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Abstract

Hypoxic ischaemic encephelopathy (HIE), often resulting from intrapartum
hypoxic-ischemic injury, is a significant cause of death and morbidity before, during
and after birth. In order to identify and monitor HIE, clinicians use non-invasive
techniques including magnetic resonance spectroscopy (MRS) and near-infrared
spectroscopy (NIRS). However, interpretation of these signals, particularly to de-
termine the effectiveness of treatment and the severity of injury, is a challenging
and difficult task.

This thesis describes an attempt to use a systems biology approach to better
understand the mechanisms behind HIE and its outcomes, using mathematical
and computational techniques to analyse multimodal data, including broadband
near-infrared spectroscopy (bNIRS). These models incorporate submodels of cere-
bral blood flow, oxygen transport and metabolism into a single cohesive model
that attempts to simulate the observed measurements of tissue oxygenation and
metabolism. The scope of this work is to both develop a set of computational tools
that can be used to better understand existing systems biology models of the brain
and to develop a new model which is able to incorporate the effects of therapeutic
hypothermia, a common treatment for HIE, on the underlying physiology and its
dynamics.

The work begins by redeveloping the existing framework used for running and
analysing systems biology models as used previously, before going on to develop
a Bayesian framework which allows a better and more comprehensive interpreta-
tion of the results. This framework is then used to analyse three new models that

incorporate the impact of therapeutic hypothermia on the piglet brain. The model
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determined to be most effective is then applied to clinical data from neonates that
experience spontaneous desaturations in blood oxygen whilst undergoing hypother-
mic treatment. In all cases data from subjects with both mild and severe injuries are
compared to determine if separate parameter spaces (and therefore physiological

mechanisms) can be identified for each.
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IMPACT Statement

The work presented in this thesis has the potential to have a broad impact both
within and outside academia. Within academia and the study of neonatal physiol-
ogy, it lays the foundations for new research into methods of analysis that can be
used to understand multimodal data collected from clinical machines. In particu-
lar, it identifies ways to incorporate treatment via external methods into models.
In addition, it sets a strong basis for how to properly distinguish between com-
peting models, allowing for a better and more rigorous comparison of contrasting
approaches.

In this case, it has been applied to specific models developed at UCL, but the soft-
ware and tool developed is agnostic with regards to the models it can analyse The
software could be used to analyse any systems biology model where a Bayesian
approach could be relevant, for example in drug development. This also highlights
a potential avenue for the research to be applicable outside of academia; a great
number of industry applications require robust and comprehensive analysis of com-
peting system models, and being able to easily analyse these through a ready made
tool, that includes a user friendly interface, increases the likelihood of uptake and
use.

Finally, whilst the focus of this work is on biological systems, the approach taken
can be applied to any model of a system. These could be models of resource distri-
bution within economics and finance, or within engineering looking at large systems
that have multiple components that interact. As long as the model can be written in
the BCMD framework language, the new approach can be used to analyse it from a

Bayesian perspective and to compare competing variations.
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Chapter 1

Introduction

Systems biology models are used to understand complex biological and physiolog-
ical systems comprised of large numbers of individual elements that give rise to
emergent behaviours. These complex systems are dependent on both the properties
of the whole network and on the individual elements [Kitano, 2002]. UCL has a
history of taking this approach to the modelling of cerebral haemodynamics and
metabolism, making it possible to better understand physiology and to reproduce
measured data. In doing so, it is possible to identify potential mechanisms for the
components that act together to produce the observed, often pathological, system
behaviour.

Hypoxic-ischaemic encephelopathy (HIE) is a significant cause of death around
the time of birth. Somewhere between 421,000 and 1.05 million deaths amongst
neonates can be attributed to birth asphyxia and 45-55% of cases given the primary
treatment of therapeutic hypothermia still lead to death or severe neurodevelop-
mental disability [Lee et al., 2008]. The exact mechanisms behind this difference in
outcome are not fully understood, but it has been shown that severe birth asphyxia
is accompanied by a ‘secondary’ cerebral energy failure and impairment of cerebral
metabolism. This can occur hours after the initial impairment of brain function dur-
ing injury [Thoresen et al., 1995]. Treatment given during this period, typically via
therapeutic hypothermia, is crucial to improving outcome and reducing the severity
of damage done. Understanding how this treatment affects the physiology of the

brain is key to proper application and gauging of its efficacy.
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In order to identify and monitor HIE, clinicians use non-invasive techniques in-
cluding magnetic resonance spectroscopy (MRS) and near-infrared spectroscopy
(NIRS). However, interpretation of these signals, particularly to determine the ef-
fectiveness of treatment and the severity of injury, is a challenging and difficult
task. In the Neonatal ICU at UCLH neonates are monitored extensively, and data
are collected using a unique broadband near-infrared spectroscopy (bNIRS) instru-
ment that offers the potential to identify early-stage biomarkers of injury, as well
as continuous real time data collection of the brain’s activity and state, with quan-
tification of oxygenation and metabolism from day 1, providing unique prognostic
markers [Bale et al., 2018]. Correct interpretation of these data is key to unlocking
its full potential as a clinical aid. Without this there is a great chance of ‘infor-
mation overload’, removing the gains obtained by collecting this data and making
diagnosis and prognosis more difficult.

This thesis describes an attempt to use a systems biology approach to better under-
stand the mechanisms behind HIE and its outcomes, using mathematical and com-
putational techniques to analyse multimodal data, including bNIRS. These models
incorporate submodels of cerebral blood flow, oxygen transport and metabolism
into a single cohesive model that attempts to simulate the observed measurements
of tissue oxygenation and metabolism. It is the ability of bNIRS to measure both
haemodynamics and metabolic activity that makes analysis via systems biology
such an appealing approach. By combining the three submodels with the measured
data, the interplay between the systemic measurements, the haemodynamics and
the metabolic processes, there is the potential to better understand the impact these

separate components can have on each other.

Aims and Objectives

The general scope of this PhD is to develop a tool, a computational framework that
will allow us to extend and enhanced the previous UCL models by developing a
new web based, applying novel statistical frameworks for parameter and variable

estimation and finally allowing their application with the existing data collected at
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UCL in the Neonatal ICU. In particular the objectives are:

* Redevelop the existing framework used for running and analysing systems

biology models.

» Extend this framework to utilise a Bayesian approach to model analysis, pro-
viding a more comprehensive interpretation of results than the previous max-

imum likelihood approach.

* Develop a BrainPiglet-with-hypothermia model as an extension of the ex-
isting BrainPiglet model [Moroz et al., 2012a] to incorporate the effects of
therapeutic hypothermia in order to better understand the impact of treatment

on brain physiology.

* Apply this BrainPiglet-with-hypothermia model to data collected from
neonates that have experienced spontaneous desaturation events during hy-

pothermic treatment with differing outcomes.

Thesis Summary

The initial 4 chapters provide background to the work that follows. Chapter 2 pro-
vides an overview of cerebral physiology, looking at anatomy, haemodynamics and
cellular metabolism before considering HIE, its treatment and some of the differ-
ences in the neonatal, piglet and adult brain. Chapter 3 looks at the different clinical
techniques that are used to measure physiological data in the brain, including elec-
troencephalography (EEG), magnetic resonance imaging (MRI), MRS and NIRS,
before a brief consideration of the ways in which this data must be handled before
use. Mathematical modelling is considered in Chapter 4, with an initial look at
how mathematical models can be used in biology before a detailed consideration
of systems biology models used to understand the brain and its dynamics. We then
move on to Chapter 5 in which we look at the different ways these models can be
analysed and used to understand the systems they simulate. This starts by looking

at the methods that have been used previously to analyse the UCL family of models
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before moving on to an overview of how a Bayesian approach can be applied to sys-
tems biology models, with a particular focus on approximate Bayesian computation
(ABC).

Chapter 6 looks at the original Brain/Circulation Model Developer (BCMD) frame-
work and how it functioned before moving on to the work done to redevelop the
system. This leads into Chapter 7 which outlines the work done to rework the pre-
vious BCMD framework into something that can be used to perform Bayesian anal-
ysis. This is adapted from a previously published paper [Russell-Buckland et al.,
2019b] and uses the new framework to analyse both simulated and measured data
and compare to the previous. Chapter 8 defines the work done to extend the exist-
ing BrainPiglet model to incorporate temperature. Three separate model variants
are developed and then compared to each other and the original, temperature-free
model before selecting the best variant. This model variant is then applied to neona-
tal data in Chapter 9. The neonatal data are taken from two neonates with differing
injury severities that both experienced spontaneous desaturation events. This data
was originally analysed in Bale et al. [2018] and the model is here used to elabo-
rate on this analysis and consider the hypotheses of that work. Finally, Chapter 10
concludes on this work by summarising its findings and outlining future work and

directions.



1.1. Personal Statement 4]

1.1 Personal Statement

There are a number of research collaborations that have made this work possible
with this section aiming to make these clearer.

The Brain/Circulation Model Developer (BCMD) framework used to compile and
implement the models was developed by Matthew Caldwell and was itself based
on the BRAINCIRC software developed by Banaji et al. [2005, 2008] The BCMD
software is re-developed in Chapter 6 and then extended upon in Chapter 7 to in-
clude the ability to perform Bayesian Analysis.

The BrainPiglet model was originally developed by Moroz et al. [2012a] and is then
extended in this thesis to incorporate the effects of external temperature changes,
mainly via therapeutic hypothermia. This model is then applied to data collected
from piglets that have undergone brain injury followed by hypothermic treatment.
This data was collected and initially analysed by Kaynezhad et al. [2019].

The model was then applied to neonatal data collected by Bale et al. [2018] at the
Neonatal Intensive Care Unit, University College London Hospital with written,
informed consent obtained from parents before each study. All neonates were iden-

tified as suffering from hypoxic-ischaemic encephalopathy.



Chapter 2

Brain Physiology

This work as a whole involves a variety of diverse but related subjects relating to
systems biology, including distribution of models, model analysis and application
of models, but all work has the end goal of better understanding the human brain,
particularly that of the human neonate. The brain is arguably the most complex
organ in the human body and the human brain in particular may be one of the most
complex biological systems, bar that of the body itself.

The brain controls the majority of the functions of the body - from interpreting sen-
sory information to controlling movement, from memory to hormones - and as a
result any dysfunction of the brain has a serious and cascading effect on the body
as a whole. For example, a stroke occurs when blood supply to the brain is cut off.
This can lead to a wide range of effects including slurring of speech, weakness and
paralysis of one side of the body, dysphagia and memory problems. The impact
of damaging this single organ has a cascade effect that leads to problems with and
damage to many parts of the body.

It is important that this complexity is considered when developing a mathematical
model of the brain. Any attempt to incorporate all behaviours and effects of the
brain is likely to fail due to the necessary complexity of such a model. The re-
sulting model would likely be intractable and were some form of solution possible,
interpretations of the output may prove to be non-useful. Instead we must focus the
model down to a limited scope that is both tractable and interpretable. George Box

is oft-quoted as saying “All models are wrong, but some are useful." [Box, 1979]
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Whilst T will go into this in more detail in Chapter 4, it is important to note here.
The main goal of this work and the work that has preceded it is to produce a useful
model, rather than a complete model that can perfectly reproduce our data without
providing usable or useful insights.

With the above in mind, this chapter explores the functions and physiology of the
brain that relates directly to the BrainSignals models - cellular metabolism and
cerebral oxygenation and haemodynamics - before looking at HIE, the injury this
work focuses on understanding. We then consider the differences between the adult,

neonate and piglet brain, which is important when developing models for each sub-

group.

2.1 Physiology

2.1.1 Anatomy

The brain along with the spinal cord make up the central nervous system. It consists
of three main components: the cerebrum, the brain stem and the cerebellum. These

themselves also have internal structure and organisation.

Cerebellum The cerebellum plays an important part in controlling motor function
within humans, and may also be involved in some non-motor functions including
personality and mood [Wolf et al., 2014], and damage to the cerebellum can produce
dysfunction in fine motor control, motor learning and equilibrium [Fine et al., 2002].

It is connected to the rest of the brain via the brain stem.

Brain stem The brain stem consists of the mid-brain (mesencephalon), pons
(metencephalon), and medulla oblongata (myelencephalon) [Sharma and Majsak,

2014]. It has three main functions:

a: Conductance: all information relayed from the body to the cerebrum and

cerebellum (and vice versa) is done via the brain stem.

b: Cranial nerves: ten of the twelve pairs of cranial nerves emerge from the

brain stem.
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c: Critical function: the brain stem is involved in cardiovascular and respira-

tory control, pain sensitivity and consciousness.

Cerebrum The cerebrum is a large part of the brain containing the cerebral cortex
as well as a number of sub-cortical structures including the hippocampus, basal
ganglia and olfactory bulb. It has a longitudinal fissure that allows the overall struc-
ture to be divided into left and right hemispheres and, whilst most functionality is
shared between the two halves, perceptual information is laterally partitioned such
that information from the right side of the body is processed by the left side of
the brain and vice-versa. Additionally, the cerebral cortex is generally classified
into four lobes: frontal, occipital, parietal and temporal. The cerebrum has many
functions across its various components, controlling all voluntary actions as well as
sensory processing, language and communication, conscious movement and learn-
ing and memory.

The central nervous system is surrounded by a series of membranes known as the
meninges which are, in order of furthest from the skull to closest, a) the dura mater,
b) the arachnoid mater, and c) the pia mater. The cerebrospinal fluid (CSF) is lo-

cated between the latter two in the subarachnoid space along with the major arteries.

2.1.2 Blood Flow

Four major arteries supply the brain - the right and left internal carotid arteries and
the right and left vertebral arteries. The vertebral arteries join to form the basilar
artery and this then joins with the internal carotid arteries at the base of the brain to
form the circle of Willis. From this there are six major vessels that then supply blood
to the brain: the left and right middle cerebral arteries (MCAs), the left and right
anterior cerebral arteries (ACAs), and the left and right posterior cerebral arteries
(PCAs). Branching off from these are many other smaller supply vessels which
then supply different regions of the brain. This is illustrated in Figure 2.1. An
important feature of the circle of Willis is that perfusion can be maintained across
the brain even if some of the vessels are blocked or absent. This redundancy makes

the system as a whole much more robust [Payne, 2017, Chap. 1].
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At the opposite end of the length scale to the major arteries is another important
component of the cerebral vasculatory system: the capillaries. The distribution of
these across the brain is heterogeneous due to their role in supplying nutrients and
oxygen to local tissue, with the structure and number in a given area being tightly

linked to the local functional requirements [Edvinsson et al., 2002].

2.1.3 Oxygen Transport

We can consider oxygen transport to consist of two main phases: dissolved in the
plasma and bound to haemoglobin in red blood cells [Pittman, 2011], with the pri-
mary method being the binding of oxygen to haemoglobin. The binding of oxygen
to one of the haemoglobin molecule’s four binding sites, to form oxyhaemoglobin
(HbO,), increases the oxygen transport capability by a factor of around 70 as com-
pared to dissolution of oxygen in plasma alone [Effros, 2012, Chap. 13].

The quantity of dissolved oxygen is calculated using Henry’s Law [Henry, 1803]
[0,]Plasma) — 43 PO, 2.1)

where ag, is the solubility co-efficient of oxygen in blood and PO, is the partial
pressure of oxygen in the blood. At normal conditions, this would account for ap-
proximately 3% of the oxygen carried by the blood [Hall and Guyton, 2011], with
oxygen reversibly bound to haemoglobin making up the other 97%.

We most commonly model the binding process via the Hill equation [Hill,
1910], which allows us to obtain fractional saturation of haemoglobin by oxygen.
Haemoglobin has four binding sites, and so a full description therefore requires
“four experimental constants and is given by the Adair equation" [Goldman, 2008].

The Hill equation is given by

P
:—n
P+ Psg

S(P) (2.2)

where P here gives the local partial pressure of oxygen, Ps is the partial pressure
giving half maximal saturation and nj, is the hill exponent. The equation is only

highly accurate within the 20-80% range of saturation, but this is often deemed
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Figure 2.1: Annotated Illustration of the circle of Willis. Image taken from Open Stax

College and is reproduced without changes under Creative Commons license
http://creativecommons.org/licenses/by/3.0/. A schematic of the

larger cerebral vessels in the brain, focussing on the Circle of Willis.


http://creativecommons.org/licenses/by/3.0/
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sufficient for use in most oxygen transport models given the number of other ap-
proximations often made [Goldman, 2008].

Oxygen that dissociates from haemoglobin enters tissue via diffusion, as does the
small amount of oxygen dissolved in the plasma. This can be modelled using Fick’s
Law of Diffusion [Pittman, 2011]. The partial pressure of oxygen (pO;) in the blood
is much higher than that in the interstitial fluid surrounding the cells; approximately
95 mmHg vs 40 mmHg respectively. This creates a pressure gradient. This diffusive
process is also a carrier-facilitated diffusive process [Schultz et al., 1974], with the
facilitative carriers in this case being haemoglobin in the blood and myoglobin in
the tissue.

The dissociation of oxygen from haemoglobin depends on a number of factors that
control the ‘haemoglobin affinity for oxygen’. These factors affect the dissocia-
tion curve shown in Figure 2.2. The affinity to oxygen of haemoglobin before the
first oxygen molecule is bound is lower than for the subsequent molecules, with the
first O molecule inducing a change in the shape of the molecule that increases its
affinity for following O, molecules. As blood enters the peripheral tissue, the pO;
decreases leading to unbinding of O, molecules. This facilitates further unbinding
as with the removal of O, the affinity decreases. This is seen in the steep curve
below around 50 mmHg where a small decrease in pO, leads to a large decrease in
oxygen saturation.

