∗ = 0.16441 as the pseudo-true parameter values for each248

binary tree. The binary trees are equally wrong and indistinct models (D1 = D2 = D3 > 0).249

Case C (Fig. 5C&C’) involves equally wrong and distinct models. Like case B, the250

simulation model is JC+Γ with α = 1 and the analysis model is JC. However, the molecular clock251

is not assumed and unrooted trees are used. The true tree is the unrooted star tree T0 of Fig. 4B,252

with t1 = t2 = t3 = t4 = 0.2, with t0∗ = 0.01037 and ti∗ = 0.16409, i = 1, · · · ,4 for the binary trees253

(Fig. 4B). As t0∗ > 0, the three binary trees are equally wrong and distinct models (D1 = D2 =254

D3 > 0).255

In cases A and B, the data for three species have a multinomial distribution with five256
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Fig. 7

Fig. 5. The joint distribution of the bootstrap model probabilities in the star-tree problem. The star tree T0 of Fig. 4 is used to
simulate data (sequence alignments of n = 103 or 105 sites), and ML is used to compare the three binary trees T1,T2, and T3 to
calculate their bootstrap probabilities (P1,P2,P3). In (A) and (A’), the true tree is the star tree T0 for three species of Fig. 4A, with
t = 0.2. Both the simulation and analysis models are JC, and the three binary trees are equally right models. In (B) and (C), the
true tree is the star tree T0 for three species of Fig. 4A, with t = 0.2. The simulation model is JC+Γ (with α = 1), and the analysis
model is JC. The three binary trees represent equally wrong and indistinct models. In (C) and (C’), the true tree is the star tree T0
for four species of Fig. 4B, with t1 = t2 = t3 = t4 = 0.2. The simulation model is JC+Γ (α = 1) and the analysis model is JC. The
three binary trees represent equally wrong and distinct models. The number of bootstrap samples B = 1000 and the number of
replicates is R = 106 for three-species trees and 104 for four-species trees.

categories corresponding to the five site patterns xxx, xxy, xyx, yxx, and xyz, where x,y,z are any257

distinct nucleotides. Let the frequencies of the informative site patterns xxy, xyx, yxx be x̄1, x̄2, and258

x̄3, while that for the two uninformative patterns xxx and xyz be x̄0. With the star tree being the259

true tree, the probabilities for the three informative site patterns are identical, with p1 = p2 = p3.260

Tree 1 specifies p1 > p2 = p3. Given data x, tree j is the ML tree if x̄ j is the greatest among261

x̄1, x̄2, and x̄3 (Yang, 2000). Then x̄ = (x̄1, x̄2, x̄3) is approximately normal, with mean (p, p, p),262

and variance p(1− p)/n and covariance −p2/n. Applying a multivariate normal approximation263

to the multinomial distribution, we see that the problem has the same mathematical structure as264

problem 5. Thus the bootstrap distribution for cases A and B should be identical to that in265

problem 5. We wrote a C program to simulate and analyze data for cases A and B. Given branch266

lengths t0 and t1, the probabilities for the five site patterns are calculated according to the JC267

model (Yang, 1994), and the data x are then generated by sampling from the multinomial268

distribution. Given data x, bootstrap dataset x∗ is sampled using the observed site-pattern269

frequencies in x. Then tree j is the ML tree for data x∗ if x̄∗j is the largest among (x̄∗1, x̄
∗
2, x̄
∗
3).270

In case C for four species, the informative site patterns are xxyy, xyxy and xyyx while there271

are 11 uninformative patterns. The binary tree has only five parameters, such that the model272

achieves a better fit to the observed data by having a positive internal branch length. As a result,273

the three binary trees are distinct models (with t0∗ > 0). Case C thus differs from problem 5, but274

has a similar symmetry in that the K-L distance between any pair of models is the same. From the275

general theory, the distribution of bootstrap probabilities (P1,P2,P3) is the same as that in problem276

5. We simulated data using EVOLVER, and generated bootstrap resample data using SEQBOOT.277

The data are then analyzed using BASEML in PAML (Yang, 2007b).278

Our theory predicts that the limiting distribution is the same in all three cases, with the279

mean 1/3 and SD 0.25904. This is confirmed by the simulation (Fig. 5), which gave the mean of280

