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Abstract—Laparoscopic Ultrasound (LUS) is recommended as
a standard-of-care when performing laparoscopic liver resections
as it images sub-surface structures such as tumours and major
vessels. Given that LUS probes are difficult to handle and
some tumours are iso-echoic, registration of LUS images to
a pre-operative CT has been proposed as an image-guidance
method. This registration problem is particularly challenging
due to the small field of view of LUS, and usually depends
on both a manual initialisation and tracking to compose a
volume, hindering clinical translation. In this paper, we extend
a proposed registration approach using Content-Based Image
Retrieval (CBIR), removing the requirement for tracking or
manual initialisation. Pre-operatively, a set of possible LUS planes
is simulated from CT and a descriptor generated for each image.
Then, a Bayesian framework is employed to estimate the most
likely sequence of CT simulations that matches a series of LUS
images. We extend our CBIR formulation to use multiple labelled
objects and constrain the registration by separating liver vessels
into portal vein and hepatic vein branches. The value of this
new labeled approach is demonstrated in retrospective data
from 5 patients. Results show that, by including a series of 5
untracked images in time, a single LUS image can be registered
with accuracies ranging from 5.7 to 16.4 mm with a success
rate of 78%. Initialisation of the LUS to CT registration with
the proposed framework could potentially enable the clinical
translation of these image fusion techniques.

Index Terms—Multi-modal Registration, Trackerless Registra-
tion, Laparoscopic Ultrasound, Content-Based Image Retrieval

I. INTRODUCTION

LAPAROSCOPIC Liver Resection (LLR) shows benefits
over open surgery in terms of reduced trauma to the pa-

tient and consequently shorter hospital stays [1], [2]. However,
due to limitations inherent to the laparoscopic setting, only
5-30% of cases are considered for LLR, usually when the
tumours are located in easily accessible regions without major
vessels [3]. Laparoscopic Ultrasound (LUS) is an imaging tool
that can increase the safety of this procedure by imaging sub-
surface structures such as vessels and tumours [4]. To enable
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use during laparoscopic procedures, LUS probes typically have
a relatively small ultrasound transducer, attached to the end of
a long shaft, with either a 1 or 2 way pivoting mechanism.
This design, combined with the reduced field of view of
the transducer, increases the user expertise required to both
manipulate the probe inside the abdominal cavity and interpret
the resulting images [5]. Additionally, some tumours are iso-
echoic and not easy to visualise in the LUS images [6]. To
overcome these limitations, registration between LUS and a
pre-operative scan such as Computed Tomography (CT) or
Magnetic Resonance (MR) based on blood vessel information
has been proposed [7]. By aligning LUS with any of these
modalities, guidance is enabled by providing the surgeon with
spatial context on the relative position between a target tumour
and major vessels.

Compared to other ultrasound (US) to CT registration prob-
lems, the LUS to CT registration is very poorly constrained
due to the difference in imaging field of view and usually
depends on either a manual interaction with the images [8] or
Electromagnetic (EM) tracking to compose a 3D volume [9],
[10]. Such requirements hinder the clinical translation of these
methods as they disrupt surgical workflow and increase the
hardware complexity in the operating room. In this paper, we
extend a novel registration method that provides an accurate
initialisation to the problem without requiring tracking infor-
mation nor a manual interaction with the images. Preliminary
results have been previously presented [11].

A. Background

Several authors have tackled the registration of percuta-
neous US to CT/MR of the liver, mainly for radiofrequency
ablation procedures. Registration for freehand US has been
achieved by using an intensity matching between US and a
linear combination of CT and simulated US [12], by aligning
vessel probability maps derived from US and CT [13] and
by matching local orientation description maps of US and
MR [14]. However, these intensity-based methods rely on
US images that capture large abdominal sections with major
liver vessels and liver surface, and not just a small subset of
vessels as in LUS. Other authors registered with 3D US probes
instead, using vessels as features [15], [16], vessels and liver
surface [17], [18], or image intensity gradient information [19],
[20]. Since there are no 3D LUS probes, these methods are
not easily transferable to the laparoscopic setting.
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Few methods have been demonstrated for the specific reg-
istration of LUS to CT. Historically, the first feasibility tests
were presented by Bao et al. [21] in an isolated phantom
and Kruecker et al. [22] in a complete laparoscopic setup.
Later, Martens et al. [23] validated a surface-based rigid
registration with the LapAssistent system on an ex-vivo animal
liver. The first intra-operative solution was demonstrated by
Song et al. for in-vivo animal data, using a locally rigid
vessel-based manual alignment [8]. Even though the rigidity
assumption is not compatible with the fact that the liver
is highly deformed during laparoscopy due to abdominal
insufflation (pneumoperitoneum) and LUS probe contact [24],
the main limitation of these methods is the dependence on a
manual match between common vessel landmarks in CT and
LUS. This can be attributed to the fact that this is a part-to-
whole registration problem where a small subset of vasculature
must be matched to a much larger and repetitive vessel tree,
making traditional optimisation schemes applicable only if
the position of the LUS image is closely initialised to the
correct vascular region of the CT. Previously, we approached
this problem with a rigid solution, but assumed LUS to be
EM tracked [10]. Since tracking devices increase the cost and
complexity of the hardware present in the operating room,
an untracked registration solution would be highly beneficial
for clinical translation. The few current solutions that address
untracked US registration are not applicable to laparoscopy as
they either rely on 3D US probes [25] or on a very strict probe
movement during acquisition [26].

We propose a novel framework that poses registration as
a Content-Based Image Retrieval (CBIR) problem. These
concepts have been previously applied to the registration of
endoscopic video images to a pre-operative CT as a means
of enabling image-guidance during lung bronchoscopy [27].
Instead of optimising an alignment, we pre-operatively simu-
late possible LUS probe poses with their respective imaged
vessel content and encode the result to a database. Regis-
tration is then globally achieved by finding the pose that
best represents the vessel content of an input LUS image
without the need for an initialisation. Since the problem is
ill-posed and multiple non-unique solutions are expected for
a single image, we combine the retrieval results obtained by
multiple LUS images acquired closely in time in a Bayesian
framework. By assuming that images close in time should also
be close in translation and rotation, we construct a discrete
Hidden Markov Model (HMM) to estimate the most likely
sequence of CT simulations that represent the LUS acquisition.
We hypothesise that after including a minimum number of
images in the optimisation, a unique registration solution
can be obtained. This enables the registration problem to be
accurately initialised without tracking data. Previously, we
presented preliminary results on a limited sample of synthetic
and real LUS sequences, demonstrating the feasibility of this
framework without addressing the CBIR system performance
comprehensively [11]. In this work, we generalise our CBIR
system to include multiple labels in the vessel feature encoding
which increases registration performance. In the specific case
of liver imaging, this is possible by labelling different vessels
as branches of the portal vein or branches of the hepatic vein.