Leftward and rightward shifts in the dissociation curve can result from changes
in other local environmental factors. A rightwards shift favours unloading oxygen
compared to prior to the shift, whilst a leftward shift favours oxygen loading. Ta-
ble 2.1 summarises some of these changes. Increasing temperature, concentration
of 2,3-diphosphoglycerate (2,3-DPG), partial pressure of carbon dioxide (pCO;)
and acidity/concentration of H* all lead to a decrease in oxygen affinity, whilst a
decrease in any of these leads to an increase in oxygen affinity. The Bohr effect
describes the relationship between CO,, acidity and O, affinity. An increase in
CO; leads to an increase in acidity and therefore a decrease in O, affinity, leading

to increased oxygen delivery. This is clearly helpful in areas where CO> is being
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Figure 2.2: The dissociation of oxygen from haemoglobin molecules depends on
a number of factors that determine the ‘haemoglobin affinity for oxy-
gen’ which can be shown, as it is here, as a sigmoidal curve.
The x-axis gives the pO, whilst the y-axis gives the oxygen sat-
uration.  Image taken from https://commons.wikimedia.org/wiki/
File:Oxyhaemoglobin_dissociation_curve.png and is used without
changes under Creative Commons license http://creativecommons.org/
licenses/by/3.0/.

Environmental Factor | Change | Curve Shift
Temperature $ z
2-3-DPG $ 2
1
pCO> v ¢
Acidity ([H*]) $ z

Table 2.1: Impact of changes in environment on dissociation curve. The table gives the
direction of the dissociation curve shift due to changes in various environmental
factors. A rightwards shift indicates favouring unloading of O, whilst a leftwards
shift indicates favouring loading of O,.

produced due to cellular respiration.
In addition to the above, there are a number of other important factors that affect
the dissociation of oxygen. Carbon monoxide CO binds to haemoglobin 240 times

more readily than oxygen and will displace it from haemoglobin, forming carboxy-


https://commons.wikimedia.org/wiki/File:Oxyhaemoglobin_dissociation_curve.png
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haemoglobin. This shifts the dissociation curve for the remaining HbO» to the left,
leading to reduced oxygen delivery in the peripheral tissue.

Finally, of particular relevance to this research, is the difference in the dissociation
curve for fetal haemoglobin (HbF) as compared to normal haemoglobin. This is

explored in further details in Section 2.3.

2.1.4 Cellular Metabolism

The energy demands of neurons are extremely high and so it’s important to have an
understanding of how cellular metabolism works. The energy is supplied by adeno-
sine triphosphate (ATP) which must be produced in sufficient quantities in each part
of the brain so as to meet the energy needs and maintain healthy function. Glucose
is required in order to produce this ATP, with 75% of glucose going towards for-
mation. Glucose is transported from the blood stream into surrounding tissue and
is then trapped in cells by the enzyme hexokinase via the addition of a phosphate to
the glucose molecule, forming glucose-6-phosphate [Payne, 2017, Chap. 1].

There are two types of metabolism, aerobic and anaerobic, and it is important to
briefly consider both, especially given the focus of this work on hypoxic injury.
Both share an initial pathway of glycolysis, with aerobic respiration finishing with
the Krebs cycle, or tricarboxylic acid (TCA) cycle, and oxidative phosphrylation.
Glycolysis is a metabolic pathway which converts glucose into pyruvate (C3H403)
and a hydrogen ion H*, occurring in the cytoplasm. The overall reaction is shown

in section 2.1.4 giving a net yield of 2 ATP.

C¢H 206 +2ATP+2NAD™ + 2 ADP + 2P;
(2.3)
—2C3H403 +4ATP+2NADH +2H™"

Under aerobic conditions, the pyruvate is transported to the mitochondria and con-
verted to acetyl CoA before entering the TCA cycle. During the TCA cycle, ad-
ditional ATP and NADH are produced. NADH is an electron donor meaning that
it can be used to convert oxygen into water, releasing energy in the process [Bale

et al., 2016]. This process is mediated via the mitochondrial electron transfer chain
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(ETC), which in effect converts adenosine diphosphate (ADP) to ATP in the process
via oxidative phosphorylation.

This process harnesses energy through a series of protein complexes (known as
complexes I to V) and can be broken down into two parts: the oxidation of NADH
and other electron donors in the ETC via complexes I to IV, and the phosphoryla-
tion of ADP to ATP at complex V. Of interest to this work is the terminal electron
acceptor cytochrome-c-oxidase (CCO), also known as complex IV, which reduces
the electron transport protein cytochrome ¢, with the electrons being used to convert
oxygen to water [Bale et al., 2016].

CCO is of interest because one of its four redox sites, copper A (Cup), dominates
the absorption spectrum in the near-infrared region, with a strong peak in its oxi-
dised form, and is therefore a useful chromophore. This is examined in more detail
in Chapter 3. Figure 2.3 outlines this aerobic metabolic process diagramatically,
highlighting the different steps outlined above.

This aerobic process results in the overall equation

60O, + Glucose + 36 ADP + 36 P;
2.4)

— 6C0O, +6H,O+ 36 ATP

where it is clear to see that a single mole of glucose will produce 36 moles of ATP.
If sufficient oxygen is not available however, anaerobic respiration occurs. In this,
the pyruvate produced during glycolysis is reduced into lactic acid, with ATP as a
by-product and the NADH produced able to be reoxidised to continue the process
if oxygen is later available. This yields 2 moles of ATP for every mole of glucose
used. Overall this can be defined as

Glucose +2P; + 2 ADP+2NAD™
(2.5)

—— 2Lactate +2 ATP + 2NADH

It is easy to see that aerobic respiration is more efficient than anaerobic respiration,
yielding around 36 moles of ATP per mole of glucose compared to 2 moles of ATP

per mole of glucose for anaerobic.
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Figure 2.3: Schematic of the cellular metabolism process, taken from Bale et al. [2016].
The ETC and CCO are both expanded, with CCO represented as complex
IV. Limited to carbohydrate metabolism, with fat metabolism ignored. Chro-
mophores measured by NIRS

2.2 Hypoxic-Ischemic Encephalopathy

HIE is a condition where a lack of oxygen, due to reduced blood flow, causes dam-
age to the brain [Vannucci, 2000], often resulting in death or long term disability
[Huang and Castillo, 2008]. In particular it is an important cause of cerebral palsy
and other related disabilities in children [Fatemi et al., 2009]. There are a number
of methods available for detection, including EEG, MRI, MRS andNIRS. It is this
last one that will be focussed on throughout, particularly bNIRS, but it is important

to note alternative methods and their relative merits and drawbacks. These methods
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will be explored in more detail in Chapter 3.

Murray et al. [2009] found that normal and mildly abnormal EEG results obtained
within 6 hours from birth were associated with normal neurodevelopmental out-
comes at 24 months, whilst Shellhaas et al. [2013] evaluated the use of amplitude-
integrated EEG (aEEG) and regional oxygen saturation (rSO,) measured using
NIRS to determine short term outcomes for neonates suffering from HIE and treated
with therapeutic hypothermia, a common treatment for hypoxic brain injury. Cere-
bral rSO, was found not to have any predictive value, whilst lower systemic rSO;
variability and invariant, discontinuous aEEG patterns were strong indicators of a
poor outcome.

Cowan et al. [1994] used diffusion weighted MRI and found it to indicate the ex-
tent and conspicuity of early abnormalities better than in standard imaging, whilst
Forbes et al. [2000] found it to have a lower correlation with clinical markers than
standard MRI when performed with the technical parameters of that study. Concen-
trations of brain metabolites, found through MRS, can prove useful as biomarkers of
injuries, like HIE. 3'P-MRS can be used to measure the quantity of >'P, which can
be found in high energy metabolites like phosphocreatine. Moorcraft et al. [1991]
found that a global phosphocreatine/inorganic phosphate (PCr/P;) ratio below the
range of values typically expected predicted adverse outcome following asphyxia,
whilst Roth et al. [1992] undertook studies of cerebral oxidative metabolism us-
ing 3'P-MRS, and found that minimum recorded values of PCr/P; were related to
outcome. Despite this, current clinical systems are unable to perform localised
3IP_MRS, and so only large areas of the brain can be examined. As a result, 3p.
MRS is not routinely used as a clinical tool to assess asphyxiated full term neonates
[de Vries and Groenendaal, 2010].

Another key biomarker, is the lactate/N-acetyl-aspartate (Lac/NAA) ratio which is
measured using proton magnetic resonance spectroscopy. As has previously been
stated, lactate is a byproduct of anaerobic respiration, where oxygen demand ex-
ceeds supply and any build up due to poor oxygen delivery can be observed using

proton MRS. Changes in other metabolites such as NAA, which decreases with in-
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creased oxygen demand, can also be observed [Xu and Vigneron, 2010]. The ratio
of these two molecules is therefore directly linked to a hypoxic injury, and has been
shown to be a good indicator of outcome. These can be measured through the use
of proton MRS, and it has been used in neonates since the early 1990s [Peden et al.,
1990, van der Knaap et al., 1990].

NIRS can be used to measure changes in oxygenation within the brain, as well as
changes in metabolism, making it possible to investigate physiological changes and
their potential causes and effects. This can be important to investigate how the brain
responds to stimuli (functional activation)[de Roever et al., 2017], or the impact of
injuries such as HIE [Bale et al., 2014]. The bedside nature of NIRS means that it
is possible to obtain data at a much earlier stage than with other measurement tech-
niques, and so there is the potential to identify the severity of a hypoxic injury at a
much earlier point. Bale et al. [2018] shows that during spontaneous desaturation
events following HIE, neonates with a more severe injury had a strong correlation
between CCO and haemoglobin difference (HbD). The exact mechanism behind
this relationship was hypothesised to be due to a decrease in the cerebral metabolic
rate and will be looked at in greater detail in Chapter 9.

The large variety of techniques available and the lack of consensus on their individ-
ual reliability means that more work is required to develop their use for diagnosis,

especially with a view to improving treatment.

2.2.1 Treatment

As has previously been mentioned, treatment of HIE is often done through the use
of therapeutic hypothermia and this generally improves neurodevelopmental out-
come [Jacobs et al., 2007]. A number of studies have shown that this improves the
outcome of neonates who have undergone a hypoxic injury when compared to re-
ceiving only critical care.

Gluckman et al. [2005] found that in a randomised controlled trial, where the out-
comes of those treated with and without head cooling were compared, 55% of ba-
bies who received treatment had either died or had severe disability at 18 months,

compared to 66% amongst those who hadn’t received treatment. Further subgroup
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analysis revealed that ‘head cooling had no effect in infants with the most severe
aEEG changes, but was beneficial in infants with less severe aEEG changes’, sug-
gesting some underlying conditions or mechanisms may have an impact on treat-
ment outcome. Azzopardi et al. [2009] looked at the outcomes of neonates that
suffered asphyxial encephalopathy, comparing those that received intensive care
and cooling of the body to those that received intensive care alone. 75 of the 163
(~45%) that received cooling either died or suffered severe neurodevelopmental
disability, compared with 86 out of the 162 (~53%) that received intensive care
alone. They then concluded that treatment with hypothermia ‘did not significantly
reduce the combined rate of death or severe disability but resulted in improved neu-
rologic outcomes in survivors’. Finally, Shankaran et al. [2005] found that in a com-
parative trial between treatment of perinatal complications using full body cooling
against no treatment, 44% of the group that received hypothermic treatment died
or suffered from moderate or severe disability, compared with 62% in the control
group. Additionally, the incidence of cerebral palsy was 19% in the hypothermia
group as compared with 30% in the control group.

Whilst it is clear that hypothermic treatment does improve outcome, there are still
a large number of cases in which treatment does not appear to be effective. One
of the key aims of this research is to use data collected through the previously out-
lined methods, particularly NIRS data, alongside mathematical modelling to try and
understand potential reasons for why hypothermic treatment is not as effective for
some patients, particularly those with a severe injury. Chapter 8 looks at modelling

the effect of hypothermic treatment on the brain’s physiology.

2.3 Differences in Adult, Neonate and Piglet Brains

When developing models of the brain it is important to consider the ways in which
the physiology of different brains differ from each other. For example, much of
the work done to develop the UCL family of models was based originally on the
adult brain. Without considering how the adult and neonate brain differ, initial

parameter estimates may be incorrect leading to false conclusions about the ways
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in which values obtained through fitting vary from the default value or poor initial
prior distributions.

The preterm neonatal brain begins smooth and becomes increasingly folded during
gestation and into term, increasing surface area. This increase in folding can be
seen using a variety of imaging techniques, including MRI, right through to the
post natal period [Rutherford, 2002]. In addition to this change in cerebral folding,
the neonatal cerebrovascular structure continues to develop in complexity through
the post natal period [Coelho-Santos and Shih, 2020]. Studies of preterm neonatal
brains have shown that they contain variations in the development of the Circle of
Willis [van Kooij et al., 2010] for equivalent term dates. The newborn piglet brain
has an intact Circle of Willis and a blood vessel plexus at the base of the brain and
s0, as per Cady et al. [2008], this make the piglet brain unsuitable for investigating
complete cerebral ischaemia, but still suitable for hypoxia-ischaemia.

Another difference can be seen in the dissociation curve for HbF as compared to
normal haemoglobin. HbF is shifted leftwards favouring O; binding at lower partial
pressures as compared to normal haemoglobin. This is important in the womb as it
allows the fetus to pull oxygen from the mother’s blood. Figure 2.4 illustrates this

difference.
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Figure 2.4: Fetal dissociation curve Dissociation of oxygen from fetal haemoglobin dif-
fers from that of adult haemoglobin, with a notable leftwards shift in the disso-
ciation curve as seen here.

Image taken from https://commons.wikimedia.org/wiki/File :HbA_
vs_HbF_saturation_curve.png and is used without changes under Creative
Commons license http://creativecommons.org/licenses/by/3.0/

2.4 Conclusion

In this chapter I have briefly summarised the physiology of the brain, focussing in
particular on those mechanisms and structures relevant to HIE. It is important to
understand the biological reality that the modelling is required to emulate. Without
this background information it is too easy to separate out the computational and
mathematical abstractions from the physical, biological reality we are studying. I
have also focussed here on briefly outlining the methods of determining the severity
of HIE injury and its treatment via therapeutic hypothermia. Finally, I established
some of the physiological differences between the adult, neonatal and piglet brains,

which is important when developing the separate models.
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Chapter 3

Clinical Monitoring Techniques

3.1 Measurement Techniques

There are a variety of methods available to image and monitor the brain, utilising
different phenomena or aspects in order to collect information. In this chapter I will
outline a subsection of available measurement techniques, focussing on those that

are typically used by the research group at UCL.

3.1.1 Electroencephalography

EEG measures the electrical activity of the brain, typically through the use of
electrodes placed along the scalp. Neurons encode information through changes
in electrical energy, and has been used within the UCL team as part of research
investigating metabolism following neonatal stroke [Mitra et al., 2016]. A neuron
possesses a resting potential of —60 to —70 mV, with there being relatively more
sodium ions outside the neuron and more potassium ions inside. Upon receiving
stimulation, sodium channels open creating a flux of positive ions into the cell,
increasing the potential and potassium channels open slightly later, leading to an
out flux of potassium ions, decreasing the potential, shown in figure 3.1. The action
potential propagates as a wave along the axon.

At a simple level, EEG is able to measure these changes in voltage due to the ionic
current and through this it is possible to get a picture of the electrical activity oc-
curring within the brain. Diagnostic applications generally focus either on specific

events, or on the spectral content of the EEG signal. The former investigates po-
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Figure 3.1: Simplified diagram of a typical action potential, with the opening and clos-
ing of ion channels labelled. Image from Neuroscience for kids, University of
Washington

tential fluctuations linked directly to an event, such as during functional activation,
whilst the latter analyses the type of neural oscillations that can be observed in EEG

signals in the frequency domain [Schomer and Lopes da Silva, 2017].

3.1.2 Magnetic Resonance Imaging and Spectroscopy

MRI is a medical imaging technique that uses the phenomena of nuclear magnetic
resonance (NMR) to generate detailed images. When placed in a strong external
magnetic field, certain atomic nuclei (those that contain an odd number of protons
and/or neutrons) are able to absorb and emit radio frequency energy. This energy is
at a specific resonant frequency dependent on the strength of the applied magnetic
field. In a clinical setting, the most commonly used atomic nuclei are those of the
hydrogen atom, which possesses just one proton ion in its most abundant isotope,
and is found in water and fat throughout the body. Different methods can be used
in order to generate different kinds of images. One of the key benefits that MRI has
over other commonly used imaging techniques, such as CT scans, is that it does not
require the use of x-rays and is there fore non-ionising.