P1 as 1/3 and the SD as 0.259. The bootstrap probabilities have modes at the corners, and281

roughly uniformly distributed around the center. While in case C, the Bayesian posterior282

probabilities show extreme polarized behavior, concentrated on three points: (1, 0, 0), (0, 1, 0),283

and (0, 0, 1) (Yang and Zhu, 2018, Fig. 4C&4C’), bootstrap probabilities are much more284

moderate and have a nondegenerate distribution.285
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Table 2. Proportions of datasets with extreme bootstrap or posterior (in parentheses) probabilities for the three binary trees in the
star-tree simulation

n P{Pmin < 1%} P{Pmin < 5%} P{Pmax > 95%} P{Pmax > 99%} E(Pmin) E(Pmax)

103 0.119 (0.234) 0.391 (0.550) 0.028 (0.205) 0.001 (0.079) 0.094 (0.067) 0.644 (0.754)
104 0.123 (0.812) 0.386 (0.931) 0.030 (0.606) 0.002 (0.450) 0.093 (0.011) 0.653 (0.897)
105 0.113 (0.979) 0.383 (0.992) 0.029 (0.853) 0.004 (0.773) 0.093 (0.001) 0.647 (0.964)

Note.— Pmin = min(P1,P2,P3) and Pmax = max(P1,P2,P3). Data are generated under JC+Γ with α

= 1, using the star tree for four species (a : 0.2,b : 0.2,c : 0.2,d : 0.2), and analyzed under JC. The
number of replicates is R = 103 and the number of bootstrap samples is B = 103. The probability

density of (P1,P2,P3) is shown in Fig. 5C&C’ for n = 103 and 105, respectively. Posterior tree
probabilities from the Bayesian analysis are shown in parentheses, from Yang and Zhu (2018,

table S1).

Table 3. Proportions of datasets with strong bootstrap or posterior (in parentheses) support for wrong trees in simulated datasets
for four species

n P{P1 < 1%} P{P1 < 5%} P{P23 > 95%} P{P23 > 99%}

103 0.031 (0.083) 0.109 (0.225) 0.019 (0.113) 0.002 (0.038)
104 0.009 (0.250) 0.044 (0.337) 0.005 (0.266) 0.000 (0.166)
105 0.000 (0.102) 0.001 (0.120) 0.000 (0.115) 0.000 (0.097)

Note.— P1 is the probability for the true tree, while P2 and P3 are for the two wrong trees, with
P23 = max{P2,P3}. Data were generated under JC+Γ with α = 1 on the unrooted tree T1 for four

species: ((a : 0.2,b : 0.2) : 0.002,c : 0.2,d : 0.2), and analyzed under JC. The number of simulated
replicates is R = 103, with B = 103. Posterior tree probabilities from the Bayesian analysis are

shown in parentheses, from Yang and Zhu (2018, table S2).

We also calculated the proportions of datasets in which the bootstrap and posterior286

probabilities for the three binary trees are extremely high (table 2). When the sequence length is287

n = 105, E(Pmax) = 0.647 using bootstrap method and 0.964 for the Bayesian method. If288

Pmax > 0.95, one of the models is strongly favored, and this occurs in 2.9% of datasets for the289

bootstrap and 85.3% for the Bayesian. In other words, it is much less likely to see high bootstrap290

support for equally wrong models than high posterior probabilities for them.291

DISCUSSION292

As mentioned in Introduction, the interpretation of bootstrap in model selection in general and in293

phylogenetics in particular is controversial. A number of studies have attempted to give bootstrap294

a Bayesian interpretation, that is, the bootstrap probability for a tree is the probability that the tree295

is correct. For example, Hastie et al. (2009, p.272) wrote that “[i]n this sense, the bootstrap296

distribution represents an (approximate) nonparametric, noninformative posterior distribution for297

our parameter.” The plug-in principle for bootstrap appears to support this interpretation:298

bootstrap probability P{∆∗ > 0|x} is an estimate of P{∆ > 0}, which is the probability that the299

ML tree is correct. In phylogenetics, such an interpretation was suggested by Efron et al. (1996),300

although the assumed prior for the corresponding Bayesian analysis has infinite branch lengths301

and is implausible biologically (Yang, 2014, p.176).302

Our analysis suggests qualitatively different asymptotic behaviors between bootstrap and303
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posterior probabilities for models or trees. The greatest difference occurs in the case of304

comparing equally wrong and distinct models. In that case, the posterior model probabilities305

show extreme polarized behavior, with ∼ 100% for one model and 0 for others. This behavior is306

because the log marginal likelihood ratio for two models (or the log Bayes factor) (∆) is307

dominated by a random-walk that deviates from 0 (which corresponds to the posterior probability308

