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Fetal craniofacial abnormalities are challenging to detect and
diagnose on prenatal ultrasound (US). Image segmentation
and computer analysis of three-dimensional US volumes of
the fetal face may provide an objective measure to quantify
fetal facial features and identify abnormalities. We have
developed and tested an atlas-based partially automated
facial segmentation algorithm; however, the volumes require
additional manual segmentation (MS), which is time and
labour intensive and may preclude this method from clinical
adoption. These manually refined segmentations can then be
used as a reference (atlas) by the partially automated
segmentation algorithm to improve algorithmic performance
with the aim of eliminating the need for manual refinement
and developing a fully automated system. This study
assesses the inter- and intra-operator variability of MS and
tests an optimized version of our automatic segmentation
(AS) algorithm. The manual refinements of 15 fetal faces
performed by three operators and repeated by one operator
were assessed by Dice score, average symmetrical surface
distance and volume difference. The performance of the
partially automatic algorithm with difference size atlases was
evaluated by Dice score and computational time. Assessment
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of the manual refinements showed low inter- and intra-operator variability demonstrating its

suitability for optimizing the AS algorithm. The algorithm showed improved performance
following an increase in the atlas size in turn reducing the need for manual refinement.
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1. Introduction
Fetal craniofacial abnormalities provide valuable clues in diagnosing genetic conditions and syndromes.
However, many of these phenotypical features can be subtle and, therefore, challenging to identify on
prenatal two-dimensional (2D) ultrasound (US) even for the most expert of investigators. The use of
three-dimensional (3D) US scans complement 2D findings and can provide additional information,
both aiding the identification of abnormalities in utero as well as providing additional diagnostic
clues, thus facilitating targeted genetic testing [1–5].

Traditionally, analysis of 3D US scans is subjective, operator dependent and heavily reliant on the
breadth of the operator’s experience and with rarer conditions evading detection as their features are
not universally well known. Computerized analysis of 3D US volumes could provide an objective
method to characterize fetal facial morphology [6], which may assist in identifying conditions with
unknown genetic factors but well-characterized craniofacial features and improve the diagnosis of
phenotypically heterogenous conditions.

In order to achieve this, a surface representation or map of the fetal face is extracted from the 3D
volume via image segmentation, a process to divide an image or volume into non-overlapping
separate parts or ‘segments’ to facilitate volumetric image processing and analysis [7]. In previous
work by this group, manual segmentation (MS) was used to delineate the fetal face surfaces meshes
from 20 3D US volumes [6]. This is a particularly time-consuming process which precludes it from
everyday clinical use.

The use of various methods for the automatic reconstruction of the fetal face from 3D US data have
been explored previously. Feng et al. [8] developed an automatic method for fetal face detection; however,
their algorithm results in the creation of a mesh rather than a true surface representation of the face.
Bonacina et al. [9] describe an automatic method using histogram processing which they applied to
five 3D US volumes with good result, although fetal contact with maternal tissue interfered with the
algorithmic performance in one of these cases, and Speranza et al. detail a technique to extract 3D
data from US images which enables 3D models of the fetal face to be printed [10].

In order to overcome the limitations of MS and facilitate the clinical adoption of this technology, we
implemented an atlas-based partially automatic segmentation (AS) method, based on algorithms
described by Zuluaga et al. [11]. Multi-atlas propagation segmentation uses a set of already segmented
‘ground-truth’ guide images (i.e. ‘atlas’), as a reference bank for an algorithm tasked with building the
segmentation of a new, unseen image. It selects the most relevant parts of the different atlas images
and fuses them in order to create the new image. Preliminary results based on an atlas of 20 images
have demonstrated its feasibility for the extraction of 3D faces from fetal 3D US [12]. However, in
order to further improve this technique and to enable analysis of the segmented volume, additional
refinement of the AS via MS is required (figure 1) in order to clearly define the facial borders, remove
extraneous material and complete parts of the face which may be missing (figure 2).