An alternative use of NMR is magnetic resonance spectroscopy (MRS), which

Removed due to copyright

Figure 3.2: Example MRS spectra, with choline (Cho), creatine (Cr), N-acetyl-aspartate
(NAA) and myo-Inositol (ml) labelled. Image from Bliiml [2013]

serves as a good complement to MRI. Where MRI uses the signal from hydrogen
protons to form anatomical images, MRS instead uses the information to deter-
mine, for our purposes here, concentrations of brain metabolites, such as N-acetyl-
aspartate, choline, creatine and lactate in the tissue examined [Gujar et al., 2005].
As has previously been mentioned, the resonant frequency of protons is, to a first

approximation, a function of the magnetic field strength. However, the electronic
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Figure 3.3: Absorption spectra for various chromophores found in human tissue. Note:
CtOx is cytochrome-c-oxidase (CCO) and O,Hb is oxyhaemoglobin (HbO,).
Figure taken from Scholkmann et al. [2014].

environment of molecules has an effect on the magnetic field ‘seen’ by the proton. If
electrons are close to the proton, there is a shielding effect, reducing the size of the
magnetic field seen by the proton, causing a shift in the resonant frequency. These
shifts are typically calculated relative to a reference molecule, tetramethylsilane,
which is defined as O ppm [Bliiml, 2013]. Figure 3.2 shows a MRS spectra, with
choline, creatine, N-acetyl-aspartate and myo-Inositol labelled. This information
can be used to understand further what is occurring within the brain. For example,
lactate is a byproduct of anaerobic respiration, where oxygen demand exceeds sup-
ply [Barkovich et al., 1999], thus, in the case of reduced oxygen delivery it builds

up within the tissue. This build up can be observed through the use of MRS.

3.1.3 Near-infrared Spectroscopy

Compounds in tissue known as chromophores absorb light as it passes through the
body. Visible light has high absorption and scattering in most tissue and is there-
fore not useful for clinical use. Near-infrared light (650 nm to 1000 nm) however
has a lower absorption in water and is therefore able to penetrate further into tissue,
whilst also showing a useful difference in absorption for deoxyhaemoglobin (HHb)
and HbO3,, allowing the two to be distinguished from each other. Figure 3.3 shows
the absorption spectra for various chromophores in human tissue, with the near-
infrared optical window marked. By transmitting a specific wavelength or spectra
of light into tissue and then measuring what is scattered back to the detector it is
possible, using the modified Beer-Lambert law [Delpy et al., 1988], to determine
the change in concentration of these chromophores. It is this principle which under-
lies the use of NIRS.

One notable use is in the monitoring of cerebral haemodynamics and, in the case of
bNIRS, metabolism. This is due to two key properties: bone is relatively transpar-

ent to near-infrared light [Jobsis, 1977], and the only compounds within the mam-
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malian brain that respond to changes in oxygen concentration are haemoglobin and
cytochrome aa3 [Wray et al., 1988]. Because of these two facts, NIRS is able to
detect and measure changes in the oxygenation of haemoglobin and cytochrome in-
side the brain without requiring any invasive techniques.

Typically, haemodynamics are measured by detecting changes in the concentration
of HbO, and HHb, which can be done with a small number of discrete wavelengths.
It is then possible to use these signals to determine the change in total haemoglobin
(AHbT = AHbO, + AHHD), a proxy for cerebral blood volume, and the change
in haemoglobin difference (AHbD = AHbO, — AHHD), a proxy for cerebral blood
oxygenation. There is additional benefit in using AHbD as the subtraction removes
some of the signal noise. Whilst haemoglobin can be measured using a small num-
ber of discrete wavelengths, measurement of CCO requires a broader selection of
wavelengths to distinguish between the oxidised and reduced state. The enzyme
contains four redox active metal centres, with CuA having a broad absorption peak
in the near-infrared region [Bale et al., 2014]. However, the concentration of this
is much lower than haemoglobin (approximately 10%) which can make detection
difficult [Cooper and Springett, 1997]. As a result, bNIRS is required in order to
resolve the CCO signal, with the downside that there is a higher SNR than when
using the two optimal wavelengths required for haemoglobin alone [Scholkmann
et al., 2014].

The main use of measuring CCO is that it is a key indicator of metabolic activity and
therefore oxygen use. When considering something like brain injury it is just as im-
portant to measure whether supplied oxygen is being used as it is to measure if it is
being supplied. As described in Chapter 2, CCO is a key enzyme in the metabolism
of oxygen and, because the total quantity remains constant over the measurement

time period, the change in its redox state is a good proxy for metabolic activity.

3.2 Systemic Measurements

In addition to measuring the cerebral specific measurements described above, it is

important to measure systemic quantities such as blood pressure and arterial oxygen
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saturation. Without these, it is difficult to establish information about phenomena

such as cerebral autoregulation.

Arterial Oxygen Saturation Arterial oxygen saturation is typically measured us-
ing a pulse oximetry device which uses two wavelengths of light to measure HbO,
concentration in pulsing blood (SpO>) [Aoyagi, 2003]. The pulsatile volume is
assumed to be due to changes in arterial volume and so SpO; is used as a measure

of arterial arterial oxygen saturation (Sa0;).

Blood Pressure A sphygmomanometer is the most common device in clinical use
for measuring blood pressure, with a finometer often used within a research context.
It consists of an inflatable cuff, usually placed on the upper arm. Measurements
are usually given as diastolic (maximum) and systolic(minimum) arterial pressures,

with typical values in a healthy adult being 120 mmHg and 80 mmHg respectively.

Partial pressure of CO; The arterial partial pressure of CO, (PaCO,) is a good
measure of the efficiency of ventilation. It is normally determined by measuring the
end tidal CO, (EtCO,), the partial pressure of CO; breathed out during respiration.
This CO;, diffuses out of the blood in the capillaries into the lungs and, under nor-
mal conditions, there is an equilibrium between the blood and the air meaning that
EtCO; is equivalent (with an offset) to PaCO, [Ward and Yealy, 1998]. EtCO, can
be measured using an infrared capnometer with a normal measurement of 35 mmHg

to 40 mmHg[Kodali, 2013].

3.3 Interpretation of Measurements

As with any data collection process, the measuring of physiological signals using
any of the above techniques will undoubtedly result in erroneous measurements,
redundant data and signal noise. The cause and effect of each of these will vary de-
pending on the measurement technique and the situation in which it was collected.

For example, collecting longitudinal data from neonates in intensive care will result



3.4. ABroAD 62

in far more artefacts than an equivalent period of time measuring a piglet in a con-
trolled lab environment. As is discussed below in Section 3.4, these artefacts can
come from ambient light, movement of the baby and clinical check ups.

In terms of redundant data and signal noise, depending on what physiological phe-
nomena are under consideration, aspects of the data may prove to be redundant and
have the potential to make it more difficult to analyse. An example of this could
be the approximately 60 Hz signal often found in haemodynamic data that is due to
the resting heart rate. Where we are attempting to analyse data over longer periods,
removing this noise can make it easier to isolate specific behaviours relevant to the
work. One way of removing this sort of high frequency noise is through applying a
low pass filter to the data. In this work, this is often a Sth-order Butterworth filter
implemented in Python using SciPy [Virtanen et al., 2020].

The term “artefacts” here refers to erroneous measurements within the data that oc-
cur due to outside factors which can lead to data being less reliable and vary in cause
and impact size. It is ideal if artefacts are minimised or otherwise outright removed
before modelling, thus avoiding fitting a model to data that are not physiology.

In term of removing artefacts, the typical method has been to utilise a combination
of automated methods, such as MARA which utilises moving standard deviation
and spline interpolation [Scholkmann et al., 2010, Metz et al., 2015], and manual
detection and removal. However, a small amount of work was undertaken in the
process of this work to try and develop an automated detection technique that could

utilise machine learning and the broadband spectra collected from bNIRS.

3.4 ABroAD

The following section has been adapted from conference proceedings

published for the ISOTT 2017 conference.

As has been previously mentioned, bNIRS instruments use hundreds of wavelengths
of light to observe changes in tissue oxygenation and metabolism, collecting absorp-
tion spectra at each time point. Figure 3.4 shows three different spectra collected

during the course of an experiment to simulate some typical NIRS artefacts. It can
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be seen here that the spectra of light at the three time points are clearly different
depending on whether an artefact is present and what kind of artefact it is.

With this in mind, an attempt was made at using machine learning techniques to
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Figure 3.4: Three spectra collected during the simulation of NIRS artefacts. Figure a)
shows the spectra collected when no artefact occurred. Figure b) shows the
spectrum collected when pressure was applied to the sensor. It has a similar
shape to that of the control spectrum, but the photon counts are generally higher
across the spectrum. Finally, figure c) shows the spectrum collected when an
ambient light source was turned on in the room. Not only are the photon counts
generally higher than for the control spectrum, but a number of spikes at spe-
cific frequencies are also visible. This is due to the ambient light source being
fluorescent, thus producing light at specific wavelengths.

develop a new approach to identifying artefacts in collected data. If such a method
were developed, even without the ability to replace the artefacts with reasonable
data, the model could be driven by and compared against data that was artefact free.
Machine learning refers to the process of identifying ‘patterns’ within data to try
and understand it, preferably in a way that will allow this understanding to be used
with new data [Domingos, 2012]. Data is normally represented within machine
learning as a set of ‘features’. For example, a document may be presented in terms
of the words it contains or other information like the length of the sentences. Infor-
mation about an animal may be done as a mixture of categorical data, like breed or
colour, and quantitative data, like size and weight. Features may already be present
in the data or new ones may be engineered from the data available.

These data are then used with an algorithm that processes the data and produces

output such as a classification or a predicted value. For example it may predict the
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breed of dog (a classification), or it may try to predict the weight of the dog (a fore-
cast or regression). The quality of this prediction is then evaluated using a metric.
In the case of a predicted value, that may be the error in the value, or in the case of
a classification it may be the classification accuracy or some other suitable metric.
For this investigation, bNIRS data was collected from eight different, healthy, phys-
iologically normal subjects in a block test design using the CYRIL NIRS system,
previously described by Bale et al. [2014], at a sample rate of SHz. Two sensors
were used: a short separation sensor at 10 mm, and a long-separation sensor at
30 mm. Six different artefacts were simulated - horizontal motion (shaking head),
vertical motion (nodding head), frowning, pressure on sensor, ambient room light
and directed torch light - in ten second blocks repeated twice, with ten seconds of
rest between each, leading to roughly 50 data points for each block. Figure 3.5
shows the oxyhaemoglobin trace generated during the artefact simulation exercise.
A number of significant artefacts can be seen, particularly towards the end of the
time series.

The start and end point of each artefact, as well as the start and end points of the
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Figure 3.5: Example of artefacts in the total haemoglobin trace of NIRS data. Each artefact
type simulated is marked in a different colour, with the signal where no trace
occurs in blue. It is clear that some artefacts, such as ambient light, have a
bigger impact on the signal than others, such as vertical movement.

experiment, were marked in the output data as an event using the CYRIL software.

All artefacts were simulated in the order listed above for all subjects.
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At each time point a spectrum of light was collected for 1340 wavelengths between
610nm and 920 nm. When applying a machine learning algorithm to this data it is
important to note that not only does this data have an extremely high dimensionality,
but it can also be deemed to be functional i.e each wavelength is functionally related
to its neighbouring wavelengths. Many machine learning approaches assume data
points to be independent. In order to reduce the dimensionality and generate fea-
tures that are not functionally related, feature engineering was undertaken.

Feature engineering describes the process by which new features are generated from
existing data. In the case of the spectral data used here, this was done to reduce di-
mensionality and remove any obvious functional relationship between features.
Four features were generated for each spectra, with the distributions of the values
for each sensor and for both sensors combined plotted. These four were selected

based on heuristics and empirical observations of the spectra from expert users.

Area Under Curve (AUC) Many artefacts, particularly those due to changes in
light, showed an increase in intensity for many wavelengths. With the spectra rep-
resenting the photon count at specific wavelengths, an increase in the area under
the curve (spectrum) represents an increase in intensity. The area was calculated in

Numpy [van der Walt et al., 2011] by integrating using the trapezoidal rule.

Fractional Power Density The ambient light artefact is one of the most noticeable,
as the fluorescent lights used in the room led to spikes in intensity at specific wave-
lengths, as seen in 3.5¢c). It was found that the fraction of the integrated power den-
sity spectrum occupied by the top 99% of frequencies (referred to as the fractional
power density) was generally lower in the spectra containing ambient artefacts as

compared to a control.

Autocorrelation Autocorrelation is the correlation of a signal with a time delayed
copy of itself as a function of delay. Because autocorrelation is often used to iden-
tify information that is otherwise hidden by noise, a difference between the control
spectra and spectra due to artefacts was expected, as well as a difference between

spectra from each artefact.
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Sample Entropy Sample entropy is a modification of approximate entropy, chosen
due to it being more computationally efficient, and is a measure of the complex-
ity level within a signal [Richman and Moorman, 2000]. It was expected that by
applying it to the spectra, a difference in complexity between artefacts and control
signals would be observed.

Figure 3.6 outlines the machine learning process. For each subject, i, the spectrum
at each time point, ¢; was converted into a 4-dimensional feature vector, x; ; of
the form <xl-7 il Xi j25 Xi 3, Xi, j,4> and assigned a classification y; ; according to the
artefact simulated at that time point. This data set was then split into test and train-
ing sets, based on the subject number, i, using a k-fold method. This ensured that
the algorithm was tested on data from an unseen subject, preventing information
about that data leaking into the training process.

The training data was then fed into a machine learning pipeline consisting of two
main steps: scaling and estimation. Scaling was done using the ‘RobustScaler’
from the Scikit-learn library [Pedregosa et al., 2011] to ensure all features were
roughly equatable in terms of magnitude. This removes the median and scales the
data according to the interquartile range. Without this step, features that were of
significantly different magnitudes to others e.g AUC, may receive undue weighting
in the estimation process. The estimation method chosen was a Random Forest
Classifier [Breiman, 2001], which can natively handle multiclass classification
problems natively, unlike a binary classifier which requires an additional step to
convert from multiclass to binary, and has been shown to be a robust method with
minimal requirements for extensive tuning.

The classifier was fit using a grid search, cross validation method [Hsu et al., 2008].
The training data was split by subject into training and test sets M times, thus
allowing retesting of the method on different permutations of the overall training
set. The classifier was run for different parameter combinations, and the set that
provided the best final score was chosen as the best estimator. This was then trained
on the total training set and tested on the initial test set. This final score allows the

effectiveness of the chosen method to be evaluated.
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The metric chosen here was the ‘weighted F1-score’ [Chinchor, 1992], which takes
into account both precision (p) and recall (r) and was defined as F1 = 2%. A
perfect classification has a score of 1, whilst no correct classifications would have
a score of 0. Because it takes into account both precision and recall, it was able
to deal with the class imbalance inherent in our data. Precision is the fraction of
correct classifications for a class j out of the total number of predictions of that
class, whilst recall is the fraction of correct classifications for a class j out of the
total number of actual occurrences of that class. By using both of these measures,

we ensure that an estimator was developed which finds all occurrences of an artefact

J without making too many false classifications.

Computational Tools All of ABroAD was implemented in Python, using SciKit-
Learn [Pedregosa et al., 2011], Numpy [van der Walt et al., 2011] and Pandas [Mck-
inney, 2010]. Data visualisation was done using Matplotlib [Hunter, 2007] and
Seaborn [Waskom et al., 2017].

3.4.1 Results

Training and test sets were selected randomly, splitting by subject. The same test
and training splits were used for all results. The algorithm was trained using data
from subject 1, 2, 3, 4, 6 and 8 and tested against data from subjects 5 and 7.

A green horizontal line is marked on the bar charts to show Fl-scores greater than
0.7. The choice of 0.7, whilst having no particular significance, does provide a
reasonable benchmark to compare classification between artefacts against. Three

combinations of artefacts were considered:

All All artefact types were used for training and testing.

Motion Only control and motion artefacts were used:

Horizontal, Vertical Pressure, Frowning.

Light Only control and light artefacts were used: Ambient, Torch.

Figure 3.7 shows the f1-scores for the short and long separation sensors, with dif-

ferent bars showing each run type. Scores for the long-separation sensor are gener-



3.4. ABroAD 68

ally better than those for the short-separation sensor, with scores for all light-only
artefacts being above the chosen threshold of 0.7 for all three metrics. Scores for
light-only runs also generally outperform runs for all artefacts and for motion-only
artefacts.

In both short and long separation sensors, the control spectra can be identified rel-
atively well when only looking at light artefacts. This suggests that even where the
type of artefact cannot be determined, the presence/non-presence of an artefact can
still be identified.

The average F1-score for the light-only dataset is significantly higher than the av-
erage score for the datasets containing all artefacts. This high level of accuracy is
clearly visible in Figure 3.8, which shows the oxyhaemoglobin trace for the control
and light-based artefacts. The artefact labels shown in 3.8b were predicted using
spectra from the long-separation sensor and without any motion based artefacts in
the dataset.

In general, the motion artefacts scores are much lower than the light artefact scores,
with the horizontal and vertical artefacts rarely being correctly identified. This may
be due to one of two reasons: a) the choice of features didn’t capture sufficient infor-
mation for these artefacts, or b) during data collection, the simulation process was
not sufficient in generating an artefact within the data. The method shown here has
great promise. At least one subset of artefacts (light artefacts on the long-separation
sensor) were correctly identified to a good level.