1
2 for each model) at the rate of

√
n when n increases Yang and Zhu (2018), so that for large n, the309

posterior model probability is either 0 or 1. Bootstrap probabilities show a different behavior.310

While the log likelihood ratio for the bootstrap dataset (∆∗) also increases like a random walk311

when n increases, it is compared with the log likelihood ratio for the original dataset (∆) when the312

bootstrap model probability is calculated. As a result, whether the models are distinct or313

indistinct does not matter anymore.314
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APPENDIX. ASYMPTOTIC THEORY FOR BOOTSTRAP PROBABILITY IN MODEL SELECTION405

We use ML to compare K models, H j : X ∼ f j(X |θ j), j = 1, · · · ,K. The dataset, x = {x1, · · · ,xn},406

is an i.i.d. sample of from the true model g(X). Given x, we generate a bootstrap sample x∗ and407

analyze it using ML. The bootstrap probability for model H1 is the probability that model H1 has408

higher log likelihood than other models in the bootstrap sample.409

The case of two equally wrong and distinct models. We decompose the log-likelihood410

ratio between models H1 and H2 for the bootstrap dataset x∗ into several components, and study411

their dynamics when n→ ∞.412

∆
∗ ≡ log

f1(x∗|θ̂ ∗1 )
f2(x∗|θ̂ ∗2 )

= log
f1(x∗|θ̂ ∗1 )
f1(x∗|θ̂1)

− log
f2(x∗|θ̂ ∗2 )
f2(x∗|θ̂2)

+ log
f1(x∗|θ̂1)

f2(x∗|θ̂2)
≡ ∆A1−∆A2 +∆

∗
∗. (A1)

Model H1 is the selected model in the bootstrap sample if and only if ∆∗ > 0, so that the bootstrap413

probability for H1 given data x is P1 ≡ P{∆∗ > 0|x}. We are interested in the distribution of P1414

when x varies. First we consider the case where H1 and H2 are equally wrong and distinct. We415

show that ∆A1 and ∆A2 are Op(1) while ∆∗∗ is Op(n1/2), so that ∆∗ is dominated by ∆∗∗.416

Taking the same approach as in Dawid (2011) and Yang and Zhu (2018), we apply Taylor417

expansion to the log likelihood, log f1(x∗|θ1), for the bootstrap dataset x∗ around the MLE θ̂ ∗1 and418

then let θ1 = θ̂1. We have419

∆A1 = log f1(x∗|θ̂ ∗1 )− log f1(x∗|θ̂1)

≈ 1
2{(θ̂

∗
1 − θ̂1)}T (nJ1(θ̂

∗
1 )){(θ̂ ∗1 − θ̂1)}

≈ 1
2{
√

n(θ̂1−θ1∗)}T J1(θ1∗){
√

n(θ̂1−θ1∗)},
(A2)

where J1(θ1) = E{−∇2 log f1(X |θ1)} and ∇2 is the second derivatives with respect to θ1. From420

the plug-in principle, x∗ varies given θ̂ as does x given θ∗ (Efron and Tibshirani, 1993). We have421

√
n(θ̂ ∗1 − θ̂1)

d−→
√

n(θ̂1−θ1∗) (Bickel and Freedman, 1981; Cheng and Huang 2010, Theorem422

2), and423 √
n(θ̂1−θ1∗)∼ N

(
0, [J1(θ1∗)

−1]T I1(θ1∗)J1(θ1∗)
−1) , (A3)

where I1(θ1) = E{∇ log f1(X |θ1) ·∇ log f1(X |θ1)
T} (White, 1982, Theorem 3.2). Thus ∆A1 is a424

quadratic form of normal variates and is Op(1). If H1 is the true model, ∆A1 ∼ 1
2 χ2

d where d is the425

number of parameters in H1. Similarly ∆A2 = Op(1).426

We write the third term in Equation A1 as427

∆
∗
∗ ≡ log

f1(x∗|θ̂1)

f2(x∗|θ̂2)
=

n

∑
i=1

log
f1(x∗i |θ̂1)

f2(x∗i |θ̂2)
≡

n

∑
i=1

r∗i (x). (A4)

Define two log-likelihood ratios based on the original data x,428

∆∗ ≡ log
f1(x|θ1∗)

f2(x|θ2∗)
,

∆≡ log
f1(x|θ̂1)

f2(x|θ̂2)
=

n

∑
i=1

log
f1(xi|θ̂1)

f2(xi|θ̂2)
≡

n

∑
i=1

ri.
(A5)

