

# Why disease ecology needs life-history theory: a host perspective

| Journal:                         | Ecology Letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | ELE-01231-2020.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Manuscript Type:                 | Reviews and Syntheses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date Submitted by the<br>Author: | 16-Dec-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Complete List of Authors:        | Valenzuela-Sánchez, Andrés; Universidad Andres Bello, Centro de<br>Investigación para la Sustentabilidad; ONG Ranita de Darwin,<br>Wilber, Mark; University of California, Santa Barbara, Ecology, Evolution,<br>and Marine Biology<br>Canessa, Stefano; Universiteit Gent Faculteit Diergeneeskunde, Wildlife<br>Health Ghent<br>Bacigalupe, Leonardo<br>Muths, Erin; USGS, Amphibian Research and Monitoring Initiative (ARMI)<br>Schmidt, Benedikt; University of Zürich, Evolutionary Biology; karch,<br>Cunningham, Andrew; Zoological Society of London, Institute of Zoology<br>Ozgul, Arpat; University of Zurich, Department of Evolutionary Biology &<br>Environmental Studies<br>Johnson, Pieter; University of Colorado, Ecology and Evolutionary Biology<br>Cayuela, Hugo; Université Laval, Biology |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Page 1 of 52

8  Ecology Letters

| 2<br>3<br>4<br>5                 | 1  | Why disease ecology needs life-history theory: a host perspective                                                                                       |
|----------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6<br>7<br>8                      | 2  | Andrés Valenzuela-Sánchez <sup>1,2,3*</sup> , Mark Q. Wilber <sup>4</sup> , Stefano Canessa <sup>5</sup> , Leonardo D.                                  |
| 9<br>10                          | 3  | Bacigalupe <sup>1</sup> , Erin Muths <sup>6</sup> , Benedikt R. Schmidt <sup>7,8</sup> , Andrew A. Cunningham <sup>9</sup> , Arpat Ozgul <sup>7</sup> , |
| 11<br>12<br>12                   | 4  | Pieter T. J. Johnson <sup>10</sup> , Hugo Cayuela <sup>11</sup>                                                                                         |
| 13<br>14<br>15                   | 5  | <sup>1</sup> Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile                                              |
| 16<br>17<br>18                   | 6  | <sup>2</sup> ONG Ranita de Darwin, Valdivia and Santiago, Chile                                                                                         |
| 19<br>20<br>21                   | 7  | <sup>3</sup> Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile                                                 |
| 22<br>23                         | 8  | <sup>4</sup> Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara,                                            |
| 24<br>25<br>26                   | 9  | CA, 93106                                                                                                                                               |
| 27<br>28<br>29                   | 10 | <sup>5</sup> Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium                                                |
| 30<br>31                         | 11 | <sup>6</sup> U.S. Geological Survey, 2150 Centre Avenue Bldg C, Fort Collins, Colorado, 80526 USA                                                       |
| 32<br>33<br>34                   | 12 | <sup>7</sup> Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse                                          |
| 35<br>36<br>37                   | 13 | 190, 8057 Zürich, Switzerland                                                                                                                           |
| 38<br>39                         | 14 | <sup>8</sup> Info Fauna Karch, UniMail, Bâtiment G, Bellevaux 51, 2000 Neuchâtel, Switzerland                                                           |
| 40<br>41<br>42                   | 15 | <sup>9</sup> Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK                                                      |
| 43<br>44                         | 16 | <sup>10</sup> Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado,                                                |
| 45<br>46<br>47                   | 17 | 80309, USA                                                                                                                                              |
| 48<br>49                         | 18 | <sup>11</sup> IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand, Avenue de                                                |
| 50<br>51<br>52                   | 19 | la Médecine, Quebec City, Canada                                                                                                                        |
| 53<br>54<br>55                   | 20 |                                                                                                                                                         |
| 55<br>56<br>57<br>58<br>59<br>60 | 21 | 1                                                                                                                                                       |

| 2<br>3<br>4                | 22 |
|----------------------------|----|
| 5<br>6<br>7                | 23 |
| 8<br>9                     | 24 |
| 10<br>11<br>12             | 25 |
| 13<br>14<br>15             | 26 |
| 16<br>17<br>18             | 27 |
| 20<br>21                   | 28 |
| 22<br>23<br>24             | 29 |
| 25<br>26<br>27             | 30 |
| 28<br>29<br>30             | 31 |
| 31<br>32                   | 32 |
| 33<br>34                   | 33 |
| 35<br>36<br>37             | 34 |
| 38<br>39<br>40             | 35 |
| 41<br>42                   | 36 |
| 43<br>44                   | 37 |
| 45<br>46<br>47             | 38 |
| 48<br>49<br>50             | 39 |
| 50<br>51<br>52             | 40 |
| 53<br>54<br>55<br>56<br>57 | 41 |
| 58<br>59                   |    |
| 60                         |    |

1

- 22 **Running title:** Life-history and infectious disease
- 23 Keywords: demography, demographic compensation, outbreak, pace of life, pathogen,
  - slow-fast continuum, vertebrates
- 25 Article type: Reviews and Syntheses
- 26 Word count: 7558 (main text), 160 (abstract)

27 Number of references: 141

- **Number of figures:** 3 (main text), 2 (Supporting information)
- 29 Number of tables: 0 (main text), 1 (Supporting information)

# Number of boxes: 0

- 31 Author for correspondence: Andrés Valenzuela-Sánchez (e-mail:
- 32 andresvalenzuela.zoo@gmail.com; telephone: + 56 9 50014215; address: Av. Rector
- 33 Eduardo Morales s/n, Edificio Emilio Pugín, Universidad Austral de Chile, Isla Teja,
- 34 Valdivia, Chile)
- 35 Authorship: AV-S conceived the study and all the authors contributed novel ideas and
- 36 synthesis. AV-S. drafted the manuscript, with major contributions from HC, MQW, SC,
- EM, PTJJ and AAC. MQW conducted the analysis presented in Fig. 3. All authors revised the manuscript.
- Data Accessibility: This study does not use new data. A Python model code is provided as
   supporting information.

#### Ecology Letters

# 42 Abstract

When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict, and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organization, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife.

57 Keywords

demography, demographic compensation, outbreak, pace of life, pathogen, slow-fastcontinuum, vertebrates

#### **NOVELTY**

We present a novel synthesis on the intersection of life-history and host responses to parasitism, to demonstrate that a deeper integration of life-history theory into disease ecology is a fruitful avenue of research to advance the understanding and mitigation of wildlife infectious diseases. This synthesis highlights that life-history strategies can lead to a variety of host responses to parasitism, modulating host immune responses, the mechanisms of host demographic compensation, the potential for rapid evolution of resistance or tolerance mechanisms, and the efficiency of parasite transmission and disease varasite systems.

 risk in multi-host parasite systems.

#### **Ecology Letters**

#### 

## 69 INTRODUCTION

Infectious diseases are an important threat to biodiversity (Daszak et al., 2000). This is particularly true for emerging infectious diseases, for which the lack of host-parasite coevolutionary history can lead to extreme levels of parasite virulence and/or host susceptibility, ultimately inducing strong population-level impacts (e.g., Daszak et al., 2000, 2001; Fisher et al., 2012; Scheele et al., 2019a). Nonetheless, empirical evidence further reveals that host population collapse is not the only outcome from a novel host-parasite interaction (Tompkins et al., 2011). Some populations of susceptible hosts can persist despite initial marked population declines (e.g., fish, Rogowski et al., 2020; amphibians, Briggs et al., 2010; marsupials, Wells et al., 2019). Understanding the factors that determine these alternative, sometimes contrasting, population-level impacts of infectious disease has interested disease ecologists for decades and numerous factors about the parasite, the host, and the environment have been identified as important in the dynamics of host-parasite systems (Fig. 1; Anderson and May, 1979; Tompkins et al., 2011).

We argue that a deeper integration of life-history theory (hereafter LHT) into disease ecology is both timely and necessary to improve our capacity to understand, predict, and mitigate the impact of endemic and emerging infectious diseases in wild populations. A related approach that has provided a fruitful avenue of research is the study of how epidemiological parameters, such as parasite transmission rates (De Leo and Dobson, 1996), epidemiological thresholds (Bolzoni et al., 2018), and host competence (Downs et al., 2019), scale allometrically with host body size. As body size is the main factor shaping interspecific variation in life-history traits (Gaillard et al., 2016; Healy et al.,

| 3         |  |
|-----------|--|
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| 8         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 26        |  |
| 2/        |  |
| 28        |  |
| 29        |  |
| 3U<br>21  |  |
| ו כ<br>ככ |  |
| 2∠<br>22  |  |
| 27        |  |
| 34        |  |
| 36        |  |
| 37        |  |
| 38        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| 48        |  |
| 49        |  |
| 50        |  |
| 51        |  |
| 52        |  |
| 53        |  |
| 54        |  |
| 55        |  |
| 56        |  |
| 57        |  |
| 58        |  |
| 59        |  |
| 60        |  |

1 2

| 92  | 2019), the allometric scaling of epidemiological parameters with host body size is expected         |
|-----|-----------------------------------------------------------------------------------------------------|
| 93  | to be, at least partially, associated with host life-history characteristics. Yet, body size is not |
| 94  | always an accurate proxy of host life-history traits, especially when high-level taxonomic          |
| 95  | ranks (e.g., class level or higher) are considered. For example, within mammals, humans             |
| 96  | and bats show a particularly long lifespan and low fecundity for their relatively small body        |
| 97  | sizes (Gaillard et al., 2016; Healy et al., 2019). Indeed, after controlling for allometric         |
| 98  | constraints, considerable interspecific variation in life-history traits remains and other          |
| 99  | factors, such as life-history trade-offs, phylogeny, and mode of life, are known to play            |
| 100 | important roles in shaping the diversity of host life histories (Gaillard et al., 2016; Healy et    |
| 101 | al., 2019). Here, we argue that the position of a host species along the classical slow-fast        |
| 102 | life-history continuum (see below) can determine their response to parasitic infection (Fig.        |
| 103 | 1). It is worth noting that other host traits, such as population density and the level of          |
| 104 | sociality (Han et al., 2015, 2020), as well as parasite life-history traits (Barrett et al., 2008;  |
| 105 | Silk and Hodgson, 2020), also play critical roles in host-parasite dynamics, but those              |
| 106 | aspects are beyond the scope of this review.                                                        |

We focus this review on LHT predictions relative to host responses to infectious 107 108 disease at different levels of organization, from individual-level susceptibility to host 109 community assembly (Fig. 1). Although these theoretical predictions are broad in scope, 110 with empirical validations in plant and animal species (e.g., plants, Pagán et al., 2008; invertebrates, Agnew et al., 2008; vertebrates, Johnson et al., 2012), we emphasize 111 examples in wild vertebrate hosts, a group largely underrepresented in previous syntheses 112 on the intersection of life-history and host responses to parasitism (e.g., Michalakis and 113 Hochberg, 1994; Agnew et al., 2000). The review is structured in eight sections. In the first 114

Page 7 of 52

# Ecology Letters

| 1          |  |
|------------|--|
| 2          |  |
| 2          |  |
| 1          |  |
|            |  |
| 5          |  |
| 0          |  |
| /          |  |
| 8          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 20         |  |
| 27         |  |
| 28         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 41         |  |
| 42         |  |
| 43         |  |
| Δ <u>Λ</u> |  |
| 44         |  |
| 45         |  |
| 40<br>47   |  |
| 4/         |  |
| 48         |  |
| 49         |  |
| 50         |  |
| 51         |  |
| 52         |  |
| 53         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 58         |  |
| 59         |  |
| 60         |  |
|            |  |

| 115 | section, we introduce the theory and empirical evidence supporting the existence of a slow-        |
|-----|----------------------------------------------------------------------------------------------------|
| 116 | fast continuum of life-history variation in vertebrates. In the second section, which is           |
| 117 | related to the field of ecoimmunology (see Brock et al., 2014), we briefly discuss how the         |
| 118 | position of hosts along the slow-fast continuum can help predict the type and strength of          |
| 119 | host immune defences (for more detailed coverage refer to previous reviews, e.g., Lee              |
| 120 | (2006), Martin et al. (2006), Tieleman (2018), and Albery and Becker (2020). In the third          |
| 121 | section, we discuss how life-history constrains the speed of recovery of host populations          |
| 122 | after short-term disturbances such as disease outbreaks. In the fourth section, we focus on        |
| 123 | active demographic compensation, a process particularly relevant for the persistence of host       |
| 124 | populations impacted by emerging infectious diseases. We define the types of active                |
| 125 | demographic compensation in the context of infectious diseases and discuss how these               |
| 126 | responses could be modulated by host life histories, introducing a simple theoretical model        |
| 127 | to illustrate how life-history strategies can be predictive of the magnitude of the negative       |
| 128 | effects of disease-induced mortality on populations exhibiting density-dependent                   |
| 129 | compensation. In the fifth section, we discuss how host life-history strategies could              |
| 130 | modulate the rapid evolution of mechanisms of resistance (i.e., the ability of a host to limit     |
| 131 | or reduce parasite burden) or tolerance (i.e., the ability of a host to limit the negative effects |
| 132 | of a given parasite burden). In the sixth section, we briefly review the integration of host       |
| 133 | life-history, community assembly, and infectious disease. In the seventh section, we discuss       |
| 134 | how the insights of the previous sections can inform the monitoring and control of                 |
| 135 | infectious diseases in wildlife. In the eighth and concluding section we provide pointers for      |
| 136 | future directions for the incorporation of LHT in disease ecology.                                 |
| 137 |                                                                                                    |

#### SECTION 1: LIFE-HISTORY TRADE-OFFS AND THE SLOW-FAST **CONTINUUM OF LIFE-HISTORY VARIATION**

The pervasiveness of life-history trade-offs (i.e., beneficial change in one life-history trait has a negative impact on another trait) has been central to the development of classical LHT (Stearns, 1989a). The idea of these trade-offs is grounded in the "principle of allocation" of time and energy (Cody, 1966), such that organisms have a limited amount of time and energy to expend, and natural selection acts as a force operating on the allocation of resources to different functions (e.g., growth, reproduction, locomotion, immune function) to maximize fitness (Ricklefs and Wikelski, 2002; Lee, 2006). The most prominent and well-supported life-history trade-offs involve survival and reproduction (Stearns, 1989a; Lebreton, 2006; Healy et al., 2019). The covariation among traits related to survival and reproduction are structured along a major axis of life-history variation termed the slow-fast life-history continuum (Fig. 1): species at the fast end of the continuum are characterized by high fecundity per time unit (e.g., annual fecundity), early age at first reproduction, and short lifespan, while the opposite is expected for species at the slow end (Gaillard et al., 2016).

It has been proposed that the concept of the slow-fast life-history continuum should be restricted to the pattern of covariation in raw (i.e., size-uncorrected) life-history traits sharing the dimension of time (Jeschke and Kokko, 2009; Gaillard et al., 2016). Empirical evidence supports the existence of this "raw" slow-fast continuum in mammals and birds (Herrando-Pérez et al., 2012; Gaillard et al., 2016), while in amphibians and reptiles a comprehensive analysis on the subject is still lacking (Gaillard et al., 2016; but see Fig. 2 in Herrando-Pérez *et al.* (2012) which suggests the existence of the continuum in these taxa).

Page 9 of 52

#### **Ecology Letters**

In contrast, for fish species, annual fecundity appears to covary positively with pace of life metrics, although for a given position on the slow-fast continuum the interspecific variation in annual fecundity is notoriously high (see Fig. 2 in Herrando-Pérez et al. (2012)). Theory to better understand this counterintuitive "slow-type survival with fast-type reproduction" strategy observed in several fish species is beginning to emerge (see Wright *et al.*, 2020). It is also worth noting that resources can be allocated to facets of reproduction other than fecundity, such as offspring quality and parental investment, a situation that might lead to a lack of covariation between fecundity and pace of life metrics in some ectotherms (Healy et al., 2019). How this deviation from the classical slow-fast continuum modulates the effect of life histories on host responses to infectious disease is still an untapped question. 