It has been suggested that MS is a subjective process, with variation between operators potentially
impairing the accuracy of subsequent quantitative analysis. The variability of MS has been examined
previously in other imaging modalities and anatomical structures [13–16]. We identified one study
which compared the MS of five utero-fetal unit segmentations to those of an AS method [17].
However, to the best of our knowledge no studies have been conducted examining the variability of
MS or the use of an automatic atlas-based segmentation algorithm specifically for the fetal face.
1.1. Aims
The aims of this study were to:

1. Evaluate the inter- and intra-operator variability of the manual refinements of automatic
segmentations in order to assess the accuracy of this method.

2. Test an optimized version of our partially AS algorithm.



Figure 1. Example of an automatically segmented (AS) fetal face before (left) and after (right) manual refinement of the AS has
been performed.

Figure 2. Examples of the segmentation produced by the automatic algorithm (top), the corresponding 3D US volume (middle) and
the final segmentation following manual refinement (bottom).
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2. Methods
Thirty-five 3D US volumes of fetal faces above 24 weeks of gestation (25+0–37+0) were acquired for
clinical indications between 2016 and 2018 using Voluson E6, E8 or E10 ultrasound machine (GE
Healthcare) with a low-frequency probe (4–8 MHz) and retrospectively included in this study. Cases
were defined as normal or abnormal based upon the antenatal US diagnosis, with a total of 11
abnormal and 24 normal cases. The volumes were fully anonymized in order to allow their
inclusion in this technical feasibility study. Ethical approval was not required for this study using
fully anonymized routinely collected US volumes (Prenatal 3D face study: technical feasibility and
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Figure 3. A schematic of the workflow for this study. The manual refinements of Op_1#1 were then progressively added to the
original set of 20 images in order to increase the atlas size.
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improving the methodology) based on information provided to the online Health Research Authority
tool (http://www.hra-decisiontools.org.uk/research/). An overview of the main steps of our workflow
is illustrated in figure 3.

The 3D volumes were acquired in the midsagittal plane of the fetal face, using the highest resolution
acquisition mode and a 3D volume box matched to the size of the fetal face. The volume was acquired
where possible without intervening umbilical cord or fetal limbs. The volumes were aligned using
multiplanar view along the x-, y- and z-axes and subsequently exported as Cartesian volumes (.vol)
for further processing. The first 20 facial volumes were manually segmented in Mimics (Materialise
NV, Belgium) and used to create our AS tool [12]. A further 15 facial volumes were segmented via
our partially AS tool with additional manual refinement performed in ITK-SNAP (www.itksnap.org)
[18]. The mid-points of the posterior border of the widest cross-section of the orbits were used as a
landmark to define the depth of manual refinement required in ITK-SNAP.

2.1. Inter- and intra-operator manual segmentation assessment
Fifteen additional volumes were initially segmented by our partially AS tool with manual refinement
of the automatic segmentations performed on all 15 volumes by three different operators (op_1, op_2
and op_3). Op_1 repeated the segmentation of the 15 volumes twice within a 6-month period denoted
by op_1#1 and op_1#2. All operators were blind to one another’s manual segmentations.

In order to assess inter-operator variability, a comparison of 15 manual segmentations (MS) was
performed between the three operators and intra-operator variability assessed by comparing the 15
repeated segmentations of op_1 (op_1#1-op_2, op_1#1-op_3, op_2-op_3 and op_1#1-op_1#2).

We assessed three commonly used parameters which evaluate overlap, surface distance and
segmentation volume in order to assess both the accuracy and reproducibility of themanual segmentations.

2.2. Overlap assessment
The degree of overlap between the MS performed by all three operators as well as between the repeated
segmentations of op_1 was calculated using the Dice coefficient (0–1). A good overlap is considered
when Dice score ≥ 0.7 [19].

The Dice score [20] was computed as

Dice(M1,M2) ¼ 2
jM1 >M2j
jM1j þ jM2j ,

http://www.hra-decisiontools.org.uk/research/
http://www.hra-decisiontools.org.uk/research/
http://www.itksnap.org
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where M1 and M2 are the segmentation masks and |M1| and |M2| are the volumes of these segmented

regions. Given the complexity of the fetal face and how subtle the changes seen in dysmorphic facial
features can be, we considered a Dice score≥ 0.8 to be acceptable in this context.