Note that ∆∗ is a sum of n i.i.d. terms, so that when n→ ∞, ∆∗ ∼ N(0,nσ2), with E(∆∗) =429
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n(D1−D2) = 0 (Equation 1) and V(∆∗) = nσ2, where430

σ
2 ≡ Vg

{
log

f1(X |θ1∗)

f2(X |θ2∗)

}
=
∫

g(X)

[
log

f1(X |θ1∗)

f2(X |θ2∗)

]2

dX . (A6)

When n→∞, r̄ = 1
n ∑

n
i=1 ri→D1−D2 = 0 and s2 = 1

n ∑
n
i=1(ri− r̄)2→ σ2, so that ∆∼N(0,nσ2).431

Given data x, {r∗i } are conditionally independent, with expectation and variance432

E(∆∗∗|x) = nE

{
log

f1(x∗1|θ̂1)

f2(x∗1|θ̂2)

∣∣∣∣∣x
}
≈ n · 1

n

n

∑
i=1

log
f1(xi|θ̂1)

f2(xi|θ̂2)
=

n

∑
i=1

ri = ∆,

V(∆∗∗|x) = nV

{
log

f1(x∗1|θ̂1)

f2(x∗1|θ̂2)

∣∣∣∣∣x
}

= nE{(r∗i −E(r∗i ))2∣∣x} ≈ nσ
2.

(A7)

Thus ∆∗∗|x∼ N(∆,nσ2). The bootstrap probability for H1 is433

P1 = P{∆∗ > 0|x}= P{∆A1−∆A2 +∆
∗
∗ > 0|x} ≈ P{∆∗∗ > 0|x} ≈Φ( ∆√

nσ
)∼ U(0,1). (A8)

P1 varies among datasets like a random number.434

The case where there are no free parameters in the compared models has been discussed435

in the main paper. We have436

∆ = ∆∗ = log
f1(x)
f2(x)

, ∆
∗ = ∆

∗
∗ = log

f1(x∗)
f2(x∗)

, (A9)

with ∆∼ N(0,nσ2) and ∆∗ ∼ N(∆,nσ2), as n→ ∞. Thus437

P1 = P{∆∗ > 0|x}= Φ
(

∆√
nσ

)
→ U(0,1). (A10)

The case where the two models are equally right or are equally wrong and indistinct, that438

is, with f1(X |θ ∗1 ) = f2(X |θ ∗2 ) for almost every X . We have ∆∗ = 0 in Equation A5, and439

∆ = Op(1). As a result, ∆∗∗ = Op(1), as well as ∆A1 = Op(1) and ∆A2 = Op(1). From Equation440

A2, ∆A1 and ∆A2 have the same distribution, with E(∆A1−∆A2|x) = 0. Thus E(∆∗|x) = E(∆∗∗|x)441

= ∆. Let F be the CDF of ∆, which has mean 0. Then442

P1 = P{∆∗ > 0|x}= 1−F(−∆). (A11)

Thus with n→ ∞, P1 converges to a non-degenerate distribution, which is U(0,1) if and only if443

∆∗−∆ has the same distribution as −∆.444

DasGupta (2008, Chapter 29) discusses regularity conditions under which T ∗−T and445

T −E(T ) have the same distribution, so that the bootstrap plugin principle can be applied, where446

T is a statistic or function of data x. If those conditions are not satisfied, the standard bootstrap447

will fail as T ∗−T will not approximate T −E(T ). Problem 4 is one such case, and ∆∗−∆ and ∆448

have different distributions, and the limiting distribution of P1 is not uniform. As indistinct449

models are more similar to each other than distinct models and as P1 ∼ U(0,1) when the two450

models are distinct (and equally wrong), we conjecture that V(P1)6
1

12 , the variance of U(0,1).451

Problems 3 and 4 are examples of equally right or equally wrong but indistinct models.452

Problem 3 shows the U(0,1) distribution, while problem 4 shows a non-uniform distribution.453
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The case of K models. Let the K models be H1, · · · ,HK , all of which have the same K-L454

distance to the true model. Define455

∆∗ jk ≡ log
f j(x|θ∗ j)

fk(x|θ∗k)
, ∆ jk ≡

n

∑
i=1

log
f j(xi|θ̂ j)

fk(xi|θ̂k)
(A12)

for dataset x and456

∆
∗
∗ jk ≡

n

∑
i=1

log
f j(x∗i |θ̂ j)

fk(x∗i |θ̂k)
, ∆

∗
jk ≡

n

∑
i=1

log
f j(x∗i |θ̂ ∗j )
fk(x∗i |θ̂ ∗k )