# 172 SECTION 2: HOST LIFE-HISTORY AND IMMUNE DEFENCES

The principle of allocation and the ubiquity of parasites suggest that immune defences should covary with the position of a species on the slow-fast life-history continuum, with fast-living species trading investment in immune defence for growth and reproduction (Lee, 2006; Martin et al., 2006). In contrast, the longer lifespan of slow-living species means that they: 1) may encounter more individual infections during their lifetime, increasing the benefits of allocating resources to immune defences; and 2) may encounter a wider range/diversity of infections (e.g., Gutiérrez et al., 2019), creating selective pressures for adaptive (specific, less self-damaging) immunity (Lee, 2006; Woodhams et al., 2016).

181 The differential allocation of energy and resources to immunity between fast-living182 and slow-living species suggests that when exposed to the same parasite and under similar

environmental conditions, individuals from species at different positions along the slow-fast life-history continuum should exhibit different susceptibilities to acquiring infection and developing disease (Joseph et al., 2013). There is evidence of this relationship in two recent experimental studies in amphibians. In the first study, Johnson et al. (2012) experimentally exposed individuals of 13 amphibian species to the trematode *Ribeiroia* ondatrae. They showed that fast-living species were more prone to infection and the development of lesions than slow-living species. In the second study, using a standardized challenge of 20 North American amphibian species, Gervasi et al. (2017) found that individuals from fast-living species were more susceptible to lethal *B. dendrobatidis* infection. 

Empirical evidence also reveals that the relative importance of coarse immunity components, which differ in terms of energetic investment (e.g., innate vs adaptive immunity), tend to vary along the slow-fast continuum in vertebrates, with fast-living species favouring components that can be less costly such as innate immunity and behavioural mechanisms of resistance/tolerance (Fig. 1; Lee 2006; Tieleman et al., 2005; Martin et al., 2006; Previtali et al., 2012; Sears et al., 2015; Woodhams et al., 2016; but see Tieleman (2018) for mixed empirical support for a link between host life-history and host immunity in birds).

Although we have highlighted empirical evidence supporting the covariation of immunity with host life-history strategies (i.e., fast-living species tend to invest less in immunity and to favour less costly mechanisms of resistance/tolerance), there is little robust evidence to support the generality of these patterns in vertebrates or other taxa (Albery and Becker, 2020). Given the complexity of the vertebrate immune system (Brock

#### **Ecology Letters**

et al., 2014) and its high responsiveness to environmental conditions (e.g., food availability, temperature, microbial environment; Sandland and Minchella, 2003: Palacios et al., 2011), providing robust validation to these LHT predictions is not a trivial task. Such validations could represent a major advance in the study of wildlife diseases, allowing improvements in forecasting host susceptibility to novel parasitic infections and assisting the design of disease mitigation strategies (e.g., mass vaccination or habitat management targeting behavioural resistance/tolerance mechanisms, Hettyey et al., 2019). SECTION 3: HOST LIFE-HISTORY CONSTRAINS POPULATION RECOVERY AFTER A DISEASE OUTBREAK The ability of populations to recover from short-term disturbances such as disease outbreaks depends on their demographic resilience (i.e., the inherent ability of a population to prevent a decrease in size after a disturbance; reviewed in Capdevila et al. (2020)). An important prediction in the context of infectious diseases is that, all else being equal, a population of a slow-living species would require a longer time to recover in size after a disease outbreak than a population of a fast-living species (Lebreton, 2006; Capdevila et al., 2020; see Benhaiem et al. (2018) for an example in mammalian hosts). This arises because the maximum population growth rate, which sets the upper limit of the speed of recovery, is expected to decrease towards the slow end of the life-history continuum (Niel and Lebreton, 2005; Lebreton, 2006). Capdevila et al. (2020) introduced an analytical

framework to study demographic resilience and its components that can be used to provide

further empirical support to the above-mentioned prediction. This approach, however, is

based on the analysis of density-independent, time-invariant matrix population models and

| 229 | does not consider changes in vital rates over time (Capdevila et al., 2020). In the following |
|-----|-----------------------------------------------------------------------------------------------|
| 230 | sections, we show that compensatory changes in vital rates over time are important in         |
| 231 | determining the resilience of host populations to emerging and endemic infectious diseases,   |
| 232 | especially considering that parasites often operate as long-term sustained perturbations      |
| 233 | (e.g., endemic infection dynamics).                                                           |
| 234 |                                                                                               |
| 235 | SECTION 4: HOST LIFE-HISTORY INFLUENCES THE MECHANISM OF                                      |
| 236 | ACTIVE DEMOGRAPHIC COMPENSATION                                                               |
| 237 | Active demographic compensation (defined as the change in one or more demographic             |
| 238 | rates [e.g., survival, recruitment] to compensate for a reduction in that, or another,        |
| 239 | demographic rate) determines the capacity of a population to counteract the detrimental       |
| 240 | effects of infectious diseases. We use "active" to differentiate this concept from Capdevila  |
| 241 | et al. (2020)'s definition of demographic compensation which focuses on changes in            |
| 242 | demographic structure rather than changes in the vital rates. We identify two general         |
| 243 | mechanisms of active demographic compensation in response to infectious disease: 1) a         |
| 244 | non-specific response that arises from the effect of parasitic infection on host population   |
| 245 | density (i.e., density-dependent compensation); and 2) an adaptive plastic response of        |
| 246 | individual hosts to infection (i.e., parasite-induced plasticity of life-history traits).     |
| 247 |                                                                                               |
| 248 | The role of density-dependent processes in active demographic compensation                    |
| 249 | Early theoretical studies showed that density-dependent compensation could be a key           |
| 250 | demographic mechanism to offset disease impacts on population growth rate, an idea that       |
|     | 12                                                                                            |

Page 13 of 52

#### **Ecology Letters**

was supported by empirical evidence in invertebrate hosts (Anderson and May 1981). Essentially, for a parasite to regulate a host population, disease-induced mortality needs to be additive (i.e., any individual that dies from the disease would have survived if the disease was not present) rather than compensatory (i.e., any individual that dies from the disease would have died from other causes if the disease was not present) to other natural sources of density-dependent mortality (Jolles et al., 2006). For example, in overcrowded populations, parasite infection may primarily remove individuals that otherwise would die due to causes linked to overcrowding (e.g., food or space limitations), resulting in negligible differences in net survival rates between infected and uninfected populations (Kistner and Belovsky, 2014). Additionally, a reduction in population size can boost recruitment in a density-dependent fashion, compensating for the reduced survival of infected hosts (e.g., Anderson and May, 1981; Ohlberger et al., 2011; McDonald et al., 2016: Rogowski et al., 2020). In a population of susceptible hosts, density-dependent compensatory responses can lead to effective compensation (i.e., no change in population size) or even overcompensation (i.e., increase in population size; reviewed in Schröder et al. (2014)). To our knowledge, however, there is only a single demonstration of density-dependent overcompensation in this context, involving a protozoan parasite and a larval mosquito host (Washburn et al., 1991). 

The demographic buffering hypothesis states that to alleviate negative effects of environmental stochasticity on the long-run population growth rate, vital rates with the largest contribution to the population growth rate (i.e., vital rates exhibiting a high elasticity) should be buffered against environmental variation (reviewed in Hilde *et al.* (2020)). This means that vital rates with a high elasticity should be canalised (i.e., are

| 274 | insensitive to environmental variation). From this hypothesis, McDonald et al. (2016)       |
|-----|---------------------------------------------------------------------------------------------|
| 275 | proposed that vital rates with high elasticity could also be buffered against internal      |
| 276 | pressures, exhibiting weak dependence on local population density. This knowledge can       |
| 277 | help predict the type of density-dependent compensatory mechanisms likely to occur in a     |
| 278 | host population. In the context of host-parasite systems, this hypothesis suggests that, in |
| 279 | slow-living species, recruitment should be more sensitive than adult survival to local      |
| 280 | population density and density-dependent recruitment should be more commonly observed       |
| 281 | as a mechanism of compensation for infectious diseases (McDonald et al., 2016). This        |
| 282 | contrasts with fast-living species, where recruitment is expected to be less sensitive to   |
| 283 | population density than adult survival and, therefore, density-dependent compensatory       |
| 284 | recruitment would be expected to be less effective and thus less commonly observed.         |
| 285 | Instead, in fast-living species, as adult survival is expected to be more sensitive to      |
| 286 | population density, the increased mortality rates due to disease are more likely to be      |
| 287 | compensatory rather than additive. In a rare test of these LHT predictions, McDonald et al. |
| 288 | (2016) found that density-dependent compensatory recruitment contributed to the             |
| 289 | persistence of a badger (Meles meles) population naturally infected with the bacterium      |
| 290 | Mycobacterium bovis (Fig. 2a). This response is in accordance with the above-mentioned      |
| 291 | LHT predictions, as badgers exhibit a slow life-history strategy (McDonald et al., 2016).   |
| 292 |                                                                                             |
|     |                                                                                             |
| 293 | Life-history strategies and host population depression due to parasite-induced mortality    |

We use a susceptible-infected disease model to theoretically explore how life-history
modulates the negative effects of disease on host populations exhibiting density-dependent
compensation. The purpose of this analysis is to illustrate that distinguishing between slow

Page 15 of 52

#### **Ecology Letters**

and fast-living life-history strategies can help predict the magnitude of the negative effects

of disease-induced mortality on host populations. The models we analyse here are similar to

| 1<br>ว         |     |
|----------------|-----|
| 2<br>3<br>4    | 297 |
| 5<br>6         | 298 |
| 7<br>8         | 299 |
| 9<br>10<br>11  | 300 |
| 12<br>13       | 301 |
| 14<br>15       | 302 |
| 16<br>17       | 303 |
| 18<br>19<br>20 | 304 |
| 21<br>22       | 305 |
| 23<br>24       | 306 |
| 25<br>26<br>27 | 207 |
| 27<br>28<br>29 | 507 |
| 30<br>31       | 308 |
| 32<br>33       | 309 |
| 34<br>35       | 310 |
| 36<br>37<br>38 | 311 |
| 39<br>40       | 312 |
| 41<br>42       | 313 |
| 43<br>44       |     |
| 45<br>46<br>47 | 314 |
| 47<br>48<br>49 |     |
| 50<br>51       | 315 |
| 52<br>53       | 316 |
| 54<br>55<br>56 | 317 |
| 57<br>58       | 511 |
| 59<br>60       |     |

| 9 | those used in previous studies of disease-induced depression of host populations and the                         |
|---|------------------------------------------------------------------------------------------------------------------|
| 0 | effects of life-history on disease dynamics (e.g., Anderson and May, 1981; De Leo and                            |
| 1 | Dobson, 1996; Lloyd-Smith et al., 2005; Bolzoni et al., 2008, Han et al., 2015). The key                         |
| 2 | contribution of our analysis is that, in addition to examining how variation in demographic                      |
| 3 | and infection rates between slow- and fast-living species affect disease dynamics (e.g., De                      |
| 4 | Leo and Dobson, 1996; Bolzoni et al., 2008; Han et al., 2015), we also directly compare                          |
| 5 | how structural assumptions regarding the location of density-dependence affect the                               |
| 6 | negative impacts of disease on slow- and fast-living species.                                                    |
| 7 | Consider a host population with some density of susceptible hosts $A_S$ and infected                             |
| 8 | hosts $A_I$ . Assume that hosts become infected through density-dependent transmission,                          |
| 9 | where increasing host density increases host contact rate (Anderson and May, 1981;                               |
| 0 | McCallum, 2001; see Fig. S2 for frequency-dependent transmission). Also assume that                              |
| 1 | infected hosts suffer disease-induced mortality at some rate $\alpha$ (yr <sup>-1</sup> ) and infected hosts can |
| 2 | recover at some rate $\gamma$ (yr <sup>-1</sup> ). We model these processes as                                   |

$$4 \qquad \frac{\frac{dA_S}{dt}}{\frac{dA_I}{dt}} = f(A_S + A_I)[A_S + A_I] - g(A_S + A_I)A_S - \beta A_I A_S + \gamma A_I$$

$$(1)$$

where  $\beta A_I$  is the force of infection (yr<sup>-1</sup>). The function  $f(A_S + A_I)$  defines the per capita host reproductive rate as a function of total host population density  $A_S + A_I$ . Consistent

| 2           |  |
|-------------|--|
| 3           |  |
| 4           |  |
| 5           |  |
| 6           |  |
| 7           |  |
| ,<br>0      |  |
| 0           |  |
| 9           |  |
| 10          |  |
| 11          |  |
| 12          |  |
| 13          |  |
| 14          |  |
| 15          |  |
| 10          |  |
| 16          |  |
| 17          |  |
| 18          |  |
| 19          |  |
| 20          |  |
| 21          |  |
| 22          |  |
| ~~<br>72    |  |
| 23          |  |
| 24          |  |
| 25          |  |
| 26          |  |
| 27          |  |
| 28          |  |
| 29          |  |
| 30          |  |
| 21          |  |
| 21          |  |
| 22          |  |
| 33          |  |
| 34          |  |
| 35          |  |
| 36          |  |
| 37          |  |
| 38          |  |
| 39          |  |
| 40          |  |
| -то<br>// 1 |  |
| 41          |  |
| 42          |  |
| 43          |  |
| 44          |  |
| 45          |  |
| 46          |  |
| 47          |  |
| 48          |  |
| 40          |  |
| 50          |  |
| 50          |  |
| 51          |  |
| 52          |  |
| 53          |  |
| 54          |  |
| 55          |  |
| 56          |  |
| 57          |  |
| 59<br>58    |  |
| 20          |  |
| 59          |  |

60

1

| 318 | with the demographic buffering hypothesis, we assume that the per capita reproductive rate        |
|-----|---------------------------------------------------------------------------------------------------|
| 319 | of fast-living species is canalized and density-independent such that $f(A_S + A_I) = a$ . In     |
| 320 | contrast, the per capita reproductive rate of slow-living species is predicted to be less         |
| 321 | canalized and to exhibit density-dependence (e.g., McDonald et al., 2016) and we assume           |
| 322 | that it takes the form $f(A_S + A_I) = a - s[A_S + A_I]$ (Gurney and Nisbet, 1998), where s is    |
| 323 | the strength of density-dependence. The function $g(A_S + A_I)$ defines the per capita            |
| 324 | mortality rate of a host as a function of host density. For fast-living species, the per capita   |
| 325 | mortality rate can vary with host density and we consider the form $g(A_S + A_I) = \mu + s[A_S$   |
| 326 | + $A_I$ ] (Anderson and May, 1981). The per capita mortality rates of slow-living species, on     |
| 327 | the other hand, are predicted to be canalized (e.g., McDonald et al., 2016) such that per         |
| 328 | capita mortality rate is density-independent, $g(A_S + A_I) = \mu$ . In what follows, we refer to |
| 329 | the 'fast model' as the model with density-dependence in per capita mortality and the 'slow       |
| 330 | model' as the model with density-dependence in per capita reproductive rate.                      |
|     |                                                                                                   |

In addition to where density-dependence operates, another distinguishing feature of 331 fast and slow-living species are the magnitudes of their per capita mortality and 332 333 reproductive rates in the absence of density-dependence. Slow-living species tend to be 334 long-lived (low  $\mu$ ) with low reproductive rates (low a), while fast-living species tend to be 335 short-lived (high  $\mu$ ) with high reproductive rates (high a) (Gaillard *et al.*, 2016). This wellknown life-history trade-off is reflected in the model in the host's fundamental recruitment 336 number, which under the assumptions of equation 1 is  $R_{0,host} = \frac{a}{\mu} R_{0,host}$  defines the 337 expected number of new hosts produced by a host over its lifetime when density-dependent 338 processes are absent. A host can obtain the same reproductive number by trading-off 339 between a and  $\mu$ . In this way, fast-living and slow-living species may have the same 340