2.3. Surface assessment
The average symmetric surface distance (ASSD) calculates how much the surface varies between two
segmentations. The Euclidean distance is calculated between each surface voxel of one segmentation
to the closest surface voxel of the other segmentation. The average of all of these distances is then
calculated in millimetres, with a result of 0 equivalent to two identical segmentations. The ASSD was
calculated as:

ASSD(S1,S2) ¼ 1
2
(meanx[S1dist(x,S2)þmeanx[S2dist(x,S1)),

where S1 and S2 are the set of voxels on the surface (in our case the face) of each segmentation, and the
distance of a point to a surface is defined by the minimal Euclidean distance from this point to a point on
the surface:

dist(x,S) ¼ miny[S k x� y k :
:201342
2.4. Volume assessment
The volume of each MS was calculated as the sum of the total segmented voxels. The volumes were then
compared by computing the pairwise percentage of volume differences as:

diffVolij ¼ 2
jVi � Vjj
Vi þ Vj

,

where Vi and Vj are the segmentation volumes of the same image as produced by operators i and j,
respectively.

2.5. Automatic segmentation algorithm
A partially automatic atlas-based segmentation (AS) algorithm was implemented, as described by
Zuluaga et al. [11], that can build a segmentation of a previously unseen image based on a set of
already segmented (i.e. ‘ground-truth’) images or ‘atlas’. Default parameters were used for both the
non-rigid registration using the Fast Free-Form Deformation (F3D) algorithm [21] and the label fusion
step using the niftySeg implementation of the Similarity and Truth Estimation for Propagated
Segmentations (STEPS) algorithm [22]. To understand the optimum number of ground-truth images
required for the atlas to achieve the highest quality segmentation in a reasonable computational time,
we evaluated the algorithms’ performance for different numbers of manually segmented ground-truth
images: 20, 25, 30 and 35 images. To do so, we created a growing sequence of atlases (respectively
named A_20, A_25, A_30 and A_35) by progressively adding the new manually refined
segmentations by op_1#1 to the original set of 20 images. The algorithm was validated by applying a
‘leave-one-out’ cross-validation scheme on the first 20 images of each atlas, i.e. each of the images was
automatically segmented with the remaining (19 for A_20, 24 for A_25… etc.) adopted as atlas. The
segmentations resulting from the automatic process were compared with the ground-truth
segmentations in terms of visual assessment, Dice score and computational time, to evaluate the tool
performance and select the best atlas combination.

2.6. Statistical analysis
Statistical analysis was performed using Scipy statistical module [23]; where applicable, individual
p-values are presented.

In order to examine the inter- and intra-operator variability, a Friedman test was performed for the
four pairwise comparisons (op_1#1-op_2, op_1#1-op_3, op_2-op_3 and op_1#1-op_1#2) to assess the
consistency of Dice score, ASSD and segmentation volume for all 15 manually refined 3D US volumes
between operators (significance level p < 0.05). When the null hypothesis was rejected, a post hoc



Table 1. Values represent median Dice scores, average symmetrical surface distance (ASSD) and percentage of segmented
volume difference of the manual segmentations performed by the three different operators and between the initial and repeated
MS performed by op_1. Data are expressed as median ± IQR (min–max).

inter-operator intra-operator

Op_1#1-Op_2 Op_1#1-Op_3 Op_2-Op_3 Op_1#1-Op_1#2

Dice 0.92 ± 0.02

(0.89–0.97)

0.93 ± 0.03

(0.88–0.97)

0.90 ± 0.05

(0.87–0.97)

0.94 ± 0.03

(0.86–0.99)

average symmetric surface

distance (mm)

0.44 ± 0.23

(0.3–0.79)

0.45 ± 0.25

(0.22–0.89)

0.56 ± 0.32

(0.16–1.1)

0.33 ± 0.18

(0.17–0.7)

difference in segmentation

volume (%)

4.8 ± 4

(0.0006–11)

3.5 ± 3.3

(0.7–10.7)

2.7 ± 2.3

(0.4–9.2)

5.4 ± 4.5

(0.5–13.3)
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analysis with Bonferoni correction (significance level p < 0.017) was performed to identify whether the
difference was in the inter- or intra-operator measurements.

Intraclass correlation coefficient (ICC) using repeated measures ANOVA was calculated to compare
the total segmentation volumes of each operator.

