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ABSTRACT
We provide the first quantitative evidence for the deceleration of the Galactic bar from local stellar kinematics in agreement with
dynamical friction by a typical dark matter halo. The kinematic response of the stellar disc to a decelerating bar is studied using
secular perturbation theory and test particle simulations. We show that the velocity distribution at any point in the disc affected
by a naturally slowing bar is qualitatively different from that perturbed by a steadily rotating bar with the same current pattern
speed �p and amplitude. When the bar slows down, its resonances sweep through phase space, trapping, and dragging along a
portion of previously free orbits. This enhances occupation on resonances, but also changes the distribution of stars within the
resonance. Due to the accumulation of orbits near the boundary of the resonance, the decelerating bar model reproduces with
its corotation resonance the offset and strength of the Hercules stream in the local vR-vϕ plane and the double-peaked structure
of mean vR in the Lz–ϕ plane. At resonances other than the corotation, resonant dragging by a slowing bar is associated with
a continuing increase in radial action, leading to multiple resonance ridges in the action plane as identified in the Gaia data.
This work shows models using a constant bar pattern speed likely lead to qualitatively wrong conclusions. Most importantly
we provide a quantitative estimate of the current slowing rate of the bar �̇p = (−4.5 ± 1.4) km s−1 kpc−1 Gyr−1 with additional
systematic uncertainty arising from unmodelled impacts of e.g. spiral arms.
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1 IN T RO D U C T I O N

1.1 Slowing bar as probe for dark halo kinematics

It is widely accepted that our Galaxy has a prominent, rotating stellar
bar at its centre, as do roughly half of known disc galaxies (Sellwood
& Wilkinson 1993; Buta et al. 2015). Bars cannot be statically
rotating objects, since they form part of a delicate angular momentum
balance: loss to dark halo and stellar disc, and gains from funneling
gas to small radii. Analytical models and simulations of the Galactic
bar in the presence of a dark matter predict that a bar experience
angular momentum loss due to dynamical friction, slowing their
rotation frequency, the so called pattern speed �p, and hence
making them grow (Weinberg 1985; Hernquist & Weinberg 1992;
Debattista & Sellwood 2000; Valenzuela & Klypin 2003; Martinez-
Valpuesta, Shlosman & Heller 2006). This angular momentum loss is
proportional to the density of the dark matter halo, but also depends
strongly on the velocity distribution of the dark matter (Athanassoula
2003). The amount of angular momentum transfer would also be
drastically altered e.g. with modified theories of gravity (requiring
different amounts of dark matter), or if the dark halo is in the form of
a degenerate quantum condensate (e.g. Goodman 2000; Böhmer &
Harko 2007). On the other hand, bars gain large amounts of angular
momentum, offsetting some fraction of the above loss, by funneling
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gas towards the Galactic Centre (van Albada & Sanders 1982; Regan
& Teuben 2004), where the gas feeds the central black hole and gets
expelled by it (Silk & Rees 1998; Bland-Hawthorn & Cohen 2003),
and/or forms a massive nuclear disc, as found in the Milky Way
(Launhardt, Zylka & Mezger 2002; Schönrich, Aumer & Sale 2015).

While the density distribution of the dark matter halo can be
mapped from its gravitational potential (e.g. Iocco et al. 2011; Cole
& Binney 2017) by comparing the total mass of the Galaxy, inferred
from the Galactic rotation curve (e.g. Sofue 2013), with the baryonic
mass inferred e.g. from infrared maps (e.g. Robin et al. 2012),
interstellar gas maps (e.g. Nakanishi & Sofue 2006), and gravitational
microlensing (e.g. Alcock et al. 1995), the detailed kinematic state of
the dark matter is only accessible by dynamical modelling, making
(if measured) the slowing rate of the bar �̇p an important constraint
for the nature of the dark matter.

Despite this importance, and despite the theoretical requirement
that bars have to be strongly evolving, there is yet no observational
evidence of a slowing bar. Few papers, however, have predicted
indirect signatures of an evolving bar: Weinberg (1994) studied the
orbits trapped in resonance of a slowing bar and showed that the
deceleration results in an increased velocity dispersion near the outer
Lindblad resonance. However, both his model and the available data
back then was not detailed enough to draw firm conclusions on the bar
slow-down. Aumer & Schönrich (2015) linked the slowing/growth of
the bar to the discovery of high line-of-sight velocity tails observed in
the distribution of stars within the bar (Nidever et al. 2012). However,
this signal strongly depends on the subsequent diffusion out of these
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orbits and the surrounding disc kinematics, so is unlikely to yield a
measurement of �̇p. Halle et al. (2018) showed in N-body simulations
that stars trapped in the co-rotation resonance of the bar are churned
radially outwards by the slowing bar and Khoperskov et al. (2020)
recently linked this mechanism to the high-metallicity stars in the
Solar vicinity (Grenon 1999). Investigating the correlation between
the kinematics and chemistry of stellar disc could be a promising
method to prove the bar slow-down, since trapped stars are expected
to have smaller birth radius and thus higher metallicities.

Our best bet to trace the bar slow-down are stellar kinematics
in the Solar neighbourhood with full 6D phase space information.
Motions of local stars are known to be strongly affected by the
bar’s gravitational perturbation, especially near resonances, i.e. when
stellar orbital frequencies are in commensurable relation with the
bar’s pattern speed. As the bar decelerates, the resonance regions
sweep through the stellar phase-space, trapping and dragging a num-
ber of orbits, leaving noticeable changes in the stellar distribution.
Therefore, the current local kinematics can be used as archaeological
evidence to probe the evolutionary history of the bar (Weinberg
1994). However, most past studies attempting to fit the stellar streams
in the Solar neighbourhood use a static bar with constant �p (e.g.
Dehnen 2000). One exception is a notion of a suddenly formed, very
young bar (albeit still with a constant �p), which would leave some
transient effects lingering in stellar kinematics (Minchev et al. 2010).
However, such a young age appears not fully in line with the low
relative star-formation rates in the Milky Way’s nuclear disc. Fux
(2001) attributed little importance to the effects of a slowing bar,
claiming that it mainly introduces a delayed response.

In contrast, this paper will show the importance of a slowing bar for
resonances in the Milky Way disc, in particular for the local kinematic
substructures observed by Gaia. We use secular perturbation theory
and test particle simulations to explore how resonances of a slowing
bar capture and drag orbits. In the next subsection, we summarize the
observed kinematic substructure in the Solar neighbourhood, which
has been used in the past to judge the pattern speed and strength of
the Galactic bar. We will also provide a first glimpse of how much
a slowing bar model differs from the predictions of a constant �p

model with otherwise identical parameters. We will list the main
observable features explained by the slowing bar model, which in
turn provide us with the leverage to estimate the current �̇p. At the
end of Section 1.2, we give an outline of the paper.

1.2 Kinematic structure of the Solar neighbourhood

The top row of Fig. 1 shows the kinematic substructure revealed
by Gaia DR2 (Gaia Collaboration 2018) with parallax offset and
distance derivation from (Schönrich, McMillan & Eyer 2019). We
identify the 2D in-plane structure in three different statistics:

(i) Left-hand panel: Velocity distribution f(vR, vϕ) of local stars
showing substructures which have long been suspected to be caused
by resonances with non-axisymmetric components of the Galaxy
(e.g. Kalnajs 1991). In particular, the large subpopulation seen at
low vϕ and positive vR, known as the Hercules stream, has been
extensively modelled with bar resonances (e.g. Dehnen 2000).

(ii) Middle panel: Distribution in the action plane f(Jϕ , JR) esti-
mated in an axisymmetric logarithmic potential, which was identified
by Sellwood (2010) (using data from the Geneva Copenhagen survey)
to show structures along the resonant lines and more recently been
used by works on Gaia DR2 (e.g. Trick et al. 2019).

(iii) Right-hand panel: Mean radial velocity v̄R plotted over the
angular momentum Lz and Galactic azimuth ϕ. Gaia’s large-scale

coverage permitted the first probe into the spatial dependence of
the kinematic structure. Each stripe shows a different azimuthal
dependence, indicating a distinct origin (Friske & Schönrich 2019).

With this phase space information, one should in principle be able
to identify the positions of resonances with the bar and thus predict
the bar’s pattern speed. Yet this task is plagued by degeneracies; there
are currently many possible models which can reproduce the ob-
served features with different resonances. This has led to a major de-
bate between proponents of a fast/short bar (�p � 50 km s−1 kpc−1)
and a slow/long bar (�p � 40 km s−1 kpc−1), where the debate has
mainly concentrated on the cause of the Hercules stream: Fast bar
proponents (e.g. Dehnen 2000; Antoja et al. 2014; Fragkoudi et al.
2019) interpreted the Hercules stream as stars near the outer Lindblad
resonance (OLR), which well matches the strength of the feature and
the offset in vR, though the required high pattern speed contradicts
with the modelling of the bar/bulge using red clump stars (Portail
et al. 2017) and studies on the inner gas dynamics (Sormani, Binney
& Magorrian 2015). Slow bar proponents (Pérez-Villegas et al.
2017; Binney 2018; Monari et al. 2019a; D’Onghia & L. Aguerri
2020) interpreted the Hercules stream as due to orbits trapped in
the corotation resonance (CR). However, models with constant slow
pattern speeds tend to underpredict the strength of the observed
feature (or vice versa require a too strong bar).

In the middle row of Fig. 1, we present a test particle simulation
for such a slow bar rotating with a constant �p = 35 km s−1 kpc−1

and reasonable strength fitted to the model of Sormani et al. (2015)
(see main text for details). We mark the CR and the OLR in solid
and dot–dashed lines. As mentioned above, the Hercules stream
is underpredicted. The bottom row displays our slowing/elongating
bar model with otherwise identical parameters. The deceleration
of the bar increases the strength of the Hercules stream, as well
as offsetting it towards larger vR, in better agreement with the
data. This difference is also indicated in N-body studies: with a
steadily rotating bar, Fragkoudi et al. (2019) reported that the CR
does not create a prominent feature in the Solar neighbourhood,
while with a self-consistently slowing bar, D’Onghia & L. Aguerri
(2020) confirmed a clear asymmetry in vR at the CR akin to
the Hercules stream. Our slowing bar model also produces strong
resonance features of high order resonances in between the CR
and the OLR as confirmed in the action plane (middle). We also
see in the v̄R(Lz, ϕ) plane (right) that the CR appear as a spear-
head structure which is identifiable in the Gaia data near Lz ∼
1500 kpc km s−1.