Page 17 of 52

# Ecology Letters

| 2<br>3<br>4    | 341 | fundamental recruitment number, but using contrasting strategies (e.g., low $a$ , low $\mu$ vs.                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6         | 342 | high $a$ , high $\mu$ ). Here we consider a slow-living species that lives on average ten years (                                                                                            |
| 7<br>8<br>9    | 343 | $\mu = 0.1 \text{ yr}^{-1}$ ) and a fast-living species that lives on average half a year ( $\mu = 2 \text{ yr}^{-1}$ ).                                                                     |
| 10<br>11<br>12 | 344 | When a parasite successfully invades it will depress the host population below its                                                                                                           |
| 13<br>14       | 345 | parasite free equilibrium density, which is $A_{\text{parasite free}}^* = \frac{a-\mu}{s}$ for both the slow and fast                                                                        |
| 15<br>16<br>17 | 346 | model. How does the amount of host depression depend on the life-history strategy of the                                                                                                     |
| 18<br>19       | 347 | host? To answer this question, we varied both the disease-induced mortality rate $\alpha$ and the                                                                                            |
| 20<br>21<br>22 | 348 | host fundamental recruitment number $R_{0,host}$ for the slow and fast model and compared                                                                                                    |
| 22<br>23<br>24 | 349 | how much host equilibrium density was depressed in the presence of the parasite relative to                                                                                                  |
| 25<br>26       | 350 | the parasite free equilibrium. Following Anderson and May (1981), we defined population                                                                                                      |
| 27<br>28<br>20 | 351 | depression as $1 - A_{\text{parasite present}}^* / A_{\text{parasite free}}^*$ , where $A_{\text{parasite present}}^*$ is the total equilibrium                                              |
| 29<br>30<br>31 | 352 | population density in the presence of the parasite. Zero indicates no population depression                                                                                                  |
| 32<br>33       | 353 | from disease, and a value closer to one indicates a higher population depression.                                                                                                            |
| 34<br>35<br>36 | 354 | To adequately compare population depression between the two life-history                                                                                                                     |
| 37<br>38       | 355 | strategies, we also need to consider $R_0$ of the parasite. This describes the expected number                                                                                               |
| 39<br>40<br>41 | 356 | of infected individuals produced over the lifetime of an average infected host in a fully                                                                                                    |
| 42<br>43       | 357 | susceptible host population. The proportion of a host population infected by a parasite                                                                                                      |
| 44<br>45<br>46 | 358 | increases with increasing $R_0$ (Keeling and Rohani, 2008) and will affect the percentage of                                                                                                 |
| 40<br>47<br>48 | 359 | the host population that experiences disease-induced mortality. Parasite $R_0$ for the slow                                                                                                  |
| 49<br>50<br>51 | 360 | model is $R_{0,\text{parasite,slow}} = \frac{A_{\text{parasite free}}^{*}\beta}{\alpha + \gamma + \mu}$ and for the fast model is $R_{0,\text{parasite,fast}} =$                             |
| 52<br>53<br>54 | 361 | $\frac{A_{\text{parasite free}}^{*}\beta}{\alpha + \gamma + \mu + sA_{\text{parasite free}}^{*}}$ . When $R_{0,\text{parasite},\cdot} > 1$ , the parasite can invade and transmission can be |
| 55<br>56<br>57 | 362 | sustained in a host population whose density is at $A_{\text{parasite free}}^*$ . As the value of $A_{\text{parasite free}}^*$                                                               |
| 58<br>59       |     | 17                                                                                                                                                                                           |

| 2<br>3<br>4    | 363 | will vary between the slow and fast model, so will parasite $R_0$ . To account for this, we           |
|----------------|-----|-------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7    | 364 | ensured that parasite $R_0$ was the same for the slow and fast model for any parameter set by         |
| 7<br>8<br>9    | 365 | adjusting the transmission parameter $\beta$ for the slow model once disease-induced mortality        |
| 10<br>11       | 366 | $\alpha$ and $R_{0,host}$ had been chosen. Biologically, this means that we assumed that parasites of |
| 12<br>13<br>14 | 367 | slow-living species generally had a higher transmission rate than those of fast-living                |
| 15<br>16       | 368 | species. This assumption is reasonable given that 1) slow-living species generally have a             |
| 17<br>18<br>19 | 369 | lower population density and a larger body size than fast-living species (Han et al., 2015),          |
| 20<br>21       | 370 | and 2) transmission rate $\beta$ scales positively with body size under the assumption of density-    |
| 22<br>23       | 371 | dependent transmission (De Leo and Dobson, 1996; but see Joseph et al., 2013).                        |
| 24<br>25<br>26 | 372 | Our analysis shows that, given the same parasite $R_0$ and host fundamental                           |
| 27<br>28       | 373 | recruitment number $R_{0,host}$ , the parasite depressed the population of slow-living species        |
| 29<br>30<br>31 | 374 | more than fast-living species (Fig 3a,b). For both life-history strategies, population                |
| 32<br>33       | 375 | depression was maximized for intermediate levels of disease-induced mortality $\alpha$ and            |
| 34<br>35<br>36 | 376 | tended to increase with increasing host fundamental recruitment number (Fig. 3a,b). The               |
| 37<br>38       | 377 | unimodal relationship between disease-induced mortality $\alpha$ and population depression is an      |
| 39<br>40<br>41 | 378 | inevitable consequence of the fact that population depression has to be zero when $\alpha = 0$        |
| 42<br>43       | 379 | and when $\alpha$ gets high enough that the parasite can no longer persist. Increasing the host       |
| 44<br>45       | 380 | fundamental recruitment number in our model, on the other hand, increases equilibrium                 |
| 46<br>47<br>48 | 381 | host density, which increases transmission efficiency and increases population depression.            |
| 49<br>50       | 382 | However, when the host fundamental recruitment number gets high enough, host births can               |
| 51<br>52       | 383 | eventually compensate for disease-induced mortality and population depression will                    |
| 54<br>55<br>56 | 384 | decrease (Anderson and May, 1981).                                                                    |

Page 19 of 52

#### Ecology Letters

There are two non-exclusive explanations for the comparatively stronger population depression in slow-living species. First, despite ensuring identical parasite  $R_0$  values for the slow and fast model, differences in intrinsic mortality rate or reproductive rate between fast and slow-living species, for example, can directly affect equilibrium parasite prevalence. If the slow model had higher disease prevalence than the fast model, this could explain the increased population depression. In Fig. 3c,d we show that the opposite occurred in most cases, i.e., the equilibrium prevalence was generally higher for the fast model compared to the slow model, given comparable parameters. Second, the stronger depression for slow-living species could be due to either the location of density-dependence (i.e., host survival vs host reproduction) or the differences in mortality rate between the two life-history strategies. If we ignore the biological implausibility and set the mortality rate  $\mu$  to be the same for the slow and fast model, the stark differences in population depression are largely removed (Fig. S1). This indicates that the differences in population depression between the slow and fast models are driven largely by differences in mortality rate between the two life-history strategies, and not by the location of density-dependence. 

We can further understand this result by considering how a proportional change in mortality rate proportionally affects  $R_{0,host}$  (i.e., the elasticity of  $R_{0,host}$  with respect to  $\mu$ ). Specifically, we can write the elasticity as  $\frac{\partial R_{0,\text{host}}}{R_{0,\text{host}}} = -T\partial\mu$ , where  $T = 1/\mu$  is the average lifespan of the host (Lebreton 2005). When hosts have a short lifespan (i.e., T is small), consistent with a fast life-history strategy, a small change in host death rate  $\mu$  given by  $\partial \mu$ will have a small proportional change on  $R_{0,host}$ . In contrast, when hosts have a long lifespan (i.e., T is large), consistent with a slow life-history strategy, a small change in host death rate  $\mu$  will have a large proportional change on  $R_{0,host}$ . Because equation 1 assumes 

| 2<br>3<br>4          | 408 | that the parasite affects host population dynamics by modifying mortality from $\mu$ to $\mu + \alpha$ | α   |
|----------------------|-----|--------------------------------------------------------------------------------------------------------|-----|
| -<br>5<br>6          | 409 | for infected hosts, the above elasticity analysis suggests that, for a slow- and a fast-living         | 5   |
| 7<br>8               | 410 | species with the same values of $R_{0,host}$ , the proportional impact of disease will be larger f     | for |
| 9<br>10<br>11        | 411 | the slow-living species (small $\mu$ ) than for the fast-living one (large $\mu$ ). This result is     |     |
| 12<br>13<br>14       | 412 | unchanged for frequency-dependent transmission (Fig. S2).                                              |     |
| 15<br>16             | 413 | As a final note, this simple model only considers a host with a single life stage.                     |     |
| 17<br>18<br>10       | 414 | When hosts have multiple life stages (e.g., juvenile and adult) that are differentially                |     |
| 20<br>21             | 415 | affected by a parasite, the location of density-dependence can interact in more complex                |     |
| 22<br>23             | 416 | ways with underlying host and parasite parameters determining the extent of population                 |     |
| 24<br>25             | 417 | depression in fast and slow-living species. For example, in a slow-living species where                |     |
| 26<br>27<br>28       | 418 | juveniles are substantially less susceptible to infection than adults, disease-induced                 |     |
| 29<br>30             | 419 | mortality in adults could lead to density-dependent increases in per capita reproductive               |     |
| 31<br>32             | 420 | rates and a proportional increase in juvenile population density in the presence of disease            | ).  |
| 33<br>34<br>25       | 421 | However, in a species with density-dependence in juvenile mortality, this type of                      |     |
| 35<br>36<br>37       | 422 | compensation would be harder to obtain. These predicted patterns provide an interesting                |     |
| 38<br>39             | 423 | future direction to explore at the intersection of disease ecology and LHT.                            |     |
| 40<br>41<br>42<br>42 | 424 |                                                                                                        |     |
| 43<br>44<br>45       | 425 |                                                                                                        |     |
| 46<br>47             | 426 | The role of life-history plasticity in active demographic compensation                                 |     |
| 48<br>49<br>50       | 427 | Disease-associated risk can induce plastic changes in life-history traits that can potentiall          | ly  |
| 51<br>52             | 428 | result in active demographic compensation. For example, in the Tasmanian devil                         |     |
| 53<br>54<br>55<br>56 | 429 | (Sarcophilus harrisii), females from populations decimated by a transmissible tumour                   |     |
| 57<br>58             |     |                                                                                                        | 20  |
| 59                   |     |                                                                                                        |     |

Page 21 of 52

1

#### **Ecology Letters**

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| /<br>Q   |  |
| 0        |  |
| 9<br>10  |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 30       |  |
| 21       |  |
| 3Z<br>33 |  |
| 22       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 3/       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 50       |  |
| 60       |  |
| 111      |  |

| 430 | decreased their age at first reproduction and produced more offspring, a response that           |
|-----|--------------------------------------------------------------------------------------------------|
| 431 | partially offset the long-term impact of the disease and allowed persistence of Tasmanian        |
| 432 | devil populations (Jones et al., 2008; Lachish et al., 2009; Lazenby et al., 2018). Although     |
| 433 | a reduced population density due to infectious disease could potentially induce plasticity in    |
| 434 | life-history traits, several empirical studies in vertebrates indicate that cues pertaining to a |
| 435 | parasite (e.g., antigens) or infected conspecifics are enough to trigger plasticity in life-     |
| 436 | history traits (Wedekind, 2002; Bonneaud et al., 2004; Velando et al., 2006; Hanssen,            |
| 437 | 2006; Pompini et al., 2013; Sköld-Chiriac et al., 2019). We argue that this evidence             |
| 438 | reinforces the traditional idea of the existence of a density-independent plastic response of    |
| 439 | hosts to the increased risk of death or reduced fecundity associated with a parasitic            |
| 440 | infection (Stearns, 1989b).                                                                      |
| 441 | In animals, empirical demonstrations of parasite-induced plasticity in life-history              |
| 442 | traits were traditionally restricted to invertebrates (e.g., Michalakis and Hochberg, 1994;      |
| 443 | Agnew et al., 2000), but evidence is accumulating that this occurs across all vertebrate         |
| 444 | classes as well (Fig. 2b-f; Table S1). Despite being well described at the individual level, it  |
| 445 | is unclear how parasite-induced plasticity of life-history traits affects host demography and    |

446 **long-term host-parasite dynamics in vertebrates or other taxa**. Like the results in

447 invertebrates (Agnew *et al.*, 2000), examples from wild vertebrates support theoretical

expectations that the most common type of parasite-induced plasticity in life-history are

449 associated with reproduction. First, LHT predicts that if parasitism reduces an individual's

- 450 residual reproductive value (which is a measure of future reproductive opportunities) due to
  - 451 reduced fecundity, reduced survival, or chronic disease, selective benefits should exist for
- 452 individuals that can divert resources from self-maintenance to increase their current

| 2  |  |
|----|--|
| 3  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 10 |  |
| 10 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 32 |  |
| 31 |  |
| 24 |  |
| 22 |  |
| 30 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 52 |  |
| 57 |  |
| 54 |  |
| 22 |  |
| 50 |  |
| 5/ |  |
| 58 |  |
| 59 |  |
| 60 |  |

1

| 453 | reproductive effort, in a "terminal investment" strategy to maximize fitness (Minchella,      |
|-----|-----------------------------------------------------------------------------------------------|
| 454 | 1985; Forbes, 1993; Sorci et al., 1996; Hanssen, 2006; Schwanz, 2008). Second, for            |
| 455 | individuals that have not reached sexual maturity, reducing the age of first reproduction     |
| 456 | (i.e., diverting resources from growth to reproduction) should also enhance host fitness      |
| 457 | since the chances of successful reproduction before either death or sterility are increased   |
| 458 | (Stearns, 1989b; Hochberg et al., 1992; Michalakis and Hochberg, 1994). Also, in              |
| 459 | vertebrates with complex life cycles, parasites can induce changes in the timing of life-     |
| 460 | history transitions and niche shifts (e.g., hatching time in fish and amphibians) that permit |
| 461 | hosts to escape stage-specific parasitic infection (Warkentin et al., 2001; Wedekind, 2002;   |
| 462 | Pompini <i>et al.</i> , 2013).                                                                |
| 463 | It is worth noting that infected hosts do not always exhibit increased reproductive           |
| 464 | effort (Duffield et al., 2017). First, the direct negative effects of infectious disease can  |
| 465 | inhibit reproduction (Richner, 1998). Second, if the prospects of future reproduction are not |
| 466 | diminished (e.g., CDV in spotted hyenas; Benhaiem et al., 2018), it would be more             |

467 efficient to reallocate resources to immune defences rather than to reproduction (but see Perrin et al., 1996). Third, the activation of the immune system is costly, and to sustain an 468 immune response, hosts may need to reallocate resources away from reproduction (Ilmonen 469 470 et al., 2000). Lastly, even if an infectious disease reduces a host's residual reproductive 471 value, investing in immunity could pay off. For instance, using a theoretical evolutionary model of a sexually-transmitted disease producing sterility in females, Johns et al. (2019) 472 473 showed that, even though terminal investment evolved under most scenarios, when immunity was highly cost-effective in delaying sterility, infected females increased 474 immune response at the expense of reproductive effort. 475

#### **Ecology Letters**

| כ<br>⊿   |  |
|----------|--|
| 4<br>7   |  |
| с<br>С   |  |
| 0        |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 22       |  |
| 27       |  |
| 25       |  |
| 20       |  |
| 27<br>20 |  |
| 20       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52<br>52 |  |
| 55       |  |
| 54       |  |
| 55<br>57 |  |
| 20       |  |
| 5/       |  |
| 58       |  |
| 59       |  |
| 60       |  |