T-test for the linear model between average Dice score, ASSD and the cubic root of the segmentation
volume was performed to assess correlation between segmentation size (volume) and inter-operator
differences. When assessing the AS algorithm, analysis of variance was performed with a non-
parametric Kruskal–Wallis ( p = 0.05) followed by post hoc testing with Bonferroni correction
(significance level p = 0.0083) in order to assess difference between Dice score distributions.
3. Results
3.1. Manual segmentation assessment
Median Dice scores, ASSD and pairwise percentage of volume differences between operators are
represented in table 1 and figure 4. When comparing the overall similarity parameters for the four
pairwise comparisons (op_1#1-op_2, op_1#1-op_3, op_2-op_3 and op_1#1-op_1#2), a difference was
found in Dice scores (Friedman p = 0.02) and ASSD ( p < 0.001) but not in the percentage of
segmentation volume difference ( p = 0.16). While a difference in Dice score between operators was
found, the median values for this parameter were all above the 0.7 acceptable minimum threshold,
the minimum values in each comparison also exceeding 0.8 which we chose as our internal threshold.
Moreover, the central facial region (superimposed for difference operators in figure 4) is the most
important for feature identification and also has the best agreement even where intra- and inter-
operator Dice score are lowest.

Post hoc analysis demonstrated that these differences in Dice score ( p = 0.03) and ASSD ( p = 0.002)
can both be attributed to a lower intra-operator variability when compared to the three corresponding
inter-operator measurements (table 1). However, this difference is minimal with the differences equal
to 0.86 standard deviations for the Dice score and 0.83 standard deviations for the ASSD, and an ICC
of 0.98 confirms good overall agreement between operators on the segmentation volume.

There was no correlation found between overall segmentation volume and inter-operator differences
for the average Dice score (T-test p = 0.66) or ASSD ( p = 0.25) values.

The average time required to perform the MS was 5 h3 m per face (range 3 h2 m–6h 10 m).

3.2. Automatic segmentation
The AS tool returned a segmentation for all images. Dice scores for the four atlases tested are plotted in
figure 5a for all 20 patients. The boxplot of Dice score distribution is represented in figure 5b and table 2.

Atlas size had an impact on the Dice score (Kruskal–Wallis p < 0.001). Post hoc testing demonstrated
differences between A_20 versus A_30 (p = 0.001), A_20 versus A_35 ( p = 0.001) and A_25 versus



lowest Dice score highest Dice score

Op_1

Op_1

Op_2

Op_1#1 Op_1#2 Op_1#1 Op_1#2

Op_2Op_3 Op_3

Op_1Op_3 Op_3
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Dice = 0.89
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Figure 4. Rendering of the lowest (left column) and highest (right column) MS agreement between the three operators and
repeated segmentation of operator 1 as assessed by the Dice score.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201342
7

A_30 ( p = 0.007) but no difference for A_20 versus A_25 ( p = 0.32) or A_30 versus A_35 (p = 0.96) (table 2
and figure 5a,b). The lowest and highest results according to Dice score are illustrated in figure 6 for
each atlas, showing that the main facial features could be represented even in the cases of the lowest
Dice score.

Segmentations were also compared in terms of volume (figure 5c,d). An effect of the number of
ground-truth cases on the resulting segmentation volume was found ( p < 0.001). In the post hoc
analysis, differences were found between A_20 and A_30 ( p = 0.001), A_20 and A_35 ( p < 0.001), A_25
and A_35 ( p = 0.001), and to a lesser extent between A_25 and A_30 ( p = 0.005). There was no
difference between A_20 and A_25 (p = 0.34) or A_30 and A_35 ( p = 0.42). The average volume size of
the resulting segmentation volume increases with the number of ground-truth images in the atlas but
for every atlas (A_20, A_25, A_30 and A_35), the segmented volume is on average smaller than the
ground-truth volume ( p < 0.001).

The computational time is illustrated in figure 5e,f, and in table 3. As expected, average computational
time increases by increasing the number of ground-truth images in the atlas, with differences ( p < 0.001)
between all comparisons (A_20 versus A_25, A_20 versus A_30, A_20 versus A_35, A_25 versus A_30,
A_25 versus A_35 and A_30 versus A_35).