(A13)

for bootstrap dataset x∗.457

First consider the case where the K models are equally wrong and distinct. As in the case458

of two models, ∆∗jk is dominated by ∆∗∗ jk so that ∆∗jk ≈ ∆∗∗ jk while ∆∼ N(0,nσ2
jk) and ∆∗∗ jk ∼459

N(∆ jk,nσ2
jk), with σ2

jk ≡ V
{

log f j(X |θ j∗)
fk(X |θk∗)

}
(see Equation A6). Given x, there will be a set of460

bootstrap probabilities (P1, · · · , PK). For example461

P1 = P{∆∗12 > 0, . . . ,∆∗1K > 0
∣∣x} ≈ P{∆∗∗12 > 0, . . . ,∆∗∗1K > 0

∣∣x}. (A14)

Let z = {z2, · · · ,zK−1} and z∗ = {z∗2, · · · ,z∗K−1}, where z j =
∆1 j√
nσ1 j

and z∗j =
∆∗1 j√
nσ1 j

. Let462

ρ jk = Cor(z j,zk) = Cor(∆1 j,∆1k) =
1

σ1 jσ1k
Cov

(
log

f1(X |θ1∗)

f j(X |θ j∗)
, log

f1(X |θ1∗)

fk(X |θk∗)

)
. (A15)

Thus z∼ N(0,Σ0) and z∗|x∼ N(z,Σ0), where Σ0 is a (K−1)× (K−1) variance matrix with 1 on463

the diagonal and ρ jk on the off-diagonal. We have464

P1 = P(z∗2 > 0, · · · ,z∗K > 0
∣∣x) = Φ(−z2, · · · ,−zK), (A16)

where Φ is the (K−1)-variate CDF of N(0,Σ0). Bootstrap probabilities for the other models,465

P2, · · · ,PK , are given similarly.466

When there is strong symmetry in the problem so that the K-L distance between any two467

models is the same, the variance matrix Σ0 will have 1 on the diagonal and ρ jk =
1
2 on the468

off-diagonal, and further simplifications are possible. The joint distribution of bootstrap model469

probabilities (P1, · · · , PK) can be simulated as follows (see Problem 5). Sample z = {z2, · · · ,zK} ∼470

N(0,Σ0) where Σ0 is (K−1)× (K−1), with 1 on the diagonal and 1
2 on the off-diagonal. Let471

z1 =−(z2 + · · ·+ zK). Then calculate472 
P1
P2
...

PK

=


Φ(z2,z3, · · · ,zK)

Φ(−z2,z3− z2, · · · ,zK− z2)
...

Φ(−zK,z2− zK, · · · ,zK−1− zK)

 . (A17)

If the K models under comparison are equally right or equally wrong and indistinct, ∆∗jk473

= Op(1). Then the bootstrap probabilities (P1, · · · ,PK) have a nondegenerate distribution.474

In the case where some of the K models are equally wrong and distinct while others are475

indistinct, the dynamics of bootstrap support values may be complex. See table S1 for examples.476
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Fig. S1. The density of marginal distribution of bootstrap support Pi, i = 1,2,3,4 for cases (a2),(b),(c) and (d).
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SI TEXT. ANALYSIS OF PROBLEM 4: MODELS OF NORMAL MEAN AND VARIANCE1

The true model is N(0,1) and the two compared models are N(µ,1) and N(0,ν). In H1, µ∗ = 02

while in H2, ν∗ = 1, so the two models are equally right. The data x may be summarized as the3

sample mean x̄ and sample variance s2 = 1
n ∑i(xi− x̄)2. The MLE of the parameter is µ̂ = x̄ =4

1
n ∑xi under H1 and ν̂ = x2 = 1

n ∑x2
i = x̄2 + s2 under H2. The log-likelihood values are5

`1(µ̂) =−1
2 ∑(xi− x̄)2 =−1

2ns2,

`2(ν̂) =−n
2 log

(1
n ∑x2

i
)
− n

2 =−n
2 log(s2 + x̄2)− n

2

(S1)