We validate the complete CBIR and HMM framework on
clinical data on a larger sample of LUS and CT data from
5 patients.

B. Contributions

In this paper, we propose a novel CBIR method for the
global trackerless registration of LUS to CT and introduce the
following contributions:
• We generalise our CBIR registration method to include

multiple labels, and provide a comparison of performance
between unlabellled and labelled CBIR.

• We provide a comprehensive analysis on the accuracy of
the method in the registration of a single LUS image.

• We present insights on what are the minimum require-
ments in terms of retrieval performance and model com-
plexity in order to obtain a reliable registration.

II. METHODS

Given a sequence of N untracked LUS images {I1, ..., IN}
with corresponding time stamps {t1, ..., tN}, we pose the
registration problem as finding the sequence of pre-operatively
simulated CT slices {J1, ..., JN} that best represents the vessel
content captured in the LUS acquisition. Our framework
comprises two steps:
• A CBIR system that retrieves a set of K possible slices
{J1i, ..., JKi} that are candidate solutions for the regis-
tration of each LUS image Ii;

• A discrete HMM optimisation that estimates the most
likely sequence of candidates assuming a kinematic prior
on the relative pose between each consecutive LUS slice.

A. Content-Based Image Retrieval Database Assembly

A set of possible registration solutions is generated by
densely sampling 2D planes, bounded by the LUS image
geometry, from physically accessible positions P of the seg-
mented CT volume J . A virtual reference pose is defined for
each point P within a set of evenly distributed points PS along
the segmented liver surface likely to be visible during surgery.
Each pose is defined by simulating the probe shaft placed
orthogonally to the liver surface and aligning the imaging
field of view with the sagittal plane. From this reference,
multiple combinations of rotations Rx, Ry and Rz around the
probe axes are applied to generate new planes parameterised
by R = [~x, ~y, ~z]. In order to approximately simulate the
case where the probe compresses the liver tissue and captures
deeper vessels, a translation d across the depth of the imaging
plane is also sampled.

As illustrated in the top section of Fig.1, for each parameter
combination of P , R and d, a vessel section map is then
generated. In order to have a lower dimensional feature
representation of each of these maps, we take an approach
similar to the one of Petrakis et al. [28] and encode them
in a feature vector f where each of the M captured vessel
sections in a single plane is represented by a feature triplet
fi comprised of the corresponding 2D centroid position and
area. Then, each triplet is labelled by a class c from a set of
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Fig. 1. Database generation process for vessel based image retrieval. For each point P of the liver surface PS , rotation R = [~x, ~y, ~z] and translation d in
depth direction, a vessel image is generated. Path (A) illustrates the case where no labels are used and f has a single size M . Path (B) illustrates the case
where vessels are labelled as hepatic vein (h) and portal vein (p) resulting in C=2 and feature vectors f have two specific sizes Mh and Mp. In the whole
figure, green refers to the hepatic vein and blue to the portal vein.

C classes as described in Fig.1 - in (A) no specific labels are
considered and C=1, whereas in (B) portal vein and hepatic
vein are considered, resulting in C=2. Once encoded, vectors
f are grouped in lists FM1,...,MC according to the number Mc

of triplets fci they contain for each class c. Following the same
paths in the bottom section of Fig.1, lists are identified by a
single size M in the unlabelled case (A) and by combinations
of two sizes with portal vein and hepatic vein labels (B).

Essentially, a large number of plausible probe poses are
sampled, an image plane extracted from CT, and a large
lookup table of features extracted, where the lookup table is
partitioned according to the number of occurrences of each of
the considered vessel classes.

B. Multi-Labelled Image Retrieval

We formulate the image retrieval process as the computation
of a distance measure between an input LUS feature vector
f I with M I feature triplets and the pre-operatively generated
vectors from CT encoded in a database F . Therefore, we first
formalise the problem of measuring the distance between two
vectors f1 and f2. Taking into account that the size of the
vectors may differ, we make the following definitions,

fSc := arg min
f∈{f1,f2}

(count(f , c)), MS
c := count(fSc , c),

fLc := arg max
f∈{f1,f2}

(count(f , c)), ML
c := count(fLc , c),

(1)

where the subscripts L and S refer to the larger and smaller
feature vectors in the comparison and count(f , c) operator
returns the number of feature triplets in f that belong to class c.
We can then define a L2 distance ∆ that compares feature
vectors of class c within f1 and f2,

∆(f1, f2, c) =

MS
c∑

i=1

‖fSci −m(fSci, f
L
c )‖2, (2)

where the function m(fSci, f
L
c ) returns the feature triplet in the

larger vector fLc whose centroid is closest to the centroid of fSci.
Intuitively, this function matches all the triplets in the smaller
vector fSc to their closest counterparts in the larger vector fLc .
These class specific costs are subsequently combined to yield
the following weighted distance:

D(f1, f2, C) =
AL∑C
c=1A

S
c

·
C∑
c=1

∆(f1, f2, c) (3)
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Fig. 2. HMM formulation of the problem. The left-hand side depicts the employed graphical model. The right-hand side illustrates the transition probability
P (Jki|Jki−1) of a pose Jki being followed by Jki−1. This diagram only displays the translation probability with Gaussian covariances σx, σy and σz .

This expression comprises two terms, the sum of L2 norm for
all of the C classes and a penalty term based on the the area of
the vessel sections that were not matched when computing ∆.
Considering the operator A(fi) that returns the area of triplet
fi, and the following definitions,

AL =

ML∑
i=1

A(fLi ), ASc =

MS
c∑

i=1

A(m(fSci, f
L
c )) (4)

this penalty term is defined as the ratio between the area AL

of all triplets in the overall larger vector of the comparison fL

and the sum of the areas of the class specific triplets fLci that
were matched in ∆. The larger the areas excluded from the
matching, the larger the ratio and subsequently the distance D.
In case that f1 and f2 contain matching numbers of each class,
the ratio is 1.