It is unclear how plasticity in host life-history traits covaries with the position of a 476 species on the slow-fast continuum (but see Fig. 1), highlighting the urgent need for 477 theoretical and empirical development of this subject. In a general context, empirical 478 evidence shows that, in contrast to mammals with an intermediate to fast life-history 479 strategy (e.g., Tasmanian devils, wild boars), slow-living mammals are not able to bring 480 forward the onset of reproduction as a mechanism to compensate for an extrinsic cause of 481 increased mortality rate (see Servanty et al. (2011) and references therein). 482

484

483

# SECTION 5: HOST LIFE-HISTORY AND EVOLUTIONARY RESPONSES TO 485 **INFECTIOUS DISEASES** 486

Parasites could also drive rapid evolutionary changes in host life-history traits (Stearns et 487 al., 2000; Koella and Restif, 2001; but see Steiner and Tuljapurkar, 2012). Indeed, parasites 488 are ubiquitous in nature and exert selective pressures influencing the evolution of host-life 489 history strategies and maintaining plasticity of host life-history traits (Hochberg et al., 490 1992; Koella and Restif, 2001). This rapid evolution of host life-history traits could lead to 491 evolutionary rescue, i.e., when adaptive evolutionary change halt population decline and 492 prevents extinction (Carlson et al., 2014). Yet, we are unaware of any empirical 493 demonstration of rapid evolutionary change of life-history traits (e.g., fecundity, age at first 494 reproduction) in response to parasitism in vertebrate hosts (but see below for examples of 495 rapid evolution of tolerance/resistance mechanisms). The distinction between rapid 496 evolution of life-history traits and active demographic compensation in response to 497

 Page 24 of 52

| 2<br>3<br>4    | 498 | infectious disease is of practical relevance because evolutionary responses are expected to         |
|----------------|-----|-----------------------------------------------------------------------------------------------------|
| 5<br>6         | 499 | be more hard-wired and slower to reverse than density-dependent and plastic responses,              |
| 7<br>8         | 500 | and could alter population dynamics and resilience to other stressors (e.g., extreme climatic       |
| 9<br>10<br>11  | 501 | events) even after the parasite has disappeared from the host population.                           |
| 12<br>13<br>14 | 502 | Additionally, rapid adaptive evolutionary changes of resistance or tolerance                        |
| 15<br>16       | 503 | mechanisms can have important effects on host-parasite dynamics (Duffy and Sivars-                  |
| 17<br>18       | 504 | Becker, 2007), allowing evolutionary rescue in susceptible hosts (e.g., Gignoux-Wolfsohn            |
| 19<br>20<br>21 | 505 | et al., 2019). There are several examples of rapid evolution of resistance or tolerance             |
| 22<br>23       | 506 | mechanisms in wild vertebrates, including amphibians (Savage and Zamudio, 2016), birds              |
| 24<br>25       | 507 | (Bonneaud et al., 2011), and mammals (Epstein et al., 2016; Gignoux-Wolfsohn et al.,                |
| 26<br>27       | 508 | 2019). This rapid evolution is more likely to arise if the genetic variants involved in the         |
| 28<br>29<br>20 | 509 | response to infectious disease are from pre-existing genetic variation rather than from the         |
| 30<br>31<br>32 | 510 | recruitment of <i>de novo</i> mutations (Barrett and Schluter, 2008; Bonneaud <i>et al.</i> , 2011; |
| 33<br>34       | 511 | Hedrick, 2013). For example, populations of little brown bats (Myotis lucifugus)                    |
| 35<br>36       | 512 | experienced a dramatic and rapid decline due to white-nose syndrome (one monitored                  |
| 37<br>38<br>39 | 513 | colony declined by 98% between 2009-2015) but then started to recover slowly. Gignoux-              |
| 40<br>41       | 514 | Wolfsohn et al. (2019) reported that this recovery was associated with rapid evolution that         |
| 42<br>43       | 515 | occurred as a soft selection at multiple loci in genes linked to hibernation behaviour. These       |
| 44<br>45<br>46 | 516 | authors concluded that this occurred from standing genetic variation because the short              |
| 47<br>48       | 517 | timescale of fungal infection, mortality, and recovery processes makes selection of novel           |
| 49<br>50<br>51 | 518 | mutations very unlikely (Gignoux-Wolfsohn et al., 2019).                                            |
| 52<br>53       | 519 | Our current knowledge about the genetic architecture of resistance and tolerance                    |
| 54<br>55<br>56 | 520 | and the central role of standing genetic variation in the evolvability of host responses to         |

Page 25 of 52

# Ecology Letters

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9<br>10  |  |
| 10       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| २८<br>२२ |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 45<br>44 |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53<br>54 |  |
| 54       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 521 | parasitic infection leads to two important predictions that remain to be empirically tested in    |
|-----|---------------------------------------------------------------------------------------------------|
| 522 | vertebrate hosts. First, at the intraspecific level, resistance and tolerance are less likely to  |
| 523 | evolve rapidly in small, isolated populations where small effective population size $(N_e)$       |
| 524 | increases the risk of resistance/tolerance allele loss due to genetic drift and decreases         |
| 525 | selection effectiveness in response to infectious disease (Eimes et al., 2011). This              |
| 526 | prediction is supported by information from taxa other than vertebrates. For instance, in         |
| 527 | plants, individuals from highly connected populations can exhibit higher levels of disease        |
| 528 | resistance making those populations less susceptible to parasite-driven extinction (Jousimo       |
| 529 | et al., 2014; Carlsson-Granér and Thrall, 2015). Second, at the interspecific level,              |
| 530 | covariation between life-history and species' genetic characteristics likely determines the       |
| 531 | speed of the evolution of parasite resistance and tolerance. Small-sized species with fast life   |
| 532 | histories usually have higher genetic diversity than large, slow-living species (Wooten and       |
| 533 | Smith, 1985; McCusker and Bentzen, 2010; Eo et al., 2011). In addition, because of their          |
| 534 | short generation times, species at the fast end of the life-history continuum evolve at a         |
| 535 | faster rate than those at the slow end (Bromham, 2011) and have higher non-synonymous to          |
| 536 | synonymous substitution rate ratios (reflecting selection efficiency due to large $N_e$ ) (Figuet |
| 537 | et al., 2016). These two predictions suggest that fast-living species should benefit from a       |
| 538 | higher capacity for rapid evolution than slow-living species in response to infectious            |
| 539 | disease emergence. In contrast, Bruns et al. (2015) provided theoretical evidence that long-      |
| 540 | lived hosts can evolve resistance more rapidly than short-lived hosts when the likelihood of      |
| 541 | exposure to parasites and, therefore, the strength of selection for resistance, increases with    |
| 542 | longevity. Testing these theoretical expectations is a major challenge but would allow us to      |

better predict the susceptibility of species and populations to the emergence of infectiousdiseases.

In addition to evolution, rapid changes in host life-history traits or resistance/tolerance mechanisms can be attributed to parasite-induced epigenetic variation (Gómez-Díaz et al., 2012). To date, the role of epigenetic mechanisms on host responses to parasitism remains poorly understood. Available evidence shows that parasite-induced changes in DNA methylation (an epigenetic mechanism) can occur within the sequence of protein-coding genes involved in host immunity and can also affect genes regulating a broad range of molecular and intracellular processes (Zhang et al., 2016; Sagonas et al., 2020). Methylation is a strong predictor of lifespan and aging (Lowe *et al.*, 2018; Anastasiadi and Piferrer, 2020) and partially regulates fertility in vertebrates (e.g., Woods et al., 2018). Therefore, parasite-induced methylation changes could produce aberrant DNA expression, which might alter individual phenome, eventually influencing compensatory responses. Depending on the extent of the germline reprogramming, epigenetic marks driven by parasite infection could be retained and could be transmitted from one generation to the next, allowing the transgenerational inheritance of resistance/tolerance mechanisms or life-history traits in some organisms (Greer *et al.*, 2011; Bošković and Rando, 2018). 

# 562 SECTION 6: FROM POPULATIONS TO COMMUNITIES: INTEGRATING HOST 563 LIFE-HISTORY, COMMUNITY ASSEMBLY, AND INFECTIOUS DISEASE

Life-history traits can be further considered at the scale of ecological communities. The position of a species along the slow-fast life-history continuum can covary with both their Page 27 of 52

# Ecology Letters

| -<br>3<br>4          | 566 | epidemiological potential (i.e., host competence, which is defined as the capacity of a host |
|----------------------|-----|----------------------------------------------------------------------------------------------|
| 5<br>6               | 567 | to maintain and transmit a parasite) and their position within communities (i.e., assembly   |
| 7<br>8               | 568 | order). Thus, LHT offers an intriguing opportunity to more mechanistically link              |
| 9<br>10<br>11        | 569 | epidemiological and ecological frameworks in the study of disease, particularly for multi-   |
| 12<br>13<br>14       | 570 | host parasites.                                                                              |
| 15<br>16             | 571 | One arena in which this topic has begun to receive more attention is in the study of         |
| 17<br>18<br>10       | 572 | how changes in community diversity influence parasite transmission and disease risk.         |
| 20<br>21             | 573 | Debate over whether biodiversity losses should consistently lead to higher disease risk      |
| 22<br>23             | 574 | (e.g., the dilution effect) has prompted efforts to understand transmission within complex   |
| 24<br>25             | 575 | multi-host communities from a more mechanistic perspective (e.g., Ostfeld and Keesing,       |
| 26<br>27<br>28       | 576 | 2012). When life-history traits covary with aspects such colonization ability, competitive   |
| 29<br>30             | 577 | dominance, or extinction risk, species composition may be predictable along gradients of     |
| 31<br>32             | 578 | species richness, disturbance regime, productivity, or community age. In amphibian           |
| 33<br>34<br>35       | 579 | communities, for instance, Johnson et al. (2013) reported up to a 78% decrease in            |
| 36<br>37             | 580 | trematode parasite transmission with an increase in amphibian host diversity. This result    |
| 38<br>39             | 581 | was due to the non-random assembly of host communities: fast-living species with high        |
| 40<br>41<br>42       | 582 | colonization abilities tended to be the most competent hosts for the trematode. Because      |
| 42<br>43<br>44       | 583 | these species predominated in low-richness communities, parasite transmission tended to      |
| 45<br>46             | 584 | decline with community diversity. As these species were increasingly accompanied or          |
| 47<br>48             | 585 | replaced by lower-competence hosts at higher levels of species richness, the overall         |
| 49<br>50<br>51       | 586 | infection competence of the community decreased. If communities were instead assembled       |
| 52<br>53             | 587 | at random with respect to species composition (in laboratory experiments), there was no      |
| 54<br>55<br>56<br>57 | 588 | such relationship between species richness and parasite transmission (Johnson et al., 2019;  |

| 2              |     |                                                                                                  |
|----------------|-----|--------------------------------------------------------------------------------------------------|
| 3<br>4         | 589 | but see Becker et al., 2014). This highlights the importance of host life-history                |
| 5<br>6         | 590 | characteristics in affecting both interspecific variation in host infection competence as well   |
| 7<br>8         | 591 | as patterns of realistic assembly in ecological communities, which together could be used to     |
| 9<br>10<br>11  | 592 | more broadly consider landscape-level transmission dynamics.                                     |
| 12<br>13<br>14 | 593 |                                                                                                  |
| 15<br>16<br>17 | 594 |                                                                                                  |
| 18<br>19<br>20 | 595 | SECTION 7: FROM THEORY TO PRACTICE: HOST LIFE-HISTORY AND                                        |
| 21<br>22<br>23 | 596 | MITIGATION OF INFECTIOUS DISEASES IN WILDLIFE                                                    |
| 24<br>25       | 597 | We argue that a better understanding of the relationship between host life-history and           |
| 26<br>27       | 598 | disease dynamics can improve the accuracy of disease risk analysis and inform mitigation         |
| 28<br>29<br>30 | 599 | efforts at different stages of parasite invasion (sensu Langwig et al., 2015).                   |
| 31<br>32<br>33 | 600 | Disease risk analysis focuses on characterizing the potential disease hazards to an              |
| 34<br>35       | 601 | animal, a population, or a species prior to their occurrence (Sainsbury and Vaughan-             |
| 36<br>37       | 602 | Higgins, 2012; Jakob-Hoff et al., 2014). Risk largely depends on the adaptive capacity of        |
| 38<br>39<br>40 | 603 | the host population/species, which we define as its capacity to cope with, or respond to, an     |
| 41<br>42       | 604 | infectious disease. Because life-history permeates all components of host adaptive capacity      |
| 43<br>44       | 605 | (Jakob-Hoff et al., 2014), life-history traits could be used to identify species at greater risk |
| 45<br>46<br>47 | 606 | and prioritize surveillance efforts (Grogan et al., 2014).                                       |
| 48<br>49       | 607 | During the epizootic phase of parasite invasion, a rapid assessment of life-history              |
| 50<br>51<br>52 | 608 | traits can help to identify those host species at greater risk and guide resource allocation     |
| 53<br>54       | 609 | accordingly. For example, an initial, coarse assessment might prioritize naïve slow-living       |
| 55<br>56       | 610 | species, populations of which are more likely to be impacted more severely by infectious         |
| 57<br>58<br>59 |     | 28                                                                                               |
| 60             |     |                                                                                                  |

Page 29 of 52

## Ecology Letters

| 1      |  |
|--------|--|
| 2      |  |
| 3      |  |
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| ,<br>8 |  |
| 0      |  |
| 10     |  |
| 10     |  |
| 11     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 10     |  |
| 17     |  |
| 18     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 27     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 35     |  |
| 36     |  |
| 37     |  |
| 38     |  |
| 39     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 45     |  |
| 46     |  |
| 47     |  |
| 48     |  |
| 49     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 54     |  |
| 55     |  |
| 56     |  |
| 57     |  |
| 58     |  |
| 59     |  |
| 60     |  |
| 50     |  |

| 611 | disease (Fig. 3a,b). Also, given the greater capacity for an adaptive immune response, LHT    |
|-----|-----------------------------------------------------------------------------------------------|
| 612 | suggests that vaccine development would be more effective for slow-living species. LHT        |
| 613 | insights can help refine initial assessments. For example, mitigation decisions in fast or    |
| 614 | slow-living species might change depending on whether juveniles, adults or both life stages   |
| 615 | are affected. Parasite-driven adult mortality will have a greater impact on the population    |
| 616 | dynamics of slow-living than fast-living species, and high rates of parasite-driven juvenile  |
| 617 | mortality can limit the efficacy of compensatory recruitment in slow-living species           |
| 618 | (Valenzuela-Sánchez et al., 2017).                                                            |
| 619 | After the epizootic phase, fast-living host species might be managed by facilitating          |
| 620 | host-parasite co-existence by reducing non-disease stressors to indirectly reduce additive    |
| 621 | mortality (Scheele et al., 2019b). Conversely, slow-living species with slower recovery       |
| 622 | might be managed more directly, by improving recruitment through habitat manipulation         |
| 623 | (e.g., Haydon et al., 2002) or by population supplementation through the release of captive-  |
| 624 | bred or translocated individuals (e.g., Gerber et al., 2019; Mendelson et al., 2019).         |
| 625 | Importantly, while conservation plans intuitively seek to protect species at greater          |
| 626 | risk of extinction, in a disease context the protection of one species will often require     |
| 627 | managing additional species (Dobson, 2004). Life-history theory could help to predict the     |
| 628 | potential and relative importance of other species to act as a disease reservoir (Han et al., |
| 629 | 2020), enabling the causative parasite to persist (Gog et al., 2002; Haydon et al., 2002;     |
| 630 | Plourde et al., 2017). Empirical evidence shows that fast-living species commonly have a      |
| 631 | higher host competence (Johnson et al., 2012; Joseph et al., 2013; Plourde et al., 2017;      |
| 632 | Albery and Becker, 2020). This likely arises due to the lower investment of fast-living       |
| 633 | species on immune defences, the adaptation of parasites to locally abundant hosts, or both    |

| 5<br>∕   |  |
|----------|--|
| -<br>5   |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 1/       |  |
| 10       |  |
| 19<br>20 |  |
| 20       |  |
| 21       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33<br>34 |  |
| 34       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44<br>15 |  |
| 45<br>46 |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57<br>50 |  |
| 50<br>50 |  |
| 60       |  |