We note, however, that perturbation by yet unconstrained spiral
arms offers additional freedom in reproducing the data: Hunt et al.
(2018) showed that repeated perturbation by transient spiral arms
can reproduce the Hercules stream either with or without the bar,
and Sellwood et al. (2019) showed how some of the structures
in action space can be linked with spirals. We also note that our
paper employs the simplest possible model for a slowing bar;
we did not include higher order modes of the bar which will
enhance the signature of minor resonances (Monari et al. 2019a).
Therefore, we do not aim at a model that accounts for all observed
features, but rather to show the significant impact of the bar slow-
down.

The paper is organized as follows: In Section 2, we introduce our
slowing bar model and discuss resonance dragging/drift in actions
using secular perturbation theory. Section 3 describes the method
of our test-particle simulation. In Section 4, we start our discussion
with a constantly rotating bar and subsequently explore the kinematic
consequence of a slowing bar. Section 5 concludes.
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4712 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 1. Top panel: Kinematic data from Gaia DR2 with quality cut on parallax of p/σ p > 5. For the distribution in velocity space (left) and action space
(middle), we restrict the samples to heliocentric distance s < 0.3 kpc. The small white square indicates the coordinate of the Sun (Section 2.1). Middle row:
Test particle simulation of a constantly rotating quadrupole bar with pattern speed �p = 35 km s−1 kpc−1. Solid lines mark the corotation resonance, dashed
lines the outer Lindblad resonance. Bottom row: Test particle simulation of a rapidly slowing bar presented in 4.2.2. Snapshot taken at �p = 35 km s−1 kpc−1.
Apart from the deceleration, the bar parameters are identical to the constant pattern speed model.

2 TH E O RY

2.1 Coordinate frame

Throughout the paper, we take the position of an observer at
the Galactic South Pole, thus using positive pattern speed. In
our frame, the radial velocity vR points outwards in contrast
to the heliocentric radial velocity U. We use Galactic circular
speed vc = 235 km s−1 (Reid et al. 2019), Solar Galactocentric
radius R0 = 8.2 kpc (Gravity Collaboration 2019), ϕb − ϕ� =
30◦ for the Sun’s azimuthal angle with respect to the bar ma-
jor axis ϕb (Wegg, Gerhard & Portail 2015), and Solar veloc-
ity (vR�, vϕ� − vc) = (−11.1, 12.24) km s−1 (Schönrich, Binney &
Dehnen 2010). Since we deal with a slowing bar, we work
in an inertial frame to make explicit the time dependence of
�p(t).

2.2 Model

We study orbits perturbed purely by a slowing bar. We thus neglect
self-gravitational effects in our model and assume a logarithmic
background potential corresponding to a constant circular speed vc.
We further simplify the discussion by restricting the model to 2D
in-plane motion, and by modelling the bar as a m = 2 quadrupole,

rotating like a rigid body (i.e. no flexing or winding up)

�(R, ϕ, t) = �0(R) + �b(R, ϕ, t)

= v2
c ln (R) + �m(R, t) cos m

[
ϕ −

∫ t

0
dt ′ �p(t ′)

]
, (1)

where �p(t) denotes the time-dependent pattern speed and ϕb =∫ t

0 dt ′�p(t ′) expresses the current azimuth of the bar major axis (we
choose �m < 0). In this paper m always refers to 2, although we
retain the expression m to keep our discussion general and to avoid
confusion with other factors of 2. Studies from N-body simulations
(e.g. Aumer & Schönrich 2015) imply that the bar’s slowing rate,
−�̇p, decreases with time (�̈p > 0). A reasonable model for the
pattern speed is thus �p(t) ∝ tn, where n < 0. In approximation to
Aumer & Schönrich (2015), we choose n = −1, which corresponds
to a linear increase in co-rotation radius RCR. Therefore

�p(t) = vc

RCR(t)
= vc

RCR(0) + vCRt
, (2)

where vCR is the velocity of the co-rotation radius. The bar’s slowing
rate is best described with the following dimensionless parameter

η ≡ − �̇p

�2
p

= const. (3)
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Resonance sweeping by a decelerating bar 4713

Figure 2. Amplitude of the quadrupole bar as a function of the Galactocentric
radius R. Blue dashed curve is the most successful model reported in SBM15
and the black curve is our fitted model.

Since we only consider the case where the bar is slowing down
(�̇p < 0), η is defined to be positive. In our model with a flat rotation
curve, η is vCR/vc, the dimensionless representation of vCR.

A finite size of the bar implies that the amplitude of the quadrupole
bar �m(R, t) decays at large radii as R−3. At small radii the bar’s
quadrupole must vanish as fast as R2 to ensure the perturbed surface
density to be azimuthally smooth at the origin. Thus, we model the
radial dependence of the bar as

�m(R, t) ∝ R2

[Rb(t) + R]5 , (4)

where Rb(t) is a scale length of the bar modelled to increase as the bar
slows down. In concordance with Athanassoula (1992), we model
Rb(t) such as to keep the ratio against the co-rotation radius constant

b ≡ Rb(t)

RCR(t)
= const. (5)

The strength of the perturbation is parametrized by the ratio of the
maximum azimuthal force due to the bar and the radial force due to
the unperturbed potential at the co-rotation radius RCR

A ≡

∣∣∣ 1
R

d�b
dϕ

∣∣∣
RCR∣∣ d�0

dR

∣∣
RCR

. (6)

The amplitude of the bar potential then takes the following form:

�m(R, t) = −Av2
c

m

[
R

RCR(t)

]2 [
b + 1

b + R/RCR(t)

]5

. (7)

The choice of negative sign ensures alignment of ϕ = ϕb with the
bar’s major axis (the potential minimum). Fig. 2 shows �m where
we fit our model to that of (Sormani et al. 2015, hereafter SBM15),
which was constrained to reproduce the central Milky Way’s gas flow
pattern. In accordance with SBM15, we set �p = 40 km s−1 kpc−1

corresponding to RCR = 5.875 kpc and fit the model via b and A.
We note that our bar potential is significantly stronger near the OLR,
and needs to be adapted when a quantitative fit of the resonance
is required. The fitted value b = 0.281 is used for all simulations
presented in this paper. For the strength of the bar, we run simulations
with a variety of values in the range A ∈ [0.01, 0.03]. In our slowing
bar model, both b and A are kept constant while the bar slows down.

1This value should not be identified with the ratio between RCR and the length
of the bar semimajor axis reported in Athanassoula (1992).

2.3 Review of linear perturbation theory

Orbits free of resonant trapping are well described by linear per-
turbation theory where any deviation from circular orbit is assumed
to be small at the order of ε ∼ �b/�0 (see Binney & Tremaine
2008, pp.189–191 where the equation below is derived). Clearly,
this assumption breaks down near resonances. Specifically, when the
change of �p per bar rotation period is sufficiently small, we obtain
the following solution for the radius of an orbit perturbed by the bar:

R(t) = Rg + Ra cos (κt + θR0)

−
[

2��m

R
(
� − �p

) + ∂�m

∂R

]
Rg

cos m
(
� − �p

)
t

κ2 − m2
(
� − �p

)2 , (8)

where Rg is the guiding radius and � is the rotation frequency of a
circular orbit at Rg. The second term describes the epicycle motion
with amplitude Ra, frequency κ , and initial phase θR0. The third term
oscillates with a beat frequency m(� − �p) between the orbit and the
perturbation implying that in the absence of epicycle motion, the orbit
closes in the corotating frame of the bar after a beat period. These
orbits with Ra = 0 are termed the parent orbit of a class of orbits with
identical parameters but Ra > 0. Akin to a driven harmonic oscillator,
the assumption of small excursion breaks down near resonances: the
third term in equation (8) indicates a divergence of radius at the
corotation resonance (CR, � = �p), the outer Lindblad resonance
(OLR; � − �p = −κ/m), and the inner Lindblad resonance (ILR, �
− �p = κ/m). Each divergence is accompanied by a sign change in
the third term: typically the first term in the square bracket dominates,
so that at each major resonance, the orientation of the parent orbits
switch between alignment (x1 orbits) and anti-alignment (x2) with the
bar major axis. Thus when the pattern speed changes, orbits passed
by the major resonances switch their alignment (if not caught).

Linearizing the equation of motion has swept away the possibility
of finding excitations of other high order resonances with the
bar. In principle, an unlimited number of resonances occur, when
commensurability is satisfied between the radial frequency �R (κ in
the limit of epicycle approximation) and the azimuthal frequency �ϕ

(� for circular orbits) with respect to the bar pattern speed:

NR�R + Nϕ(�ϕ − �p) = 0, N = (NR,Nϕ) ∈ Z2. (9)

With no loss of generality, we define Nϕ ≥ 1 since resonance at
(NR, −Nϕ) is a repetition of (− NR, Nϕ). This resonance condition
depends on the bar pattern speed but not on the mode/wavenumber m
of the bar; even with a quadrupole bar (m = 2), resonances with Nϕ

�= m occur, but adding e.g. an octopole (m = 4) affects their relative
strength (Monari et al. 2019a). Orbits that exactly satisfy the resonant
condition are closed in the co-rotating frame of the bar. Their stability
– the capability of becoming a parent orbit – was analysed in detail,
e.g. by Contopoulos & Grosbol (1989).

2.4 Resonant dragging

We here set out to study orbits trapped and dragged by a slowing bar.
Many of the results presented in this section are found in Tremaine
& Weinberg (1984) who quantified the dynamical friction exerted on
the bar by a spherical halo. Here, we focus on the behaviour of the
perturbed orbits rather than their feedback on the bar.