Retrieval is now achieved by searching for the vectors in F
that have a minimal distance D with the input f I :

f∗ = arg min
fT∈FT

(
D(f I , fT , C)

min(M I ,MT )

)
,

FT = {FM1,...,MC ∈ F :
C∑
c=1

|Mc −M I
c | ≤ r}

(5)

Intuitively, this search should only consider lists with a num-
ber of vessel sections close to the input. Therefore, FT is
defined as the target subset of lists whose differences between
each of its sizes {M1, ...,MC} and the sizes of the input
{M I

1 , ...,M
I
C} amount to less than an allowable search range

r. In summary, the search only considers lists whose number
of vessel occurrences do not differ more than r from the input.
Since the input vector is compared to lists with different sizes,
all distances are normalised by the overall smaller number of
sections used in each comparison. Assuming that the minimum
vector f∗ may not return an accurate registration, we consider
the set of poses providing the K smallest distances defined in
equation (5). These poses are defined as candidate poses for
further probabilistic optimisation.

C. Probabilistic Optimisation
Given the sets of K candidates {J1i, ..., JKi} retrieved for

each of the N LUS images Ii, we solve the multiple image

registration problem by means of the discrete HMM shown
in Fig. 2. In this model where columns and rows refer to
images in time and candidates respectively, nodes represent
the likelihood P (Ii|Jki) of an image having been acquired
with a candidate pose, and edges represent the probability
P (Jki|Jki−1) of a pose being followed by another in time.
Following discrete HMM theory, the most likely sequence of
candidates to represent the acquisition can be obtained through
the Maximum A Posteriori (MAP) estimation of the model,

Ĵk1..., ĴkN = arg min
Jk1...,JkN

[
−

N∑
i=1

logP (Ii|Jki)

−
N∑
i=2

logP (Jki|Jki−1)
]
,

(6)

which can be solved in a closed form by the Viterbi algo-
rithm [29]. In this optimisation, we rely solely on the kinematic
prior information in the edges and therefore consider all node
probabilities to be 1, giving no priority to any candidate on its
own. Assuming the LUS probe to be swept smoothly along the
normal to the imaging plane without inverting direction, we
define the edge probability similarly to [30], as a multi-variate
Gaussian,

P (Jki|Jki−1) =
exp(− 1

2δ
T
ki,ki−1Σ−1δki,ki−1)√

2π4|Σ|
(7)

with distance and covariance defined by

δki,ki−1 =

[
Rki−1(

−−−−−−→
Pki−1Pki)

θki,ki−1

]
Σ = |ti − ti−1|diag(σx, σy, σz, σθ)

(8)

As illustrated in the right hand side of Fig. 2, this equation
models the transition probability from candidate Jki−1 to
Jki as the distance, δki,ki−1 between their respective poses
conditioned by a Gaussian distribution centred in the pose of
Jki−1 with covariance Σ. Four degrees of freedoms are con-
sidered in this model, the tridimensional Euclidean difference
between the probe contact positions Pki−1 and Pki projected
in the rotation of the starting pose, and the angular difference
θki,ki−1 between the two plane normals ~zki and ~zki−1. By
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Fig. 3. Manual picking of common vessel landmarks in CT and LUS for posterior accuracy evaluations. By registering the yellow landmarks in LUS (A)
and grey landmarks in CT space (B) with a Point-based Registration [31], a ground truth alignment is obtained in 3D (C) and 2D spaces (D). Estimation of
the plane represented in (B) is done manually after a careful inspection of the 3D CT models.

defining Σ as a diagonal matrix with values proportional to
the time difference between images, this distribution favours
transitions where the smaller the time gap, the smaller the
translation and rotation difference between them. Additionally,
we enforce the forward movement constraint by giving 0
probability to transitions whose direction

−−−−−−→
Pki−1Pki have an

angular difference above 90◦ with the direction obtained for
the first two images in the sequence.

III. EXPERIMENTS

We validate the proposed method using retrospective un-
tracked LUS images and contrast-enhanced CT scans from
5 clinical cases. Liver surface, hepatic vein and portal vein
models were extracted from each CT using a commercial ser-
vice (www.visiblepatient.com). LUS images with 668 × 544
pixels and pixel size 0.12 mm × 0.12 mm were acquired
at a rate of 40 Hz by smoothly sweeping a BK Medical
(www.bkmedical.com) 4 Way I12C4f laparoscopic transducer
over the surface of the right lobe of the liver. Vessel sections
are manually segmented and labelled as hepatic vein or portal
vein in each LUS image. A future piece of work will consider
automating this process, using methods such as the one in [32].
We perform two sets of experiments to assess separately the
two components of our registration framework, the CBIR
system and the HMM based registration.

A. Image Retrieval

In a first experiment, we test the labelled and unlabelled
CBIR systems by retrieving K = 1000 candidate poses
individually for a set of 63 LUS images distributed among
the 5 patients, using an empirically chosen search range
r = 2 as in equation (5). Patient-specific unlabelled and
labelled databases F are generated from liver surfaces with
an approximate spatial resolution of 3.5 mm, pose rotations
within the intervals Rx = Rz = [−40, 40]◦, Ry = [−90, 90]◦

in steps of 10◦ and depth within the interval d = [0, 30] mm
in steps of 5 mm. A higher amplitude is defined for Ry as this
is the rotation in which the probe can be moved more freely
whilst touching the liver surface during acquisition. Given that

the surgeon trivially knows which liver lobe is being scanned
during the LUS acquisition, we restrict the translation space
of the simulation to the surface of the right lobe.

To measure performance, we adapt the retrieval precision
metric that is traditionally used in the evaluation of CBIR
systems. Specifically, given an image retrieval task, preci-
sion is defined as the percentage of images retrieved that
are relevant to an input query image [28]. In the case of
registration, an appropriate criterion for relevance should be
based on the accuracy of the retrieved poses. Therefore, for
each of the 63 tested LUS images, we establish a ground truth
alignment by manually picking a set of vessel landmarks with
their counterparts in CT, and registering them with a Point-
based Registration [31], as illustrated in Fig. 3. For all of the
K = 1000 retrieved poses, we project the resulting position
of the LUS landmarks (yellow) in CT space, and compute
the resulting Target Registration Error (TRE) between them
and the CT landmarks (grey). We then define precision as the
percentage of poses for which the Root Mean Square (RMS)
of this TRE is below 20 mm. This threshold is considered as
sufficient for the purpose of a global rigid registration that can
be refined further with other US to CT fusion algorithms.

B. HMM Registration

We evaluate the HMM optimisation by employing it as a
means of registering each of the 63 individual LUS images
previously tested for retrieval. Therefore, for every registration
task, we consider the image to be registered as I1 in the
optimisation of equation (6), and include the retrieval results of
subsequent LUS images that follow in time during acquisition
and differ in vascular content.