1 2

| 634 | (Joseph et al., 2013; Albery and Becker, 2020). Therefore, locally abundant fast-living       |
|-----|-----------------------------------------------------------------------------------------------|
| 635 | species could be targeted to protect a more vulnerable species at risk, pre-emptively or      |
| 636 | reactively (Canessa et al., 2019a; Martel et al., 2020). A recent study presented theoretical |
| 637 | evidence that challenges the idea that fast-living species will invariably have a higher host |
| 638 | competence. Using age-structured, susceptible-infected models, Silk and Hodgson (2020)        |
| 639 | showed that the demographic host competence (i.e., the ability of host populations to         |
| 640 | sustain endemic prevalence) of slow-living species can be similar or even higher (especially  |
| 641 | in the case of density-dependent parasite transmission) than that of fast-living species.     |
| 642 | Disentangling how immune and nonimmune mechanisms (e.g., demography, behaviour,               |
| 643 | density-dependence) of host competence interact at the population level seems to be a         |
| 644 | critical step to better understand the relationship between host competence and life history  |
| 645 | in multi-host parasite systems.                                                               |

We foresee two major barriers to the use of LHT to inform wildlife disease 646 647 mitigation. First, relatively few proven, feasible options exist for disease control in wild 648 vertebrates (e.g., Garner et al., 2016). General trade bans for disease prevention (Shea et 649 al., 2014) or culling for outbreak control (Carter et al., 2009; Mysterud et al., 2018) are more likely to be focused on the potential of species to act as vectors of parasite entry than 650 651 on long-term disease dynamics (Pavlin et al., 2009). Actions deployed during the invasion 652 phase are likely to be broad-scope measures applied to a wide range of potential hosts and vectors within a landscape or ecological setting (e.g., culling; Gortazar et al., 2014). The 653 654 second barrier is the scarcity of life-history data for many threatened species (Conde et al., 2019). Understanding long-term demographic processes requires long-term data. Managers 655 can respond to such uncertainty by delaying actions until such knowledge is accumulated 656

#### **Ecology Letters**

(but risking parasite spread during this period) (Grantham et al., 2009; Wintle et al., 2010), or by making decisions under uncertainty and assessing their effectiveness adaptively (e.g., Shea et al., 2014). Such assessments should be faster and more reliable for fast-living species with shorter generation times and larger cohorts, and hence larger sample sizes. Despite these limitations, disease risk assessments and mitigation plans generally are conducted with a limited knowledge of the system and depend on expert opinion and extrapolation (Canessa et al., 2019b). Therefore, we encourage scientists and practitioners to incorporate knowledge about broad LHT-disease relationships into expert assessments to narrow the decision space (Wintle et al., 2010), even in species where life-history data Per. might be limited. 

#### **SECTION 8: CONCLUSIONS AND FUTURE DIRECTIONS**

Host life-history characteristics strongly influence host responses to parasitism at different levels of organization, from individuals to communities. While we highlight several empirical examples supporting LHT predictions about host responses to infectious disease in vertebrates, most theoretical expectations lack robust empirical validation. Addressing this challenge is critical for the advancement of theory and practice in infectious disease ecology. We have highlighted several mechanisms that allow host populations to compensate for an increased mortality or reduced fertility due to infectious disease, and how life-history can constrain these responses. While our capacity to disentangle these mechanisms in wild populations has been limited to date, new opportunities are arising to deal with this problem. These include the integration of experimental and observational 

| 2              |     |          |
|----------------|-----|----------|
| 3<br>4         | 679 | approa   |
| 5<br>6         | 680 | analyti  |
| 7<br>8         | 681 | and pro  |
| 9<br>10<br>11  | 682 | Wilber   |
| 12<br>13       | 683 | life his |
| 14<br>15<br>16 | 684 | popula   |
| 17<br>18       | 685 | conditi  |
| 19<br>20       | 686 | parasit  |
| 21<br>22<br>22 | 687 | interpo  |
| 23<br>24<br>25 | 688 | Cable,   |
| 26<br>27       | 689 | capture  |
| 28<br>29<br>20 | 690 | better u |
| 30<br>31<br>32 | 691 | system   |
| 33<br>34       | 692 | challer  |
| 35<br>36<br>37 | 693 | from b   |
| 38<br>39       | 694 | history  |
| 40<br>41       | 695 | assessr  |
| 42<br>43<br>44 | 696 | threats  |
| 45<br>46       | 697 |          |
| 47<br>48       | 698 | ACKN     |
| 49<br>50<br>51 | 600 | During   |
| 52<br>53       | 700 | No. 21   |
| 54<br>55       | 700 | 175412   |
| 56<br>57<br>58 | 701 | 1/341    |
| 59             |     |          |

60

1

| ) | approaches (e.g., Washburn et al., 1991; Rogowski et al., 2020) including through new              |
|---|----------------------------------------------------------------------------------------------------|
| ) | analytical tools, such as integrated population models, that incorporate multiple data types       |
| L | and processes occurring at different levels of organization (e.g., McDonald et al., 2016;          |
| 2 | Wilber et al., 2016). Although we focused this review on interspecific differences in host         |
| 3 | life histories, the life-history traits of a species are not strictly static: within and among     |
| 1 | population variation in life-history traits can depend on biotic or abiotic environmental          |
| 5 | conditions. How the intraspecific variation in life-history traits influence host responses to     |
| 5 | parasitism remains poorly understood, but it probably accounts for some of the                     |
| 7 | interpopulation variation in disease impacts that we observe in nature (e.g., Stephenson and       |
| 3 | Cable, 2015). Accordingly, efforts to quantify trait distributions within communities which        |
| ) | capture both intraspecific and interspecific variation in key life-history traits are essential to |
| ) | better understand the importance of host life-history on complex multi-host parasite               |
| L | systems. LHT is a rich source of information that has not been fully applied to meeting the        |
| 2 | challenges of wildlife disease mitigation. We suggest that applying information gleaned            |
| 3 | from broad LHT-disease relationships (considering extrapolation in species where life-             |
| 1 | history data might be limited or non-existent) can contribute significantly to disease risk        |
| 5 | assessment and the identification of innovative mitigation strategies to address disease           |
| 5 | threats to wildlife.                                                                               |
|   |                                                                                                    |

# **ACKNOWLEDGEMENTS**

During manuscript writing, AV-S was supported by a FONDECYT de postdoctorado grant
No. 3180107, PTJJ was supported by a grant from the National Science Foundation (DEB
1754171) and a fellowship from the David and Lucile Packard Foundation. Any use of

| 2<br>3               | 702 | trade firm and product names is for descriptive purposes only and does not imply               |
|----------------------|-----|------------------------------------------------------------------------------------------------|
| 4<br>5               | ,02 |                                                                                                |
| 6<br>7               | 703 | endorsement by the U.S. Government. This manuscript is contribution #XXX of the USGS           |
| ,<br>8<br>9          | 704 | Amphibian Research and Monitoring Initiative. Thanks to Freepik for producing some of          |
| 10<br>11             | 705 | the vector illustrations used in figure 1. We thank the editor and three anonymous reviewers   |
| 12<br>13<br>14       | 706 | for insightful comments on an earlier draft of this manuscript.                                |
| 15<br>16             | 707 |                                                                                                |
| 17<br>18<br>19<br>20 | 708 | REFERENCES                                                                                     |
| 21                   | 700 |                                                                                                |
| 22                   | 709 | Agreen D. Kaalla I.C. and Michalakia V. (2000). Hast life history responses to                 |
| 23                   | /10 | Agnew, P., Koena, J.C. and Michalakis, Y. (2000). Host file history responses to               |
| 24                   | 711 | parasitism. Microbes and Infection 2, 891–896.                                                 |
| 25                   | 712 | Albery G.F. and Becker, D.I. (2020) Fast-lived hosts and zoonotic risk. <i>Trands in</i>       |
| 26                   | 712 | Paragitalomy doi: 10.1016/i pt 2020/1 ast fived flosts and 200fford flsk. Trends in            |
| 27                   | /15 | <i>T drusuology</i> , dol. 10.1010/j.pt.2020.10.012                                            |
| 28                   | 714 | Anastasiadi, D., and Piferrer, F. (2020). A clockwork fish: Age prediction using DNA           |
| 29                   | 715 | methylation-based biomarkers in the European seabass Molecular Ecology Resources               |
| 30                   | 716 | 20 387 307                                                                                     |
| 31                   | /10 | 20, 387-397.                                                                                   |
| 32                   | 717 | Anderson R M and May R M (1979) Population biology of infectious diseases. Part I              |
| 33                   | 718 | Nature 280 361_367                                                                             |
| 34                   | /10 | Nuture 200, 501-507.                                                                           |
| 35                   | 719 | Anderson, R.M. and May, R.M. (1981). The population dynamics of microparasites and             |
| 36                   | 720 | their invertebrate hosts <i>Philosophical Transactions of the Royal Society B</i> 291 451–     |
| 3/                   | 721 |                                                                                                |
| 38                   | /21 | 524:                                                                                           |
| 39                   | 722 | Barrett, L. G., Thrall, P. H., Burdon, J. J., and Linde, C. C. (2008). Life history determines |
| 40                   | 773 | genetic structure and evolutionary potential of host-parasite interactions Trands in           |
| 41<br>42             | 725 | genetic structure and evolutionary potential of nost parasite interactions. Trenas in          |
| 4Z<br>12             | 724 | ecology and evolution 23, 678–685.                                                             |
| 45<br>44             | 725 | Barrett R D H and Schluter D (2008) Adaptation from standing genetic variation Trands          |
| 45                   | 725 | in Ecology and Evolution 22, 29, 44                                                            |
| 46                   | 720 | in Ecology and Evolution 23, 38–44.                                                            |
| 47                   | 727 | Becker C.G. Rodriguez D. Toledo L.F. Longo A.V. Lambertini C. Corrêa D.T.                      |
| 48                   | 728 | Leite DS Haddad CEB and Zamudio K R (2014) Partitioning the net effect of host                 |
| 49                   | 720 | diversity on an emerging emphibien nother on <i>Brocoodings of the Boyal Society B</i> :       |
| 50                   | 729 | Distant Science 281, 20141706                                                                  |
| 51                   | /30 | Biological Sciences 281, 20141/96.                                                             |
| 52                   | 731 | Benhaiem S. Marescot I., East M.L. Kramer-Schadt S. Gimenez O. Lebreton I-D                    |
| 53                   | 727 | and Hofer, H. (2018). Slow recovery from a disease enidemic in the spotted hypera              |
| 54                   | 732 | land Hotel, H. (2018). Slow recovery nom a disease epidemic in the spotted hyena, a            |
| 55                   | /33 | Reystone social carnivore. Communications Biology 1, 201.                                      |
| 56                   |     |                                                                                                |
| 57                   |     |                                                                                                |
| 58                   |     | 33                                                                                             |
| 59                   |     |                                                                                                |
| 60                   |     |                                                                                                |

| 1                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5                 | 734<br>735                      | Bolzoni, L., De Leo, G. A., Gatto, M., and Dobson, A. P. (2008). Body-size scaling in an SEI model of wildlife diseases. <i>Theoretical population biology</i> 73, 374–382.                                                                                                                                                                                                                                                  |
| 6<br>7<br>8<br>9                 | 736<br>737<br>738               | Bonneaud, C., Balenger, S.L., Russell, A.F., Zhang, J., Hill, G.E. and Edwards, S.V. (2011)<br>Rapid evolution of disease resistance is accompanied by functional changes in gene<br>expression in a wild bird. <i>Proceedings of the National Academy of Sciences</i> 108, 7866.                                                                                                                                            |
| 10<br>11<br>12<br>13             | 739<br>740<br>741               | Bonneaud, C., Mazuc, J., Chastel, O., Westerdahl, H. and Sorci, G. (2004). Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. <i>Evolution</i> 58, 2823–2830.                                                                                                                                                                         |
| 14<br>15<br>16                   | 742<br>743                      | Bošković, A., and Rando, O. J. (2018). Transgenerational epigenetic inheritance. <i>Annual review of genetics</i> 52, 21–41.                                                                                                                                                                                                                                                                                                 |
| 17<br>18<br>19<br>20             | 744<br>745<br>746               | Briggs, C.J., Knapp, R.A. and Vredenburg, V.T. (2010). Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. <i>Proceedings of the National Academy of Sciences</i> 107, 9695.                                                                                                                                                                                                                       |
| 21<br>22<br>23<br>24<br>25       | 747<br>748<br>749               | Brock, P. M., Murdock, C. C., and Martin, L. B. (2014). The history of ecoimmunology<br>and its integration with disease ecology. <i>Integrative and Comparative Biology</i> 54, 353–<br>362.                                                                                                                                                                                                                                |
| 26<br>27<br>28<br>29             | 750<br>751<br>752               | Bromham, L. (2011). The genome as a life-history character: why rate of molecular evolution varies between mammal species. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> 366, 2503–2513.                                                                                                                                                                                                     |
| 30<br>31<br>32                   | 753<br>754                      | Bruns, E., Hood, M.E. and Antonovics, J. (2015). Rate of resistance evolution and polymorphism in long- and short-lived hosts. <i>Evolution</i> 69, 551–560.                                                                                                                                                                                                                                                                 |
| 33<br>34<br>35<br>36             | 755<br>756<br>757               | Canessa, S., Bozzuto, C., Pasmans, F. and Martel, A. (2019a). Quantifying the burden of managing wildlife diseases in multiple host species. <i>Conservation Biology</i> 33, 1131–1140.                                                                                                                                                                                                                                      |
| 37<br>38<br>39<br>40<br>41<br>42 | 758<br>759<br>760<br>761<br>762 | <ul> <li>Canessa, S., Spitzen-van der Sluijs, A., Stark, T., Allen, B.E., Bishop, P.J., Bletz, M., Briggs, C.J., Daversa, D.R., Gray, M.J., Griffiths, R.A., Harris, R.N., Harrison, X.A., Hoverman, J.T., Jervis, P., Muths, E., <i>et al.</i> (2019b). Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease. <i>Conservation Science and Practice</i> 2, e141.</li> </ul> |
| 43<br>44<br>45                   | 763<br>764                      | Capdevila, P., Stott, I., Beger, M., and Salguero-Gómez, R. (2020). Towards a comparative framework of demographic resilience. <i>Trends in Ecology and Evolution</i> 35, 776–786.                                                                                                                                                                                                                                           |
| 46<br>47<br>48<br>40             | 765<br>766                      | Carlson, S.M., Cunningham, C.J. and Westley, P.A.H. (2014). Evolutionary rescue in a changing world. <i>Trends in Ecology and Evolution 29</i> , 521–530.                                                                                                                                                                                                                                                                    |
| 49<br>50<br>51<br>52             | 767<br>768                      | Carlsson-Granér, U. and Thrall, P.H. (2015) Host resistance and pathogen infectivity in host populations with varying connectivity. <i>Evolution</i> 69, 926–938.                                                                                                                                                                                                                                                            |
| 53<br>54<br>55<br>56             | 769<br>770                      | Carter, S.P., Roy, S.S., Cowan, D.P., Massei, G., Smith, G.C., Ji, W., Rossi, S., Woodroffe, R., Wilson, G.J. and Delahay, R.J. (2009). Options for the control of disease 2: targeting                                                                                                                                                                                                                                      |
| 57<br>58<br>59<br>60             |                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Ecology Letters