The motion of quasi-periodic orbits is best described using actions
J = (JR, Jϕ), which define a torus, and corresponding angles θ =
(θR, θϕ), which encode the position on the surface of a torus. The
main benefit of these actions is their approximate conservation under
adiabatic changes; e.g. if the system slowly gains mass, or e.g. the bar
slowly grows/decelerates, actions of most orbits will be conserved,

MNRAS 500, 4710–4729 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/4710/5989736 by U
niversity C

ollege London user on 31 D
ecem

ber 2020



4714 R. Chiba, J. K. S. Friske, and R. Schönrich

with the exception of orbits with a resonant condition, or a too large
orbital period violating the condition of adiabaticity. The azimuthal
action Jϕ is identical to the angular momentum Lz, and JR is a measure
of the radial excursions from a circular orbit

Jϕ ≡ 1

2π

∮
dϕ pϕ = Lz, JR ≡ 1

2π

∮
dR pR. (10)

The divergence at resonance that we encountered in the linear
perturbation theory can be removed by performing a canonical
transformation to a frame of reference that rotates with the resonant
frequency (Lichtenberg & Lieberman 1992, pp. 109–117). Near but
slightly off the resonance, the resonant frequency

�s ≡ NR�R + Nϕ(�ϕ − �p) (11)

becomes very small and thus its time integral, the so called slow
angle variable

θs ≡ NRθR + Nϕ

[
θϕ −

∫ t

0
dt ′ �p(t ′)

]
(12)

evolves slowly around the resonance compared to θR. The time-scale
disparity between θ s and θR enables us to separate the dynamics into
slow and fast components. Thus, we make a canonical transformation
to a new set of angle-action variable (θ ′, J ′) by choosing θR to be
the other new angle which we rename as the fast angle variable

θf ≡ θR. (13)

To obtain the new actions J ′ = (Jf, Js), we perform a canonical
transformation via a generating function of form W (θ, J ′, t). Recall
from classical mechanics that

θ ′ = ∂W

∂ J ′ , J = ∂W

∂θ
, and H ′(θ ′, J ′, t) = H (θ, J, t) + ∂W

∂t
.

(14)

The first equality instructs us how to construct the simplest W

W (θ, J ′, t) =
{

NRθR + Nϕ

[
θϕ −

∫ t

0
dt ′ �p(t ′)

]}
Js + θRJf .

(15)

The second equation gives

Jϕ = NϕJs, JR = NRJs + Jf, (16)

and thus

Js = Jϕ

Nϕ

, Jf = JR − NR

Nϕ

Jϕ. (17)

The last of the three equations in (14) provides

H ′(θ ′, J ′, t) = H0( J ′) +
∑

k


k( J ′, t) eik·θ ′ − Nϕ�p(t)Js, (18)

where the perturbing potential is developed into a Fourier series

k( J ′, t) on the set of indices k = (kf, ks) (equations for 
k are
given in Appendix B). During the rapid cycles in θ f, θ s can be
assumed constant. Hence, one can extract the slow dynamics of θ s

by averaging the Hamiltonian over θ f

H̄ ′(θs, J ′, t) = H0( J ′) +
∑
ks �=0


ks ( J ′, t) eiksθs − Nϕ�p(t)Js, (19)

where 
ks ≡ 
(0,ks). For the major resonances with Nϕ = m, 
ks

is non-zero only at ks = ±1. Since the Hamiltonian must be real
(
−ks = 
∗

ks
), we have

H̄ ′(θs, J ′, t) = H0( J ′) + 2|
1( J ′, t)| cos (θs + ψ1) − Nϕ�p(t)Js,

(20)

where |
1| and ψ1 describe the amplitude and phase of the complex
Fourier coefficients 
1. For the purpose of brevity, we henceforth
use the following auxiliary variables:


 ≡ 2|
1( J ′, t)|, θ ≡ θs + ψ1. (21)

The equations of motion are then

J̇s = −∂H̄ ′

∂θs
= 
 sin θ, (22)

θ̇ = ∂H̄ ′

∂Js
= ∂H0

∂Js
+ ∂


∂Js
cos θ − Nϕ�p(t). (23)

By differentiating equation (23) with respect to time, ignoring terms
small to second order in 
 and also θ̇s(= �s) as it vanishes at the
resonance, and substituting equation (22), we obtain

θ̈ − G
 sin θ − ∂
̇

∂Js
cos θ + Nϕ�̇p(t) = 0, (24)

where

G ≡ ∂2H0

∂J 2
s

. (25)

We recognize equation (24) as a classical pendulum equation
(Chirikov 1979) with additional terms incorporating the growth of
the bar (third term) and the change in pattern speed (fourth term). In
our model, the order of the third term compared to the fourth term is
as small as

− ∂
̇

∂Js

1

Nϕ�̇p
∼ −
̇

Jϕ�̇p
∼ −Av2

c

m

vCR

R

1

Rvc�̇p
= A

m
, (26)

so as first-order approximation we will neglect the third term. The
third term will become non-negligible when the strength of the bar
is modelled to grow rapidly (in our current model we assumed A
= const, so 
̇ is due only to the stretching of the bar). We leave
exploration of a slowing + strengthening bar to a later study.

We now look at the impact of the dragging/slowing term on the
modified pendulum equation (24). Using 
 and G from Appendix B
and C, the order of the slowing term Nϕ�̇p(t) is

Nϕ�̇p

G

∼ Nϕ�̇p(

− N2
ϕ

R2
CR

)(
δmNϕ

Av2
c

m

) = η

A
, (27)

where we assumed G < 0 and invoked the parameter η = −�̇p/�2
p

defined in equation (3). In the limit JR → 0, the approximation made
above is exact at the CR but underestimates by a factor of ∼0.83 at
the OLR. Using equation (27), we may rewrite equation (24) as

θ̈ − G

(

sin θ − η

A

)
= 0. (28)

Note that the sign of the slowing term η/A reverses at the ILR where
G becomes positive. In the following, we approximate G and 
 with
their values at the resonance Js = Js, res at the time of capture t =
tres on the assumption that their time evolution is slow compared
to that of θ . The corresponding Jf is determined by the resonance
condition �s(Js, res, Jf) = 0. We numerically integrate equation (28)
together with (22) and follow the motion of orbit in the (θ , Js) plane.
Fig. 3(a) shows the phase plane of a pendulum with η/A = 0. As
described in the figure, trapped orbits librate around the resonance at
(θ , Js) = (0, Js, res). This region is bounded by the separatrix, which
has maximal/infinite libration period. Outside the separatrix, non-
trapped orbits freely circulate, with less amplitude in Js the further
they are from the resonance. Figs 3(b) and (c) show the same plot
when the bar slows down moderately (0 < η/A � 1) and extremely
rapidly (η/A = 1). As in Fig. 3(a), the amplitude of oscillations in
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Resonance sweeping by a decelerating bar 4715

Figure 3. Understanding the motion near resonance in terms of pendulum dynamics. The plots are drawn by numerically integrating equation (28). (a) In a
constantly rotating bar (η/A = 0), θ of trapped orbits librates around the resonance while that of non-trapped orbits circulates above or below the separatrix
(Lichtenberg & Lieberman 1992). (b) When the bar slows down slowly such that 0 < η/A < 1, trapped orbits can be resonantly dragged towards higher Js. (c)
Orbits cannot stay in resonance when the resonance sweeps too fast (η/A ≥ 1).

non-trapped orbits depends on the proximity to the resonant region,
so fluctuations of orbits circulating above the separatrix amplifies as
the resonance approach while that below the separatrix attenuates as
the resonance pass away. On the other hand, in the librating regime,
the additional term η/A causes a drift in Js. To see how this works,
let us employ the small-angle approximation. We then obtain

θ = θ̂ cos (ωt + φ) + sgn(−G)
η

A
, where ω ≡

√
|G|
. (29)

θ̂ and φ are the amplitude and initial phase of the oscillation. To
justify the small-angle approximation, we require η/A to be small
which is satisfied when the bar is either strong or slowing down
slowly. We insert this solution into equation (22) and integrate

Js = 


{
cos

[
sgn(−G)

η

A

] ∫
dt sin

[
θ̂ cos (ωt + φ)

]

+ sin
[
sgn(−G)

η

A

] ∫
dt cos

[
θ̂ cos (ωt + φ)

]}
. (30)

Clearly, this describes an oscillation (first term) plus a small drift
(second term) of the orbit in Js along with the resonance. When
η = 0 (�̇p = 0), the drift term vanishes. When η > 0 (�̇p < 0) we
find that, at the OLR and the CR (G < 0), it leads to a positive drift in
Js and thus in Jϕ ; trapped orbits at the OLR and the CR are dragged
radially outwards by the slowing bar. In contrast, at the ILR (G > 0),
resonant orbits are dragged towards lower Jϕ . Fig. 3(c) shows that
if the bar is too weak and/or the resonant sweeping is too fast, the
third term of equation (28) dominates the dynamics and will force
θ to circulate. In such case, orbits cannot stay trapped at resonance
and thus dragging will not occur.

On averaging the Hamiltonian over the fast angle, we have
implicitly concluded that the fast action is effectively conserved
(J̇f = 0). Therefore, any change in angular momentum will be
accompanied by a change in the radial action

J̇R = NR

Nϕ

J̇ϕ. (31)

This is still the well-known result known to most readers in the
context of radial migration (Sellwood & Binney 2002): as a response
to the positive dragging in Jϕ , the radial action of trapped orbits is
conserved at CR (NR/Nϕ = 0) whereas increases at OLR (NR/Nϕ >

0). On the other hand, a negative dragging in Jϕ at ILR (NR/Nϕ < 0)
will be compensated by an increase in radial action. This explains
why Weinberg (1994) observed a large increase in velocity dispersion

Table 1. Summary of the direction of resonant dragging
due to decrease in bar pattern speed. The sign of J̇ϕ is
determined by the sign of the non-linearity parameter G,
and J̇R is related to J̇ϕ by equation (31).

ILR CR OLR

J̇ϕ − + +
J̇R + 0 +

near the OLR. We summarize the direction of resonant dragging in
Table 1. These behaviours are confirmed numerically in Fig. 16.

We can also understand the effect of the slowing term from the
viewpoint of an effective potential. By multiplying θ̇ on the modified
pendulum equation (28) and integrating over time, we obtain the
following energy integral:

Ep ≡ 1

2
θ̇2 + V (θ ), where V (θ ) ≡ ω2

(
− cos θ − η

A
θ
)

. (32)

Note that the pendulum energy Ep is not conserved under slow
changes in ω. The true adiabatic invariant is the action of libration

J� ≡ 1

2π

∮
dθJs(θ ), (33)

which quantifies the amplitude of motion in the slow angle-action
plane. It is approximately conserved if the libration period T� is
sufficiently shorter than the migration time-scale of the resonance
Tres. Apart from the vicinity of the separatrix, T� is of order

T� ∼ 2π

ω
∼ 1√

A�p

, (34)

while the time for a resonance to move by its width (equation 40) is

Tres = �Js,max

J̇s
∼

√
A

η�p
. (35)

Thus J� is conserved for most orbits when T�/Tres ∼ η/A is small.
Fig. 4 shows the configuration of the effective potential V(θ ) which

is inclined due to the η/A term in equation (32). The resonance centre
θ res and the angle of the local maximum θ sep reached by stars orbiting
along the separatrix are

θres = sin−1
( η

A

)
, 0 ≤ θres ≤ π

2
, (36)

θsep = sin−1
( η

A

)
,

π

2
≤ θsep ≤ π. (37)
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4716 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 4. Potential of the modified pendulum. Orbits trapped by the
resonance are confined within the potential well. A decreasing pattern speed
results in a tilt in the potential and thus the minimum Ep necessary to escape
the resonance becomes smaller than that with constant �p.