Firstly, we perform registrations by combining the top 200
retrieved poses for both the image of interest I1 and the 5
subsequent images {I2, ..., I6}, which yields a HMM with
width N = 6 and height K = 200. Image retrieval for the
extra images is also performed using a search range r = 2,
and the HMM probabilistic constraints are parameterised with
variances σz = 3 mm, σx = σy = 0.2σz and σθ = 2◦. A
larger translation variance is given to σz in order to prioritise
movement along the imaging plane normal, as illustrated in
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Fig. 2. Registration accuracy is measured as the TRE of the
pose estimated for I1.

In a second test, we study the effect of varying the
HMM hyperparameters, the width N and height K. There-
fore, registrations are repeated for all of the 63 LUS im-
ages with different numbers of candidate poses K within
{50, 100, 200, 500, 1000}. Instead of considering a fixed width
N , we follow our hypothesis that there is a minimum number
of images for which the problem should yield a correct solu-
tion, and measure NS , the width at which the Viterbi algorithm
estimates a pose for I1 that results in a TRE below the
acceptable threshold of 20 mm. This means that for each tested
image and value K, we add retrieval results of subsequent
images sequentially until I1 is successfully registered with a
TRE below 20 mm. Retrieval search range r and probabilistic
constraint variances are fixed as in the previous experiment. In
practical terms, this experiment aims to provide insight on how
many subsequent images and retrieved candidates per image
should be used to obtain a reliable registration for a single
LUS slice. All experiments are performed for both unlabelled
and labelled cases.

C. Influence of Segmentation Errors

Since we demonstrate our method using manually seg-
mented vessels, we perform a last experiment to evaluate
the performance of the CBIR system in the presence of
segmentation errors. Traditionally, segmentation errors could
be modelled by applying random noise to both the position and
outline of the manually segmented vessel sections. However,
such errors would not significantly influence the performance

of the retrieval as the system reduces each vessel section to a
triplet consisting of a 2D location and area. Additionally, since
the database search is constrained by the amount of sections
present in the image, the method is most likely affected by
topological errors such as mis-segmented vessels. Therefore,
we repeat the retrieval experiment of section III-A for all
of the 63 LUS images after introducing either fake vessels
(False Positives) or missing vessels (False Negatives) in the
corresponding manual segmentation.

For each image and corresponding feature vector, we gen-
erate augmented vectors with false positives (FP) or false
negatives (FN). FN vectors are generated by removing feature
triplets whose area does not surpass 2.5 mm2. One FN vector
is generated for each possible combination of between one
and three removed vessels. FP vectors are generated by adding
new feature triplets with centroids adjacent to existing vessels.
Each new triplet is created with a fixed area of 2.5 mm2 and
assigned to the class of the corresponding source vessel. The
new centroid is calculated using a Gaussian distribution with
a standard deviation of 2.5 mm, and centred on the centroid of
the source vessel. One FP vector is generated for each possible
combination of between one and three added vessels.

We perform retrieval for all of the resulting FP and FN vec-
tors with mis-segmentations, and group the precision results
according to the number of false positives or false negatives
in the sampled combination.

IV. RESULTS

A. Image Retrieval
To better understand the dimensionality of the solution

space considered in the image retrieval task, we first show

TABLE I
CHARACTERISTICS OF SOLUTION SPACES CONSIDERED FOR EACH PATIENT-SPECIFIC DATABASE. LEFT SHOWS DIMENSIONS OF THE SOLUTION SPACE,

WHERE #A REFERS TO THE NUMBER OF ELEMENTS IN A. RIGHT SHOWS THE APPROXIMATE MEDIAN AND MAXIMUM TRE OBTAINED ACROSS THE
SOLUTION SPACE WITH MEAN AND STANDARD DEVIATION OVER THE NUMBER OF TESTED IMAGES PER PATIENT, LISTED IN THE FIRST COLUMN.

Dimensions of Solution Space Expected Errors across Solution Space

Patient #Surface
Points PS

Surface Area
(mm2)

Resolution
(mm)

#Feature
Vectors in F

Number of
Images

“Random Retrieval”
Median TRE (mm)

Upper Bound
Maximum TRE (mm)

Case 1 5025 3.6 × 104 4.1 50.5 × 106 12 55.4 ± 5.6 175.1 ± 19.3
Case 2 4637 2.5 × 104 3.7 53.7 × 106 7 53.9 ± 2.9 110.1 ± 10.5
Case 3 3643 1.6 × 104 3.3 47.7 × 106 16 50.5 ± 8.9 90.6 ± 17.0
Case 4 3467 1.7 × 104 3.5 37.1 × 106 7 59.1 ± 13.0 134.5 ± 21.6
Case 5 3324 1.4 × 104 3.2 43.4 × 106 21 59.8 ± 4.7 107.8 ± 13.4

TABLE II
UNLABELLED AND LABELLED IMAGE RETRIEVAL RESULTS FOR 63 LUS IMAGES DISTRIBUTED AMONG 5 PATIENTS USING K = 1000 TOP RETRIEVED
POSES AND SEARCH RANGE r = 2 (SEE EQUATION 5). NUMBER OF IMAGES REFERS TO THE NUMBER OF TESTED IMAGES PER PATIENT. OTHER FIELDS

ARE PRESENTED AS MEAN AND STANDARD DEVIATION OVER THE NUMBER OF IMAGES PER PATIENT.

Unlabelled Retrieval Labelled Retrieval

Patient Number of
Images

Ground Truth
FRE (mm) Precision (%) Minimum

TRE (mm)
Precision>0%

Images Precision (%) Minimum
TRE (mm)

Precision>0%
Images

Case 1 12 7.2 ± 2.0 13.0 ± 8.4 9.7 ± 1.9 12/12 37.6 ± 24.0 9.2 ± 2.4 12/12
Case 2 7 4.2 ± 2.2 20.6 ± 11.6 6.5 ± 1.6 7/7 31.4 ± 30.3 7.5 ± 2.6 7/7
Case 3 16 8.6 ± 1.1 1.7 ± 2.9 17.1 ± 28.5 11/16 12.4 ± 14.3 11.5 ± 2.6 16/16
Case 4 7 8.3 ± 2.4 25.4 ± 32.3 13.0 ± 5.6 6/7 30.1 ± 27.5 11.0 ± 3.4 7/7
Case 5 21 7.2 ± 2.5 12.0 ± 12.1 10.6 ± 4.6 20/21 26.1 ± 26.2 10.1 ± 5.5 20/21
Total 63 7.3 ± 2.3 12.2 ± 15.9 12.1 ± 5.6 56/63 26.3 ± 25.6 10.0 ± 4.1 62/63