| 2           |            |                                                                                                                                               |
|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5 | 771<br>772 | hosts. In <i>Management of Disease in Wild Mammals</i> (eds R.J. Delahay, G.C. Smith and M.R. Hutchings), pp. 121–146. Springer Japan, Tokyo. |
| 6           | 773        | Cody, M.L. (1966). A general theory of clutch size. Evolution 20, 174-184.                                                                    |
| 7<br>8      | 774        | Conde D A Staerk J Colchero F da Silva R Schölev J Baden H M Jouvet L Fa                                                                      |
| 9           | 775        | LE Sved H Jongeians E Meiri S Gaillard J-M Chamberlain S Wilcken J                                                                            |
| 10          | 776        | Iones $O R$ et al. (2019) Data gaps and opportunities for comparative and conservation                                                        |
| 11<br>12    | 777        | biology. Proceedings of the National Academy of Sciences 116, 9658–9664.                                                                      |
| 13          | 778        | Daszak, P., Cunningham, A.A. and Hyatt, A.D. (2000). Emerging infectious diseases of                                                          |
| 14          | 779        | wildlife Threats to biodiversity and human health. Science 287, 443.                                                                          |
| 15          |            |                                                                                                                                               |
| 10          | 780        | Daszak, P., Cunningham, A.A. and Hyatt, A.D. (2001). Anthropogenic environmental                                                              |
| 18          | 781        | change and the emergence of infectious diseases in wildlife. <i>Acta Tropica</i> 78, 103–116.                                                 |
| 19          | 782        | De Leo, G. A., and Dobson, A. P. (1996). Allometry and simple epidemic models for                                                             |
| 20          | 783        | microparasites. Nature 379, 720–722.                                                                                                          |
| 21          | 704        | Debson A (2004) Deputation dynamics of nothegons with multiple host spacing. The                                                              |
| 23<br>24    | 784<br>785 | American Naturalist 164, S64–S78.                                                                                                             |
| 25          | 786        | Downs, C. J., Schoenle, L. A., Han, B. A., Harrison, J. F., and Martin, L. B. (2019). Scaling                                                 |
| 26          | 787        | of host competence Trends in parasitology 35 182–192                                                                                          |
| 27          | , 0,       | or nost competence. Trends in parasitology 55, 162-192.                                                                                       |
| 28          | 788        | Duffield, K.R., Bowers, E.K., Sakaluk, S.K. and Sadd, B.M. (2017). A dynamic threshold                                                        |
| 30          | 789        | model for terminal investment. Behavioral ecology and sociobiology 71, 185.                                                                   |
| 31          | 790        | Duffy, M.A. and Sivars-Becker, L. (2007). Rapid evolution and ecological host-parasite                                                        |
| 32<br>33    | 791        | dynamics: rapid evolution and disease dynamics. <i>Ecology Letters</i> 10, 44–53.                                                             |
| 34          |            |                                                                                                                                               |
| 35          | /92        | Eimes, J.A., Bollmer, J.L., Whittingham, L.A., Johnson, J.A., Van Oosterhout, C. and                                                          |
| 36          | 793        | Dunn, P.O. (2011). Rapid loss of MHC class II variation in a bottlenecked population is                                                       |
| 37          | 794        | explained by drift and loss of copy number variation. <i>Journal of Evolutionary Biology</i>                                                  |
| 38          | 795        | 24, 1847–1856.                                                                                                                                |
| 39          | 706        | Eq. S.H. Doyle, I.M. and DeWoody, I.A. (2011). Genetic diversity in birds is associated                                                       |
| 40          | 790        | with body mass and babitat tyme. <i>Journal of Zoology</i> 282, 220, 226                                                                      |
| 41          | /9/        | with body mass and nabital type. <i>Journal of Zoology</i> 285, 220–226.                                                                      |
| 42<br>13    | 798        | Epstein, B., Jones, M., Hamede, R., Hendricks, S., McCallum, H., Murchison, E.P.,                                                             |
| 43<br>44    | 799        | Schönfeld, B., Wiench, C., Hohenlohe, P. and Storfer, A. (2016), Rapid evolutionary                                                           |
| 45          | 800        | response to a transmissible cancer in Tasmanian devils <i>Nature Communications</i> 7                                                         |
| 46          | 801        | 12684                                                                                                                                         |
| 47          | 001        | 12007.                                                                                                                                        |
| 48          | 802        | Figuet, E., Nabholz, B., Bonneau, M., Mas Carrio, E., Nadachowska-Brzyska, K., Ellegren,                                                      |
| 49          | 803        | H. and Galtier, N. (2016). Life history traits, protein evolution, and the nearly neutral                                                     |
| 50          | 804        | theory in amniotes. Molecular Biology and Evolution 33, 1517–1527.                                                                            |
| 51          |            |                                                                                                                                               |
| 52          | 805        | Fisher, M.C., Henk, Daniel.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L.                                                     |
| 53          | 806        | and Gurr, S.J. (2012). Emerging fungal threats to animal, plant and ecosystem health.                                                         |
| 54<br>55    | 807        | <i>Nature</i> 484, 186–194.                                                                                                                   |
| 56          | 000        | Forbes M.P.I. (1003) Parasitism and host reproductive affort Oiles 67 111 150                                                                 |
| 57          | 000        | For $0.000$ , where $(1333)$ , ratasiusin and nost reproductive effort. Othos $07, 444-430$ .                                                 |
| 58          |            | 35                                                                                                                                            |
| 59          |            |                                                                                                                                               |
| 60          |            |                                                                                                                                               |

| 3<br>4<br>5<br>6<br>7            | 809<br>810<br>811<br>812 | Gaillard, J., Lemaître, J., Berger, V., Bonenfant, C., Devillard, S., Douhard, M., Gamelon,<br>M., Plard, F. and Lebreton, JD. (2016). Life histories, axes of variation in. In<br><i>Encyclopedia of Evolutionary Biology</i> pp. 312–323. Kliman, R.M. Academic Press,<br>Oxford.                                                                         |    |
|----------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8<br>9<br>10<br>11               | 813<br>814<br>815        | Garner, T.W.J., Schmidt, B.R., Martel, A., Pasmans, F., Muths, E., Cunningham, A.A., Weldon, C., Fisher, M.C. and Bosch, J. (2016). Mitigating amphibian chytridiomycosis in nature. <i>Philosophical Transactions of the Royal Society B</i> 371, 20160207.                                                                                                |    |
| 12<br>13<br>14<br>15             | 816<br>817<br>818        | Gerber, B.D., Converse, S.J., Muths, E., Crockett, H.J., Mosher, B.A. and Bailey, L.L. (2018). Identifying species conservation strategies to reduce disease-associated declines <i>Conservation Letters</i> 11, e12393.                                                                                                                                    | 3. |
| 16<br>17<br>18<br>19<br>20<br>21 | 819<br>820<br>821<br>822 | Gervasi, S.S., Stephens, P.R., Hua, J., Searle, C.L., Xie, G.Y., Urbina, J., Olson, D.H.,<br>Bancroft, B.A., Weis, V., Hammond, J.I., Relyea, R.A. and Blaustein, A.R. (2017).<br>Linking ecology and epidemiology to understand predictors of multi-host responses to<br>an emerging pathogen, the amphibian chytrid fungus. <i>PLoS ONE</i> 12, e0167882. |    |
| 22<br>23<br>24<br>25             | 823<br>824<br>825        | Gignoux-Wolfsohn, S.A., Pinsky, M.L., Kerwin, K., Herzog, C., Hall, M., Bennett, A.B., Fefferman, N.H. and Maslo, B. (2019). Genomic signatures of evolutionary rescue in bats surviving white-nose syndrome. <i>bioRxiv</i> , 470294.                                                                                                                      |    |
| 25<br>26<br>27<br>28<br>29       | 826<br>827<br>828        | Gog, J., Woodroffe, R. and Swinton, J. (2002). Disease in endangered metapopulations: th importance of alternative hosts. <i>Proceedings of the Royal Society of London. Series B: Biological Sciences</i> 269, 671–676.                                                                                                                                    | e  |
| 30<br>31<br>32<br>33             | 829<br>830<br>831        | Gómez-Díaz, E., Jordà, M., Peinado, M. A., and Rivero, A. (2012). Epigenetics of host-<br>pathogen interactions: the road ahead and the road behind. <i>PLoS Pathoghens</i> 8, e1003007.                                                                                                                                                                    |    |
| 34<br>35<br>36<br>37             | 832<br>833<br>834        | Gortazar, C., Diez-Delgado, I., Barasona, J.A., Vicente, J., De La Fuente, J. and Boadella, M. (2015). The wild side of disease control at the wildlife-livestock-human interface: A Review. <i>Frontiers in Veterinary Science</i> 1, 27.                                                                                                                  | L  |
| 38<br>39<br>40<br>41             | 835<br>836<br>837        | Grantham, H.S., Wilson, K.A., Moilanen, A., Rebelo, T. and Possingham, H.P. (2009).<br>Delaying conservation actions for improved knowledge: how long should we wait?<br><i>Ecology Letters</i> 12, 293–301.                                                                                                                                                |    |
| 42<br>43<br>44<br>45<br>46       | 838<br>839<br>840        | Greer, E. L., Maures, T. J., Ucar, D., Hauswirth, A. G., Mancini, E., Lim, J. P., and<br>Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in<br><i>Caenorhabditis elegans</i> . <i>Nature</i> 479, 365–371.                                                                                                                         |    |
| 47<br>48<br>49<br>50             | 841<br>842<br>843        | Grogan, L.F., Berger, L., Rose, K., Grillo, V., Cashins, S.D. and Skerratt, L.F. (2014).<br>Surveillance for emerging biodiversity diseases of wildlife. <i>PLOS Pathogens</i> 10,<br>e1004015.                                                                                                                                                             |    |
| 51<br>52<br>53<br>54<br>55       | 844<br>845               | Gurney, W. and Nisbet, R.M. (1998). Ecological Dynamics. Oxford University Press,<br>Oxford, United Kingdom.                                                                                                                                                                                                                                                |    |
| 56<br>57<br>58<br>59             |                          | 3                                                                                                                                                                                                                                                                                                                                                           | 36 |

# Ecology Letters

| 2        |            |                                                                                                |
|----------|------------|------------------------------------------------------------------------------------------------|
| 3        | 846        | Gutiérrez, J. S., Piersma, T., and Thieltges, D. W. (2019). Micro-and macroparasite species    |
| 4<br>5   | 847        | richness in birds: The role of host life history and ecology. Journal of Animal Ecology        |
| 5        | 848        | 88, 1226–1239.                                                                                 |
| 7        |            |                                                                                                |
| 8        | 849        | Han, B. A., O'Regan, S. M., Schmidt, J. P., and Drake, J. M. (2020). Integrating data          |
| 9        | 850        | mining and transmission theory in the ecology of infectious diseases. <i>Ecology Letters</i>   |
| 10       | 851        | 23, 1178–1188.                                                                                 |
| 11       | 050        | Han D. A. Dark A. W. Jollog, A. E. and Altizon S. (2015). Infactious disease                   |
| 12       | 852        | Han, B. A., Park, A. W., Jones, A. E., and Anizer, S. (2013). Infectious disease               |
| 14       | 853        | transmission and benavioural allometry in wild mammals. <i>Journal of Animal Ecology</i>       |
| 15       | 854        | 84, 637–646.                                                                                   |
| 16       | 855        | Hanssen S A (2006) Cost of immune challenge and terminal investment in a long-lived            |
| 17       | 856        | hird <i>Ecology</i> 87 2440–2446                                                               |
| 18       | 050        | ond. <i>Leology</i> 67, 2116 2116.                                                             |
| 19       | 857        | Haydon, D.T., Cleaveland, S., Taylor, L.H. and Laurenson, M.K. (2002). Identifying             |
| 20       | 858        | reservoirs of infection: a conceptual and practical challenge. <i>Emerging infectious</i>      |
| 22       | 859        | diseases 8, 1468–1473.                                                                         |
| 23       | 860        | Healy K Ezard T H Jones O R Salguero-Gómez R and Ruckley V M (2010)                            |
| 24       | 800        | A nimal life history is shared by the page of life and the distribution of age specific        |
| 25       | 801        | Annual the history is shaped by the pace of the and the distribution of age-specific           |
| 26<br>27 | 862        | mortanty and reproduction. <i>Nature ecology and evolution</i> 3, 1217–1224.                   |
| 27<br>28 | 863        | Hedrick, P.W. (2013). Adaptive introgression in animals: examples and comparison to new        |
| 29       | 864        | mutation and standing variation as sources of adaptive variation. <i>Molecular Ecology</i> 22, |
| 30       | 865        | 4606–4618.                                                                                     |
| 31       |            |                                                                                                |
| 32       | 866        | Herrando-Pérez, S., Delean, S., Brook, B. W., and Bradshaw, C. J. (2012). Strength of          |
| 33<br>34 | 867        | density feedback in census data increases from slow to fast life histories. <i>Ecology and</i> |
| 35       | 868        | <i>evolution</i> 2, 1922–1934.                                                                 |
| 36       | 860        | Hettyey & Uiszegi I Herczeg D Holly D Vörös I Schmidt B R and Bosch I                          |
| 37       | 805<br>970 | (2020) Mitigating disease impacts in amphibian populations: capitalizing on the thermal        |
| 38       | 070        | (2020). Witigating disease impacts in ampinoian populations, capitalizing on the meridian      |
| 39       | 8/1        | opumum mismatch between a pathogen and its nost. Frontiers in Ecology and Evolution            |
| 40<br>41 | 872        | 7, 254.                                                                                        |
| 42       | 873        | Hilde, C. H., Gamelon, M., Sæther, B. E., Gaillard, J. M., Yoccoz, N. G., and Pélabon, C.      |
| 43       | 874        | (2020). The demographic buffering hypothesis: evidence and challenges. <i>Trends in</i>        |
| 44       | 875        | Ecology and Evolution 35, 523–538                                                              |
| 45       | 0/0        |                                                                                                |
| 46<br>47 | 876        | Hochberg, M.E., Michalakis, Y. and De Meeus, T. (1992). Parasitism as a constraint on the      |
| 47<br>48 | 877        | rate of life-history evolution. Journal of Evolutionary Biology 5, 491–504.                    |
| 49       | 070        | Ilmonon D. Torko T. and Hassalquist D. (2000) Experimentally activated immuna                  |
| 50       | 070<br>970 | defense in female nied flyestehers results in reduced breeding success. <i>Proceedings of</i>  |
| 51       | 019        | the Royal Society R 267, 665, 670                                                              |
| 52       | 000        | ine Royai Society D 201, 005–010.                                                              |
| 53<br>54 | 881        | Jakob-Hoff, R.M., MacDiarmid, S.C., Less, C., Miller, P.S., Travis, D. and Kock, R.            |
| 55       | 882        | (2014). Manual of procedures for wildlife disease risk analysis. World Organisation for        |
| 56       |            |                                                                                                |
| 57       |            |                                                                                                |
| 58       |            | 37                                                                                             |
| 59<br>60 |            |                                                                                                |
| 00       |            |                                                                                                |