In order to develop the process further, two steps are required. A dataset needs to
be collated that has time series and spectra collected during ‘normal/typical’ usage,
with artefacts then correctly labelled. The use of “synthetic” artefacts is suitable
for exploratory work, but the artefacts simulated may not be representative of those
found in real data. In particular, some of the spectra labelled as containing an arte-
fact show very little difference as compared to the control spectra, suggesting no
artefact was actually simulated during data collection. Defining what qualifies as
an artefact will allow datasets to be correctly labelled and improve the usability of

these methods.
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Secondly, in this exploratory work, only four features have been engineered from
the data and a number of artefacts are unable to be identified using from these. If
other features can be engineered from the data that allow better separation of one
or more of the poorly performing artefacts, the classification power of the machine
learning process could be improved greatly. Thus, future work should consider de-
veloping new features from the data and using this to improve the machine learning
pipeline. However, in order for this to be successful, it is also a necessary prereq-
uisite that more data are collected to allow more and more rigorous training of the
model. It is also important that any further data also include genuine physiological
events that could be mistaken for artefacts by an alternative method. This would
be both the key test of the ABroAD method, as well as being the most important
component of model development. Without including data that contain the events
of interest, it would be impossible to train the algorithm to recognise them and to
validate that the method will not incorrectly identify these as artefacts.

Once a trained algorithm has been developed and tested sufficiently, there is the
potential for real time identification. Incorporating this method alongside existing
systems could allow for collected data to have potential artefacts marked in the time
series, improving the efficiency of data curation.

Finally, the ability of the model to identify light artefacts to a good degree could be
extended to non-broadband systems by collecting light data through a small external
sensor. This externally collected light data can then be fed into a similar pipeline

and used to identify light-based artefacts.

3.5 Conclusion

In this chapter I have outlined a number of measurement techniques (EEG, MRI,
MRS and NIRS)and how they can be used to monitor the brain. I then outlined
systemic measurement techniques, of particular interest here as it is systemic data
that are used to drive the BrainSignals models and reproduce cerebral physiology
measurements. I then discussed a little bit about the interpretation of these measure-

ments before outlining work done to try and improve on this. This work focussed
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on the development and use of a novel machine learning based artefact detection
technique called ABroAD which was develoepd to determine physical and light-
based artefacts in bNIRS data. Whilst this technique was not ultimately successful
enough to be used widely, it was able to be used sufficiently well in order to iden-
tify light-based artefacts. Further research into its use would require more data that

contained labelled, accurate signal collected during verified artefact events.
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Figure 3.7: Fl-scores for each artefact on each sensor, with separate bars for each run type.
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Figure 3.8: Trace of the HbO2 signal showing just control and light artefacts. Figure 3.8a
shows the actual artefacts whilst figure 3.8b shows the predicted when using
spectra from sensor 7. A high level of accuracy is clearly visible when distin-
guishing between control spectra and light artefact spectra.



Chapter 4

Mathematical Modelling

Mathematical modelling has been a key component of science and research for
centuries, ranging from astrophysical models of the stars through to more modern
systems biology models of cell-level phenomena. In this chapter we start by pro-
viding a brief overview of mathematical modelling and its uses before moving on
to look at various model of cerebral physiology and dynamics. Finally we look at

the history of modelling within the UCL group.

4.1 Mathematical Modelling

When trying to understand data and physical phenomena, it is often useful to de-
velop a model that can be used to explain behaviour and make predictions. As has
been mentioned previously, George Box is oft-quoted as saying that “All models
are wrong, but some are useful". He first referred to this concept in Box [1976]

outlining the following

2.3 Parsimony Since all models are wrong the scientist cannot obtain
a "correct" one by excessive elaboration. On the contrary following
William of Occam he should seek an economical description of natural
phenomena. Just as the ability to devise simple but evocative models is
the signature of the great scientist so overelaboration and overparame-

terization is often the mark of mediocrity.

2.4 Worrying Selectively Since all models are wrong the scientist must

be alert to what is importantly wrong. It is inappropriate to be con-
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cerned about mice when there are tigers abroad.

This principle must inform all work we do with regards to mathematical modelling.
The purpose of the models is not to simply replicate as exactly as possible the
phenomena or system in question, but it is to do so in a manner that provides insight
and knowledge. In fact, if you want a model that is accurate but uninformative you
are best to use the original system.

A useful model should use appropriate simplifications that reproduce the behaviour
to a good degree of accuracy whilst also developing our knowledge of the original
system. There are a variety of ways in which this can be achieved, two of which are

outlined below.

4.1.1 Mechanistic vs Statistical Models

There are two distinct modelling approaches that need to be considered in this
work, statistical (or empirical) and mechanistic, focussing on their use in analysing
time-series data. When considering these approaches for an open system, where the
system has external interactions, we could potentially also term these ‘black box’
and ‘white box’ models, with black box models accounting only for the behaviour
of the stimulus and response and the inner workings being ‘hidden’.

These two approaches have a reasonable amount of overlap but Kendall et al. [1999]
highlight four distinct differences a) the goals of the analysis, b) the way in which
the time series is treated, c¢) the kinds of models that are developed and d) the
methods used for judging the models’ explanatory power. In particular, the goals
of the analysis provides the simplest description for difference in the approaches.
A statistical model seeks to ‘describe the data and extrapolate it into the future’,
whilst a mechanistic model seeks ‘typically to understand the causes of a generic
phenomenon’ [Kendall et al., 1999].

The BrainSignals models considered within this work are mechanistic models.
They take a ‘bottom-up’, systems biology approach towards understanding the
mechanisms and behaviours of the brain’s physiology. It is through the emergent
behaviour of this system that we attempt to understand how the brain works. This

is explored in further detail below.
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Whilst there are many way to classify models into different groups, and inevitably
there will always be ‘shades of grey’ between those groups, the focus in this section
is to look at what we term systems biology models and black box models. Before
beginning it is important to clarify what we mean by both of these terms and also
how they potentially coincide with the above description of mechanistic and statis-

tical models.

4.2 Brain Physiology Models

Attempting to model the physiology of the brain and its resulting complex behaviour
is a challenge that is both interesting and incredibly difficult. Many different ap-
proaches have been taken, focussing on different phenomena, functions or physiol-
ogy. Attempting to comprehensively review and discuss all of these is beyond the
scope of this work but a number of models are listed in Appendix A covering cir-
culation, metabolism or both. Some models deal with whole brain physiology but
where that is not the case their work can be considered important or relevant to the
development of such a model. The Focus column attempts to group the model or
paper into one or more BrainSignals sub-compartments and as such it may involve
generalising a model that is more specific than this column may imply.

A number of models relevant to this work are explored in further detail below. By
detailing these models and some of the results that they have led to it should be-
come clear the benefit of approaching some of these problem areas via mathemat-
ical modelling. The models show how it is possible to identify extra information
from measured data, as well as how models can be used to propose and examine

hypotheses around expected and observed behaviour.

4.2.1 Ursino-Lodi Models

The first Ursino-Lodi model, Ursino-Lodi (1997) was published in 1997 [Ursino
and Lodi, 1997] and was based on simplifications of an earlier model published in
1988 [Ursino, 1988a, Ursino et al., 1998] combined with cerebral autoregulation

(AR) mechanisms. These AR mechanisms were simulated via time constant and
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a sigmoidal static characteristic. The model was use to simulate interactions be-
tween intra-cranial pressure (ICP), cerebral blood flow (CBF) and AR. The model
was capable of reproducing clinical phenomena concerning ICP changes but could
not be used for studying ICP pulsations that were synchronous with cardiac beat or
respiration.

The Ursino-Lodi(1997) model was used as the basis for a an extended model pub-
lished in Ursino and Lodi [1998], the Ursino-Lodi model (1998). This model is
of particular note as it served as an integral part of the BRAINCIRC model [Ba-
naji et al., 2008], which is outlined in further detail in Section 4.3. The Ursino-Lodi
(1998) model extended both Ursino and Lodi [1997] and Ursino et al. [1998] to pro-
duce a combined physiological model of hydrodynamics and CO, reactivity in the
brain. It investigates the relationship CBF, cerebral blood volume (CBV), ICP and
the regulatory mechanisms of CO; reactivity and AR. Key aspects of this model
over previous versions were the aforementioned inclusion of CO, reactivity , its
nonlinear interaction with ICP and cerebral AR and the description of the transcra-
nial doppler velocity signal, which can be linked to measurement of V,,.,. An elec-
trical analogue of the intracranial dynamics, taken from Ursino and Lodi [1998], is
shown in Figure 4.1. Simulation results from the model were encouraging and sup-
ported data on CBF and CBV reported in the literature concerning both the separate
effects of CO, and AR, as well as their nonlinear interaction. The model was used
for further study in Ursino et al. [1998].

This model was further simplified in Ursino et al. [2000], mainly through not dis-
tinguishing between large and small pial arteries and the use of a windkessel model
to reproduce the biomechanics of the arterial-arteriolar vasculature. This was val-
idated against ICP and middle cerebral artery velocity (Vmca) data collected from
13 patients, with the model able to reproduce time patterns seen in the monitoring
systems using parameter values within range reported in the literature. The Ursino-
Lodi (1998) model was also used in Ursino and Giulioni [2003] to investigate the
relationship between Vmca pulsatility and cerebral AR, coming to a number of con-

clusions. One notable finding was that they identified a linear relationship between
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Vmca and cranial perfusion pressure (CPP) for a wide range of CPP values and that
the slope of this linear relationship may provide information about the AR status.
Removed due to copyright

Figure 4.1: Electrical analogue of the intracranial dynamics found in the Ursino-Lodi
(1998) model. Electric analog of intracranial dynamics. G and C;, hydraulic
conductance and compliance, respectively, of proximal cerebral arteries; G,
and C,, hydraulic conductance and compliance, respectively, of distal cerebral
arteries; P,, systemic arterial pressure (SAP); P, and P», intravascular pressure
of large pial arteries and medium and small arteries, respectively; q, CBF; P,
and P,, capillary and cerebral venous pressure, respectively; P, and P, si-
nus venous and central venous pressure, respectively; P, ICP; C;., intracranial
compliance; G, and C,;, hydraulic conductance and compliance of large cere-
bral veins; Gy, hydraulic conductance of terminal intracranial veins (bridge
veins and lateral lacunae or lakes); G,, and C,., hydraulic conductance and
compliance, respectively, of extracranial venous pathways; Gy and G,, con-
ductances to cerebrospinal fluid (CSF) formation and CSF outflow; g and q,,
rates of CSF formation and CSF outflow; and I;, artificial CSF injection rate.
Image and caption taken from Ursino and Lodi [1998]

4.2.2 Aubert-Costalat and Cloutier Models

The Aubert (2001) model [Aubert et al., 2001] attempted to group various aspects of
brain functional imaging, such as functional magnetic resonance imaging (fMRI),
MRS, electroencephelography, magnetoencephelography, within a coherent frame-
work. It implemented a system of differential equations modelling: 1) sodium
membrane transport, 2) Na/K ATPase, 3) neuronal energy metabolism (glycolysis,
buffering effect of phosphocreatine (PCr), mitochondrial respiration) 4) blood-brain
barrier exchange, and 5) brain haemodynamics. They assumed that the correlation
between brain activation and metabolism could be due to either changes in ATP
and ADP following activation of Na/K ATPase that result from changes in ion con-
centration, or the involvement of a second messenger, such as calcium, in different
phases of metabolism. Following comparison with measured data, it is this second
hypothesis that they posit to be the case, however the nature of this second messen-
ger was not identified.

The Aubert (2001) model was then used as the basis for the Aubert-Costalat (2002)
model [Aubert and Costalat, 2002]. This model developed the Aubert (2001) model

further and included: 1) electrophysiology via the inclusion of membrane sodium
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currents, 2) energy metabolism (ATP regeneration via PCr buffer effect, glycoly-
sis, aerobic metabolism), 3) glucose, O; and lactate blood-brain barrier exchanges,
4) haemodynamics aspects including the impact of CBF on these exhanges, and
5) linking model results to BOLD data by including venous dilation processes that
occur during stimulation (via the use of the Balloon model [Buxton et al., 1998]).
They tested four hypotheses on the behaviour of the cerebral metabolic rate of O,

(CMRO>), especially during sustained activation:

HI1) CMRO; remains at its baseline level during stimulation.

H2) Assume that CMRO; increases according to a trapezoidal function

H3) CMRO; depends on intracellular O, and pyruvate concentrations and is reg-

ulated by the ATP/ADP ratio.

H4) In addition to hypothesis H3, CMRO; progressively increases due to the pres-

ence of a second messenger.

Aubert and Costalat were able to obtain good agreement between model simula-
tions and experimental data under hypothesis H3 and H4 as opposed to H1 and H2.
In addition, by looking at the effects of varying a number of physiologically signifi-
cant parameters on the time course of the simulated BOLD signal, they were able to
use the model to formulate hypotheses about the physiological and/or biochemical
significance of features in the fMRI data, especially the poststimulus undershoot
and the baseline drift.

Aubert and Costalat [2005] introduces a compartmentalised model (Aubert-Costalat
(2005) model) of energy metabolism in neurons and astrocytes. Neuronal and astro-
cytic metabolisms are described based on the Aubert-Costalat (2002) model. They
use the model to investigate the Astrocyte-Neuron lactate shuttle (ANLS) hypothe-
sis of astrocyte provided lactate being an energy fuel for neurons, adopting hypothe-
ses highly unfavourable to ANLS. Simulation results always displayed ANLS for
at least some time period and could be divided into two groups. At lower neuronal

stimulation, ANLS can occur during a prolonged activation as well as during the
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poststimulus period, whilst at higher neuronal stimulation ANLS occurs preferably
at the start of stimulation and in the poststimulus period. They determined that ex-
perimental data available at the time on lactate kinetics was compatible with the
ANLS hypothesis.

Cloutier et al. [2009] takes a systems approach towards modelling brain energy
metabolism and is based on the Aubert-Costalat (2005) model but with the inclu-
sion of glutamate cycling. The co-ordination of neuronal and astrocytic responses
to stimuli is controlled by glutamate cycling between the two cells, activating the

sodium pump in astrocytes to maintain the sodium gradient.

4.2.3 Orlowski Models

The Orlowski models are based on the Cloutier (2009) model. The first of these
is the Orlowski (2011) model [Orlowski et al., 2011]. It is composed of four com-
partments: astrocytes, neurons, capillary vessels, and extracellular volume. One of
its key aspects is the inclusion of pH dynamics. The model structure is shown in

Figure 4.2 with modifications from the Cloutier (2009) model shown in red. The

Removed due to copyright

Figure 4.2: Diagram representing the structure of the Orlowski (2011) model. Modifi-
cations in red indicate the changes made to the Cloutier (2009) model to allow
the computation of pH dynamics in brain cells.

Image taken from Orlowski et al. [2011].

authors assume a linear relationship between the concentration of H* ions and the
concentration of ATP, PCr and the production of lactate. the authors focus on mod-
elling pH dynamics following ischaemic stroke. The model is in good agreement
with previously published data for pH values under total ischaemia. The results of
the model for 80% ischaemia are shown in Figure 4.3. Of note is the reduction
in pH for both astrocytes and neurons. This reduction is stated by the authors to
be a linear function of the decrease in CBF. The Orlowski model was developed
further in Orlowski et al. [2013] to include extracellular metabolite concentrations.
This was done to investigate tissue damage caused by oedema following ischaemic

stroke. Results from this model are shown in Figure 4.4 under two experimental
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Removed due to copyright

Figure 4.3: Model simulation results from a CBF reduction of 80%. Variations of pH,
intracellular LAC, CO2t, intracellular energy stores and sodium concentration
as a function of time after a CBF reduction of 80% of initial value. Where not
mentioned plots are given for neurons.

Image and caption taken from Orlowski et al. [2011].

conditions: with sodium diffusion and with no sodium diffusion. A cubic element
of side 1 cm was used to represent tissue under ischaemia to compute the flux ow-
ing to diffusion and the space surrounding the cube was assumed to have a constant
concentration of sodium ions irrespective of the flux through the cube. Figure 4.4a
shows extracellular space fraction under each condition, Figure 4.4b shows intracel-
lular space under each condition and finally Figure 4.4c shows the neuronal sodium
ion concentration under each condition. The authors note that with diffusion extra-
cellular volume decreases less than without diffusion whilst there is also an increase
in sodium and chloride into the cell. should these additional ions come from cap-
illaries rather than the extracellualr space then there would be an increase in brain
volume. The model was then used to observe the diffusion process at the tissue

level. This was done for a cubic mesh of 1000 cubic cells for 1000 cm? volume.

Removed due to copyright

Figure 4.4: Model simulation results from a CBF reduction of 89 % using the Orlowski
(2013) model. (a) Size evolution of the extracellular and (b) cellular space; (c)
and of neuronal sodium concentration after a reduction of blood flow by 90%.
Two cases are taken into account: with or without sodium diffusion-enabled.
Image and caption taken from Orlowski et al. [2013].

4.3 UCL Models

The BCMD framework was developed to run a number of different mathematical
models of brain haemodynamics and metabolism. These models are often extremely
complex and do require a reasonable amount of domain knowledge to understand.
It is recommended that if you are not familiar with these models that you read their

relevant papers in order to better understand them. Figure 4.5 provides an outline
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of the history of the models and the general relationships between each.

2005 BRAINCIRC

2008 BrainSignals

2012 BrainPiglet —‘
BrainSignals
2015 BrainPigletHI

BSX

il

2016

2018 BPHypothermia

Figure 4.5: Hierarchy of existing BrainSignals models.

4.3.1 BrainCirc

The BrainCirc model was first introduced in Banaji [2004] and consists of three
‘sites’: blood vessels, brain tissue, and vascular smooth muscle (VSM). The blood
vessels model is based on an earlier model by Ursino and Lodi [1998]. It con-
tains many more parameters than its successors and focussed on modelling the
biophysical and biochemical processes in detail, as opposed to the interpretation
of clinically-measurable signals. It was run using the now retired BRAINCIRC

interface.