Authorized licensed use limited to: University College London. Downloaded on December 31,2020 at 15:52:55 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3045348, IEEE
Transactions on Medical Imaging

7

Fig. 4. Registration accuracy on 63 LUS images distributed among 5 patients after employing a HMM registration with 5 subsequent images and number of
K = 200 retrieved poses per image. From left to right, results are presented for images with retrieval precision above 0%, 10% and 20%. Median, standard
deviation and scatter plots of the accuracies are presented separately for images that belong to the same patient case. Lower deviation limits are presented as
the minimum value of the sample. Purple and yellow data series refer to labelled and unlabelled retrieval results, respectively.

an overview of the patient-specific generated databases F in
Table I. In the left-hand side, we present for each database
the number of points PS that were sampled across the visible
surface, the total area covered by them, their spatial resolution,
and the total number of generated solutions. In the right-hand
side, in order to establish both an upper bound and an expected
value of the TRE for a “random retrieval”, we provide an
approximation of the maximum TRE and median TRE that
can be obtained across all surface points PS for each of the
63 tested LUS images. For each patient case, these errors are
presented as mean and standard deviation over the number
of total tested images per patient listed in the first column
of the right section of the table. For the sake of simplicity,
these approximations only consider TRE values measured at
reference poses (R = [0, 0, 0], d = 0).

Retrieval results for the 63 LUS images are presented per
patient case in Table II. Similarly to the previous table, results
for each case are presented as mean and standard deviation
over the number of tested images. For each retrieval method,
we present the retrieval precision, the number of images whose
precision is above 0%, and the minimum TRE result found
in the pool of retrieved poses. In order to set a reference
for the TRE values, we use the previously calculated ground
truth alignments (Fig. 3) and report the resulting Fiducial
Registration Error (FRE). This error represents the maximum
accuracy that can be obtained in these landmarks with a rigid
registration. Overall, the retrieval systems find a solution with
TRE below 20 mm within 1000 retrieved poses for almost
every image, except for Case 3, where 5 images have no
suitable solutions when the unlabelled method is used. The
introduction of vessel labels increases the retrieval precision
significantly, as this value ranges from 1.7% to 25.4% for
the unlabelled case and ranges from 12.4% to 37.6% for the
labelled case. This improvement is consistent for all patient
cases and more emphasised in Case 3, where the number of
images without a suitable solution decreases from 5 to 0. The
obtained minimum TRE values are comparable to the Ground
truth FRE and similar between retrieval methods, except for

the unlabelled retrieval of Cases 3 and 4.

Fig. 5. Number of images NS needed to achieve a successful registration of
I1 (top) and corresponding registration success rate (bottom) averaged over 5
patients versus number of candidates K used in the HMM registration. Each
data series represents results with different retrieval methods.

B. HMM Registration

Registration accuracy results of the first HMM registration
experiment are presented per patient and retrieval method in
Fig. 4 as a scatter plot with marked median and standard
deviations. Results in the left chart show that the median TRE
for all images is below the acceptable threshold of 20 mm
on only 1 case for each retrieval method. This is possibly

Authorized licensed use limited to: University College London. Downloaded on December 31,2020 at 15:52:55 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3045348, IEEE
Transactions on Medical Imaging

8

Fig. 6. Distribution of minimum number of candidates K required for a successful registration of 63 LUS images distributed among 5 patients and corresponding
accuracy. Left column charts show these distributions as a set of stacked bars, one for each K tested value. Bars referring to CBIR only registrations with
K = 1 are identified in green, whereas bars referring to HMM registrations are identified with a grey colour map. Right column charts show separate sets
of median, standard deviation and scatter plots of the TRE for the CBIR only registrations (K = 1) in green and for the HMM registrations in grey.

explained by the fact that images with a lower precision are
more difficult to register accurately as the additional LUS
images that follow them in time will potentially also have
a low retrieval precision. Therefore, we present two additional
charts showing the TRE results only for images whose retrieval
precision in the previous experiment was above 10% and 20%.
These charts show that a higher precision leads to higher
registration accuracy, as the median TRE values per patient
decrease from left to right, and range from 11.2 mm to
15.7 mm for all cases but one when the precision is above
20%. TRE values do not differ greatly between unlabelled
and labelled retrieval methods. However, due to the differences
in retrieval precision, the labelled method results in a larger
number of registrations with error below 20 mm.

C. Effect of HMM Width and Height

Two sets of results are presented for the second HMM regis-
tration experiment. Firstly, the number of images NS required
for a successful registration of I1 with TRE below 20 mm,
is presented as a function of the number of used candidates
K in Fig. 5. Additionally, we also show the corresponding
percentage of tested images that were successfully registered
for each K value. Since the number of tested images (left
column of Table II) varies among patients and each surgical

case has specific physical conditions, we do not consider
each image as an independent event, and present these two
measurements as the mean and standard deviation over the
average of each of the 5 patients. These results indicate that
increasing the number of candidates K potentially increases
the success rate of the registration, but also increases the
number of images necessary to reach an accurate solution.
Specifically, in successful registrations, the mean NS ranges
from 3 at K = 50 to 5 at K = 1000 for both retrieval
approaches. The mean registration success rates are higher
when the labelled method is used, with values ranging from
53% at K = 50 to 71% at K = 1000. For the unlabelled
method, the success rates peak at a mean value of 49% at
K = 200 and start decreasing with K = 1000. Such decrease
suggests that if K is too large, the ambiguity of the problem
may start increasing.

In a second set of results, instead of looking at the minimum
HMM width that leads to an accurate registration of I1, we
study the minimum HMM height, i.e what is the lowest value
of retrieved poses K required to register each of the tested
images. Such analysis is useful as a very large K may increase
not only the ambiguity of the registration in some cases, but
also the computational expense of the Viterbi algorithm, whose
complexity is quadratic in respect to K. Results of this analysis

Authorized licensed use limited to: University College London. Downloaded on December 31,2020 at 15:52:55 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3045348, IEEE
Transactions on Medical Imaging