First we derive Equation 15 from first principles. Then we analyze the problem following6

the general theory of the Appendix. The problem has been simplified to the following. Let z1 =7 √
nx̄∼ N(0,1) and z2 =

√n
2(s

2−1)∼ N(0,1), and define z∗1 and z∗2 accordingly, with z∗1|z1 ∼8

N(z1,1) and z∗2|z2 ∼ N(z2,1). We seek the distribution of P1 when x varies, defined as9

P1 = P{|z̄∗1|> |z̄∗2|
∣∣z1,z2}. (S2)

The CDF of the difference between two independent folded normal random variables with10

the same variance, X1 ∼ N(µ1,σ
2) and X2 ∼ N(µ2,σ

2), is11

P(|X1|− |X2|< t) = Φ

(
t√
2σ
− µ̃1

σ

)(
1−Φ

(
−t√
2σ
− µ̃2

σ

))
+
(

1−Φ

(
−t√
2σ
− µ̃1

σ

))
Φ

(
t√
2σ
− µ̃2

σ

)
,

(S3)

where
[

µ̃1
µ̃2

]
= 1√

2

[
µ1−µ2
µ1+µ2

]
. Thus12

P1 = Φ

(
− 1√

2
(z2− z1)

)(
1−Φ

(
− 1√

2
(z1 + z2)

))
+
(

1−Φ

(
− 1√

2
(z2− z1)

))
Φ

(
− 1√

2
(z1 + z2)

)
≡ Y1Y2 +(1−Y1)(1−Y2),

(S4)

where Y1 and Y2 are i.i.d. from U(0,1). While P1 is a function of data x (Equation 14) or of z1 and13

z2 (Equation S2), it is now considered a function of Y1 and Y2. We use a further variable14

transform. Let W1 = 2Y1−1 and W2 = 2Y2−1, with W1 and W2 i.i.d. from U(−1,1). The density15

of T =W1W2 is given by the product convolution of W1 and W2 as16

fT (t) =
∫
R

fW1(w1) fW2(t/w1)
1
|w1|dw1 =

∫
|w1|<1, |t/w1|<1

1
4|w1|dw1 =−1

2 log |t|, (S5)

−1 < t < 1. Note that the region of integral consists of four disjoint intervals: 0 < t < w1 < 1,17

0 < t <−w1 < 1, 0 <−t < w1 < 1, and 0 <−t <−w1 < 1. As P1 =
1
2(T +1), Equation 1518

follows.19

Next we analyze the problem by working with the log likelihood ratios as in the general20

theory. The log-likelihoods under the two models are21

`1(µ) =−1
2 ∑(xi−µ)2 =−n

2(x
2−2x̄µ +µ

2),

`2(ν) =−n
2 logv− 1

2v ∑xi
2 =−n

2(logv+ 1
v x2).

(S6)



3

At the MLE µ̂ = x̄ in H1 and ν̂ = x2 in H2, we have `1(µ̂) =−1
2n(x2− x̄2) and `2(ν̂) =22

−n
2(logx2 +1), so that23

∆ = `1(µ̂)− `2(ν̂) =
n
2

[
logx2 +1− x2 + x̄2]

= n
2g(µ̂, ν̂) = n

2 [g(µ̂, ν̂)−g(µ∗,ν∗)]
(S7)

Here we define a function g(µ,ν) = log(ν)+1−ν +µ2. We have ∇g(µ,ν) =
(
2µ, 1

ν
−1
)

and24

∇2g(µ,ν) =
(2 0

0 −1/ν2
)
. Note that g(µ∗,ν∗) = 0, and ∇g(µ∗,ν∗) =

(0
0

)
and ∇2g(µ∗,ν∗) =

(
2 0
0 −1

)
.25

Let Ȳ = (x̄,x2) and µY = (µ∗,ν∗), with g(µY ) = ∆∗ = 0. Then applying Taylor expansion, we get26

∆ = n
2 [g(Ȳ )−g(µY )]≈ n

2 ·
1
2(µ̂, ν̂−1)

(
2 0
0 −1

)(
µ̂

ν̂−1

)
= 1

2nx̄2− 1
2

n
2(s

2 + x̄2−1)2 = 1
2z2

1− 1
2z2

2,
(S8)

where z1 =
√

nx̄∼ N(0,1) and z2 =
√n

2(s
2 + x̄2−1)≈

√n
2(s

2−1)∼ N(0,1), as defined in the27

main text.28

For the bootstrap dataset x∗, we have µ̂∗ = x̄∗ and ν̂∗ = x2∗ = s2∗+ x̄2∗. The three terms in29