Figure 5. Thick white lines mark the location where the resonance condition
is exactly satisfied and green lines indicate the maximum excursion of trapped
orbits for different η/A. The colour map shows the Jacobi integral EJ. At
the resonances, the lines of constant Jf (thin white lines) are tangent to the
contours of EJ. The parameters used are A = 0.02 and �p = 40 km s−1 kpc−1.

This positive shift of θ res is barely noticeable in Fig. 3(b), but
prominently tilts the equilibrium angle in Fig. 16. Further, the
maximum Ep and J� at the separatrix are reduced by the η/A term

Ep,sep ≡ ω2
(
− cos θsep − η

A
θsep

)
, (38)

J�,sep ≡ ω

π |G|
∫

C

dθ

√
2
[
cos θ − cos θsep + η

A

(
θ − θsep

)]
. (39)

If Ep < Ep, sep orbits are trapped and dragged, otherwise they will
escape the resonance from θ sep and enter the lower circulating regime.
The potential barrier of trapped orbits decreases as the bar slows down
more rapidly. Beyond the critical value η/A = 1 where θ res = θ sep

= π /2, the potential does not form a local extremum and thus orbits
can no longer stay trapped in resonance.

A decrease in Ep, sep implies that the phase space volume of
resonance shrinks when the bar slows down. Fig. 5 shows this in
action space (using A1–A4). The thick white lines are the resonance
lines, and the solid green lines mark the maximum excursion of
trapped orbits from the exact resonance �Js, max ≡ (Js − Js, res)max,
which happens at Ep = Ep, sep and θ = θ res

�Js,max = ω

|G|
√

2
[
cos θres − cos θsep + η

A

(
θres − θsep

)]
. (40)

Table 2. Summary of parameters used in our slowing bar model. Parameters
to be varied are A, η, and �p0.

Parameter Symbol Value

Parameters for the slowing bar
Bar wavenumber m 2
Bar angle w.r.t. the Sun ϕb − ϕ� 30◦
Bar strength A 0.01–0.03
Bar scale length ratio b ≡ Rb/RCR 0.28
Bar slowing rate η ≡ −�̇p/�2

p 0.001–0.0055
Bar initial pattern speed �p0 60–100

km s−1 kpc−1

Bar growth time t1 2 Gyr
Transition time from constant
to linear increase in RCR

t2 − t1 1 Gyr

Parameters for the Galactic disc
Circular velocity vc 235 km s−1

Disc scale length R� 2.5 kpc
Local velocity dispersion σR(R0) 40 km s−1

σR scale length Rσ R0

The resonant volumes shrink with increasing η/A, and vanish when
η/A reaches unity. Note that not all orbits within the green boundary
are trapped, as the trapping also depends on the angles θ .

The white thin lines crossing the resonance represent the line of
constant Jf which the librating orbits are assumed to follow in our
resonance theory. In fact, conservation of Jf is truly satisfied only at
the resonance line ( J = J res) and is otherwise an approximation to
the precise conservation of the Jacobi integral EJ which is mapped
by the colour scale in Fig. 5 as in Binney (2018), where he computed
the actions in a 3D axisymmetric potential using torus mapping. The
lines of constant Jf and EJ match precisely at the resonance line but
deviate for large libration amplitude which is most notable at the CR.
Mathematically, conservation of EJ = E − �pJϕ requires

�EJ = ∂E

∂JR

�JR + ∂E

∂Jϕ

�Jϕ − �p�Jϕ

= �R�JR + (�ϕ − �p)�Jϕ = 0 (41)

which becomes equivalent to �Jf = �JR − NR/Nϕ�Jϕ = 0 only
when the frequencies �( J) are approximated by their values at J res.

3 TEST-PA RTICLE SIMULATION

To ensure full control over the model parameters, we use a test particle
simulation in an analytical potential presented in Section 2.2. Our
simulation technique is similar to Mühlbauer & Dehnen (2003), who
examined the kinematics around a steadily rotating bar. We integrate
in each simulation 108 particles forward in time using a 4th order
symplectic integrator (Yoshida 1993), with a time-step of 0.1 Myr.
Parameters of our model are summarized in Table 2.

3.1 Initial distribution function

The initial distribution function is given by (Dehnen 1999)

f (E, Lz) ∝ �(RE)

σ 2
R(RE)

exp

[
−�(RE) [Lc(E) − Lz]

σ 2
R(RE)

]
, (42)

where RE, �(RE), Lc(E) is the radius, circular frequency, and
angular momentum of a circular orbit with energy E. We assume an
exponential profile with scale lengths R� and Rσ for both the surface
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Resonance sweeping by a decelerating bar 4717

density �(R) and the radial velocity dispersion σ R(R) of the disc

�(R) = ��e−(R−R0)/R� , σR(R) = σ�e−(R−R0)/Rσ , (43)

where R0 is the Galactocentric distance of the Sun and σ� is the
local stellar velocity dispersion. Throughout our work, we adopt R�

= 2.5 kpc, Rσ = R0 = 8.2 kpc, and σ� ≡ σR(R0) = 40 km s−1.
Once (E, Lz) are determined from equation (42), we compute the

initial radius R by integrating equation (A3) up to a random value of
θR ∈ [0, 2π ). The corresponding initial velocities are then determined
vϕ = Lz/R , v2

R = 2[E − �(R)] − L2
z/R

2 and the initial azimuthal
angle is sampled randomly from ϕ ∈ [0, 2π ).

3.2 Adiabatic growth of the bar

A sudden onset of the bar will permanently change the actions. As
in the past literature, we avoid such an unnecessary distortion from
a more realistic case by growing the bar slowly, i.e. we ramp up its
strength A from 0 to its final value Af during the time interval 0 < t
< t1 using the polynomial law from (Dehnen 2000)

A(t) = Af

(
3

16
ξ 5 − 5

8
ξ 3 + 15

16
ξ + 1

2

)
, ξ = 2t

t1
− 1. (44)

Choosing t1 = 2 Gyr, this ramp is adiabatic for most orbits, apart
from those near the surface/separatrix of the resonance where the
libration period diverges.

3.3 Pattern speed

As described in Section 2.2, we model the pattern speed to decrease
inverse proportional with time which amounts to a linear increase
in co-rotation radius RCR. To separate effects, we keep RCR constant
during the ramp-up of the bar amplitude (0 < t < t1), and then
smoothly start the slowing within (t1 < t < t2)

RCR(t) =

⎧⎪⎪⎨
⎪⎪⎩

RCR0(0 < t < t1)

RCR0 + 1
2 vCR

(t−t1)2

t2−t1
(t1 < t < t2)

RCR0 + 1
2 vCR(t2 − t1) + vCR(t − t2) (t2 < t)

, (45)

where RCR0 is the initial co-rotation radius and vCR is the velocity of
the co-rotation radius (here typically of the order of 0.1–1 km s−1).
Remind that in line with the decrease in pattern speed, the bar is
made more elongated by keeping the linear relation Rb = bRCR. The
time variation of the bar’s properties are drawn in Fig. 6.

3.4 Selection function

When we compare our model with observational data, we apply to
our simulation the distance-dependent selection function of the Gaia
data with quality cut in parallax of p/σ p > 5 (Schönrich et al. 2019).
The adopted selection function is shown in Fig. 7. The data are fitted
using the following analytical function S(s):

S(s) = a0A(s)B(s)C(s),

A(s) = exp(−a1s) + a2 exp(−a3s)

1 + exp [−a4(s − a5)]
,

B(s) = tan−1 [a7(a8 − s) + a6]

π/2 + a6
, C(s) = 1 − exp(−a9s),

where s is the distance from the Sun and ai (i = 0...9) are fitting
parameters. Two things are to be noted here:

Figure 6. Schematic diagram of the strength of the bar A(t), the co-rotation
radius RCR(t), the bar length Rb(t), and the pattern speed �p = vc/RCR(t).
The bar is adiabatically grown while keeping the pattern speed constant, and
subsequently slowed down with its strength unchanged. The length of the bar
is elongated proportional to the co-rotation radius as Rb(t) = bRCR(t) where
b = 0.28 is determined by fitting our model to SBM15.

Figure 7. Distance selection function of Gaia DR2 fitted with equation (46).
We apply this to our simulation to assess the impact of the selection effects.

(i) As a somewhat trivial point, the function here is similar but
not identical to the function provided in equation (6) of Schönrich
et al. (2019), as here we have to figure in the additional effect of the
parallax cut, which must not be applied to the distance estimation.

(ii) More importantly, this is only an indicative bias. In truth, the
sample selection is based on a photometric selection, which will
result in strong biases along age and metallicity, which are much too
complex for coverage in this exploratory study. These effects will also
be distance dependent, as the near field (s < 1 kpc) is dominated by
dwarf/subgiant stars, which have a very different age–metallicity
selection function from the giant branches dominating the far
field.

4 R ESULTS AND D I SCUSSI ONS

4.1 Constantly rotating bar

Before we turn to the main topic of our paper, i.e. the effects of bar
deceleration, we discuss the simpler case of a constantly rotating
bar. Here, we choose amplitude A = 0.02 and pattern speed �p =
40 km s−1 kpc−1 according to SBM15.

Fig. 8 shows examples of different classes of orbits seen in
the frame corotating with the bar, where the bar’s major axis is
represented by a thick black line along the x-axis. Note the different
scale of each panel. The black circles mark the radii of ILR (dotted),
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4718 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 8. Typical orbits in a co-moving frame of a m = 2 bar rotating with a
steady pattern speed �p = 40 km s−1 kpc−1. Upper figure shows orbits free
from resonance and lower figure shows orbits trapped at some of the major
resonances. Non-closed orbits (light blue) are parented by stable closed orbits
(dark blue). The black dotted, solid, and dot–dashed circles are the ILR, CR,
and OLR radii, respectively. The black horizontal line is the bar’s long axis
and the black dotted line indicates the Solar azimuth at ϕb − ϕ� = 30◦.