4.3.2 BrainSignals

The BrainSignals model [Banaji et al., 2008] is a simplification of the earlier Brain-
Circ model, adding the ability to model metabolism. All of the BrainSignals derived
models retain the same general structure, with many of the inputs and outputs re-
maining the same, with small variations to allow for model specific additions such
as scalp blood flow. A simplification of this structure is shown in figure 4.6. There

are four constituent submodels - blood flow, oxygen transport from blood to tis-
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sue, oxidative metabolism within the tissue and measurement - with a number of
state variables passing information between them. In Banaji et al. [2008] a range of
model simulations were presented and simulated data were compared to published
data obtained from both in vivo and in vitro settings. It was shown that the model
was able to reproduce observed behaviour in response to stimuli and the authors
outline their hope that the model could be used to understands NIRS signals, par-
ticularly the oxCCO signal.

The BrainSignals model was also used in Jelfs et al. [2012], which noted that the
interpretation of physiological data are a highly non-trivial precondition to using
non-invasive measurement methods in a clinical situation. The authors explored
the use of BrainSignals to explain and predict physiological signals. Five signals
were all non-invasively-measured during hypoxemia in healthy volunteers: the dif-
ference in haemoglobin (AHbD =AHbO, — AHHD), the total haemoglobin (AHbT =
AHbO; + AHHDb), tissue oxygen saturation (TOS) and the change in cytochrome ¢
oxidase (AoxCCO) measured using near-infrared spectroscopy and the middle cere-
bral artery blood flow measured using transcranial Doppler flowmetry. They found
that optimising the model using partial data improved its predictive power, but some
discrepancies between model and data persisted despite model optimisation. It was
suggested that this could either be used to flag up important questions concerning
the underlying physiology, and the reliability and physiological meaning of the sig-
nals, or that the model is missing certain physiological mechanisms which would
need to be included.

A number of derivative models have been built on top of BrainSignals, such as the
simplified BSRV [Caldwell et al., 2015a] which reduced the number of variables
and parameters within the model by making various simplifications. This was then
developed further to include a scalp submodel and used to investigate the poten-
tially confounding effect of systemic physiological factors on NIRS measurements
[Caldwell et al., 2016].

BrainSignals Revisited (BSRV) [Caldwell et al., 2015a] is a simplified version of

BrainSignals. The original model was refactored before considering a number of
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Figure 4.6: Simplified representation of the BrainSignals structure. The model consists
of four subcompartments - Blood Flow, Oxygen Transport, Metabolism and
Measurement - with Measurement having no input back into the other com-
partments due to it being solely for reproducing measurement data. Model
inputs are shown in red and model outputs are shown in blue.

linearity assumptions in some relationships to reduce the number of parameters and
the overall model complexity. This would serve to reduce the number of parameters
that need to be optimised as well as providing an increase in the run speed. A num-
ber of model variants were developed that were then tested against simulated and
experimental data from healthy adults undergoing a hypercapnia challenge. To de-
velop the model variants, the haemodynamics and metabolic submodels were sub-
stituted with multiple simplified alternatives. The two best performing variants of
each submodel were then combined and these combinations were compared to the
full BrainSignals model. It was found that the best performing simplified models
were able to reproduce the behaviour of the full BrainSignals model. The authors
suggest that the ability to obtain similar behaviour from a simplified variant points
to superfluous complexity within the full model. They do note, however, that the
context in which the model is being used also dictates what features are superflu-
ous, with some behaviours perhaps only important in a small subset of all use cases.

Additionally, the simplification process inevitably leads to the loss of some infor-
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mation through the omission of numerous details of internal processes. However,
the details were removed in part due to the difficulty in interpreting them. The rel-
evance of the simplified model to different physiological and pathophysiological
conditions will require specific testing.

The simplified BrainSignals model was later extended to model extracerebral con-
tamination in a version called BrainSignals eXtended (BSX) [Caldwell et al.,
2016]. Contamination of NIRS signals can come from blood flow in extracerebral
tissue layers due to systemic changes such as blood pressure and oxygen satura-
tion. The inclusion of a scalp submodel within the BrainSignals model allowed the
effects of extracerebral blood flow on the haemoglobin NIRS signals to be investi-
gated, as per figure 4.7. The results showed that confounding effects from systemic
physiological factors can produce misleading haemodynamic responses in both pos-
itive and negative directions, leading to both false positive and false negative signal
outputs. This suggests that it is important to record potential confounders in the
course of fNIRS experiments. The model may then be able to attribute the observed

behaviour to the correct cause.

Cerebral
Elood Flow

Cerebral
Metabolism

NIRS (CCO) NIRS {Hb)

Figure 4.7: A simplified representation of the BrainSignals eXtended structure, as per
Caldwell et al. [2016].
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4.3.3 BrainPiglet

The BrainSignals model was also adapted for use in interpreting data from stud-
ies using a piglet model, a common surrogate for the neonatal brain. The models
based around this data are often called BrainPiglet models [Moroz et al., 2012a].
Amongst other things, they have been used to investigate the effects of hypoxic-
ischemia on the brain [Caldwell et al., 2015b], including functionality to simulate
cell death due to oxygen deprivation.

The initial BrainPiglet model was an extension of the BrainSignals models that was
used to predict NIRS measurements of the human adult brain.The original model
was altered to apply to the anaesthetised piglet brain. It includes metabolites mea-
sured by 3'P-MRS, namely PCr, inorganic phosphate, and ATP. In Moroz et al.
[2012a], the model simulations are compared to measurements from piglets with
anoxia. The NIRS and MRS measurements were predicted well, although this re-
quired a reduction in blood pressure AR. In addition, the cerebral rate of oxygen
consumption and the lactate concentrations were predicted using the model, but
were not measured experimentally due to the difficulty in doing so. The model was
then used to investigate hypotheses regarding changes in CCO redox state during
anoxia.

The BrainPiglet model was extended in Hapuarachchi et al. [2013] to investigate
changes in neonatal intracellular brain pH during hypoxia-ischemia. As in the pre-
vious version, the model can simulate NIRS and MRS measurements obtained from
experiments in piglets.>'P-MRS data were used to estimate intracellular pH and to
compare simulated pH and oxygenation with measured values. Hapuarachchi et al.
[2014] investigate changes in cerebral haemodynamics during and after cerebral
hypoxia-ischaemia (HI) in 15 piglets, using the BrainPiglet model alongside NIRS
and 3'P-MRS data. The model was used to simulate HI using the measurements,
using sensitivity analysis to identify important parameters that were then optimised.
They successfully simulated changes in cellular metabolism including shifts in in-
tracellular pH observed in the piglet brain during HI. The model fitted the data

reasonably, suggesting a 20% drop in glucose consumption, 65% increase in lactate
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concentration and 35% drop in cerebral metabolic rate of oxygen during HI.

BrainPigletHI is the most recent modification to the BrainPiglet model, developed
to look specifically at the effects of hypoxia-ischemia on the neonatal brain, using
measurements from the neonatal piglet brain. Figure 4.8 shows the general structure
of the model, with changes to the original BrainPiglet model shown in red. There
are a number of key modifications: a) the addition of a compartment to model
carotid occlusion, a technique used experimentally to model HI, ) the modelling of
cytoplasmic pH, which affects the metabolic processes during HI, and is an impor-
tant contributor to a measurable signal and c¢) a representation of cell death, which
is a possible explanation for the non-recovery observed in some experimental data.
The model was used to simulate data from two piglets: one showing recovery fol-
lowing injury and the other not, with signals not returning to their initial baseline
following the injury. Initially the model was optimised using data up to the nadir
of the injury in both piglets. Without the inclusion of cell death, only the recover-
ing piglet is modelled reasonably well, with the simulation returning to its initial
baseline for both piglets. With the inclusion of cell death, the model shows a much
better simulation of the non-recovering piglet, with the cell death parameter fitted

to the post-injury data.

4.4 Conclusion

In this chapter I have outlined a brief history of mathematical modelling of the
brain, focussing in particular on those models that could be deemed to fall within
the category of systems biology models. Systems biology refers to a mathematical
approach within biology to understand the holistic and emergent behaviour of bi-
ological systems by bringing together the multitude of individual processes that in
combination produce the larger macro behaviour of the system. A number of these
models, particularly the Ursino-Lodi models, served as the basis for the BRAIN-
CIRC and BrainSignals models developed at UCL. These models and the work

they have been used in were also discussed and described. By introducing these
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Figure 4.8: Structure of the BrainPigletHI model with major changes shown in red. Key
modifications include the ability to model occlusion of the carotid artery, model
cytoplasmic pH changes and a representation of cell death. Source: Caldwell
et al. [2015b]

models here we serve to establish the foundation upon which future research within
this thesis will be built. We highlight the strengths and weaknesses of these models,

allowing the research presented herein to be compared and evaluated in context.



Chapter 5

Model Analysis

5.1 Analysis Techniques

Prior to the work undertaken in this PhD to include Bayesian analysis techniques,
there were a number of model analysis method already built into BCMD. These can
broadly be split into sensitivity analysis techniques and model optimisation tech-

niques. The uses and specific implementation of each of these is explained below.

5.1.1 Sensitivity Analysis

Sensitivity analysis is principally used in the BCMD framework as a form of model
reduction. With the BrainSignals models being inherently very complex, with an
incredibly high number of parameters, variables and equations (see Table 5.1), it is
important that in order to successfully optimise the model to a given dataset or sit-
uation that we use a reduced model that is reliable and reflective of the phenomena
or dataset at hand. If the model is not reduced, optimisation methods are likely to
be either unable to find an optimal solution or to take an excessively long time.
Froysa et al. [2018] talks about model reduction in biochemical network dynam-
ics, where the high number of ODEs in the system makes it difficult to analyse the
dynamics, much as is the case with the BrainSignals models. They state that model
reduction is important in such a situation in order to “identify the main components
governing the dynamics of the system” and that the “reduced model should be sim-
pler to analyse, but retain the dynamical behaviour of the original model." They

discuss three potential methods - lumping of parameters, time-scale separation to
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Brain
Model BRAIN  Brain Brain Signals  Brain
CIRC Signals  Piglet Revis- PigletHI
ited
Year 2005 2008 2013 2015 2015
Focus Adult Adult Piglet Adult Piglet
Reactions 81 5 17 5 17
leferf:ntlal 5 9 71 9 71
Equations
Algebraic |, 3 3 3 3
Relations
Variables 168 40 128 22 128
Parameters | 697 139 226 73 227

Table 5.1: Table highlighting the complexity of the BrainSignals family of models, detail-
ing the number of reactions, differential equations, algebraic relations, variables
and parameters.

separate slow and fast dynamics on to separate time scales and finally sensitivity
analysis which they describe as being where “the parameters with the least effect
on the system output are neglected”.

Over the course of its development, the BrainSignals models have had all of these
approaches applied to them in an attempt to reduce their complexity. The previously
mentioned BrainSignals Revisited model is a perfect example of lumping multi-
ple parameters into one equivalent parameter, and the model contains time-scale
separation in multiple places, specifically when considering autoregulation where
different physiological inputs are allowed to operate over different time scales. Fi-
nally, sensitivity analysis is always performed before optimising the model to a new
phenomena or dataset. This allows us to focus the optimisation only on those pa-
rameters that have the most impact on the output of the model.

In the BCMD framework there are multiple sensitivity analysis methods available
to the user. Before exploring these in detail there is an important note that should
be made. All of these methods use a single summary measure in order to determine
their final score. This summary measure is typically a distance or error metric be-
tween the “true”, measured data and the model output. However, as will be made

clear in Chapters 7 to 9, this is not always the best measure to use. Where we want
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to identify a specific behaviour the measure needs to be changed to accurately re-
flect this behaviour e.g. if we were to only want to reproduce a gradient using the
model, the best summary measure may be one that looks at the difference in gradi-
ent between the measured and simulated data.

BCMD contains the following sensitivity analysis methods by default:

1. single: Each selected parameter is varied across its range individually, while
all other selected parameters are kept at their default value. Scales O(np), for

p parameters and n levels.

2. pairwise: Each pair of selected parameters is varied jointly across their
ranges while all other selected parameters are kept at their default. Scales

O(n?p?), for p parameters and n levels.

3. cartesian: All selected parameters are varied jointly. That is, every possible
combination of the available levels of all parameters is tried. Scales O(n”),

for p parameters and n levels.

4. morris: All parameters are varied by single steps in random sequence. This
is an implementation of the Morris ’elementary effects’ sampling scheme for
sensitivity analysis [Morris, 1991, Campolongo et al., 2007]. A single ‘tra-
jectory’ (of p+1 steps) samples sequential changes to all parameters. Scales

O(kp), for p parameters and k trajectories.

5. fast: Parameters are varied jointly along oscillatory trajectories with disjoint
frequencies in each dimension. This is used for FAST sensitivity analysis

[Saltelli et al., 1999]. Scales O(kp), for p parameters and k samples.

Method descriptions are taken from Caldwell [2015]. In general, the Morris method
is the one most likely to be used due to its suitability for models with a large number
of parameters. It is this method that is described here and that was used in the

research undertaken for this PhD.
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Morris Method

The Morris method is one of the most popular sensitivity analysis methods for mod-
els with a large number of parameters. It varies one factor (parameter) at a time and
is therefore known as an OAT method. It aims to determine parameters with effects
that are 1. negligible, 2. linear and additive, and 3. non-linear or involved in interac-
tions with other parameters. Two sensitivity measures were proposed by Morris for
each parameter: u, which gives an estimate of the overall effect of the parameter on
the output, and o, which estimates the ensemble of the second- and higher-order ef-
fects in which the parameter is involved, including interaction effects. Furthermore,
work by Campolongo et al. [2007] introduced a third , @, which “is the estimate of
the mean of the distribution of the absolute values of the elementary effects" and
avoids the problem of opposite sign effects in a non-monotonic model cancelling
each other out. This measure is the one used in this research as it is more effective
at identifying parameter importance [Saltelli et al., 2004, Morris, 1991].

The method suggested by Morris is based on what is called an elementary effect.
For a k-dimensional vector X of parameters with components X;, each of which
can assume integer values in the set {0,1/(p—1),2/(p—1),...,1}. The parameter
space is then a k-dimensional, p-level grid. Let A be a predetermined multiple of
1/(p—1) and so for a given value x of X the elementary effect of the ith input factor

1S
d( ) [Y(Xl,---,xi—lyxi+A7xi+17---axk)_)’(X)]

X) = A S.D

where x = (x1,x2, ...,x;) is any selected value in the parameter space such that (x +
e;A), where e; is a vector of zeros but with a unit for its ith component, is still
inside the parameter space for all i = 1,...,k [Saltelli et al., 2004]. The function
y(x) maps to a single value and so here effectively represents the aforementioned
summary metric or measure that we apply to the timeseries data produced by the
BrainSignals models.

A distribution of elementary effects F; is calculated for each ith input factor by

randomly sampled different x from the parameter space. The number of elements
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for each F; is p*"![p — A(p — 1)]. This is then used to determine each of the three
sensitivity measure. The mean u of the distribution F;, the mean of the absolutes g,
and the standard deviation of F; is calculated for each parameter. Parameters with a
greater influence have a larger ., whilst a greater standard deviation ¢ means the
parameter’s influence on the output is non-linear and depends on its interaction with

other parameters.

5.1.2 Parameter Optimisation

Given that a large portion of the research undertaken for this work was towards
developing a better method of performing parameter optimisation using Bayesian
techniques, it is important to briefly outline the previous methods used. A more in
depth comparison of the two approaches can be found in Chapter 7. As with the sen-
sitivity analysis, there are a number of methods ‘pre-baked’ into the BCMD frame-
work, namely a particle swarm optimisation method, a genetic algorithm, and a two-
array differential evolution algorithm. These are implemented using the OpenOpt

and PSwarm Python libraries [Caldwell, 2015].

PSwarm

The particle swarm or “PSwarm" method is a global optimisation method for vari-
ables with specific upper and lower bounds [Vaz and Vicente, 2007, 2009]. The
algorithm combines two steps at each iteration: a pattern search (poll) step and a
particle swarm (search) step. In the poll step it applies a directional direct search
(coordinate search in the pure simple bounds case) and in the search step a particle
swarm is used to generate points in the feasible region. By generating a population
of points in the search step, the algorithm can then poll around the best particle, im-
proving the robustness of the algorithm [Vaz and Vicente, 2009]. This method is the
one that has generally been used previously for optimising the BrainSignals mod-
els [Hapuarachchi et al., 2014, Hapuarachchi, 2015, Moroz, 2014, Caldwell et al.,
2015b].
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5.2 Bayesian Analysis

One of the key developments of this work over previous iterations of BrainSignals
will be to develop a Bayesian analysis of the model that will allow model parameters

to be described by posterior distributions rather than as point estimates.

5.2.1 Bayesian vs Frequentist

Understanding a statistical analysis of a problem also involves understanding the
theories of probability that underlie model estimation. There are two theories re-
garding probability: the frequentist paradigm and the Bayesian paradigm [Van de
Schoot et al., 2014].

The frequentist paradigm associates probability with a series of outcomes. A typical
example would be that of a coin toss. When a frequentist says that the probability
of a fair coin toss coming up heads is %, they mean that the over a long run of coin
tosses, approximately half the time the result is heads. The Bayesian approach how-
ever would be that the a probability of getting heads being % is instead describing
the degree of belief, a belief based on prior information such as considering the
geometry of the coin. This definition of probability is sometimes called subjective
probability [Glickman and Van Dyk, 2007].