Equation A1 can be derived as follows.30

∆A1 ≡ log
f1(x∗|θ̂ ∗1 )
f1(x∗|θ̂1)

=−1
2 ∑(x∗i − µ̂

∗)2 + 1
2 ∑(x∗i − µ̂)2

=−n
2(x

2∗− x̄2∗− x2∗+2x̄∗x̄− x̄2)

= n
2(x̄

2∗−2x̄∗x̄+ x̄2) = n
2(x̄
∗− x̄)2 = 1

2(z
∗
1− z1)

2,

(S9)

with z∗1 and z∗2 defined above. Similarly31

∆A2 ≡ log
f2(x∗|θ̂ ∗2 )
f2(x∗|θ̂2)

=−n
2(log ν̂

∗+ x2∗
ν̂∗ )+

n
2(log ν̂ + x2∗

ν̂
)

=−n
2 [(log ν̂

∗− ν̂∗

ν̂
)− (log ν̂−1)]

≈−n
2 ·0 · (ν̂

∗− ν̂)− n
2 ·

1
2(−

1
ν̂2 )(ν̂

∗− ν̂)2 ≈ n
4(ν̂
∗− ν̂)2 = 1

2(z
∗
2− z2)

2.

(S10)

Here in the Taylor expansion ν̂ is constant and ν̂∗ is a random variable given x.32

∆
∗
∗ ≡ log

f1(x∗|θ̂1)

f2(x∗|θ̂2)
=−1

2 ∑(x∗i − µ̂)2 + n
2(log ν̂ + x2∗

ν̂
) = n

2(−ν̂
∗+2x̄∗x̄− x̄2 + log ν̂ + ν̂∗

ν̂
)

≈ n
2(2x̄∗x̄−2x̄2)+ n

2 x̄2 + n
2 [(

ν̂∗

ν̂
− ν̂

∗)− (1− ν̂)]+ n
2(log ν̂ +1− ν̂)

≈ nx̄(x̄∗− x̄)+ n
2(

1
ν̂
−1)(ν̂∗− ν̂)+ n

2(x̄
2 + log ν̂ +1− ν̂)

= nx̄(x̄∗− x̄)− n
2

1
ν̂
(ν̂−1)(ν̂∗− ν̂)+∆≈ z1(z∗1− z1)− z2(z∗2− z2)+∆.

(S11)
Thus33

∆
∗ = ∆A1−∆A2 +∆

∗
∗

≈ 1
2(z
∗
1− z1)

2− 1
2(z
∗
2− z2)

2 + z1(z∗1− z1)− z2(z∗2− z2)+
1
2(z

2
1− z2

2)

= 1
2(z
∗2
1 − z∗22 ).

(S12)
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This can also be obtained by a Taylor expansion of the function g(),34

∆
∗−∆ = n

2 [g(Ȳ
∗)−g(Ȳ )] = n

2 [g(µ̂
∗, ν̂∗)−g(µ̂, ν̂)]

≈ n
2(2µ̂, 1

ν̂
−1)

(
µ̂∗−µ̂

ν̂∗−ν̂

)
+ n

4(µ̂
∗− µ̂, ν̂∗− ν̂)∇2g(µ̂, ν̂)

(
µ̂∗−µ̂

ν̂∗−ν̂

)
= z1(z∗1− z1)− z2(z∗2− z2)+

1
2(z
∗
1− z1)

2− 1
2(z
∗
2− z2)

2.

(S13)

Thus Equation S12 gives P1 = P{∆∗ > 0|x}= P{z∗21 − z∗22 |x}, as in Equation S2, and35

Equation 15 follows.36

Note that37

P1 = P{∆
∗ > 0|x}= P{∆

∗−∆ >−∆|x}= 1−F∆∗−∆ (−∆) , (S14)

where F(·) is the CDF of ∆∗−∆. We note that being the difference of two χ2
d variates, ∆ has the38

same distribution as −∆, which may and may not be the same distribution as that of ∆∗−∆.39

When ∆∗−∆ and −∆ have the same distribution, P1 ∼ U(0,1). Otherwise if ∆∗−∆ and −∆ have40

different distributions, P1 does not have a uniform distribution. This follows from the fact that if41

F is a smooth monotonic increasing function R→ (0,1), and Y is a random variable over R, then42