9

Unlabelled and Labelled solutionsGround TruthGround Truth 𝑇𝑅𝐸 = 7.2 𝑚𝑚

P
a

ti
e

n
t 

3

𝑁 = 6,𝐾 = 200
𝑇𝑅𝐸 > 20.0 𝑚𝑚

𝑁𝑆 = 2, 𝐾 = 50
𝑇𝑅𝐸 = 10.9 𝑚𝑚

A

C D

B

Ground Truth Unlabelled and Labelled solutionsGround Truth 𝑇𝑅𝐸 = 5.6 𝑚𝑚

P
a

ti
e

n
t 

1

𝑁𝑆 = 2, 𝐾 = 500
𝑇𝑅𝐸 = 9.4 𝑚𝑚

𝑁𝑆 = 5, 𝐾 = 200
𝑇𝑅𝐸 = 8.4 𝑚𝑚

A

C D

B

Unlabelled and Labelled solutionsGround Truth

𝑁𝑆 = 1, 𝐾 = 1
𝑇𝑅𝐸 = 5.7 𝑚𝑚

𝑁𝑆 = 1, 𝐾 = 1
𝑇𝑅𝐸 = 5.7 𝑚𝑚

Ground Truth 𝑇𝑅𝐸 = 4.4 𝑚𝑚

P
a
ti

e
n

t 
5

A

C D

B

Fig. 7. Visual results of the second HMM registration experiment for 3 LUS images from 3 different patients. Each row refers to a different patient case.
Left column shows 2D registration results which include 4 images, the original segmented LUS image (A), and segmented CT projections of the ground truth
(B), unlabelled (C) and labelled (D) registration solutions. TRE is displayed for the three solutions, and the minimum number of candidates K and number of
images NS required for the registration are displayed for (C) and (D). Middle column shows the 3D position between the resulting plane of the ground truth
solution (B) in black and the right column shows the same visualisation for the unlabelled (C) and labelled solutions (D) in yellow and purple, respectively.
For an easier interpretation of the plane orientation, the probe contact positions are also highlighted with circular markers. In the whole figure, green refers
to the hepatic vein and blue to the portal vein. For an easier interpretation of the 3D results, check the uploaded supplementary material.

are summarised per patient case in Fig. 6. In the left-hand side,
we show a stacked bar plot depicting the percentage of tested
images per patient whose registration is successful at different
minimum K values. In addition to the K values tested in the
HMM registration, we also consider the cases where the first
pose retrieved by the CBIR system (equation (5)) results in
a TRE below 20 mm and the minimum K is 1. The sum
of the bars in each stack amounts to the total percentage of
tested images for which there is a K value that results in a
registration with TRE below 20 mm. In the right-hand side
of Fig. 6, the median, standard deviation and scatter plots of
the TRE values of these registrations are presented per patient.
CBIR only registrations (K = 1) and HMM registrations are
shown separately. Visually, CBIR only registration results are
highlighted with green whereas HMM registration results are
highlighted with a grey colour map.

Overall, the number of candidates required for a successful
registration with TRE below 20 mm is lower when using the
labelled retrieval - for patient cases 1, 2 and 3, the amount
of K = 1 successes significantly increases from 0% to 58%,
43% and 19%, respectively. This improvement is also observed
in the percentage of successfully registered images, mainly in
the case of patients 1 and 3, where improvements from 58%
to 83% and 13% to 56% are observed. In terms of accuracy,
the resulting TRE is slightly lower in the labelled retrieval
approach and has median values per patient ranging from 8.7
mm in patient 2 to 16.4 mm in patient 3.

Visual examples of these registrations with minimal number
of candidates K are shown in Fig. 7 for 3 LUS images from
different patient cases. For each registration example in a row,
the left-hand side shows 2D results that include the segmented
LUS image (A), the point-based ground truth solution (B),
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and the unlabelled (C) and labelled (D) registration solutions.
Visualisations of the 3D position between the segmented
CT model and resulting imaging planes of the ground truth
(black) and the two obtained solutions (yellow and purple)
are displayed in the middle and right-hand side of the figure,
respectively. To compare our solutions (C and D), in addition
to the TRE, we also display the minimum HMM width NS and
height K that were required to obtain them. It is important to
to note that even though in some of these results more than one
LUS image was included in the HMM, we focus our attention
only in the registration result of the image of interest I1.

The registration result of patient 1 shows an example
where the accuracy of the labelled and unlabelled methods
is comparable, but the minimum number of candidates K
required is smaller for the labelled approach. For patient 3, we
show a case where the unlabelled retrieval results never lead
to a successful registration with any number of candidates K,
but the labelled method finds a solution for K = 50 candidates
and NS = 2 LUS images. In the registration failure case, we
show the solution obtained with the same parameters tested in
the first HMM registration experiment (Fig. 4). It is possible
to see in this case that the vessel labelling helps the algorithm
finding a reliable solution even though there is a large missing
portal vein section between the LUS and the ground truth. The
registration of patient 5 illustrates the best registration result,
where both methods obtain a solution with a TRE of 5.7 mm
without using the HMM.

D. Effect of Segmentation Errors

Results of labelled retrieval precision averaged over 5 pa-
tients versus varying amounts of fake (False Positive) vessels
and missing (False Negative) vessels are summarised in Fig. 8.
We only show results for the labelled approach since the
unlabelled approach showed an overall worse retrieval per-
formance. In this chart, the original mean precision is shown
in grey in the centre (see Table II), and the mean precisions
in the presence of fake vessels and missing vessels are shown
on the bars in the left-hand and right-hand sides, respectively.
In the coloured bars, precision is averaged over the median
value obtained over all combinations with a fixed number of
fake or missing vessels.

As expected, for all cases, the existence of mis-segmented
vessels decreases the retrieval precision when compared to the

Fig. 8. Mean and standard deviation of labelled retrieval precision of 63
LUS images averaged over 5 patients after introducing varying amounts of
fake (False Positive, FP) and missing (False Negative, FN) vessels in the
original manual segmentations.

original manual segmentations. However, this effect is more
pronounced in the presence of missing vessels, where the mean
precision decreases to a value below 20% with only one false
negative. In the presence of fake vessels, the precision only
reaches a value below this limit when 3 false positives are
introduced.

E. Computational Expense

An aspect that is crucial to translation of any image-
guidance method is the computational requirements. There-
fore, we also present a summary of the memory and time
expenses of the main components of the proposed method in
a set of three tables in Table III. All results were obtained
using a machine with an Intel i7 2.8 GHz processor, a NVidia
GeForce GTX 1050 graphics card, and a RAM memory of 16
gigabytes (GB).

In Table III. A), the memory required for each of the
generated patient-specific databases is presented in GB. In
Table III. B), the time expense associated with the simulation
and retrieval steps of the CBIR system is presented for both
labelled and unlabelled approaches. For simulation, we present
the time required for a single image to be simulated and
encoded to a feature vector. This step was run using a graphical

TABLE III
THREE TABLES SHOWING APPROXIMATE COMPUTATIONAL TIME AND MEMORY EXPENSE OF DIFFERENT COMPONENTS OF THE METHOD. TIMES ARE

PRESENTED IN SECONDS (S) AND MEMORY IN GIGABYTES (GB). IN B), (U) AND (L) REFER TO UNLABELLED AND LABELLED METHODS,
RESPECTIVELY. IN C), PER COLUMN REFERS TO ONE ITERATION OF THE HMM OPTIMISATION.