These two differing approaches to probability affect the way in which we approach
statistics by changing how we draw conclusions from the data. For example, by
estimating a statistic, such as the mean of a variable or a regression coefficient, that
we want to use to make inferences about a dataset, we are trying to determine an
unknown parameter.

The key difference between the Bayesian and frequentist approach to statistical in-
ference is in the nature of this unknown parameter. For a frequentist, the parameter
has a fixed but unknown value. This value is the true value of that parameter, such
as the ‘true’ mean or the ‘true’ regression coefficient. The Bayesian approach, how-
ever, treats all unknown parameters as uncertain and therefore describes them by a

distribution.
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5.2.2 Bayes’ Theorem

In order to understand Bayesian inference a number of background ideas must first
be established. Throughout this section the following notation will be used. p(a)
is used to define the marginal distribution of the variable a and p(a|b) defines the
conditional probability distribution ‘the probability of a given b’. Both a and b are
dummy variables in this context.

Bayes’ theorem defines that a joint probability density function(p(6,y)) can be writ-
ten as the product of the prior distribution (p(0)) and the sampling distribution
(p(y]0)), where 0 is a parameter and y is observed data. Bayes’ theorem can there-
fore be used to determine the posterior density function where the factor p(y) can

be omitted when considered as a constant in the case of fixed y.

p(8ly) =< p(8)p(y|6) (5.2)

The posterior density function provides information about the model parameter, 0,
given that we have observed the data y, thus allowing the prior distribution to be
updated based on that data.

It is also possible to make inferences about an unseen observable. Before any data

have been considered, the distribution of the unknown observable y is

p() Z/p(y,e)df):/p(yle)p(e)de (5.3)

which is known as the marginal distribution of y or the prior predictive distribution.
After the data y have been observed we can predict an unknown observable §, and

the distribution for this quantity is known as the posterior predictive distribution:

ply) = [ pls10)p(6ly)de 54

If we regard this as a function 0 for fixed y, it is known as the likelihood function.
Whilst it is possible to derive an analytical form for the likelihood function in some

cases, where the problem is particularly complex another approach is required. In-
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stead, it is often possible to sample from the posterior distribution for a parameter
0 directly. A method of sampling directly without the use of an explicit likelihood
function and without approximation is described by Beaumont [2010], as per Rubin

[1984]:
1. Draw 6; ~ 7(0).
2. Simulate x; ~ p(x|6;).
3. Reject 6;if x; £y

where x is the data, 6 are parameter values and y is an observation. The accepted
samples of 0 are sampled directly from p(8]y), thus allowing us to obtain a posterior
distribution for 6, given y, without having first obtained an analytically complete
form for the likelihood. This process of Approximate Bayesian Computation is

explored further in section 5.3.

5.2.3 Model Checking

Upon constructing a probability model and computing a posterior distribution it is
important to then ‘check’ this model, by assessing its fit to the data and to addi-
tional knowledge. In Gelman et al. [2014, chap. 6], Gelman et al. state that rather
than asking whether a model is ‘true or false’, it is more important to ask whether
the model’s deficiencies have a noticeable effect on inference. This is because the
probability models in most cases will not be perfectly true. Failures in the model
can lead to problems by creating false inferences about the estimands of interest.
Gelman et al. [1996] describe three ways in which a model can be checked: (1)
examining sensitivity of inferences to reasonable changes in the prior distribution
and the likelihood; (2) checking that the posterior inferences are reasonable, given
the substantive context of the model; and (3) checking that the model fits the data.

Firstly, the sensitivity of the inferences can be examined by undertaking sensitivity
analysis, determining the impact of other reasonable probability models. The sensi-
tivity analysis can be incorporated into the prior-to-posterior analysis by setting up

a joint distribution that any data that may be observed are a plausible outcome of
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the distribution. However, setting up an exhaustive super-model that considers all
possible outcomes is computationally infeasible for all but the simplest of models.
For the second check, we can determine if the model inferences make sense by util-
ising additional information not formally included in either the prior distribution or
the likelihood. For any applied problem it is extremely likely that such information
exists.

Finally, checking the fit of the data can be done by evaluating the model through
external validation, in which the model is used to make predictions about future
data that are then collected and compared against. However, it is often the case that
the model needs to be checked before new data can be obtained.

Posterior predictive checking is a method of approximating external validation us-
ing data already obtained. This involves drawing simulated values from the joint

posterior predictive distribution,

p(Y"“Ply) = / p(y""|10)p(0]y)d6 (5.5)

where y is observed data, 0 is the vector of parameters and y"” is simulated (repli-
cated) data, and comparing these samples to the observed data. It should be noted
that the use of y"“” here in contrast to y in equation 5.4 is intentional, with y defin-

ing a future value whilst y"?

is specifically a replication like y. In the case of the
model using explanatory variables, x, they will be the same for y and y"“” but y may
instead have its own explanatory variables ¥. In the case of the dynamical systems
under consideration in this research, posterior predictive checking involves sam-
pling parameters directly from the posterior distributions, running the model with
these parameters and the systemic information from the actual data (y) and then
comparing the simulated time series data (y"“?) to the true values either graphically
or via a more formal method of measuring the ‘statistical significance’ of the lack
of fit [Gelman et al., 2014, chap. 6].

The discrepancy between the model and the data can be measured via the use of

test quantities. Gelman et al. [2014, chap. 6] define a test quantity, or discrepancy

measure, T(y,0) as a ‘scalar summary of parameters and data that are used as a
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standard when comparing data to predictive simulations’. A test quantity plays the
same role in Bayesian model checking that a test statistic, 7'(y), plays in classical
testing, where the test statistic is dependent only on the data.

Given the complex nature of the BrainSignals models and the field in which they
are applied (neurophysiology), the possibility of finding a ‘true’ model is close to

zero and so instead a ‘good enough’ model is sought.

5.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is defined by Sunnaker et al. [2013]
as ‘a class of computational methods rooted in Bayesian statistics’. They are used
where the analytic form of the likelihood function is intractable. The first example
of ABC-related methods is the rejection algorithm posited by Rubin in 1984 [Rubin,
1984], with Sunnaker et al. [2013] noting that the first ABC algorithm for posterior
inference was proposed by Tavare et al. in 1997 [Tavare et al., 1997]. This paper
looked at methods to estimate the time to the most recent common ancestor for a
sample of intraspecies DNA sequences. They note that for most cases in which
inferences are drawn about coalescence times from sequencing data, the theory and
computational implementation for an exact solution are complex, and instead they
proposed an approximate simulation method to obtain the posterior distribution of
coalescence times. A sample from the posterior was obtained by accepting/rejecting
proposals based on the number of segregating sites in the simulated and real data.
The actual term ‘Approximate Bayesian Computation’ was first coined by Beau-
mont et al. in Beaumont et al. [2002], where the application of ABC methods to

population genetics was considered.

5.3.1 ABC Methods

There are a number of different ABC methods that can be used, but all share a

similar generic form as detailed by Toni et al. [2009]:

1. Sample a candidate parameter vector 8* from the proposal distribution p(0).
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2. Simulate a dataset y"“” from the model described by a conditional probability

distribution p(y|0*).

3. Compare the simulated dataset, y"“?, to the experimental dataset, y, using
a distance function, d, and tolerance, €. If d(y,y"’) < &, accept 6*. The

tolerance € > 0 is the desired level of agreement between y and y"?.

The output of the ABC algorithm used will be a sample from the distribution
p(0]d(y,yP) < g). If € is sufficiently small, then p(0|d(y,y"?) < €) will be a
good approximation for the posterior p(6|y).

The simplest algorithm is the ABC rejection sampler [Pritchard et al., 1999], out-
lined by Toni et al. [2009] as:

R.1 Sample 6* from p(6).

R.2 Simulate a dataset y"” from p(y|0*).
R.3 Ifd(y,y™?) < &, accept 6*.

R.4 Return to R.1

The main disadvantage of this approach is that if the prior distribution is very dif-
ferent from the posterior, the acceptance rate of the algorithm can be very low. This
can massively increase the time taken to produce a reasonable posterior. To avoid
this problem, a Markov chain Monte Carlo approach was introduced [Marjoram

et al., 2003]. The ABC MCM algorithm, again as outlined by Toni et al. [2009], is:
M.1 Initialise 6;,i = 0.
M.2 Propose 8* according to a proposal distribution ¢(6|6;).
M.3 Simulate a dataset y"” from p(y|0*).

M4 If d(y,y"™?) < g, go to M.5, otherwise set 6;1; = 6; and go to
M.6.
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M.5 Set 6, = 0" with probability

(L p(0)g(6]0")
*= (1’ p<e,->q<e*re,->)

and 6;,; = 6; with probability 1 — «.
M.6 Seti=i—+1 and goto M.2

The ABC MCMC algorithm produces a Markov chain with the stationary distribu-
tion p(61d(y,y™P) < €), which as discussed previously is a good approximation of
the posterior for sufficiently small €. It has the potential disadvantages, however,
of becoming stuck in regions of low probability for long periods of time and of
producing very long chains. To avoid these disadvantages, sequential Monte Carlo
(SMC) based methods can instead be used.

Once such method is described in Toni et al. [2009]. In ABC SMC, a number of
sampled parameter values, known as particles, {9(1), ..,0W )} are sampled from
the prior distribution, p(6), and propagated through a sequence of intermediate dis-
tributions, p(0|d(y,y"*’) < g),i=1,...,T — 1, until it represents a sample from the
target distribution p(0|d(y,y"?) < er). The tolerances €i,...,&r are chosen such
that & > ... > &7 > 0, thus gradually evolving the distributions towards the target
posterior. The large number of particles also, in principle, helps avoid the problem
found in ABC MCMC of chains becoming stuck in regions of low probability. The

algorithm for this process is:
S.1 Initialise €1, ...,&r. Set the population indicator t = 0.
S.2 Set the population indicator i = 0.

S.3 If t=0. sample 6** from p(0).
Else, sample 8* from the previous population {Gt(i)l} with
weights w;_ and perturb the particle to obtain 6** ~ K;(6|6™),
where K; is a perturbation kernel.

If p(6**) = 0, return to start of S.3.
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S.4 Simulate a candidate dataset y"” ~ p(y|0**). If d(y,y"?) > &,

return to S.3.

S.5 Set Gt(i) = 0** and calculate the weight of particle Ot(i),

ift =0,

(i)
p(6,) :
RE— N— ifr > 0.
Z[J\Iil Wf(i)lK,(e(i)l79t(J)) ’

Ifi<N,seti=i+1,gotoS.3.

S.6 Normalise the weights.
Ift<T,sett =t+1and gotoS.2.

Particles that are sampled from the previous distribution are denoted by a single
asterisk, whilst after perturbation these particles are denoted by a double asterisk.
For the special case that 7 = 1, the ABC SMC algorithm corresponds to the ABC

rejection algorithm.

5.4 Conclusion

In this chapter I have outlined some of the existing methods for analysing systems
biology models, particularly those that have been used to analyse the BrainSignals
models. I started by considering sensitivity analysis and its role in both analysing
models and producing a reduced model, something that is necessary given the com-
plexity of the models under analysis. I then considered the currently used method
for parameter optimisation, particularly looking at the particle swarm method that
has been used to analyse the BrainSignals models previously. I then provided an
overview of Bayesian method of analysis, identifying how they may prove more
useful for analysing our models and what their strengths are compared to the cur-
rent maximum-likelihood approach. As part of this I outlined approximate Bayesian
computation and how it can be useful where an analytical form of the likelihood
function cannot be obtained, something that is the case for the BrainSignals models

and which will be explored in more detail in Chapter 7.



Chapter 6

Modelling Framework

The following chapter has been adapted from a paper published via
Wellcome Open Research. It can be found at doi: 10.12688/wellcomeopenres.12201.1.

6.1 Introduction

Understanding data collected when measuring a biological system can be a com-
plex process. One approach to aid understanding is the use of mathematical models.
These can be used alongside the measured data to try and understand the underlying
processes that contribute to the observed dynamics. Whilst a lot of time is spent in
developing these models, the accessibility and usability of them is often forgotten.
UCL’s Biomedical Optics Research Laboratory has previously developed two soft-
ware interfaces for defining and solving complex physiological models, BrainCirc
[Banaji and Moroz, Banaji, 2004] and BCMD|[Caldwell et al., 2015a]. While the lat-
ter provides simplified modelling and improved stability and portability, it remains
challenging to install and use, with some facilities such as parameter optimisation
only easily available on Linux. In addition, the requirement to create detailed input
specification files to define simulation parameters constitutes a significant barrier to
use by non-technical specialists.

In this section I will outline the previous framework, before outlining the WeBCMD
platform that was created to facilitate ease of access to the models, discussing the

1deas and motivation behind this new interface.
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6.2 Previous Framework

Before discussing how the software has been modified, it is important to provide
a general outline of how the original software worked. The BCMD framework is
a system for implementing differential-algebraic equations (DAE). It uses Python
2.7 to generate and run C code that encapsulates the equations and is generated
using a template. The C code is solved using the RADAUS solver [Hairer et al.,
1996] written in Fortran. One of the main jobs of the C template code is to mediate
between the model equations and the RADAUS solver via number of wrappers, also

written in C. The solver remains untouched in the current version.

6.2.1 Defining and running a model

BCMD could be accessed through two main methods: a command line interface
and a basic GUI which has been constructed using TKinter. A model is written as
a x .modeldef file, which allows the model to be written in something approaching
a human readable format. This is then compiled into an executable file that takes
a number of arguments. The process of converting the *.modeldef file to a C file
and then compiling into an executable is handled by a Makefile for the command
line interface and is a built-in function of the GUI. Figure 6.1 shows a typical model
definition file, this one being for a simple resistor-capacitor circuit. Line 1 is a
comment providing simple information about the file and then lines 3 and 4 define
model outputs and inputs respectively. Below this, the differential equation for the
model is defined on line 8, initial values are defined on lines 11 and 12 and then
model parameters are defined on lines 15 and 16. Initial values are set using ‘:=’
whilst intermediate variables or expressions are set using ‘=". It is also possible to
define algebraic equations and chemical reactions in the model definition. For more
information, please see the BCMD manual [Caldwell, 2015].

The compiled model program can then be run by passing it an input file, which
is a text file of specific formatting that contains information about that model run.
This includes how many time steps there are, what output should be produced, non-

default parameter values, the time points themselves and also any input values at
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# super-simple model of a series RC circuit

Q@output Vc V
Q@input V

# root variable Vc is the voltage across the capacitor
# input V is the voltage across the circuit
Ve' = (V-Ve) / (R *x C)

# initial values
V :=0
Vc := 0

# parameters
R := 10
C :=0.1

Figure 6.1: Typical modeldef file for a BCMD model. This one defines a simple resistor-
capacitor (RC) circuit.

those time points. For example, a typical input file may resemble that in figure
6.2, which is an input file for the model defined by the modeldef file in figure 6.1.
Line 1 is commented out and used to provide user information, line 2 defines how
many time steps the model will run for, line 3 states the value of the parameter V
will be set at each time steps and all following lines define each of these. We can
see that the first time step runs from O to 5 seconds and each step after this occurs
every 5 seconds (as denoted by the ‘+ 5’ at the start of each line). As with the
model definition file, for more information, please see the BCMD documentation

[Caldwell, 2015].

6.2.2 Batch Processes

It is often the case that rather than simply running the model once for one set of
parameters, model behaviour as a whole will need to be explored and in order to
do this there needs to be the option to run the model many times with a slightly

varied configuration each time. Writing out each input file manually with each new
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# simple voltage input to our RC circuit model
@5

+ + + 4+
O
|
'_\

Figure 6.2: Typical input file to a BCMD model. This one works with the RC model defined
in 6.1

configuration would be a fool’s errand and so an automated method of doing this
was created.

There are two main batch processes that the BCMD software is able to undertake,
as well as at least one unmaintained process. Within each process there are var-
ious levels of functionality, but not all of these have been fully maintained since
their original creation and there may be unseen bugs resulting from later changes
to the software. The first is the ability to run ‘deterministic or quasi-deterministic
batches of simulations’, primarily so as to undertake sensitivity analysis of a model
[Caldwell, 2015] and the second is to run model optimisation, finding the parameter
combination that best fits the model to the data. All batch processes share a num-
ber of common arguments and features, such as defining the distribution to draw

parameter values from or the distance measure to use when comparing to true data.

Sensitivity Analysis There are a number of different sensitivity analysis modes that
can be used, with the parameters being varied drawn from a set of predefined levels.
For more information on this see Section 5.1.

Optimisation As with sensitivity analysis, a number of different methods for op-
timising model parameters are provided, all of which are implemented in the

OpenOpt Python library. There are three different kinds of optimisation types,

* GLP: A global optimisation, which is generally the type of optimisation that

will be required.
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* NLP: A non-linear local optimisation.
* NSP: A non-smooth local optimisation.
and three different solver methods,

» pswarm: Particle swarm optimisation method, using the PSwarm library [Vaz

and Vicente, 2007].
* galileo: Genetic algorithm based method, built into OpenOpt.
* de: A two-array differential evolution algorithm, built into OpenOpt.

A distance can be declared which is then minimised to optimise the parameters.
Some basic post-processing options are also available, such as zeroing the output,
such that the simulation data are of the same form as the experimental data. Rea-
sons for doing this include the fact that experimental NIRS data are often a ‘relative’
signal rather than absolute, whilst simulated data are given as an absolute value.