Figure 9. Surface of sections near OLR for EJ = −6.3, −5.9, and
−5.5 km2 s−2, respectively. The coloured invariant curves correspond to
orbits presented in Fig. 8(A), (F), and (B). Non-closed orbits (light blue)
encircle their corresponding closed parent orbits (dark blue). The phase space
is restricted to the right of the thick limiting curve defined by the equation
(vy − �px)2 = −v2

x + �2
px

2 + 2[EJ − �(x)] = 0.

CR (solid), and OLR (dot–dashed). We show non-resonant orbits
in the top panel. The non-closed orbits (light blue) with non-zero
JR surround their parent/closed orbits with the same Lz (dark blue).
As discussed in Section 2.3, the orbit orientation changes at each
major resonances: orbits are elongated parallel to the bar (A) outside
OLR, and (C) between CR and ILR, while they are elongated
perpendicular to the bar (B) between CR and OLR, and (D) inside
ILR. The bottom panel of Fig. 8 shows examples of orbits trapped
at the main resonances: (E) the outer 1:1 resonance, (F) the outer
Lindblad resonance, (G) the outer ultraharmonic resonance, (H) the
corotation resonance, (I) the inner ultraharmonic resonance, (J) and
the inner Lindblad resonance. The corresponding resonant closed
parent orbits, again depicted in dark blue, are far from circular and
are beyond the description of equation (8).

The orbits’ family relations at resonance are better understood
using their surfaces of section. In Fig. 9, we show surfaces of section
in the reduced phase-space (x, vx) at y = 0 and vy < 0 near the OLR.
Each panel shows a set of orbits with the same Jacobi integral, EJ

= E − �pLz, indicated in the top left corner. Each non-closed orbit
forms consequents, which appear as ring-like features in these plots
(though subsequent passages are not adjacent to each other). Each
coloured invariant corresponds to an orbit shown in Fig. 8(A), (B),
and (F). Near the OLR, increasing EJ from top to bottom generally
moves the mapped phase space towards lower Lz and higher JR as can
be recognized in Fig. 5. The orbits in the top plot have too small EJ to
reach the OLR, so they all belong to the same x1 non-resonant parent
orbit. The larger EJ in the middle panel allows the contour of EJ in
action space (Fig. 5) to cross the OLR line. Consequently, we now
see three different types of orbits: non-resonant x2 orbits below the
lower separatrix with small JR circulating near x ∼ 9.2 kpc, resonant
orbits inside the separatrix around x ∼ 11.2 kpc, and non-resonant x1
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Resonance sweeping by a decelerating bar 4719

Figure 10. Motion of orbits near the OLR in the slow angle-action plane.
The three curves (A), (F), and (B) correspond to orbits beyond, trapped
at, and below the OLR in correspondence with Figs. 8 and 9. Resonantly
trapped orbits librate about the stable equilibrium point while orbits free
from resonances circulate above and below the separatrix.

orbits above the upper separatrix with large JR surrounding the other
two groups. In the bottom panel, the region of x2 orbits around x ∼
8.3 kpc has expanded, and the resonant domain at x ∼ 12.5 kpc starts
shrinking. Also, there are minor resonances occupying much smaller
regions of phase space, e.g. the small crescent shape belonging to
the 2:3 resonance.

Resonant and non-resonant orbits fundamentally differ in their
apsidal motion (Weinberg 1994; Monari et al. 2017b), which relates
to the slow angle variable θ s; if one defines θR = 0 at the pericentre
and writes ϕperi = θϕ − ϕb, then θ s = NRθR + Nϕ(θϕ − ϕb) =
Nϕϕperi. As an example, Fig. 10 depicts orbits near the OLR in the
slow angle-action plane. At the OLR, the azimuth of the pericentre
oscillates around the bar minor axis (ϕ = π /2) so the equilibrium
point of θ s is π . The azimuth of the apsis of non-resonant orbits (A
and B) in the bar rotating frame circulates, while that of resonantly
trapped orbit (F) oscillates in a finite range. The small oscillations
on top of the slow dynamics are the fast oscillations over which we
have averaged in our resonant theory. As an artefact of the parent
orbit elongation, the dark blue parent orbits of the non-resonant
orbits are not circling in θ s. The problem here is that non-resonant
closed orbits in a barred potential perform two radial oscillations per
rotation around the bar, so their θR linearly increases at rate ±2(�ϕ −
�p) resulting in �s = θ̇s = 0 despite them being free of resonance.
In contrast, the true resonances at OLR/ILR occur when the radial
oscillations on top of the closed parent orbits have frequencies equal
to ±2(�ϕ −�p). The artefact disappears when the amplitude of radial
oscillation with respect to the closed parent orbit becomes larger than
the radial distortion of the closed parent orbit itself. This problem
arises from the mapping to angle-action variables of an unperturbed
potential. The truly conserved radial action would quantify the extent
of radial distortion from the closed elongated orbit rather than from
the circular orbit and the linearly increasing radial angle variable
would measure the phase of radial motion relative to the parent orbits.

Now, we look into the velocity distribution of an ensemble of these
test-particles. Fig. 11 shows the mean radial velocity v̄R as a function
of Lz at the Solar azimuth (ϕb − ϕ� = 30◦). The velocity is sampled
from particles within a narrow slice (|�ϕ| < 0.5◦) centred on the
Sun. The general relationship between v̄R and Lz can be understood
from the orientation (aligned or antialigned with the bar) and the
rotating direction (prograde or retrograde with respect to the bar)
of the closed parent orbits: e.g. orbits outside the OLR are aligned
with the bar and are retrograding so at the Solar azimuth the closed
orbit points inwards (i.e. vR < 0). Within the epicycle approximation,

Figure 11. Mean radial velocity v̄R versus Lz at Solar azimuth. Linear
perturbation theory (solid black curve, equation 47) is compared to test-
particle simulations without (solid blue) and with (dashed blue) the Gaia
selection function applied. Black vertical lines represent, from left to right,
ILR, CR, OLR, and O11R, respectively. Black square marks the coordinates
of the Sun. Since the majority of orbits are non-resonant and near circular,
linear theory qualitatively captures the main features of the simulations.

the mean radial velocity at Solar azimuth is, by differentiating and
averaging equation (8) with respect to time,

v̄R =
[

2��m

R
+ (

� − �p

) ∂�m

∂R

]
Rg

m sin m (ϕ� − ϕb)

κ2 − m2
(
� − �p

)2 , (47)

where Rg = Lz/vc, � = vc/Rg, and κ = √
2�. The above equation

delivers the black line in Fig. 11, which qualitatively explains the
numerical results. The positive peak just behind the OLR line was
the original interpretation for the Hyades stream by Kalnajs (1991)
and the Hercules stream by Dehnen (2000). The small positive peak at
CR is due to the resonantly trapped orbits reaching the Solar azimuth
as they rotate around the Lagrange point L4, 5. Pérez-Villegas et al.
(2017) attributed the Hercules stream to this peak, and supported
the idea of a slow/long bar. The dotted blue curve in Fig. 11 shows
the result after imposing the Gaia selection function, which deviates
from the non-biased result mostly at small Lz.

One of the central benefits from Gaia is that we can now observe
stars over a wide range in Galactic azimuth, and this dependence
was quantified by Friske & Schönrich (2019) and is also shown in
Fig. 1(b). Analogously, we show in Fig. 12 the ϕ–Lz dependence of
mean vR . The vertical black lines show, from left to right, the ILR
(dotted), CR (solid), OLR (dot–dashed), and 1:1 resonance (dashed)
at JR = 0. The findings agree with previous studies: the sign of vR

flips when we pass through the bar’s major/minor axes, and through
ILR/OLR. We also see a weak eye-like shape of orbits trapped in the
CR rotating around the Lagrange points at ϕ − ϕb = ±π /2. The bot-
tom panel zooms into the Gaia DR2 area (marked by a black box) and
applies the spatial selection to compare with Fig. 1(b). We see a pair
of positive and negative stripes at the OLR and a broad stripe at the CR
that narrows towards the bar major axis. This somewhat resembles
the Gaia data but is far from qualitatively matching the full pattern.

Fig. 13 shows the change in action distribution after the bar has
fully developed. Orbits near the resonances become trapped and
librate back and forth across the resonance along constant Jf (thin
black rungs), but not further than the purple boundary (equation 40).
At the CR, JR is conserved, so the exponential disc profile in Jϕ

implies a mild redistribution from small to large Jϕ . The other
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4720 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 12. Azimuthal dependance of v̄R versus Lz. Black lines show the Lz

of ILR (dotted), CR (solid), OLR (dot–dashed), and O11R (dot–dot–dashed)
at JR = 0, respectively. Green line indicates the azimuth of the Sun and the
rectangle window indicates the range of Gaia DR2. Bottom panel magnifies
the Gaia region and applies the spatial selection bias (equation 46).

Figure 13. Change in action distribution δf(Jϕ , JR) from the initial unper-
turbed state. Densities change when trapped orbits librate between regions of
different initial phase-space density around the resonance lines (thick black
lines) along contours of constant Jf (thin black lines). Purple curves mark the
maximum libration range.

resonances redistribute towards larger JR, with extreme effect at the
ILR, where the resonance line almost coincides with constant Jf.

Finally, Fig. 14 shows the velocity distribution f(vR, vϕ) in the Solar
neighborhood (s < 0.3 kpc) drawn from test particle simulations
with three different bar strength (row) and two different pattern
speeds (columns) both identified as a slow bar. A wider range of

Figure 14. Velocity distribution f(vR, vϕ ) in the Solar neighborhood (dis-
tance from Sun s < 0.3 kpc) perturbed by a steadily rotating bar. The solid
and dashed curves mark the separatrices (Ep = Ep, sep) of the CR and the
OLR. The contours are logarithmic with a 0.44 dex spacing.

pattern speeds, including the traditional fast bar, will be shown with
their corresponding slowing bar models in the next section. The
black solid and dot–dashed curves mark the separatrices enclosing
the resonant regions of the CR and the OLR as done in Monari et al.
(2017b). At �p = 40 km s−1 kpc−1, orbits trapped by the OLR appear
distinctively as an arch at vϕ ∼ 280 km s−1, whereas the velocity
distribution of orbits trapped by the CR shows little contrast to
the surrounding non-resonant region. For this reason, past studies
disfavoured linking the Hercules stream with the CR (Dehnen 2000;
Monari et al. 2017a; Fragkoudi et al. 2019). In the next section, we
will show that this problem is naturally resolved by a decelerating
bar where the CR captures more stars and on a different distribution
as it form further inside and then sweep outwards.