A) CBIR (Memory) Case 1 Case 2 Case 3 Case 4 Case 5
3.9 GB 3.9 GB 4.0 GB 2.7 GB 5.7 GB

B) CBIR (Time) Simulation (U) Simulation (L) Retrieval (U) Retrieval (L)
0.02 s per image 0.04 s per image 30 s per input image 15 s per input image

C) HMM (Time) K=50 K=100 K=200 K=500 K=1000
0.5 s per column 2 s per column 5 s per column 75 s per column 210 s per column
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processing unit (GPU) implementation, and took less than
0.1 seconds for both methods. For retrieval, we present the
time required for an input LUS image feature vector to be
compared with the database F using a search range r = 2
(see equation 5). This process was also tested with a GPU
implementation, and required 30 seconds for the unlabelled
approach and 15 seconds for the labelled one. Such difference
can be explained by the database structures - when labels are
used, the database is composed of a larger amount of lists with
less feature vectors, allowing for a faster search.

Table III. C) shows the time expense of each iteration (com-
putation of a column) of the HMM optimisation versus the
number of candidates K considered in the model. This process
was run with a single thread and without GPU acceleration.
As expected from the properties of the Viterbi algorithm, these
values show an exponential increase in respect to K.

V. DISCUSSION

All of the presented results indicate that the proposed
registration framework highly benefits from separation of
segmented features into specific classes. This is expected since
the existence of vessel labels in LUS and CT constrains the
registration problem further and helps the CBIR system finding
solutions that are more physically plausible. The first results
that support this statement were observed in Table II, where
retrieval precision significantly improves when labels are used.

The subsequent HMM registration experiment of Fig. 4
demonstrated the importance of retrieval precision in the
registration - TRE values below an acceptable threshold of
20 mm were mainly obtained for images whose precision
surpassed 20%. Given the higher precision of the labelled
approach, it can be concluded that the introduction of labels
increases significantly the registration success rate. For the
images whose retrieval precision was below 20%, several low
accuracy results were obtained. These values may be explained
by the fact that the HMM is not robust to the inclusion of an
image with poor retrieval precision - if one of the 5 subsequent
images did not have any accurate retrieval result, the algorithm
is forced to estimate an incorrect alignment.

In the second HMM registration experiment, we investigated
the minimum HMM complexity required for the registration to
be possible, i.e what is the minimum number of LUS images
N and number of retrieved candidates K required for a reliable
registration of a single LUS image. Compared to the first
HMM registration experiment, the results of Fig. 6 indicate
that images with a lower retrieval precision can be successfully
registered if these parameters are minimised. In this case, the
percentage of successfully registered images ranged from 56%
to 100% when using labelled retrieval and from 12% to 85%
when using unlabelled retrieval. The most striking result of
this analysis was the percentage of images for which the CBIR
system alone achieved a successful registration - this value was
significantly increased with the label constraint. Furthermore,
the percentage of images per patient that did not require more
than 200 candidates ranged from 53% to 86%. Considering the
NS measurements of Fig. 5, it is possible to conclude that in
most cases, a single LUS image can be registered successfully

if the retrieval results of a maximum of 3 extra images in time
are included.

Factors that may explain the poorest retrieval and regis-
tration results are intra-operative deformations, the limited
pose parameter resolution of the generated database for CBIR
and the imaging differences in vessel contrast between LUS
and CT. Intra-operative deformations due to insufflation and
LUS probe contact are known to significantly compress liver
vessels during LUS imaging. In this part-to-whole registration
problem, compression can move liver vessels enough so that
the field of view of LUS does not capture them anymore
but CT does - this is exemplified in the result of patient
case 3 in Fig. 7 where the rigid CT ground truth images a
large portal vein section that the deformed LUS image does
not. In this CBIR system, deformation compensation could be
achieved in future work by including deformation parameters
in the database simulation step. By simulating vessel content
vectors from an insufflated CT model, the formulation of the
registration would not require any adaptation.

The database resolution limits the maximum registration
accuracy that can be obtained and can hinder the registration
performance of images that contain oblique vessel sections.
Since simulations assume an infinitely thin plane intersect-
ing the CT vascular model, it is likely that many oblique
vessel projections are not properly captured by the limited
rotation resolution. This problem could be overcome either by
considering the US imaging specific beam width during the
simulation, or by increasing the resolution of the parameter
space. To avoid an unfeasible increase in the computational
expense, it is important to maintain a trade-off between the
resolution and size of the covered translation space. For
example, a higher resolution database could be generated
whilst restricting the translations to a region of interest, such
as a spherical domain centred around a target tumour.

The different vessel contrast in LUS and CT leads to
missing vessels between both images, affecting directly the
problem of matching single 2D images to a 3D volume. Even
though we have included an allowable search range r to
account for this problem, substantial topological differences
between the LUS vessels and the CT vessels may still compro-
mise the uniqueness of the solutions. This effect is more pro-
nounced when CT and LUS have several mismatching small
vessels that are more susceptible to deformation. Therefore,
future work could address the pre-operative identification of
major vessels that are more likely to be imaged in LUS and
guarantee a reliable registration based on them.

Overall, our results are promising for a future clinical appli-
cation. It has been proposed that image-guidance techniques
for LLR should be accurate within 5 mm to have clinical
value [33]. Considering this threshold as a target accuracy,
the accuracies ranging between 5.7 and 16.4 mm obtained by
our method are sufficient as an initialisation for refinement
with other registration techniques. To use this initialisation
reliably without a tracker, a LUS volume could then be
estimated either by separately registering multiple images in
time, or by using a single image registration and a freehand
US compounding method [34], [35]. Another option would be
to estimate the LUS probe position through laparoscopic video
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based tracking [36], [37]. However, these methods require a
marker to be attached to the LUS probe and a calibration
procedure, complicating clinical translation.

In this work, we validated our registration framework with
manually segmented vessels. Therefore, to understand seg-
mentation requirements necessary for clinical translation, we
tested the performance of the labelled CBIR system in the
presence of topological mis-segmentations. Results of this
experiment indicate that retrieval performance is more affected
by the presence of missing vessels. Such decrease is expected
since segmentation failures will reduce the complexity of the
input LUS feature vector and possibly increase registration
ambiguity, mainly in images with less vessel data. In the case
of false positive mis-segmentations, the precision values do
not decrease as much, indicating that a future automatic seg-
mentation method should prioritise sensitivity over specificity.
For future work, Deep Learning frameworks for segmentation
of portal and hepatic veins in liver US images [32] could be
integrated.