Any information about the optimisation process is limited to that available in Cald-
well [2015], as the OpenOpt documentation is no longer available and the software
does not seem to be maintained any longer. This makes extending the existing
optimisation capabilities difficult and is one of the many reasons for updating the

software and considering new methods of fitting the models to data.

6.3 Framework Redevelopment

6.3.1 General Modifications

Both the Bayesian framework (BayesCMD), outlined in Chapter 7, and the We-
BCMD interface outlined below are based on a single overhaul of the BCMD soft-
ware, with the Python wrapper for the BCMD models rebuilt. This had two pur-

poses:

a) The new framework is built in Python 3. This was necessary to ensure the

model remains open for use and expansion past 2020 after Python 2 is retired.
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b) The new structure is better suited to the Bayesian and web frameworks that

were developed over the course of this PhD.

This transition required some small changes to the files responsible for parsing mod-
eldef files, such as modifying syntax slightly to allow for the change in how the
Python print statement works. The C template has been modified slightly to allow
for a new command line argument, -I, which allows the input file to be passed in
directly as a string rather than having to be written to file first.

The new Python wrapper has a number of new classes that are used in conjunction
with the existing C templates and command line interface to run and configure mod-
els, as well as to run the Bayesian analysis. Models are still defined using modeldef
files, but the input files can be written by passing information into Python. It is this
change that allows the models to be configured and run through a web interface.
The two key classes for running the models are the InputCreator class, which al-
lows input files to be created through Python, and the Mode1BCMD class which takes
in model information, in the form of Python data structures, to then configure and
run a model. Both of these are found in the bcmdModel subpackage. InputCreator
is passed the information it requires by Mode1BCMD before using it to create an input
file with the same form as that used in BCMD. This allows the creation of input files
to be done separately to running a model, something which may prove useful if they
need to be accessed separately to running a model. By default, the input file is writ-
ten to buffer before being passed directly to the executable as a string. This avoids
unnecessary writing to disk. The model output is a Python dictionary, allowing it to
be passed easily to the web interface of WeBCMD and making any postprocessing
easier to handle. The option of writing this output to file is available but is turned
off by default. A simplified diagram of this process can be seen in figure 6.3a).
Figure 6.3b) shows a simplified description of the batch process required to per-
form a simple rejection-based ABC process. The Batch class takes in input data,
model configuration data and the prior distributions for each parameter to be anal-
ysed. This is parsed into a form that can be handled by Mode1BCMD before passing

it through. A single model run is undertaken and the distance from the true data
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calculated. The model run data are stored, as is the parameter combination and
distances for that run. Every N runs, the model runs are written to a file, whilst
parameters and distances are appended to a single file. The final result is a number
of files containing model run outputs and a single parameters.txt file containing

all parameter combinations and distances.

ol a) Running the
configuration Model
data

The model is run by passing
model configuration data, input
data and any Python

N MF:J%ZI commands fo the ModelBCMD
Model Output class.
Input Data ————>| ModelBCMD Dictoram
| i Configuration and input data is
A Input passed to the InputCreator
File class fo construct an input file,
- hich is passed back to
Python Run Config + w
information ——— Input Data ModelBCMD and used to run
(.. the model.
verbosity) InputCreator Model output is produced as a

Python dictionary.

b) Hunning an Parameter
ABC Process Priors ]

Model Model Runs
Priors, model configuration Configuration ———————»

Parameters and
Distances

data and input data are passed Data
fo the Batch class.
Input Data

This creates many individual
runs, each of which are passed
to the process outlined in (a).

Every N runs, all model output Priors and Model Output
is written to file as is each Config Data dictionary
parameter combination and its |

respective distances. [ I ]

Figure 6.3: Rough outline of how the different components of BayesCMD. Flow chart
a) shows how a single model run is implemented using the Mode1BCMD and
InputCreator classes. Flow chart b) shows how the Batch class uses the
process in a) to perform a simple Rejection-based ABC process.

6.3.2 WeBCMD

As has previously been mentioned, installation of the software is difficult and time
consuming, especially where the software is only being used for initial exploratory
work. Additionally, the learning curve required to use the software led to non-

specialists struggling to use the software without a lot of guidance. Because of this
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the framework redesign focussed on two main components: making installation
and dependency packaging simpler, and improving the interface and usability of
the framework.

The initial stages of the framework redesign focussed on making the BCMD soft-
ware easily accessible across all operating systems. The software includes a number
of external dependencies that were either difficult to satisfy or entirely unavailable
on Windows and Mac computers. A relatively simple solution to this was to wrap
the entire process inside a Docker container, with all necessary installation steps
being handled by the Dockerfile when building the image. This however removed
access to the original graphical interface. As part of redesigning the BCMD frame-
work the decision was made to improve the user interface and accessibility.
Providing native cross-platform GUI support within a Docker application is im-
practical. Instead, a web-based interface was developed called WeBCMD, using
a Python web server to mediate the mathematical modelling, which allowed the
Docker-packaged framework to be accessed via any modern web browser. As well
as supporting cross-platform use locally, it was also possible to set up the frame-
work on a remote server to make it accessible as a “cloud service”, which is run
remotely and managed by the research team. This allows for non-specialists to sim-
ply log on to a website and use the software without having to download anything.
WeBCMD is built primarily around the idea of a "representational state transfer
application programming interface” or REST API [Massé, 2012]. A request is
sent from the client to the server, which handles the request before sending back a
response, as seen in fig. 6.4.

REST systems of varying complexity are ubiquitous across the internet. The form
used in WeBCMD is quite basic, serving simply to separate the interface from the
mathematical modelling. Doing so makes the interface easily extensible through
the addition of new API routes while ensuring that the command line interface
remains usable.

The client side component of the interface is written entirely in HTML, CSS and

javascript and is compatible with any modern web browser. Frameworks such
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Request -
Client .

Response
Model Model
Output llnfo
Server

Figure 6.4: A simplified representation of a web APIL.

as Bootstrap and Angular]S, which provide a modern and user friendly design,
are easily integrated. The server side component uses the Flask micro webframe-
work, written in Python. It uses API routes to interface with the BCMD modelling
software, processing JSON requests sent from the browser, then returning model
information and outputs.

Both client-side and server-side components are distributed and installed using
Docker, with the files required to build and run the container separate to the We-
BCMD code itself. Because the container will run a Linux-based OS, pulling
directly to this rather than to the host computer first can avoid problems with differ-

ent line endings on Windows and Unix-based computers.

Operation

WeBCMD has been designed to be as simple to operate as possible with specific

operation instructions found in Appendix B.

6.3.3 Use Cases

There are two distinct use cases for the WeBCMD software at present:
1. Running a model

2. Comparing steady state simulations of autoregulation against a default

BrainSignals run.
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Figure 6.5: Model run process

Running a Model

There are 7 main steps to running a model in WeBCMD, once it has been compiled
and its data uploaded. Figure 6.5 shows the general process of running a model in

the WeBCMD interface. We will outline this in three specific use cases:

1. A Lotka-Volterra model that requires no input data, run with the default pa-

rameters and model inputs and outputs.

2. Driving a BrainSignals model with systemic data, with non-default parameter

values.

3. Simulating a number of functional activation tests in BrainSignals, using the

demand function generator to create this demand data.

Lotka-Volterra
The Lotka-Volterra model outlined here is available as part of the WeBCMD dis-

tribution. Solving models such as this is not the intended use of WeBCMD how-

ever, and there are likely more efficient methods of running and investigating such
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a model.
The Lotka-Volterra model is a commonly used model for Predator-Prey dynamics

in ecology [Freedman, 1980]. The version shown here consists of two equations

i—j:ax—bxy (6.1)
d
d_)t) =cxy—dy (6.2)

where x represents the number of prey in the system, y represents the number of
predators in the system, ¢ is time and a, b, c,d are positive, real parameters repre-
senting the interactions between the two species.

This model will be simulated using a ‘Default Run’, where all parameters are set to
their default values and any changes made to them by the user will not be included
in the simulation.

The seven main steps to running this model are:
1. Select ‘Lotka-Volterra’ in the model select screen.
2. No data are uploaded, so simply click next.

3. Generate time data here by choosing start and end times, as well as the desired
time step, before clicking ‘Generate Time’. Once the time data have been

generated ‘t’ will appear in the inputs list at the top of the screen.

4. Demand is BrainSignals specific and so is not required. De-select the check-

box here before clicking next.

5. Because we are using default parameters, simply advance to the next page

without altering any values.

6. On the ‘Default’ tab, choose our time point data, which in this case is t.
All inputs and outputs are the defaults found in the original model definition.
Clicking ‘Run Model” will send the information to the backend of the inter-
face. When the model output has been returned it will then be possible to

click ‘Next’.
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7. On this final screen it is possible to visualise and download the returned model
data as a comma-separated values (.csv) file. This can then be compared to

the model-output-LV.csv file.

BrainSignals

As has previously been mentioned, the BrainSignals models are a collection of
models that represent the physiological dynamics of the brain. The version refer-
enced here, is the original BrainSignals model, prior to the refactoring by Caldwell
et al. [2015a]. For this model, input data are used to drive various inputs, such as
blood pressure, partial pressure of CO; and arterial oxygen saturation.

There are two different run types demonstrated here. The first uses systemic data to
drive the model whilst the second uses the built in ‘demand creator’ to simulate a

number of demand increases.

Systemic Data The seven steps to running this simulation are:
1. Select ‘BrainSignals’ in the model select screen.

2. Click "Browse..." and select the supplied data, which has a default name of
synthetic_input_data.csv. Select all of the options as inputs, and con-

firm. You can leave outputs blank.

3. Click ‘Next’ on the time creation screen as this information is provided in the

input file.

4. As we are not simulating functional activation here, we don’t need to create a

demand trace so just click ‘Next’ here.

5. Alter parameters to whatever values are desired - in this case the supplied

output data were generated by increasing the parameter R_autp to 6.

6. On the ‘Custom’ tab, select the time data to be our t data. Then select the
appropriate input data for each input parameter: Pa for ‘P_a’, PaC02 for

‘Pa_CO2’ and Sa02 for ‘SaO2sup’. Leave all output values as their default
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settings and then set the ‘Burn in’ time to ‘250’ seconds. Click ‘Run Model’

and when the model has finished running click to visualise on the next screen.

7. On this final screen it is possible to visualise and download the returned model
data as a comma-separated values (.csv) file. This can then be compared to

the model-output-BS-systemic.csv file.

Changing Demand The second run type doesn’t use any input data and instead
generates a synthetic input demand. The demand created is not physiologically ac-
curate, but is instead used as a way of showing the possiblities of this functionality.

It is expected that more demand input types will be added over time.

1. Select ‘BrainSignals’ in the model select screen.

2. Click ‘Next’ on this screen as no input data are needed.

3. Set the final time to 1000 seconds and click ‘Generate Time’. Once the time
data have been created, the inputs section at the top will now contain the letter

t. Click ‘Next’.

4. The Demand Creation page will have detected the information from the pre-
vious screen and already filled in the Start and End times, as well as the time
interval.

To create a demand peak, click ‘Add Another Peak’. For this example, set the
start time for the peak to 120, the end time to 180, the peak height to 5 and
select a peak type of “Top Hat’. This will create a single square wave with a
magnitude of 5 that lasts 60 seconds, starting at 120 seconds. We will repeat
this 3 times by clicking repeat peak, typing in 3 for the number of repeats
and setting an interval of 60 seconds between each. You can preview this by
clicking ‘Generate Demand’.

We will then add 3 more demand peaks of a different type. Click ‘Add An-
other Peak’ and enter a start time of 480, end time of 540, peak hight of 5 and

select a peak type of ‘Wavelet’. Select ‘Repeat peak’ and repeat it 3 times
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Figure 6.6: Example demand trace

with an interval of 60 seconds. Click ‘Generate Demand’ and you should get

a figure like that in 6.6. Click ‘Next’.
5. We will leave all parameters at their default values.

6. On the ‘Default’ tab, select the time data, t, to be our ‘t’ data and u to be‘u’.
Click ‘Run Model’ and when the model has finished running click to visualise

on the next screen.

7. On this final screen it is possible to visualise and download the returned model
data as a comma-separated values (.csv) file. This can then be compared to

the model-output-BS-demand. csv file.

Steady state simulations of autoregulation Steady state simulations of autoreg-
ulation are a way of considering the validity of a haemodynamic model like
BrainSignals. By altering a single input value, running the model for a period of
time and then altering it again, it is possible to compare the autoregulation response
of the model to a default dataset created using the ‘Default BrainSignals Model’.
The input values changed are the arterial blood pressure (F,), oxygen saturation
(8a0y) and partial pressure of carbon dioxide (PaCO3).

To run a steady state simulation, simply go to the Steady State tab and choose a
model. After doing this, you have the option of changing any model parameters,
allowing you to visualise their effect on the steady state autoregulation curve. You
can then choose whether top run the steady state simulation varying the parameters

in one of three ways:
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* up: Vary from min to max
* down: Vary from max to min
* both: Vary from min to max to min, allowing for the detection of hysteresis.

Once the model has finished running going to the next page allows you to visu-
alise the autoregulation curve for this model run alongside the Default BrainSignals
curve.

Figure 6.7 shows the steady state response curves, when varying from min to max
(up), for the BrainSignals model with the R_auto parameter, which is responsible

for the autoregulatory reactivity to oxygen, set to 6.

Summary

When dealing with mathematical models that are themselves complex, it is import
to simplify the process of running and analysing these models as much as is possi-
ble. If not, there is a risk that the use of the models by non-technical experts will be
limited, preventing the potential for insights from the wider scientific community.
WeBCMD has taken the BCMD framework for brain circulation models and made
it significantly easier to install and run. The process of installing and managing
dependencies can be handled by the framework developers, leaving the process of
running and analysing the models to the user. Additionally, the web interface has
made input file creation significantly easier by breaking it into easy to follow steps.
The final, and arguably most significant, benefit of the new interface is the cloud
based web app. Users who are unable to install the software or simply wish to test
the model out before installing are now able to do so by simply accessing a website.
By removing the obvious barrier of installation, the framework and its associated
models are now accessible to anyone with access to the internet. This also means
that the most recent and stable models will be easily accessible.

There are a number of key features we wish to include in WeBCMD going forwards
and a number of small improvements that need to be made. The inclusion of sen-
sitivity analysis in the interface would be very useful as this remains an important

component of all model analysis techniques Due to the significantly high number of
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Figure 6.7: Example steady state output. In blue is the response curve for the default
BrainSignals model and in orange is the response curve for this model run’s
settings (R_auto=6).
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parameters within the models, identifying what parameters are likely to be the most
important for the analysis being undertaken is extremely important. This is consid-
ered in greater detail in Model Analysis, when considering existing techniques used
in the framework, and Development of a Bayesian framework for model analysis,
when looking at the new Bayesian analysis framework. It is hoped that in future
work, sensitivity analysis can be added to both the online and offline versions of
the interface. However, the main barrier to implementation is the length of time
required to perform the analysis. In order to properly implement this, further work
would have to be done in terms of preserving the web interface’s state whilst the
analysis is performed. Without this, closing the web browser may make results in-
accessible once complete.

Smaller improvements include the inclusion of units for parameters and variables
in the model information section. It is also hoped that some form of model optimi-
sation could be included, but the same problem of long run times, as in sensitivity

analysis, would need to be handled.



Chapter 7

Development of a Bayesian

framework for model analysis

7.1 Introduction

Systems biology models are used to understand complex biological and physiolog-
ical systems comprised of large numbers of individual elements that give rise to
emergent behaviours. These complex systems are dependent on both the properties
of the whole network and on the individual elements [Kitano, 2002]. This inherent
complexity within the models can lead to difficulties in determining how best to
interpret information obtained through their use.

At University College London, the family of BrainSignals models (and the BRAIN-
CIRC model on which they are based) are used to understand the brain’s dynamics
via a systems biology approach. They bring together a number of mathematical
models relating to different aspects of blood circulation, oxygen transport and oxy-
gen metabolism within the brain in order to develop a more complete model that
can be used alongside experimental data to simulate physiological phenomena of
the brain, such as autoregulation and neural activation. This allows us to understand
how our measurements are linked to specific brain physiological and metabolic
mechanisms.

All of the models were developed to reproduce broadband near-infrared

spectroscopy (NIRS) measurements of brain tissue concentration changes of
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haemoglobin (oxygenation and haemodynamics) and cytochrome-c-oxidase (mi-
tochondrial metabolism) and vary in their complexity and scope. The first model
developed was the ‘BRAINCIRC’ model in 2005 [Banaji et al., 2005], followed
by the ‘BrainSignals’ model [Banaji et al., 2008] in 2008. A number of additional
versions were then developed from this, such as the ‘BrainPiglet’ model [Moroz
et al., 2012a] which was developed to to simulate the physiological and metabolic
processes of the piglet brain often used as the neonatal preclinical model. This
was extended in BrainPiglet v2.0 to incorporate the effects of cell death during
injury [Caldwell et al., 2015b]. In 2015, Caldwell et al. modified and simplified the
BrainSignals model to both reduce model complexity and improve model run time,
producing the ‘BrainSignals Revisited” model [Caldwell et al., 2015a]. All of these
models are run using the Brain/Circulation Model Developer environment (BCMD)
and are defined in a simple text language. The data collected and analysed with
the models primarily consist of broadband NIRS data, providing information about
tissue oxygenation, through monitoring of oxy- and deoxy-haemoglobin levels, and
cellular metabolism, through the concentration of cytochrome-c-oxidase. This data
are then supplemented by systemic information such as blood pressure, arterial
oxygen saturation and/or partial pressure of CO;.