GT

0 5 10 15 20

5 10 15 20

0 5 10 15 20

ID

70

65

60

55

50

45

70

65

60

55

50

45

0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.52.5
×106 ×106

20 25 30 35

20 25 30 35

20 25 30 35GT

220
200

180

160

140
120

220
200
180
160
140
120

100

20

20
25
30
35

20
25
30
35

25
30
35

D
ic

e 
(%

)
vo

lu
m

es
 (

vo
xe

ls
)

tim
e 

(m
in

)

(a) (b)

(c) (d)

(e) (f)
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A_20 A_25 A_30 A_35

Dice = 0.46 Dice = 0.47 Dice = 0.53 Dice = 0.52

Dice = 0.68 Dice = 0.66 Dice = 0.70 Dice = 0.70

Figure 6. Lowest (top) and highest (bottom) Dice scores for the AS of each atlas: for A_20 (red), A_25 (blue), A_30 (green) and
A_35 (orange) compared to the MS (white) as assessed by the Dice score.

Table 2. Values represent median Dice scores when comparing the manual segmentations with the automatic segmentations
obtained with each of the four different atlases tested. Data is expressed as median ± IQR (min–max).

A_20 A_25 A_30 A_35

Dice 0.58 ± 0.07 (0.46–0.68) 0.59 ± 0.07 (0.47–0.66) 0.63 ± 0.05 (0.53–0.70) 0.64 ± 0.07 (0.52–0.70)
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Of the four atlases tested, A_30 was the optimum atlas size with an overall improvement in performance
balanced by no excessive increase in computational time. When adopting A_35, the computational time
significantly increased without a corresponding improvement in performance compared to A_30.



Table 3. Values represent median computational time (in minutes) to obtain the AS for each of the four different atlases tested.
Data are expressed as median ± IQR (min–max).

A_20 A_25 A_30 A_35

time (min) 125 ± 4 (107–129) 154 ± 6 (131–161) 185 ± 7 (157–193) 213 ± 10 (180–221)
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4. Discussion
The aims of this study were to assess the inter- and intra-operator variability of manual refinement of
partial AS of the fetal face and to test an optimized version of our AS algorithm. We have shown
good reproducibility and accuracy of manual segmentations of fetal face 3D US volumes between
operators as well as demonstrating low intra-operator variability with all Dice scores exceeding our
internally set threshold of 0.8. While a difference in ASSD was demonstrated, the ‘real-life’ difference
was minimal, equating to a median of 0.44 mm (0.16–1.1 mm). This difference is unlikely to be
clinically significant and not large enough to negatively impact upon the accuracy of subsequent
diagnostic analysis of the segmentation volumes. We have also shown that it is possible to improve
the performance of our AS algorithm by increasing the atlas size which in turn reduces the amount of
manual refinement required. However, beyond a certain point, atlas size improvement was minimal
and outweighed by significantly increased computational time.

A fully automatic and objective method to identify and characterize abnormal fetal face morphology
in utero has the potential to both increase prenatal diagnosis of genetic syndromes and as a result improve
patient counselling, allow robust delivery and postnatal management planning and provide additional
long-term predictive information for parents. Some of these conditions cannot yet be diagnosed
through prenatal invasive or non-invasive testing, and others can be, but parents may opt not to
undergo testing [24]. Many genetic syndromes and conditions have very distinct craniofacial
characteristics. Identifying these abnormalities on prenatal US is largely subjective, requiring
significant US operator expertise and there is a propensity to recognize dysmorphic facial features
when they coexist with other anatomical abnormalities.

Trisomies are the most identifiable aneuploidies: trisomy 21 fetuses have facial features of
brachycephaly, midface hypoplasia, flattened nasal bridge and macroglossia, while trisomy 18 features
a prominent occiput, low-set ears, and micrognathia [25], however, these conditions are readily
diagnosable from invasive and non-invasive prenatal diagnosis. By contrast, rarer syndromes cannot
always be diagnosed from prenatal testing as in many the genetic abnormality is not known and in
some a strong clinical suspicion of a diagnosis or differential diagnoses is required for targeted
genetic testing [24,26,27]. These may also be associated with developmental or physical impairments
as the child grows older, hence the importance of prenatal diagnosis [28–30].