| 1<br>2                     |                          |                                                                                                                                                                                                                                                                                                      |
|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5           | 883<br>884               | Animal Health. Published in association with the International Union for Conservation of Nature and the Species Survival Commission, Paris.                                                                                                                                                          |
| 6<br>7<br>8                | 885<br>886               | Jeschke, J. M., and Kokko, H. (2009). The roles of body size and phylogeny in fast and slow life histories. <i>Evolutionary Ecology 23</i> , 867–878.                                                                                                                                                |
| 9<br>10<br>11<br>12        | 887<br>888<br>889        | Johns, S., Henshaw, J.M., Jennions, M.D. and Head, M.L. (2019). Males can evolve lower resistance to sexually transmitted infections to infect their mates and thereby increase their own fitness. <i>Evolutionary Ecology</i> 33, 149–172.                                                          |
| 13<br>14<br>15<br>16<br>17 | 890<br>891<br>892<br>893 | Johnson, P.T.J., Calhoun, D.M., Riepe, T., McDevitt-Galles, T. and Koprivnikar, J. (2019).<br>Community disassembly and disease: realistic—but not randomized—biodiversity losses<br>enhance parasite transmission. <i>Proceedings of the Royal Society B: Biological Sciences</i><br>286, 20190260. |
| 18<br>19<br>20<br>21       | 894<br>895<br>896        | Johnson, P.T.J., Preston, D.L., Hoverman, J.T. and Richgels, K.L.D. (2013). Biodiversity decreases disease through predictable changes in host community competence. <i>Nature</i> 494, 230–233.                                                                                                     |
| 22<br>23<br>24<br>25<br>26 | 897<br>898<br>899        | Johnson, P.T.J., Rohr, J.R., Hoverman, J.T., Kellermanns, E., Bowerman, J. and Lunde,<br>K.B. (2012). Living fast and dying of infection: host life history drives interspecific<br>variation in infection and disease risk. <i>Ecology Letters</i> 15, 235–242.                                     |
| 27<br>28<br>29<br>30       | 900<br>901<br>902        | Jolles, A.E., Etienne, R.S. and Olff, H. (2006). Independent and competing disease risks: implications for host populations in variable environments. <i>The American Naturalist</i> 167, 745–757.                                                                                                   |
| 31<br>32<br>33<br>34<br>35 | 903<br>904<br>905<br>906 | Jones, M.E., Cockburn, A., Hamede, R., Hawkins, C., Hesterman, H., Lachish, S., Mann,<br>D., McCallum, H. and Pemberton, D. (2008). Life-history change in disease-ravaged<br>Tasmanian devil populations. <i>Proceedings of the National Academy of Sciences</i> 105,<br>10023.                     |
| 36<br>37<br>38<br>39       | 907<br>908<br>909        | Joseph, M.B., Mihaljevic, J.R., Orlofske, S.A. and Paull, S.H. (2013). Does life history mediate changing disease risk when communities disassemble? <i>Ecology Letters</i> 16, 1405–1412.                                                                                                           |
| 40<br>41<br>42<br>43       | 910<br>911<br>912        | Jousimo, J., Tack, A.M.K., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C. and Laine, A-L. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. <i>Science</i> 344, 1289.                                                                              |
| 44<br>45<br>46             | 913<br>914               | Keeling, M. J., and Rohani, P. (2008). <i>Modeling infectious diseases in humans and animals</i> . Princeton University Press.                                                                                                                                                                       |
| 47<br>48<br>49             | 915<br>916               | Keelling, M. and Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals.<br>Princeton University Press, Princeton, New Jersey.                                                                                                                                                        |
| 50<br>51<br>52<br>53       | 917<br>918<br>919        | Kistner, E.J. and Belovsky, G.E. (2014). Host dynamics determine responses to disease: additive vs. compensatory mortality in a grasshopper–pathogen system. <i>Ecology</i> 95, 2579–2588.                                                                                                           |
| 54<br>55<br>56             | 920<br>921               | Koella, J. C., and Restif, O. (2001). Coevolution of parasite virulence and host life history.<br><i>Ecology Letters 4</i> , 207–214.                                                                                                                                                                |
| 57<br>58<br>59<br>60       |                          | 38                                                                                                                                                                                                                                                                                                   |

| 2                                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6                                                        | 922<br>923<br>924               | Lachish, S., McCallum, H. and Jones, M. (2009). Demography, disease and the devil: life-<br>history changes in a disease-affected population of Tasmanian devils ( <i>Sarcophilus</i><br><i>harrisii</i> ). Journal of Animal Ecology 78, 427–436.                                                                                                                                                    |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 925<br>926<br>927<br>928<br>929 | <ul> <li>Langwig, K.E., Voyles, J., Wilber, M.Q., Frick, W.F., Murray, K.A., Bolker, B.M., Collins, J.P., Cheng, T.L., Fisher, M.C., Hoyt, J.R., Lindner, D.L., McCallum, H.I., Puschendorf, R., Rosenblum, E.B., Toothman, M., <i>et al.</i> (2015). Context-dependent conservation responses to emerging wildlife diseases. <i>Frontiers in Ecology and the Environment</i> 13, 195–202.</li> </ul> |
|                                                                         | 930<br>931<br>932<br>933<br>934 | Lazenby, B.T., Tobler, M.W., Brown, W.E., Hawkins, C.E., Hocking, G.J., Hume, F.,<br>Huxtable, S., Iles, P., Jones, M.E., Lawrence, C., Thalmann, S., Wise, P., Williams, H.,<br>Fox, S. and Pemberton, D. (2018). Density trends and demographic signals uncover the<br>long-term impact of transmissible cancer in Tasmanian devils. <i>Journal of Applied<br/>Ecology</i> 55, 1368–1379.           |
| 20<br>21<br>22                                                          | 935<br>936                      | Lebreton, JD. (2005). Dynamical and statistical modelss for exploited populations.<br>Australian and New Zealand Journal of Statistics, 47, 49–63.                                                                                                                                                                                                                                                    |
| 23<br>24<br>25                                                          | 937<br>938                      | Lebreton, JD. (2006). Dynamical and statistical models of vertebrate population dynamics. <i>Comptes Rendus Biologies</i> 329, 804–812.                                                                                                                                                                                                                                                               |
| 26<br>27<br>28                                                          | 939<br>940                      | Lee, K.A. (2006). Linking immune defenses and life history at the levels of the individual and the species. <i>Integrative and Comparative Biology</i> 46, 1000–1015.                                                                                                                                                                                                                                 |
| 29<br>30<br>31<br>32                                                    | 941<br>942<br>943               | Lloyd-Smith, J. O., Cross, P. C., Briggs, C. J., Daugherty, M., Getz, W. M., Latto, J., and Swei, A. (2005). Should we expect population thresholds for wildlife disease?. <i>Trends in ecology and evolution 20</i> , 511–519.                                                                                                                                                                       |
| 33<br>34<br>35<br>36                                                    | 944<br>945<br>946               | Lowe, R., Barton, C., Jenkins, C. A., Ernst, C., Forman, O., Fernandez-Twinn, D. S., and Walter, L. (2018). Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. <i>Genome Biology</i> 19, 1–8.                                                                                                                                          |
| 37<br>38<br>39<br>40<br>41                                              | 947<br>948<br>949               | Martel, A., Vila-Escale, M., Fernández-Giberteau, D., Martinez-Silvestre, A., Canessa, S.,<br>Van Praet, S., and Picart, M. (2020). Integral chain management of wildlife diseases.<br><i>Conservation Letters</i> 13, e12707.                                                                                                                                                                        |
| 42<br>43<br>44                                                          | 950<br>951                      | Martin II, L.B., Hasselquist, D. and Wikelski, M. (2006). Investment in immune defense is linked to pace of life in house sparrows. <i>Oecologia</i> 147, 565–575.                                                                                                                                                                                                                                    |
| 45<br>46<br>47                                                          | 952<br>953                      | McCallum, H., Barlow, N. and Hone, J. (2001). How should parasite transmission be modelled? Trends in Ecology and Evolution, 16, 295–300.                                                                                                                                                                                                                                                             |
| 48<br>49<br>50                                                          | 954<br>955                      | McCusker, M.R. and Bentzen, P. (2010). Positive relationships between genetic diversity and abundance in fishes. <i>Molecular Ecology</i> 19, 4852–4862.                                                                                                                                                                                                                                              |
| 51<br>52<br>53<br>54<br>55                                              | 956<br>957<br>958               | McDonald, J.L., Bailey, T., Delahay, R.J., McDonald, R.A., Smith, G.C. and Hodgson, D.J.<br>(2016). Demographic buffering and compensatory recruitment promotes the persistence<br>of disease in a wildlife population. <i>Ecology Letters</i> 19, 443–449.                                                                                                                                           |
| 56<br>57<br>58<br>59                                                    |                                 | 39                                                                                                                                                                                                                                                                                                                                                                                                    |

| 2<br>3<br>4<br>5<br>6                  | 959<br>960<br>961                      | Mendelson, J.R., Whitfield, S.M. and Sredl, M.J. (2019). A recovery engine strategy for amphibian conservation in the context of disease. <i>Biological Conservation</i> 236, 188–191.                                                                                                                                                                                                                                                                                         |
|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>7<br>8<br>9                       | 962<br>963                             | Michalakis, Y. and Hochberg, M.E. (1994). Parasitic effects on host life-history traits: a review of recent studies. <i>Parasite</i> 1, 291–294.                                                                                                                                                                                                                                                                                                                               |
| 10<br>11<br>12<br>13<br>14<br>15       | 964<br>965                             | Minchella, D.J. (1985). Host life-history variation in response to parasitism. <i>Parasitology</i> 90, 205–216.                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 966<br>967                             | Mysterud, A. and Rolandsen, C.M. (2018). A reindeer cull to prevent chronic wasting disease in Europe. <i>Nature Ecology and Evolution</i> 2, 1343–1345.                                                                                                                                                                                                                                                                                                                       |
| 16<br>17<br>18                         | 968<br>969                             | Niel, C. and Lebreton, JD. (2005). Using demographic invariants to detect overharvested bird populations from incomplete data. <i>Conservation Biology</i> 19, 826–835.                                                                                                                                                                                                                                                                                                        |
| 19<br>20<br>21<br>22                   | 970<br>971<br>972                      | Ohlberger, J., Langangen, Ø., Edeline, E., Claessen, D., Winfield, I. J., Stenseth, N. C., and Vøllestad, L. A. (2011). Stage-specific biomass overcompensation by juveniles in response to increased adult mortality in a wild fish population. <i>Ecology</i> 92, 2175–2182.                                                                                                                                                                                                 |
| 23<br>24<br>25                         | 973<br>974                             | Ostfeld, R.S. and Keesing, F. (2012). Effects of host diversity on infectious disease. <i>Annual Review of Ecology, Evolution, and Systematics</i> 43, 157–182.                                                                                                                                                                                                                                                                                                                |
| 26<br>27<br>28                         | 975<br>976                             | Pagán, I., Alonso-Blanco, C., García-Arenal, F. (2008). Host responses in life-history traits and tolerance to virus infection in <i>Arabidopsis thaliana</i> . <i>PLoS Pathogens</i> 4, e1000124.                                                                                                                                                                                                                                                                             |
| 29<br>30<br>31<br>32<br>33<br>34       | 977<br>978<br>979<br>980               | Palacios, M. G., Sparkman, A. M., and Bronikowski, A. M. (2011). Developmental<br>plasticity of immune defence in two life-history ecotypes of the garter snake,<br>Thamnophis elegans–a common-environment experiment. <i>Journal of Animal Ecology</i><br>80, 431–437.                                                                                                                                                                                                       |
| 35<br>36<br>37                         | 981<br>982                             | Pavlin, B.I., Schloegel, L.M. and Daszak, P. (2009). Risk of importing zoonotic diseases through wildlife trade, United States. <i>Emerging infectious diseases</i> 15, 1721–1726.                                                                                                                                                                                                                                                                                             |
| 38<br>39<br>40                         | 983<br>984                             | Perrin, N., Christe, P. and Richner, H. (1996). On host life-history response to parasitism.<br><i>Oikos</i> 75, 317–320.                                                                                                                                                                                                                                                                                                                                                      |
| 41<br>42<br>43<br>44<br>45<br>46<br>47 | 985<br>986<br>987<br>988<br>989<br>989 | <ul> <li>Plourde, B.T., Burgess, T.L., Eskew, E.A., Roth, T.M., Stephenson, N. and Foley, J.E. (2017) Are disease reservoirs special? Taxonomic and life history characteristics. <i>PLOS ONE</i> 12, e0180716.</li> <li>Pompini, M., Clark, E.S. and Wedekind, C. (2013). Pathogen-induced hatching and population-specific life-history response to waterborne cues in brown trout (<i>Salmo trutta</i>). <i>Behavioral Ecology and Sociobiology</i> 67, 649–656.</li> </ul> |
| 48<br>49<br>50<br>51                   | 991<br>992<br>993                      | <ul> <li>Previtali, M.A., Ostfeld, R.S., Keesing, F., Jolles, A.E., Hanselmann, R. and Martin, L.B. (2012). Relationship between pace of life and immune responses in wild rodents. <i>Oikos</i> 121, 1483–1492.</li> </ul>                                                                                                                                                                                                                                                    |
| 52<br>53<br>54<br>55<br>56<br>57       | 994<br>995                             | Ricklefs, R.E. and Wikelski, M. (2002). The physiology/life-history nexus. <i>Trends in Ecology and Evolution</i> 17, 462–468.                                                                                                                                                                                                                                                                                                                                                 |
| 58                                     |                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Page 41 of 52

# Ecology Letters

| 1<br>2                           |                              |                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5                 | 996<br>997                   | Richner, H. (1998). Host-parasite interactions and life-history evolution. <i>Zoology</i> 101, 333–344.                                                                                                                                                                                                                                                               |
| 6<br>7<br>8<br>9<br>10           | 998<br>999<br>1000<br>1001   | Rogowski, E. L., Van Alst, A. D., Travis, J., Reznick, D. N., Coulson, T., and Bassar, R. D. (2020). Novel parasite invasion leads to rapid demographic compensation and recovery in an experimental population of guppies. <i>Proceedings of the National Academy of Sciences 117</i> , 22580–22589.                                                                 |
| 11<br>12<br>13<br>14<br>15       | 1002<br>1003<br>1004         | Sagonas, K., Meyer, B. S., Kaufmann, J., Lenz, T. L., Häsler, R., and Eizaguirre, C. (2020).<br>Experimental parasite infection causes genome-wide changes in DNA methylation.<br><i>Molecular Biology and Evolution</i> 37, 2287–2299.                                                                                                                               |
| 16<br>17<br>18                   | 1005<br>1006                 | Sainsbury, A.W. and Vaughan-Higgins, R.J. (2012). Analyzing disease risks associated with translocations. <i>Conservation Biology</i> 26, 442–452.                                                                                                                                                                                                                    |
| 19<br>20<br>21<br>22<br>23       | 1007<br>1008<br>1009         | <ul> <li>Sandland, G. J., and Minchella, D. J. (2004). Life-history plasticity in hosts (Lymnaea elodes) exposed to differing resources and parasitism. <i>Canadian journal of zoology 82</i>, 1672–1677.</li> <li>Sauraga, A. F. and Zamudia, K. P. (2016). A deptive telegence to a pathogenia fungue drives.</li> </ul>                                            |
| 24<br>25<br>26                   | 1010<br>1011<br>1012         | major histocompatibility complex evolution in natural amphibian populations.<br><i>Proceedings. Biological sciences</i> 283, 20153115–20153115.                                                                                                                                                                                                                       |
| 27<br>28<br>29<br>30<br>31       | 1013<br>1014<br>1015<br>1016 | Scheele, B.C., Pasmans, F., Skerratt, L.F., Berger, L., Martel, A., Beukema, W., Acevedo,<br>A.A., Burrowes, P.A., Carvalho, T., Catenazzi, A., De la Riva, I., Fisher, M.C., Flechas,<br>S.V., Foster, C.N., Frías-Álvarez, P., <i>et al.</i> (2019a). Amphibian fungal panzootic causes<br>catastrophic and ongoing loss of biodiversity. <i>Science</i> 363, 1459. |
| 32<br>33<br>34<br>35<br>36       | 1017<br>1018<br>1019         | Scheele, B.C., Foster, C.N., Hunter, D.A., Lindenmayer, D.B., Schmidt, B.R. and Heard,<br>G.W. (2019b). Living with the enemy: Facilitating amphibian coexistence with disease.<br><i>Biological Conservation</i> 236, 52–59.                                                                                                                                         |
| 37<br>38<br>39                   | 1020<br>1021                 | Schröder, A., van Leeuwen, A., and Cameron, T. C. (2014). When less is more: positive population-level effects of mortality. <i>Trends in Ecology and Evolution 29</i> , 614–624.                                                                                                                                                                                     |
| 40<br>41<br>42                   | 1022<br>1023                 | Schwanz, L.E. (2008). Chronic parasitic infection alters reproductive output in deer mice.<br>Behavioral Ecology and Sociobiology 62, 1351–1358.                                                                                                                                                                                                                      |
| 43<br>44<br>45<br>46             | 1024<br>1025<br>1026         | Sears, B.F., Snyder, P.W. and Rohr, J.R. (2015). Host life history and host-parasite syntopy predict behavioural resistance and tolerance of parasites. <i>Journal of Animal Ecology</i> 84, 625–636.                                                                                                                                                                 |
| 47<br>48<br>49<br>50             | 1027<br>1028<br>1029         | Servanty, S., Gaillard, JM., Ronchi, F., Focardi, S., Baubet, É. and Gimenez, O. (2011).<br>Influence of harvesting pressure on demographic tactics: implications for wildlife<br>management. <i>Journal of Applied Ecology</i> 48, 835–843.                                                                                                                          |
| 51<br>52<br>53<br>54<br>55<br>56 | 1030<br>1031<br>1032         | Shea, K., Tildesley, M.J., Runge, M.C., Fonnesbeck, C.J. and Ferrari, M.J. (2014).<br>Adaptive management and the value of information: learning via intervention in<br>epidemiology. <i>PLOS Biology</i> 12, e1001970.                                                                                                                                               |
| 57<br>58<br>59<br>60             |                              | 41                                                                                                                                                                                                                                                                                                                                                                    |