F(Y )∼ U(0,1) implies that F is the CDF of Y , because the CDF of Y is43

FY (y) = P(Y < y) = P(F(Y )< F(y)) = F(y).44

According to DasGupta (2008, p. 475), if T =
√

n(g(Ȳ )−g(θ∗)) and ∇g(θ∗) = 0, then T45

and T ∗ have different distributions and bootstrap fails to estimate the CDF of T consistently. In46

problem 4, ∇g(µ∗,ν∗) = 0, so that ∆∗−∆ has a different distribution from ∆−∆∗, and P1 is not47

distributed as U(0,1). In problems 1 and 2, ∆∗−∆ and ∆−∆∗ have the same distribution, so that48

P1 ∼ U(0,1).49
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) ,

P(
P 4

=
1)

=
1 2π

( π
−

2
ar

ct
an
√

2µ
τ

2−
1

) .

E(
P i
),

i=
1,

2,
3,

th
e

sa
m

e
as

le
ft

fo
rB

ay
es

ia
n

m
et

ho
d.

(c
)

E
qu

al
ly

w
ro

ng
an

d
in

di
st

in
ct

,w
ith

pa
ra

m
et

er
s

Tr
ut

h:
N
(0
,1
),

H
1

:N
(µ

,1
/τ

1)
,H

2
:N

(−
µ
,1
/τ

1)
,

H
3

:N
(µ

,1
/τ

2)
,H

4
:N

(−
µ
,1
/τ

2)
,

µ
>

0,
τ

1
=

0.
25

,τ
2
≈

2.
58

66
.

µ
∼

E
xp

(λ
),

F i
(x
)
=

{
1 2
,

x
=

0,
1 2
+

1 2
Φ

( Φ
−

1 (
x)

√
τ

i

) ,
x
>

0.

T
he

de
ns

ity
of

m
ar

gi
na

l
di

s-
tr

ib
ut

io
n

of
P i

,
i
=

1,
2,

3,
4,

is
f(

p)
=
−

lo
g(

p)
.
E(

P 1
)
=

E(
P 2
)
=
E(

P 3
)
=
E(

P 4
)
=

1 4
.

(d
)

E
qu

al
ly

ri
gh

t,
w

ith
pa

ra
m

et
er

s
Tr

ut
h:

N
(0
,1
),

H
1

:N
(µ

,1
),

H
2

:N
(−

µ
,1
),

H
3

:N
(0
,1
/τ

),
µ
>

0.

µ
∼

E
xp

(λ
),

τ
∼

E
xp

(ξ
).

P 1
=

λ
Φ
(Z

1)
ex

p(
1 2

Z
2 1
)

λ
ex

p(
1 2

Z
2 1
)+
√

2ξ
e−

ξ
ex

p(
1 2

Z
2 2
)
,

P 2
=

λ
(1
−

Φ
(Z

1)
)e

xp
(

1 2
Z

2 1
)

λ
ex

p(
1 2

Z
2 1
)+
√

2ξ
e−

ξ
ex

p(
1 2

Z
2 2
)
,

P 3
=

1−
P 1
−

P 2
,w

he
re

Z 1
≡
√

nx̄
∼
N
(0
,1
),

Z 2
≡
√ n 2

(s
2
−

1)
∼
N
(0
,1
).

M
ar

gi
na

ld
en

si
tie

s
ar

e
f 1
(p
)
=

f 2
(p
)
=
−

lo
g(

p)
,

f 3
(p
)
=
−

lo
g
|1
−

2p
|.

E(
P 1
)
=
E(

P 2
)
=

1 4
,

E(
P 3
)
=

0.
5.
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Note.— For case a2, let h = log(0.3)−log(b)
log(0.4)−log(b) ≈−2.102287. The correlation matrix for ∆12,∆13,∆2350

is51 
1
√

3
2 − h+2

2
√

h2+h+1

1 −
√

3
4 ·

h+1√
h2+h+1

1

 . (S15)

The expectations are52

E(P1) =
1
4 +

1
2π

arcsinρ

(
∆12√
nσ12

, ∆13√
nσ13

)
= 5

12 ,53

E(P2) =
1
4 +

1
2π

arcsinρ

(
− ∆12√

nσ12
, ∆23√

nσ23

)
= 0.2455303 · · · ,54

E(P3) =
1
4 +

1
2π

arcsinρ

(
∆13√
nσ13

, ∆23√
nσ23

)
= 0.337803 · · · .55