Such conditions include Crouzon syndrome which is characteristed by brachycephaly, frontal
bossing, shallow orbits and maxilla hypoplasia, and Apert syndrome with flat facies, prominent
forehead and hypertelorism [25,30]. Frontal bossing, a flattened nasal bridge and micrognathia is a
feature of many skeletal dysplasias and although severity can vary significantly, the malar hypoplasia,
zygomatic bone cleft and down-slanting palpebral fissures can be very distinct in Treacher Collins
syndrome [25]. The diagnosis of Cornelia de Lange syndrome (CdLS) is rarely made on prenatal US
but has profound lifelong implications. Even when CdLS is suspected prenatally the diagnosis can
remain elusive as 30% of cases have unknown genetic aetiology [29]. The diagnosis is most commonly
made clinically in the neonatal and paediatric period with distinct facial characteristics including
low-set ears, short upturned nose, synophris, everted nostrils, micrognathia and long philtrum giving
the diagnostic clues [31].

This study has some limitations. The number of segmentations performed was modest, although
sufficient to demonstrate the low variability between segmentations and acceptability of this method.
The operators were of differing skill levels, with two operators having no prior experience of
performing or interpreting US images. This had the potential to negatively impact on the variability
between manual segmentations; however, our results suggest that this was not the case and rather,
reinforce the reliability of the manual refinement. There was also a potential for the operators to become
more competent in manual segmentations over time, which may have impacted on the variability by
reducing it. This was not the case: two of the operators performed the manual segmentations in the
same order, with no differences between their performance and that of the other operator demonstrated.
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Performing segmentations of US volumes, in comparison to other imaging modalities such as CT and

MRI, is challenging given the variations in US image quality through acquisition, operator skill,
movement artefact, maternal body habitus, amniotic fluid volume and fetal position. These all result
in reduced image quality and, therefore, reduced boundary definition within parts of the US image.
This then has the potential to cause higher variability between manual segmentations. However, our
results suggest that these did not particularly affect the study and, given that US remains the imaging
modality of choice in anomaly screening and in specialist fetal medicine units, are reassuring in
regard to the potential application of this method in clinical practice.

The main limitation of this technique and barrier to use in clinical practice is the need for additional
manual refinement and the time taken to perform this. The median segmentation time in this study was
approximately 5 h per fetal facial volume, which is clearly impractical in everyday clinical practice and
would preclude this technique from clinical use in its current form. With any segmentation method used
to reconstruct the fetal face, as noted previously, the main concern would be in ensuring accuracy and
avoiding the normalizing of an abnormal face or vice versa. At the present time, state-of-art methods
are unable to accurately segment fetal faces from 3D US images while being robust to a highly
variable context (the fetal hand or umbilical cord in contact with or obstructing the face, contact with
the uterine wall or placenta) and poor image quality [9]. These limitations are partially overcome by
our automatic algorithm with promising results despite the inability to produce a complete
segmentation of the face in the most difficult cases resulting in the need for manual corrections. We
have demonstrated that the consistency of the manual segmentations is a good foundation for atlas-
based segmentation algorithms. Moreover, the improvements seen in our partially automatic
algorithm performance in regard to improved Dice scores and therefore accuracy associated with an
increased number of reference images (atlas) are positive. Further work will focus on more accurate
and faster registration algorithms in order to move closer to a fully automated method suitable for
clinical ‘point of diagnosis’ use.

5. Conclusion
We have demonstrated the technical feasibility of fetal facial segmentation using manual refinement of
partially automatically segmented US facial volumes. Moreover, the quality of AS can be improved by
increasing the atlas size and training the algorithm with a larger number of manually segmented
volumes thus reducing the need for manual refinement of the automatic segmentations. Though not
yet feasible, given the improvements that we have demonstrated in these techniques, it is possible to
consider that further refinement would lead to a fully automated method for the reconstruction and
quantification of the fetal face. This is a prerequisite for clinical utility, as to be an adjunct to prenatal
diagnosis from fetal facial morphological appearance such a system would need to work almost in
real time with the US scan itself.
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