| 1<br>2                           |                              |                                                                                                                                                                                                                                                                                      |
|----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6                 | 1033<br>1034<br>1035         | Silk, M.J., and Hodgson, D.J. (2020) Life history and population regulation shape<br>demographic competence and influence the maintenance of endemic disease. <i>Nature</i><br><i>Ecology and Evolution</i> , doi: 10.1038/s41559-020-01333-8                                        |
| 7<br>8<br>9<br>10                | 1036<br>1037<br>1038         | Sköld-Chiriac, S., Nilsson, JÅ. and Hasselquist, D. (2019). Immune challenge induces<br>terminal investment at an early breeding stage in female zebra finches. <i>Behavioral</i><br><i>Ecology</i> 30, 166–171.                                                                     |
| 11<br>12<br>13                   | 1039<br>1040                 | Sorci, G., Clobert, J. and Michalakis, Y. (1996). Cost of reproduction and cost of parasitism in the common lizard, <i>Lacerta vivipara</i> . <i>Oikos</i> 76, 121–130.                                                                                                              |
| 14<br>15                         | 1041                         | Stearns, S.C. (1989a). Trade-offs in life-history evolution. Functional Ecology 3, 259–268.                                                                                                                                                                                          |
| 16<br>17<br>18                   | 1042<br>1043                 | Stearns, S.C. (1989b). The evolutionary significance of phenotypic plasticity. <i>BioScience</i> 39, 436–445.                                                                                                                                                                        |
| 19<br>20<br>21                   | 1044<br>1045                 | Stearns, S. C. (2000). Life history evolution: successes, limitations, and prospects. <i>Naturwissenschaften</i> 87, 476–486.                                                                                                                                                        |
| 22<br>23<br>24<br>25             | 1046<br>1047<br>1048         | Steiner, U. K., and Tuljapurkar, S. (2012). Neutral theory for life histories and individual variability in fitness components. <i>Proceedings of the National Academy of Sciences 109</i> , 4684–4689.                                                                              |
| 26<br>27<br>28<br>29<br>30       | 1049<br>1050<br>1051         | Stephenson, J. F., van Oosterhout, C., and Cable, J. (2015). Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. <i>Biology letters</i> 11, 20150806.                                     |
| 31<br>32                         | 1052<br>1053                 | Tieleman, B.I. (2018). Understanding immune function as a pace of life trait requires environmental context. <i>Behavioral Ecology and Sociobiology</i> 72, 55.                                                                                                                      |
| 33<br>34<br>35<br>36<br>37       | 1054<br>1055<br>1056         | Tieleman, B.I., Williams, J.B., Ricklefs, R.E. and Klasing, K.C. (2005). Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. <i>Proceedings of the Royal Society B</i> 272, 1715–1720.                                                       |
| 38<br>39<br>40<br>41             | 1057<br>1058<br>1059         | Tompkins, D.M., Dunn, A.M., Smith, M.J. and Telfer, S. (2011). Wildlife diseases: from<br>individuals to ecosystems: ecology of wildlife diseases. <i>Journal of Animal Ecology</i> 80,<br>19–38.                                                                                    |
| 42<br>43<br>44<br>45<br>46       | 1060<br>1061<br>1062<br>1063 | Valenzuela-Sánchez, A., Schmidt, B.R., Uribe-Rivera, D.E., Costas, F., Cunningham, A.A. and Soto-Azat, C. (2017). Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. <i>Proceedings of the Royal Society B</i> 284, 20171176. |
| 47<br>48<br>49<br>50             | 1064<br>1065<br>1066         | Velando, A., Drummond, H. and Torres, R. (2006). Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. <i>Proceedings of the Royal Society B</i> 273, 1443–1448.                                                                |
| 51<br>52<br>53<br>54             | 1067<br>1068                 | Warkentin, K.M., Currie, C.R. and Rehner, S.A. (2001). Egg-killing fungus induces early<br>hatching of red-eyed treefrog eggs. <i>Ecology</i> 82, 2860–2869.                                                                                                                         |
| 55<br>56<br>57<br>58<br>59<br>60 |                              | 42                                                                                                                                                                                                                                                                                   |

# Ecology Letters

| 2                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                            | 1069<br>1070                         | Washburn, J. O., and Mercer, D. R., and Anderson, J. R. (1991). Regulatory role of parasites: impact on host population shifts with resource availability. <i>Science 253</i> , 185–188                                                                                                                                                                                                      |
| 6                                      | 10/1                                 | 188.                                                                                                                                                                                                                                                                                                                                                                                         |
| 7<br>8<br>9                            | 1072<br>1073                         | Wedekind, C. (2002). Induced hatching to avoid infectious egg disease in whitefish.<br><i>Current Biology</i> 12, 69–71.                                                                                                                                                                                                                                                                     |
| 10<br>11<br>12<br>13                   | 1074<br>1075<br>1076                 | Wells, K., Hamede, R.K., Jones, M.E., Hohenlohe, P.A., Storfer, A. and McCallum, H.I. (2019). Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. <i>Ecology</i> 100, e02613.                                                                                                                                                   |
| 14<br>15<br>16<br>17                   | 1077<br>1078<br>1079                 | Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., McCallum, H. I., and Briggs, C. J.<br>(2016). Integral projection models for host–parasite systems with an application to<br>amphibian chytrid fungus. <i>Methods in ecology and evolution</i> 7, 1182–1194.                                                                                                                               |
| 18<br>19<br>20                         | 1080<br>1081                         | Wintle, B.A., Runge, M.C. and Bekessy, S.A. (2010). Allocating monitoring effort in the face of unknown unknowns. <i>Ecology Letters</i> 13, 1325–1337.                                                                                                                                                                                                                                      |
| 21<br>22<br>23<br>24<br>25<br>26       | 1082<br>1083<br>1084<br>1085         | <ul> <li>Woodhams, D.C., Bell, S.C., Bigler, L., Caprioli, R.M., Chaurand, P., Lam, B.A., Reinert, L.K., Stalder, U., Vazquez, V.M., Schliep, K., Hertz, A. and Rollins-Smith, L.A. (2016). Life history linked to immune investment in developing amphibians. <i>Conservation Physiology</i> 4, cow025.</li> </ul>                                                                          |
| 26<br>27<br>28<br>29<br>30             | 1086<br>1087<br>1088                 | <ul> <li>Woods III, L. C., Li, Y., Ding, Y., Liu, J., Reading, B. J., Fuller, S. A., and Song, J. (2018).</li> <li>DNA methylation profiles correlated to striped bass sperm fertility. <i>BMC genomics</i> 19, 244.</li> </ul>                                                                                                                                                              |
| 31<br>32<br>33<br>34<br>35<br>36<br>27 | 1089<br>1090<br>1091<br>1092<br>1093 | <ul> <li>Wooten, M.C. and Smith, M.H. (1985). Large mammals are genetically less variable?<br/><i>Evolution</i> 39, 210–212.</li> <li>Wright, J., Solbu, E. B., and Engen, S. (2020). Contrasting patterns of density-dependent selection at different life stages can create more than one fast–slow axis of life-history variation. <i>Ecology and evolution</i> 10, 3068–3078.</li> </ul> |
| 38<br>39<br>40<br>41<br>42             | 1094<br>1095<br>1096                 | Zhang, X., Justice, A. C., Hu, Y., Wang, Z., Zhao, H., Wang, G., and Xu, K. (2016).<br>Epigenome-wide differential DNA methylation between HIV-infected and uninfected<br>individuals. <i>Epigenetics</i> 11, 750–760.                                                                                                                                                                       |
| 43<br>44<br>45<br>46<br>47<br>48       |                                      |                                                                                                                                                                                                                                                                                                                                                                                              |
| 48<br>49<br>50                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                              |



# Figure 1

















# Ecology Letters

| 1<br>2<br>3<br>4     | 1097 | Figure legends                                                                                   |
|----------------------|------|--------------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 1098 | Figure 1 Host life-history characteristics affect the host-parasite interaction at different     |
| ,<br>8<br>9          | 1099 | levels of organization, from individual-level susceptibility, to population-level responses to   |
| 10<br>11             | 1100 | host community assembly. Life-history theory predicts different outcomes of parasitic            |
| 12<br>13<br>14       | 1101 | infection across these organizational levels, which are related to the position of the host      |
| 15<br>16             | 1102 | species (or populations) along the slow-fast continuum of life-history variation. Note that      |
| 17<br>18             | 1103 | several of these predictions lack robust empirical validations, and some have not been           |
| 19<br>20<br>21       | 1104 | tested at all (see main text). For example, we speculate that host species with intermediate     |
| 22<br>23             | 1105 | life-history strategies should exhibit higher plasticity of life-history traits. This is because |
| 24<br>25             | 1106 | species on the fast end of the life-history continuum are expected to have low plasticity in     |
| 26<br>27<br>28       | 1107 | fecundity parameters due to the high canalization of recruitment-related traits. Species on      |
| 29<br>30             | 1108 | the slow end, in contrast, are expected to have a low canalization of recruitment-related        |
| 31<br>32             | 1109 | traits. However, physical constraints imposed by their reproductive systems (e.g., large size    |
| 33<br>34<br>35       | 1110 | of the offspring compared to the size of the uterus in slow-living mammals or large eggs         |
| 36<br>37             | 1111 | compared to the size of the ovaries and oviducts in slow-living amphibians) and a                |
| 38<br>39             | 1112 | potentially costly immune response against infection could limit the potential for active        |
| 40<br>41<br>42       | 1113 | demographic compensation through increased reproductive effort. Importantly, fully               |
| 42<br>43<br>44       | 1114 | understanding the effects of infectious disease relies on understanding a range of factors       |
| 45<br>46             | 1115 | (e.g. parasite transmission, environmental effects) that depend on the system evaluated.         |
| 47<br>48<br>49<br>50 | 1116 |                                                                                                  |
| 50<br>51<br>52       | 1117 | Figure 2 Empirical examples of density-dependent compensation (a) and plasticity in life-        |
| 53<br>54             | 1118 | history traits (b-f) in response to infectious disease in vertebrates. In (a) the correlation of |
| 55<br>56<br>57       | 1119 | adult survival and recruitment with disease prevalence and host population density in the        |
| 58                   |      | 47                                                                                               |

Page 48 of 52

| 3         |
|-----------|
| 4         |
| 5         |
| 6         |
| 7         |
| /         |
| 8         |
| 9         |
| 10        |
| 11        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 17        |
| 18        |
| 10        |
| עו<br>20  |
| ∠∪<br>⊃1  |
| 21        |
| 22        |
| 23        |
| 24        |
| 25        |
| 26        |
| 27        |
| 28        |
| 29        |
| 30        |
| 21        |
| 21        |
| 5Z        |
| 33        |
| 34        |
| 35        |
| 36        |
| 37        |
| 38        |
| 39        |
| 40        |
| 41        |
| 42        |
| 43        |
| 44        |
| 77<br>15  |
| т.)<br>Л6 |
| 40        |
| 4/        |
| 48        |
| 49        |
| 50        |
| 51        |
| 52        |
| 53        |
| 54        |
| 55        |
| 56        |
| 57        |
| 50        |
| 50        |
| 27        |
| bυ        |

1 2

| 1120 | badger-Mycobacterium bovis system is shown. The dark grey and light grey lines in the top           |
|------|-----------------------------------------------------------------------------------------------------|
| 1121 | panels of this figure represent the survival of males and females, respectively. Density-           |
| 1122 | dependent compensatory recruitment allowed the long-term persistence of this badger                 |
| 1123 | population with endemic <i>M. bovis</i> infection (adapted from McDonald <i>et al.</i> [2016]). (b) |
| 1124 | Troglodytes aedon females experimentally exposed to Salmonella enterica LPS increased               |
| 1125 | the amount of yolk per unit of egg mass and food provisioning to nestlings (photo: Mylthon          |
| 1126 | Jiménez-Castillo). (c) Sarcophilus harrisii females from populations with the transmissible         |
| 1127 | Devil facial tumour disease have an earlier onset of reproduction and more pouch young              |
| 1128 | (photo: Rodrigo Hamede). (d) Litoria verreauxii alpine individuals experimentally infected          |
| 1129 | with Batrachochytrium dendrobatidis have more spermatic cell bundles and a larger                   |
| 1130 | proportion of spermatozoa bundles (males), and larger ovaries and oviducts (females)                |
| 1131 | (photo: Matt West). (e) Zootoca vivipara females naturally infected with Hematozoa                  |
| 1132 | exhibited a larger relative clutch mass and higher maternal investment per young (photo:            |
| 1133 | Matthieu Berroneau). (f) Coregonus sp. eggs exposed to water-borne cues from                        |
| 1134 | Pseudomonas fluorescens or conspecific infected eggs hatched earlier (photo: Paul Vecsei).          |
| 1135 | References and study details (b-f) can be found in the Appendix S2 in Supporting                    |
| 1136 | Information.                                                                                        |
|      |                                                                                                     |

1137 **Figure 3** Life-history strategies and host population depression due to parasite-induced 1138 mortality. (a,b) We used equation 1 to compute the equilibrium total host density when the 1139 parasite was absent and when the parasite was present and depressed the host population. 1140 We calculated population depression as  $1 - A_{\text{parasite present}}^*/A_{\text{parasite free}}^*$ , where zero 1141 indicates no population depression. We varied the host fundamental recruitment number 1142  $R_{0,\text{host}} = \frac{a}{\mu}$  between 2 and 6. To do this, we held intrinsic mortality  $\mu$  fixed at 0.1 yr<sup>-1</sup> for

Page 49 of 52

#### **Ecology Letters**

the slow-living species and at 2 yr  $^{-1}$  for the fast-living species and chose the reproductive rate  $a \text{ yr}^{-1}$  to ensure the host fundamental recruitment numbers were the same between hosts. We varied disease-induced mortality rate  $\alpha$  between 0 and 6 yr<sup>-1</sup>. The transmission parameter  $\beta$  was fixed at 2 yr<sup>-1</sup> for fast-living species and varied for slow-living species such that  $R_{0,\text{parasite,fast}} = R_{0,\text{parasite,slow}}$ . The other parameters were s = 1 and  $\gamma = 0.4$  yr<sup>-1</sup>. We also varied the strength of density-dependence s between 0.1 and 1 and  $\gamma$  between 0.1 and 4 and the qualitative results were unaffected (not shown). The color indicates the magnitude of population depression, gray lines and numbers give specific contours of population depression, and the black line indicates where  $R_{0,\text{parasite},.} = 1$ , to the left of which the parasite could not invade the host population. (c,d) Same as (a,b), except parasite prevalence is plotted for the two life-history strategies. See the main text for details on parameter names.



Figure 1

215x180mm (300 x 300 DPI)



Figure 2

283x168mm (150 x 150 DPI)





Figure 3

842x718mm (96 x 96 DPI)