However, we mention here again that studies by Pérez-Villegas
et al. (2017) and Monari et al. (2019a) report better success in
reproducing the Hercules stream with a constantly rotating bar which
suggests that higher order modes of the bar can be important for
shaping the distinct outline of the Hercules stream. We further note
that the Hercules stream can also be reproduced by transient spirals
alone or in combination with the bar (Hunt et al. 2018). Since none
of these effects are ignorable, it will be important in the future to
combine these models and distinguish their role, once the kinematic
consequence of individual perturbations are well understood.

4.2 Slowing bar

We now consider the effect of a slowing bar where two new
processes arise: dragging of trapped orbits and trapping of non-
resonant orbits. At current stage, capture and loss from resonances
require numerical treatment. Nevertheless the analytical approach
predicts that resonance volume shrink with decreasing amplitude A
and increasing slowing rate η, so we have a naive, but firm expec-
tation that capturing and retention rates also drop with increasing
η/A.
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Resonance sweeping by a decelerating bar 4721

Figure 15. Top (a): Fraction of orbits initially trapped at OLR being dragged
by the slowing bar as a function of bar strength A and slowing rate η. The
orange circle and triangle mark the parameters of our standard slowly and
rapidly decelerating bar. Results using the full grid are shown in Fig. 22.
Bottom (b): Fraction of orbits becoming trapped by the OLR. The blue
transition zone is broad since resonant capturing depends on the initial angles.

In Fig. 15(a), we show the probability of being successfully
dragged by the moving OLR as a function of bar strength A and
slowing rate η. The orbits are initially trapped in the OLR at
�p = 60 km s−1 kpc−1 and the bar is subsequently slowed down to
�p = 30 km s−1 kpc−1. The plot shows the fraction of successfully
dragged stars defined as those originally in the OLR that then
experience a relative increase δLz/Lz0 > 0.2. The threshold is chosen
to safely exceed the maximum libration amplitude in Lz. For each
parameter set (A, η), we use 100 particles with the same initial actions
(JR, Jϕ) = (19.4, 1524.5) kpc km s−1 but with random angles. The
initial actions are placed exactly on the resonance line to ensure
trapping independent of angular phase. The result confirms the ana-
lytical expectation that the retention probability increases with A and
decreases with η. The critical boundary is fairly linear which backs
our idea that η/A satisfactorily describes the dragging efficiency.
Similarly, Fig. 15 (b) shows the capturing rate by the moving OLR.
Here, we set the initial actions (JR, Jϕ) = (19.4, 1921.1) kpc km s−1

outside the resonance. The blue transition region roughly matches
that of Fig. 15(a), but is wider, indicating a strong dependence of
resonant capturing on angular phase.

Fig. 15 implies three parameter regimes in which the dynamical
consequence of a slowing bar differs qualitatively: In the white
regime, the resonance sweeps too fast or the bar is too weak for
resonant trapping to occur. The extreme opposite is the black regime

where most orbits are captured and dragged by the resonance. In
the blue intermediate regime, most resonant orbits are dragged but
capturing is occasional. The CR shows similar behaviour to the
OLR, but the measurement is more difficult due to the series of
high order resonances piling up towards the CR. We therefore prefer
the parameter map at OLR to qualify the slowing regime, while using
the CR as a corroborating source of evidence. In the following, we
discuss results from the orange parameter grid, which covers all three
regimes, first starting with an in-depth analysis of the slowly (orange
circle) and the rapidly (triangle) decelerating bar.

4.2.1 Slowly decelerating bar

Fig. 16 analyses typical orbits in a slowly decelerating bar (η = 0.001,
A = 0.02, and thus η/A = 0.05), where �p decreases from 80 to 45
km s−1 kpc−1 in 9 Gyr (with a transition period of t2 − t1 = 1 Gyr).
As in Fig. 8, we show more eccentric orbits (light blue, second
column) and their closed parents (dark blue, first column). Grey and
black circles indicate the initial and final resonance radii for ILR
(dotted), CR (solid), and OLR (dot–dashed). The orbits have initial
guiding radii of (a) 7.1, (b) 5.2, (c) 4.0, (d) 3.0, (e) 1.7, and (f) 1.0 kpc.
The other columns provide the evolution of the actions.

The rows (a)–(d) show orbits trapped and dragged outwards by
O11R, OLR, OUHR, and CR. In the rotating frame of the bar, frame
deceleration causes an Euler force �̇p × R responsible for the slight
anticlockwise turn of the orbits’ configuration. The orbit in row
(e) remains non-resonant and thus roughly maintains its shape. The
orbit (f) is dragged by the ILR until it turns chaotic. The qualitative
behaviour of the actions agrees with the theory (Section 2.4): at
the outer resonances (a)–(c), both Lz and JR continuously increase,
whereas at the CR (d), only Lz enhances while JR is kept fixed;
actions of non-resonant orbits (e) are unchanged; at the ILR (f), Lz

declines while JR rises.
Fig. 17 follows the evolution of the phase-space distribution

perturbed by a slowly decelerating bar. The rows from top to bottom
show the distribution every 2 Gyr, denoting the pattern speed �p on
the right in km s−1 kpc−1. We provide the velocity distribution and
action distribution near the Sun (s < 0.3 kpc), as well as the mean
vR in the Lz–ϕ plane in a narrow slice around the Solar azimuth
applying our approximated Gaia selection function. For each panel,
we provide to its right the comparison case of a constantly rotating
bar with identical bar parameters.

The velocity plane (left columns) is dominated by the main reso-
nances; first, the OLR captures and carries away the majority of local
stars leaving behind a significantly depleted phase space, until the
CR brings along the next swath of stars. At �p ∼ 43.3 km s−1 kpc−1,
an arch opened towards high vϕ develops below the circular speed.
Orbits below this arc have sufficient energy to cross over the crest
of the effective potential � − 1

2 �2
pR

2 and thereby wander in and out
the bar regime (Fux 2001). At any �p, this slowly decelerating bar
has radically too strong resonance occupation to match the data.

The action plane (middle columns) shows similarly the capture and
drag by the main resonances. In between the OLR and the O11R,
we see multiple narrow lines. We confirm that they are due to orbits
trapped and dragged by minor resonances (e.g. 2:3 resonance). The
occupation on minor resonances depends on their stability under the
deceleration but also on depletion by anteceding resonances; minor
resonances behind the OLR are less prominent since the OLR sweeps
away most of the non-resonant orbits in advance.

In the right columns of Fig. 17, the amplitude of v̄R(Lz, ϕ) near
resonances continues to increase as they keep collecting stars. The red
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4722 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 16. Orbits swept by the resonance of a slowing bar decreasing its pattern speed from �p = 80 to 45 km s−1 kpc−1 in 9 Gyr (η = 0.001). Each row
displays the trajectory of a single star gradually changing its orbit. Dark blue orbits (left column) are initially closed while light blue orbits (2nd column) are
initially non-closed. The grey and black circles are the initial and final radii of ILR (dashed), CR (solid), and OLR (dot–dashed). Drift in angular momentum
(3rd column) is only seen for resonantly trapped orbits. The radial action (right column) increases when dragged at all resonances except at the CR.

spear-like stripe at the CR increases in strength at the edge indicating
accumulation of orbits near the separatrix. The blue stripe associated
with the OLR widens to the left over time since trapped orbits
increase JR while dragged and thus satisfy the resonance condition
at a relatively lower Lz compared to those with small JR.

4.2.2 Rapidly decelerating bar

N-body studies indicate that bars slow down more rapidly than
we have assumed in Section 4.2.1. In accordance with Aumer &
Schönrich (2015) we choose the slowing rate η = 0.004 as indicated

by the orange triangle in Fig. 15. The pattern speed decreases from
�p = 80 to 30 km s−1 kpc−1 in 5.6 Gyr. The strength of the bar is
unchanged (A = 0.02), so η/A = 0.2. Fig. 18 shows from left to right
the velocity distribution, the action distribution, and the mean vR in
the Lz–ϕ plane, along with the results of a constantly rotating bar on
the right of each column.

In the velocity plane, the resonances are much smaller in volume
than those of the constantly rotating bar, but appear more distinc-
tively. At around �p = 36.1 km s−1 kpc−1, the orbits trapped at the
CR form a peak that resembles the observed Hercules stream much
better both in strength (by sweeping up more stars) and in location
(due to the shrinkage of the resonance region towards high vR):
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Resonance sweeping by a decelerating bar 4723

Figure 17. Simulated phase space when the bar decelerates slowly from �p = 80 to 45 km s−1 kpc−1 in 9 Gyr. Time-interval between the rows is 2 Gyr (last
three snapshots extends beyond the age of the Galaxy). Each pair of columns compare the decelerating bar versus a constantly rotating bar at the same �p

indicated by white panels in the right-hand column. Black solid, dot–dashed, and dashed lines represent CR, OLR, and O11R, respectively. In the velocity plane,
we mark the separatrix of the resonances, while in the action plane we draw the exact resonance line, and in the (Lz, ϕ) plane we indicate the loci of resonances
at JR = 0. The OLR and CR capture and retain the majority of orbits along their way resulting in a unrealistic intense stellar stream.

The Hercules stream modelled by a constantly rotating bar (see also
Pérez-Villegas et al. 2017) is far too symmetric in vR, while the
decelerating bar provides the strong asymmetry which previously
could only be achieved by the OLR (e.g. Dehnen 2000).

In the action plane, multiple inclined ridges appear between the CR
and the OLR; the small capturing rate at the OLR leaves opportunity
for orbits to be captured into the minor resonances passing later.
Obviously the signatures of minor resonances will be enhanced if we
add higher order modes of the bar. These inclined ridges are also seen
in the Gaia data (Fig. 1a). However, the ILR of spiral arms also lies
in the vicinity (Sellwood et al. 2019) making the exact identification
of individual ridges difficult.