In terms of computational expense, the proposed approach
requires times that are potentially compatible with the clinical
workflow. The most time intensive step of the method is the
database simulation, as a large number of 50×106 images is
simulated at a rate of 25 images per second. This is not critical
for two reasons - firstly, simulation is done pre-operatively
without very strict time constraints, and secondly, the expense
can be easily reduced by splitting the process across multi-
ple machines using cluster computing. Regarding the intra-
operative processes of the method, values in the order of
seconds were measured for both image retrieval and the HMM
optimisation. Specifically, if we performed registration using
K = 200 with N = 6 retrieved LUS images, the resulting time
expense would be (15 × 6) + (5 × 5) = 115 seconds. Even
though these times are not optimal for a real-time application,
they can be reduced either by using a higher memory GPU,
or by accelerating the HMM column computation with a GPU
implementation.

VI. CONCLUSION

In this paper, we have extended a novel method based
on CBIR for the registration of LUS images to CT of the
liver without using tracking devices or a manual initialisation,
and validated on 63 untracked LUS images. By generalising
our CBIR formulation to take into account labels assigned
to each extracted feature, the registration performance of the
method was improved. Results on clinical data from 5 patients
show that if we consider up to 200 retrieval solutions from
a sequence of up to 6 LUS images, trackerless registrations
with accuracy ranging from 5.7 to 16.4 mm can be obtained
in 78% of cases. Registration failures can be explained by the
presence of deformations, the differences in the contrast of
CT and LUS imaging, and the fact that some liver regions
contain vasculature that is not unique enough to constrain the
problem. Regardless, our results are promising for the purpose
of an initialisation of the LUS to CT registration problem,
which is extremely challenging and currently has no solution
that is transferable to the clinic. Higher performance can be

achieved in the future by increasing the realism of the CBIR
simulation, either by including deformation or simulating more
realistic LUS images. To the best of our knowledge, this is
the first work in multi-modal image registration of US to a
pre-operative scan that makes use of CBIR. The proposed
framework has the potential of enabling clinical translation,
and could be adapted to other interventional US guidance
problems.
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[22] J. Krücker, A. Viswanathan, J. Borgert, N. Glossop, Y. Yang, and B. J.
Wood, “An Electro-Magnetically Tracked Laparoscopic Ultrasound for
Multi-Modality Minimally Invasive Surgery,” in Int. Congr. Ser., vol.
1281. Elsevier, 2005, pp. 746–751.

[23] V. Martens, A. Besirevic, O. Shahin, and M. Kleemann, “LapAssistent-
Computer Assisted Laparoscopic Liver Surgery,” in Conference Pro-
ceedings of Biomedizinischen Technik (BMT). Rostock, Germany, 2010.

[24] S. Nicolau, L. Soler, D. Mutter, and J. Marescaux, “Augmented Reality
in Laparoscopic Surgical Oncology,” Surg. Oncol, vol. 20, no. 3, pp.
189–201, 2011.

[25] M. Brudfors et al., “Towards Real-Time, Tracker-less 3D Ultrasound
Guidance for Spine Anaesthesia,” Int. J. Comput. Assist. Radiol. Surg.,
vol. 10, no. 6, pp. 855–865, 2015.

[26] A. Cifor, L. Risser, M. P. Heinrich, D. Chung, and J. A. Schnabel, “Rigid
Registration of Untracked Freehand 2D Ultrasound Sweeps to 3D CT
of Liver Tumours,” in Int. MICCAI Workshop Comput. Clin. Challenges
in Abdominal Imag. Springer, 2013, pp. 155–164.

[27] S. A. Merritt, R. Khare, R. Bascom, and W. E. Higgins, “Interactive
CT-video Registration for the Continuous Guidance of Bronchoscopy,”
IEEE Trans. Med. Imag., vol. 32, no. 8, pp. 1376–1396, 2013.

[28] E. G. M. Petrakis and A. Faloutsos, “Similarity Searching in Medical
Image Databases,” IEEE Trans. Knowl. Data Eng., vol. 9, no. 3, pp.
435–447, 1997.

[29] S. J. Prince, Computer Vision: Models, Learning, and Inference. Cam-
bridge University Press, 2012.

[30] G. Nir et al., “Registration of Whole-Mount Histology and Volumetric
Imaging of the Prostate Using Particle Filtering,” IEEE Trans. Med.
Imag., vol. 33, no. 8, pp. 1601–1613, 2014.

[31] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of
Two 3-D Point Sets,” IEEE Trans. Pattern Anal. Mach. Intell., no. 5,
pp. 698–700, 1987.

[32] B. R. Thomson et al., “MR-to-US Registration Using Multiclass Seg-
mentation of Hepatic Vasculature with a Reduced 3D U-Net,” in Pro-
ceedings of Int. Conf. on Med. Image Comp. and Comp. Ass. Intervent.
Springer, 2020, pp. 275–284.

[33] S. Thompson et al., “In Vivo Estimation of Target Registration Errors
during Augmented Reality Laparoscopic Surgery,” Int. J. Comput. Ass.
Rad., vol. 13, no. 6, pp. 865–874, 2018.

[34] R. Prevost et al., “3D Freehand Ultrasound without External Tracking
using Deep Learning,” Med. Imag. Anal., vol. 48, pp. 187–202, 2018.

[35] H. Guo, S. Xu, B. Wood, and P. Yan, “Sensorless Freehand 3D Ultra-
sound Reconstruction via Deep Contextual Learning,” in Proceedings of
Int. Conf. on Med. Image Comp. and Comp. Ass. Intervent. Springer,
2020, pp. 463–472.

[36] L. Zhang, M. Ye, P. L. Chan, and G. Z. Yang, “Real-time Surgical Tool
Tracking and Pose Estimation using a Hybrid Cylindrical Marker,” Int.
J. Comput. Assist. Radiol. Surg., vol. 12, no. 6, pp. 921–930, 2017.

[37] U. L. Jayarathne, E. C. Chen, J. Moore, and T. M. Peters, “Robust,
Intrinsic Tracking of a Laparoscopic Ultrasound Probe for Ultrasound-
Augmented Laparoscopy,” IEEE Trans. Med. Imag., vol. 38, no. 2, pp.
460–469, 2018.

Authorized licensed use limited to: University College London. Downloaded on December 31,2020 at 15:52:55 UTC from IEEE Xplore.  Restrictions apply. 