The right columns in Fig. 18 show that the amplitude in v̄R

increases much less than for the slowly decelerating bar due to the

smaller capturing rates (note the different colour scales). Again at
the CR, the newly captured orbits accumulate near the resonance
boundary and form a spear-like (an eye-like, if we saw the full ϕ

range; Fig. 20) structure which closely resembles the double positive
peak seen in the data. In between the CR and the OLR, we observe
two pairs of positive and negative stripes.

To better understand the origin of the multiple stripes in v̄R(Lz, ϕ),
we show in Fig. 19 the change of number density with respect to the
initial distribution (δ f = f - f0), and in Fig. 20, the v̄R over the full
ϕ range without imposing the selection bias (indicating the Solar az-
imuth ϕb − ϕ� = 30◦ with a green line). Fig. 19 shows that, at the CR,
trapped stars follow the resonance line plotted for JR = 0, whereas
at the OLR, orbits lag increasingly behind the JR = 0 resonant line
since their JR increases (resonance line is negatively inclined in JR
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4724 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 18. Simulated phase space as in Fig. 17 plotted every 0.56 Gyr when the bar decelerates rapidly from �p = 80 to 30 km s−1 kpc−1 in 5.6 Gyr. Unlike
the case of a slowly slowing bar, the effect of resonance sweeping is moderate, yet enhances the resonance features compared to a constantly rotating bar (right
of each column). The CR reproduce well the Hercules stream in the velocity plane and the spear-like double peak in v̄R(Lz, ϕ) seen in the Gaia data (Fig. 1).

versus Lz as in Fig. 5). Blue/underpopulated areas are left behind the
travelling OLR and CR, as these resonances sweep part of stars along
their path. An even more intense depopulation is caused by the ILR
where trapped stars drift towards lower Lz and larger JR. Note that the
initial distribution declines exponentially in Lz so a group of orbits
moving towards high Lz with constant number density show apparent
enhancement in δf. The mean vR shown in Fig. 20 is strongly distorted
and much more complex than the constantly rotating bar case shown
in Fig. 12, particularly between CR and OLR. Nevertheless we can
identify two pairs of blue/red peaks behind the OLR near the Solar
azimuth (Lz ∼ 2400 and 2800 kpc km s−1 in the last frame). These
structures appear as multiple stripes when seen in the Gaia range
indicated by the narrow rectangle. By comparing Fig. 19 (the location
of the orbits dragged by the OLR) and Fig. 20 (the location of the
stripes) we conclude that the pair of v̄R stripes just inside the OLR
are due to the orbits freshly trapped by the OLR while the stripes
that appear further inside the OLR line are due to the superposition

of orbits dragged/heated by the OLR and orbits trapped in minor
resonances. The weakly negative vR outside the OLR are associated
with non-resonant x1 orbits swept but not captured by the O11R.

The location and inclination of these multiple stripes at large Lz

do not match perfectly with the Gaia data (Fig. 1a). The neglected
transient spiral arms can play at least two important roles here: (i)
Spiral patterns can independently form these stripes by leaving scars
in the action distribution near resonances and also in the angular
distribution, due to their non-adiabatic emergence, which develops
into multiple fine stripes in v̄R as they phase mix over time (Hunt
et al. 2019). (ii) Scattering by transient spiral arms would reduce the
occupation particularly of the bar OLR, since it trades stars with the
much less densely occupied surrounding phase space at high JR. This
would significantly weaken the contribution of the OLR to structures
at large Lz. The relative position of the resonances will also vary
with the inclination of the circular speed curve: negative/positive
inclination leads to smaller/larger separation of the resonances.
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Resonance sweeping by a decelerating bar 4725

Figure 19. Evolution of the distribution δf(Lz, ϕ) from the unperturbed state
f0 when the bar slows rapidly from �p = 80 to 30 km s−1 kpc−1 in 5.6 Gyr.
By definition, δf / f0 > −1. The black lines represents, from left to right, ILR,
CR, OLR, and O11R at JR = 0. The green line marks the Solar azimuth. Stars
captured at the CR co-move with the resonant line while stars resonating at
the OLR fall behind in Lz due to their increase in JR.

4.2.3 Dependence on initial pattern speed

We have so far discussed the impact of the slowing rate while keeping
the initial pattern speed fixed at �p0 = 80 km s−1 kpc−1. We now
consider the impact of �p0. Fig. 21 plots v̄R(Lz, ϕ) and f(v) for
three different �p0 increasing from top to bottom. The faster the bar
is originally, the further inside the disc the initial locations of the
resonances will be, and thus the larger the volume of phase space
swept by the resonance. However, the variation of �p0 has small
effect here because the capturing rate is relatively low for a rapidly
decelerating bar.

Figure 20. Mean radial velocity v̄R(Lz, ϕ) perturbed by a rapidly slowing
bar. The black narrow rectangles represent the range of Gaia data. Behind the
OLR line (dot–dashed), two negative peaks are formed near Solar azimuth
indicated by the green horizontal line. Comparison with Fig. 19 implies that
the inner peaks are formed by the resonant orbits dragged and heated by the
OLR.

4.2.4 Determining the slowing rate of the bar

Beyond constraining the current pattern speed, modelling local
kinematics perturbed by a slowing bar yields measurement of the
bar’s slowing rate. Fig. 22 shows the local velocity plane for
various bar amplitude A (columns) and slowing rate η (rows)
corresponding to the orange grid nodes in Fig. 15. The present
pattern speed �p = 35 km s−1 kpc−1 is determined by fitting the
CR to the Hercules stream. The fraction of orbits trapped in the
CR increases with increasing A and decreasing η in concordance
with changes in retention/capture rates (Fig. 15). We quantify this
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4726 R. Chiba, J. K. S. Friske, and R. Schönrich

Figure 21. Dependence on initial pattern speed: from top row, �p0 = 60,
80, and 100 km s−1 kpc−1. The bar is rapidly decelerating (A = 0.02, η =
0.004) and the present pattern speed is �p = 36 km s−1 kpc−1.

resonance occupation by the asymmetricity of Hercules in vR, defined
as the difference of fraction of stars with positive and negative vR:

B ≡
∫ vϕ,max

vϕ,min

dvϕ

[∫ ∞
0 dvRf (v) − ∫ 0

−∞ dvRf (v)∫ ∞
−∞ dvRf (v)

]
. (48)

We choose vϕ,min = 100 and vϕ,max = 210 km s−1 to approximately
cover the CR. Fig. 23 shows the asymmetricity B evaluated on the
parameter grid. B closely follows η/ A marked by the green lines.
The white contours are drawn by spline interpolation and the black
contour marks the value observed by Gaia (B = 0.225).

To estimate the posterior distribution of η and η/A by comparing
B between simulations and observations, we need an appropriate
prior on A. SBM15 compared their gas dynamic models to the inner
Milky Way photometry and constrained the possible range of their
bar amplitude parameter As ∈ [0.4, 0.8]. To translate their As to our A,
we must correct for the disparity between the models at large radius
evident in Fig. 2. Since we need consistent perturbation strength
near the CR, and not in the inner bar region, we fit our model at
radii beyond half of RCR which yields A ∈ [0.013, 0.026]. To ensure
a smooth prior obeying Cromwell’s rule, we prescribe a normal
distribution P(A) with mean μA = 0.0195, standard deviation σ A =
0.0065, and a smooth cutoff at A = μA ± σ A:

P (A) ∝ exp
(−x2/2

)
1
2

(
exp |xk| + 1

) , x ≡ A − μA

σA

(49)

where k controls the steepness of the cut-off. We choose k = 4. The
prior P(A) is shown at the bottom panel of Fig. 23. The posterior P(η)
is the product of the prior P(A) and the slope of the observational
curve A(η) (the black curve in Fig. 23)

P (η) = P (A(η))
dA

dη
. (50)

The posterior P(η), shown in the left-hand panel of Fig. 23, has
expectation value 〈η〉 = 0.0036, median η̃ = 0.0039, and standard
deviation ση = 0.0011. The estimators are robust, i.e. vary by less
than 10 per cent when extending the upper limits of the vϕ sampling
range from vϕ,max = 170 to 220 km s−1. Decrease in the steepness of
the prior from k = 4 to k = 2 increases the standard deviation by
2.3 per cent although merely changes the mean value of η (variation

less than 0.2 per cent). The estimated bar slowing rate η roughly
agrees with values encountered in N-body simulations (horizontal
white lines in Fig. 23): η = 0.0029 from fig. 2 of Aumer & Schönrich
(2015), and η = 0.0044 from fig. 7 of Sanders, Smith & Evans (2019).
Using a current pattern speed �p = 35 km s−1 kpc−1, our η estimate
translates to: �̇p = −η�2

p = (−4.5 ± 1.4) km s−1 kpc−1 Gyr−1. The
posterior expectation value for the ratio η/A = 0.18 ± 0.03
is more tightly constrained as expected. These estimates
agree with the visual inspection/comparison of the velocity
plane.

We caution however that this analysis is based on a pure m = 2
slowing bar model. There will be modifications due to e.g. the spiral
arms which impact local kinematics on top of the bar (e.g. Sellwood
et al. 2019). The successive emergence of transient spiral arms may
change the resonant orbit population, and some models consider it
shaping the Hercules stream (Hunt et al. 2018). This analysis is hence
only a first step towards a more comprehensive model. Allowing for
the additional impacts will increase the number of free parameters,
and estimating the bar slowing rate will necessitate making use of
all available statistics, e.g. the spatial variation of the kinematic
structures. Other missing factors that may affect the estimation of
the bar slowing rate are: the neglected bar modes with m > 2,
which will strengthen the minor resonances that sweeps the Solar
neighbourhood before the CR; changes in bar amplitude affecting
the time dependence of the resonant capturing rate; the choice
of current bar pattern speed �p = 35 km s−1 kpc−1. We note that
some studies advocate a somewhat higher �p: Sanders et al. (2019)
and Bovy et al. (2019) both derived �p = 41 ± 3 km s−1 kpc−1 by
applying the continuity equation to stars in the bulge; With made-
to-measure models in the bar region, Portail et al. (2017) deduced
�p = 39 ± 3.5 km s−1 kpc−1 and Clarke et al. (2019) estimated,
from fitting to proper motion data, �p = 37.5 km s−1 kpc−1 in closer
agreement with our assumed pattern speed. A higher pattern speed
�p = 38 km s−1 kpc−1 would lower our slowing rate estimate to η

= 0.0031 ± 0.0008 (using vϕ,max = 190 km s−1 to account for the
shift of the CR). We note that several factors disfavour models
with a higher �p: Above �p ∼ 37, the upper separatrix of the
CR would cut right through the Hercules stream. The alternative
argument would be that the separatrix of the bar’s CR corresponds
to one of the interior structures of Hercules, e.g. separating the
weak peak at vϕ � 180 km s−1 below the main clump at vϕ �
200 km s−1. However such models are inconsistent with the larger
scale structure observed, in particular with the azimuthal variation
of stellar kinematics (Monari et al. 2019b) and with the arrow-
shaped structure in the Lz–φ plane, which currently has no other
explanation than the CR. Moreover, Binney (2020) applied the Jeans’
theorem to trapped orbits in local velocity space and showed that
the violation of Jean’s theorem is minimized at a bar pattern speed
�p = 36 ± 1 Gyr−1 = 35.2 ± 1.0 km s−1 kpc−1. We note, however,
that the best pattern speed that fits the Hercules stream with the
bar’s CR varies with the bar amplitude, the bar angle, and the
underlying axisymmetric potential. Reaching consent of the best pat-
tern speed that reproduces all observed features will require further
effort.

5 C O N C L U S I O N S

While there have been extensive discussions in the literature inter-
preting the local velocity plane in Hipparcos and Gaia data sets with
different values of the current pattern speed �p of the bar, we find
that the slowing rate �̇p of the bar profoundly affects the observed
substructure. Due to the highly significant and drastic impact of
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Resonance sweeping by a decelerating bar 4727

Figure 22. Simulated distributions in local velocity space for the grid of bar strength A and slowing rate η shown in Fig. 15.

Figure 23. Asymmetricity B in vR in the Hercules region (equation 48),
plotted over bar strength A and slowing rate η. The colours map the simulated
values, with the white contours gained from spline interpolation. The black
contour marks the value obtained from Gaia DR2. We show the resulting
posterior probability distributions for η on the left-hand panel when using a
prior distribution on A (bottom panel) inferred from SBM15.

resonant sweeping found in this paper, we argue that any results based
on a constantly rotating bar pattern speed ought to be re-examined
for their robustness against this process and how their parameters
have been biased by the neglect of the deceleration.

The deceleration of a Galactic bar is a theoretical requirement
resulting from the angular momentum balance of the bar: the angular
momentum gain from forcing gas on to the Galactic nuclear disc is (in
a standard dark matter simulation) more than offset by the dynamical
friction with the dark halo (and to a minor part the surrounding disc),
which implies �̇p < 0 and thus the long-term deceleration/growth

of the Galactic bar. While this has been theoretically known, we
are not aware of any study that would have provided a pathway to
observationally estimate the long-term evolution of �p. However,
by neglecting perturbations other than the bar and by investigating
the effect on resonance occupation using a simple slowing bar model
where the pattern speed is modelled to decline inversely proportional
with time, we now provide an estimate of the current slowing rate
of the bar to be �̇p = (−4.5 ± 1.4) km s−1 kpc−1 Gyr−1 at current
pattern speed �p = 35 km s−1 kpc−1.

The deceleration of the bar also resolves three major issues with
the appearance of the Hercules stream/corotation resonance: (i) The
observed Hercules stream is highly asymmetric in vR, featuring
a strong outward motion. This asymmetry is underpredicted by
models with a constantly rotating bar. (ii) Resonant capturing by the
sweeping resonance allows for larger occupation numbers than in a
constant �p bar, thus fitting the observed density with a reasonable
bar strength. (iii) The stars captured near the surface of the resonance
allow for a much stronger eye-shaped (or spear-shaped for the
observable Solar neighborhood) feature in the mean radial velocity
v̄R of the Lz–ϕ plane, which in the observed Solar neighborhood
data explains the two strong positive v̄R features near Lz ∼ 1400 and
∼ 1600 kpc km s−1 together with their inclination against azimuth.
To facilitate point (ii), we have examined how resonant capturing and
retention/dragging vary with the bar’s slowing rate η ≡ −�̇p/�2

p and
the amplitude A. We find that η/A can be used as a good indicator
for retention and capture and that expectations for this parameter
from the observationally estimated strength A and the expected
slowing rate η from N-body simulations in a typical dark matter
halo place the parameter in the region, where the vR asymmetricity
of the simulated local velocity plane matches that of the Gaia
data.

We stress that this work is largely of an exploratory and qualitative
nature. We have not attempted to go beyond the simplest possible
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4728 R. Chiba, J. K. S. Friske, and R. Schönrich

m = 2 model and we have restricted ourselves to a 2D in-plane anal-
ysis. High-order modes and vertical motions would bring additional
resonances and more complications, which we found would have
reduced the clarity of this work. We remark though that our first
exploratory simulations were performed in full 3D and confirmed
the same qualitative answers as presented here in 2D. Further, for
the sake of simplicity, we omitted several processes that we consider
to be important: spiral structure will overlay the suggested pattern,
and by its transience should knock stars in and out of resonances,
changing the occupation of resonant orbits. A similar role is taken by
giant molecular clouds, galaxy mergers, subhalo passages, and not
least, the possible jitter of the bar pattern speed itself.

We hope that this work will trigger more research into the effects
of time-dependent moving resonances. A precise determination of
the slowing rate of the bar from local kinematics will quantify the
dynamical friction exerted on the bar and provide strong constrains
on the phase-space distribution and nature of the dark matter
halo.
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O., 2017a, MNRAS, 465, 1443
Monari G., Famaey B., Fouvry J.-B., Binney J., 2017b, MNRAS, 471,

4314
Monari G., Famaey B., Siebert A., Wegg C., Gerhard O., 2019a, A&A, 626,

A41
Monari G., Famaey B., Siebert A., Bienaymé O., Ibata R., Wegg C., Gerhard
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A P P E N D I X A : AC T I O N - A N G L E S A N D
FREQU ENCIES IN 2D AXISYMMETRIC
POTENTIAL

One can map from (x, v) to (θ, J) in a 2D axisymmetric potential by
numerically integrating the following equations (e.g. Lynden-Bell &
Kalnajs 1972)

JR = 1

π

∫ R+

R−
dR pR, Jϕ = pϕ, TR = 2

∫ R+

R−

dR

pR

, (A1)

�R = 2π

TR

, �ϕ = �ϕ

TR

= 2

TR

∫ R+

R−
dR

Jϕ

pRR2
, (A2)

θR = �R

∫
C

dR

pR

, θϕ = ϕ +
∫

C

dR

pR

(
�ϕ − Jϕ

R2

)
, (A3)

wherepR(R) =
√

2 [E − �0(R)] − J 2
ϕ /R2, TR is the period of radial

motion, and �ϕ is the change of azimuthal angle after one radial
oscillation. The integrals in equation (A1) and (A2) run from
pericentre R− to apocentre R+, which are the roots of

E = �0(R±) + J 2
ϕ

2R2±
. (A4)

The integration curve C in equation (A3) runs from the pericentre
R− to the current radius R. Since the integrals in equation (A1)–(A3)
include poles at the bounds, we employ the Tanh–Sinh quadrature
scheme to obtain accurate results.

The calculation of 
 and G requires the inverse map from (θ , J)
to (x, v). This is not straightforward since we must find the energy
given the actions. To achieve this, we precalculate the energy on a
fine grid in action space (JR, Jϕ) and interpolate linearly.

APPEN D IX B: FOURIER COEFFICIENTS OF
THE PERTURBED POTENTIAL

The Fourier coefficients 
k( J ′, t) in equation (18) are


k( J ′, t) =
∫ 2π

0

d2θ ′

(2π )2
�m(R, t) cos

[
m

(
ϕ −

∫ t

0
dt ′�p

)]
e−ik·θ ′

.

We split ϕ − ∫ t

0 dt ′ �p into θϕ − ∫ t

0 dt ′ �p (the azimuthal angle of
the guiding centre with respect to the bar) and ϕ − θϕ (the deviation

from the guiding centre which is only a function of θR), and use
equation (12)-(13) to convert between θ and θ ′;


k( J ′, t) = 1

2

∫ 2π

0

d2θ ′

(2π )2
�m(R, t)e

im
(

θϕ−∫ t
0 dt ′�p+ϕ−θϕ

)
e−ik·θ ′

= 1

2

∫ 2π

0

dθs

2π
e
i
(

m
Nϕ

−ks

)
θs

∫ 2π

0

dθf

2π
�m(R, t)e

i
[
m(ϕ−θϕ)−

(
m

NR
Nϕ

+kf

)
θf

]

= δm,Nϕks

2

∫ π

0

dθR

π
�m(R, t) cos

[
m(ϕ − θϕ) −

(
m

NR

Nϕ

+ kf

)
θR

]
,

where the last line is valid only for Nϕ ≤ m. δ is the Kronecker delta.

 ≡ 2|
1( J ′, t)| is then (e.g. Tremaine & Weinberg 1984)


 = δmNϕ

∣∣∣∣
∫ π

0

dθR

π
�m(R, t) cos

[
m(ϕ − θϕ) − NRθR

]∣∣∣∣ . (B1)

In the limit JR → 0 at the CR (NR = 0), 
 = |�m|.
APPENDI X C : CALCULATI ON O F G

The quantity G introduced in equation (25) is

G = ∂

∂Js
(N · �) = N · ∂

∂ J
(N · �) =

∑
i,j

NjNi

∂�i

∂Jj

, (C1)

where the indices i, j are summed over {R, ϕ}. In practice, we
compute the partial derivatives of the frequencies by finite differences
with �J = 1 kpc km s−1. For near circular orbits (JR < �J), we
estimate G by epicycle approximation. In a logarithmic background
potential, the orbital frequencies are

(�R, �ϕ) �
(

κ, � + dκ

dJϕ

JR

)
=

(√
2 , 1 −

√
2
JR

Jϕ

)
� (C2)

and therefore G is

G = −
(

1 + 2
√

2NR/Nϕ − 2
√

2JR/Jϕ

)
(

1 + √
2NR/Nϕ − √

2JR/Jϕ

)2

N2
ϕ

R2
CR

. (C3)

At the OLR and the CR, JR is typically an order smaller than Jϕ so
G is almost always negative. At the ILR, however, G is positive.
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