One of the main uses of the models is to fit the model simulations to clinical and
experimental data and investigate how model parameters are affected. In the case
where data are collected from an injured or sick patient, these changes may illumi-
nate what the underlying causes/mechanisms are behind the illness or injury is.
The models are currently fit using a maximum likelihood based method, with a
single value obtained for each parameter. Sensitivity analysis is performed on
the models to determine which parameters are most important in influencing each
model output for any particular dataset. These parameters are then optimised using
the PSwarm method [Vaz and Vicente, 2009] to minimise a given error metric, such
as the Euclidean distance, between the modelled and measured signals. Through
this each output has a set of optimised parameter values. Parameter values are

limited to the same ranges used in the sensitivity analysis [Caldwell et al., 2015b].
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This approach has a number of drawbacks. The models are mechanistic and, if fit-
ted to single value parameter estimates, will produce the same output for the same
input. Physiology and biology, however, is unlikely to operate in such a constrained
manner. Additionally, this set of best-fit parameters for the model may not be repre-
sentative of the full parameter space [Pullen and Morris, 2014]. In an attempt to try
to compensate for this potential drawback, Caldwell et al. [Caldwell et al., 2015b]
fit the BrainPiglet model multiple times for two different piglets and found that,
whilst parameter values can vary within the same data, separate parameter spaces
for each piglet did seem to exist based on the brain physiological status of the piglet
following a hypoxic-ischaemic insult.

One of the key ways in which these models are used to extract information from
data are through the use of parameter estimation and fitting. However, this step re-
mains a difficult mathematical and computational problem, potentially originating
in the lack of identifiability [Chis et al., 2011]. In addition, there has been discus-
sion of ‘universal sloppiness’ within dynamic systems biology models. Gutenkunst
et al. [Gutenkunst et al., 2007] proposed that sloppiness, where the parameters of
a dynamic model can vary by orders of magnitude without affecting model output,
is a universal property of systems biology models. Due to this sloppiness, it may
not be possible to make parameter estimations that can be used to make inferences
about the system [Brown and Sethna, 2003, Gutenkunst et al., 2007]. Chis et al.
have stated however that sloppiness is not equivalent to a lack of identifiability and
that a sloppy model can still be identifiable [Chis et al., 2016]. Apgar et al. note that
experimental design can be used to constrain a sloppy parameter space by choosing
a set of complementary experiments [Apgar et al., 2010].

The use of a Bayesian methodology, by avoiding point estimates, can allow the full
uncertainty of the problem to be captured [Pullen and Morris, 2014]. In fact, the
use of an Approximate Bayesian Computation (ABC) approach, discussed below, is
particularly well suited to these kinds of problems [Liu and Niranjan, 2017]. There
are many examples of Bayesian methods being used to analyse bioinformatics data

and systems biology models [Wilkinson, 2006], including in sequence analysis [Liu
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and Logvinenko, 2003], gene microarray data [Do et al., 2006] and in models of
genetic oscillators [Woods et al., 2016] and DNA network dynamics [Woods and
Barnes, 2016]. There are a number of models that take a systems biology approach
towards understanding physiology, particularly oxygen transport and blood flow, in-
cluding the previously mentioned BrainSignals [Banaji et al., 2005, 2008, Caldwell
et al., 2015b] and BrainPiglet [Moroz et al., 2012a, Caldwell et al., 2015b] models,
the Aubert-Costalat model [Aubert and Costalat, 2002], and work by Fantini [Fan-
tini, 2002, 2014, Pierro et al., 2014, Kainerstorfer et al., 2014] and Orlowski and
Payne [Orlowski et al., 2013, 2014] where Bayesian parameter estimation could
also be applied but has yet to be.

Where a likelihood function can be defined there are a number of these methods
that can be used to infer a posterior distribution, p(6|y). Although the BrainSignals
models are deterministic, the model noise is a combination of process noise and
experimental error which is expected to depend on the state in a non-trivial manner.
This makes formulating an analytical expression for the likelihood difficult. In this
case where a likelihood expression is unobtainable a likelihood-free approach using
ABC is required instead. There are a number of different methods available with
the simplest being the ABC rejection algorithm (ABC REJ) approach. This has the
additional benefit of allowing us to consider different summary statistics that would
not be valid in a likelihood-based approach. It may be that these summary statistics
allow us to optimise for specific behaviours that have physiological relevance.

The aim of this paper is to introduce the new BayesCMD modelling platform that
can be used in systems biology models of physiology such as the BrainSignals
models, but that can be replicated beyond these. For this work, we have chosen to
use ABC REIJ as whilst it is less efficient than the other methods mentioned here,
the simplicity with which it can be implemented is a significant factor. The models
and modelling environment used are already complex and so this initial work fo-
cuses on the use of the simplest method as proof of utility. We will demonstrate the
effectiveness of this approach by using it to analyse two simulated datasets chosen

to represent healthy and impaired brain states, before then using it on experimental
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data from a healthy subject undergoing a hypoxia challenge. We will show that
the Bayesian approach allows us to extract more information from our data than
the previous maximum likelihood approach, with a more complete picture of the

parameter space being obtained.

7.2 Materials and methods

Figure 7.1 shows a generalised outline of the final Bayesian analysis process. It
can be split into three main sections: sensitivity analysis, Bayesian analysis and
model checking. However, before applying the process, data must be generated or

collected and an appropriate model chosen.

4 )

eDetermine Bavesian
capture. Analysis .

eChoose appropriate

N

eChoose priors for .
error metric for the selectedp *Plot posterior
parameter
SA process. t aramet
parameters. distributions.

ePerform SA and
choose sensitive
parameters.

ePerform Bayesian «Plot posterior
fit using rejection predictive

algorithm. distribution.

I Sensitivity k ) Model
. \
Analysis Checking

Figure 7.1: Generalised analysis process. A simplified representation of the Bayesian
analysis process .

7.2.1 Choice of Model

Whilst a brief overview of the history of the BrainSignals models was given in the
introduction, in this section we provide more information about the specifics of the
different models. Table 7.1 compares the number of reactions, equations, relations,
reactions, variables and parameters in three different models. The BRAINCIRC
model from 2005 built on an earlier circulatory model by Ursino and Lodi [Ursino
and Lodi, 1998] and combined models for the biophysics of the circulatory system,

the brain metabolic biochemistry and the function of vascular smooth muscle. The
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BrainSignals model which succeeded it simplified the ‘BRAINCIRC’ model and
added a submodel of mitochondrial metabolism. As previously mentioned, in or-
der to better simulate the physiological and metabolic processes of the piglet brain,
which is often used as the neonatal preclinical model, the ‘BrainPiglet’ model [Mo-
roz et al., 2012a] was developed from the BrainSignals model. It involved modify-
ing the default values for 11 of the 107 parameters used and was extended to include
simulated measurements for magnetic resonance spectroscopy values that included
brain tissue lactate and ATP production, measurements of which are available in
piglet studies. Its extension, BrainPiglet v2, incorporated the effects of cell death
during injury in order to to investigate why two piglets showed different recoveries
following hypoxia-ischaemia, finding that the differences could be explained by in-
cluding cell death within the model [Caldwell et al., 2015b].

The ‘BrainSignals Revisited” model was produced by making various simplifica-
tions to the BrainSignals model by identifying various functions that could be re-
placed by linear approximators without reducing model applicability. This reduced
complexity and decreased the time taken to run a simulation, whilst being able to
reproduce the same results and behaviour of the original model. This reduced model
of the adult brain was later extended to simulate extracerebral haemodynamics to in-
vestigate confounding factors with brain near-infrared spectroscopy measurements,
the ‘BSX’ model [Caldwell et al., 2016].

The models are driven with input signals, such as the blood pressure and/or oxy-

Table 7.1: Comparison of the number of reactions, equations, relations, reactions, vari-
ables and parameters in the BRAINCIRC, BrainSignals Revisited and Brain-

Piglet v2.0 models.
BRAINCIRC | BrainSignals | BrainPiglet

Revisited v2.0
Reactions 81 5 17
Differential 5 9 21
Equations
Algebraic Relations 72 3 3
Variables 168 40 128
Parameters 697 139 227

gen saturation, and simulate brain tissue measurments of oxygenation, blood vol-
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ume and metabolism, as well as the middle cerebral artery velocity (Vmca) and the
cerebral metabolic rate of oxygen (CMRO;). The model can be split into roughly
3 compartments - blood flow, oxygen transport and metabolism - with boundaries
chosen to minimise interdependence. Fig 7.2 outlines this in more detail.

All of these models are solved using the BCMD framework and are written in

ABP

|

Sa0,

PaCO,
Oxygen
Demand Blood Flow Transport

h

NIRS Signals

Vmca

i

CMRO,

Measurement Metabolism

Figure 7.2: Simplified structure of a typical BrainSignals model A typical BrainSignals
model can be split into four compartments or submodels. The blood flow sub-
model represents blood flow from arteries to veins via the capillary bed and
the oxygen transport submodel estimates diffusion of dissolved O, from the
capillary blood to the brain tissue. Delivered oxygen is then utilised by the
metabolism submodel. Finally, the measurement submodel translates the inter-
nal states of the blood flow and metabolism submodels into observable outputs.
Model inputs are shown in red and consist of arterial blood pressure (ABP),
arterial oxygen saturation (Sa02), partial pressure of CO, (PaCO2) and a pa-
rameter specifying relative demand, whilst measurable outputs are shown in
blue, including NIRS signals as well as middle cerebral artery velocity (Vmca)
and cerebral metabolic rate of oxygen (CMRO,).

a simple text format that can be translated to executable C code and solved using
the RADAUS solver [Hairer et al., 1996]. The models take a standard differential-

algebraic equation representation, of the form:

dy
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where y is a vector of variables of interest, M is a constant, possibly-singular, mass
matrix specifying relations among the differential terms, and f is some vector-valued
function, possibly having additional parameters 6. If a row of M is zero, the corre-
sponding equation in f is algebraic rather than differential.

In this work we have chosen to use the refactored BrainSignals model [Cald-
well et al., 2015a], with a minor modification to include the haemoglobin dif-
ference (AHbO, — AHHb = AHbD) as a model output alongside the normal out-
puts of oxyhaemoglobin (AHbO;), deoxyhaemoglobin (AHHb), total haemoglobin
(AHbO; + AHHb = AHDbT), tissue oxygenation index (TOI), and cytochrome-c-
oxidase (ACCO). Both AHbD and AHbT are included in the experimental dataset
due to them being good indicators of brain oxygenation changes and brain blood
volume changes respectively, with both being easily measured using broadband
NIRS. All NIRS outputs, except TOI, are measured as changes relative to an initial
value and therefore both data and model outputs are normalised to an initial value

of 0.

7.2.2 Data

Three datasets were used to test the new Bayesian model analysis process. Firstly,
‘healthy’ data were simulated using the BrainSignals model with the default param-
eter settings, as per [Banaji et al., 2005, 2008]. Next, the same inputs were used
but with the model modified to represent an ‘impaired’ brain. To do this, a single
parameter was changed to reflect a potential pathology or injury, to generate an ‘im-
paired’ simulated dataset. Finally, we used experimental data from a healthy adult
undergoing a hypoxia challenge, selected due to it being well understood and to

minimise complications that could arise from using pathological data.

Simulated Data

Partial pressure of CO, (PaCO,) and arterial blood pressure (ABP) were kept at
their baseline values of 40 mmHg and 100 mmHg respectively, whilst arterial oxy-
gen saturation (SaO,) was varied to simulate hypoxia through a decrease in arterial

oxygen saturation from 97% to 65%. Initially, all model parameters were kept at
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their default values in order to simulate a healthy brain’s response to this challenge.
Figure 7.3 shows the arterial saturation data and the model response across all con-
sidered model outputs.

After simulating the healthy brain response and determining its posterior parameter
distribution, the model was altered to include a pathological or impaired brain state.
This was done by changing a single parameter to be outside of the healthy param-
eter space. r_t, which affects the shape of the muscular tension relationship, was
found to be sensitive in both the sensitivity analysis process (see Simulated Data in
the sensitivity analysis results) and the Bayesian analysis. This is clearly seen in its
comparatively narrow marginal posterior for the healthy data. Stiffening of blood
vessels in the brain has also been noted as a potentially important factor in a number
of different pathologies, including Alzheimer’s disease [Hughes et al., 2015], and
in autoregulation, as seen in Figure 7.4 .

The muscular tension relationship is defined as

r—rm

It —Fm

) , (7.2)

where 7, is the muscular tension within the vessel wall and has a bell-shaped de-

Ty = Thax€xp (_

pendence on the vessel radius, taking value 7;,,,, at some optimum radius r,,. r; and
n,, are parameters determining the shape of the curve. Figure 7.4a illustrates the
effect of changing r; on the shape of the curve and shows that decreasing r; leads
to increased muscular tension for the same vessel radius due to a widening of the
bell-shaped curve. This can be seen to represent a stiffening of vessels within the
brain.

Changing r; has a significant effect on the brain’s ability to autoregulate within the
model as seen in figures 7.4b, 7.4c and 7.4d. Figure 7.4b shows that higher blood
pressure causes a decrease in cerebral blood flow (CBF) for lower r; values, as op-
posed to an increase at the normal value of r; = 0.018cm. Figure 7.4c shows that
CBF is lower and decreases quicker for lower r; values as PaCO; is decreased and
figure 7.4d shows that across all considered oxygen saturations, lower r; gives a

lower CBE.
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a) Healthy Brain f) Impaired Brain
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Healthy and impaired brain simulations Figures a)-e) show simulations of
a healthy brain’s response to hypoxia, whilst f)-j) show the impaired brain’s
response. The input variable of arterial oxygen saturation is shown in blue and
is the same for both simulations, whilst the outputs of TOI, AHbO,, AHHb and
ACCO clearly differ between the two brain states.
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Figure 7.4: Figure 7.4a shows the effect of different 7, values on the shape of the muscular

tension curve for a range of vessel radii. It can be seen that reducing r; widens
the curve, leading to increased muscular tension for the same vessel radius.
Figures 7.4b, 7.4c and 7.4d show the effect of both increasing and decreasing
model inputs on cerebral blood flow for different values of r;. Cerebral blood
flow (CBF) is given as a proportion of the normal CBF (40 ml 100g ™' min—").
Changing r; has a significant effect on the brain’s ability to autoregulate within
the model. Figure 7.4b shows that higher blood pressures causes a decrease in
cerebral blood flow for lower r;, as opposed to an increase at the normal value
of r, = 0.018cm. Figure 7.4c shows that for lower r; values, CBF decreases
quicker as PaCO, is decreased. Figure 7.4d shows that across all considered
oxygen saturations, lower r; gives a lower CBF.

Figures 7.3f)-j) shows the model response across all considered model outputs for

this impaired brain state. The response of the model outputs to the same change
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in arterial saturation is much smaller than in the healthy simulation, with the TOI
having a lower baseline value of around 45% as compared to around 75%.

Whilst we would expect impairment of a real biological system to stem from mul-
tiple parameter changes the intention here was to make the simplest modification
possible whilst still representing a potentially real physiological change in order
test the method under the simplest conditions. Additionally, it should be noted that
a single parameter change will have effects on various physiological variables. As
outlined below, we also apply the method to experimental data which are inherently
more complex than this simple example and where we expect multiple parameters

to differ from baseline.

Experimental Data

Experimental data will inherently contain more uncertainty for parameter fitting
than data generated by the model itself. This makes it important to test the Bayesian
analysis process on experimental data as well as that simulated from the model.
The data used were originally collected by Tisdall et al. [Tisdall et al., 2007] and is
shown in figure 7.5. Healthy adult humans had their arterial oxygen saturation re-
duced from baseline to 80%, whilst minimising changes in end tidal carbon dioxide
tension (EtCO;). Data here are from a single subject.

The dataset contains three model inputs: arterial oxygen saturation, end tidal CO,
and arterial blood pressure, with EtCO, converted to partial pressure of CO; via
unit conversion from kPa to mmHg. Blood pressure data were filtered using a low
pass Sth order Butterworth filter, with a cut off of 0.05 Hz, to remove noise. The
heavily quantised nature of the partial pressure of CO, data are not an issue here
as the model contains first order filters to smooth input signals over a given time
period.

In terms of model outputs, only NIRS signals were used: AHbD, AHbT, ACCO and
TOI. All data were resampled to 1 Hz.
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Figure 7.5: Experimental hypoxia data. Data collected from a healthy adult during a
hypoxia challenge. Systemic data used as model inputs are shown in figures a),
b) and c), with broadband NIRS measurements shown in figures d), e), f) and

g).
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7.2.3 Sensitivity Analysis

When fitting a model as complex as BrainSignals, it is important to reduce the num-
ber of parameters that are required to be fit. We expect that not all parameters will
have a significant impact on the model output for a given set of input data. Instead,
we can attempt to reduce the number of considered parameters through sensitivity
analysis. We used the Morris method [Morris, 1991, Campolongo et al., 2007],
which is known to work well with a large number of parameters. The method re-
quires the time series to be reduced to a single number and identifies the parameters
that have produce the most variance in this summary value. Previously, we have
used the Euclidean distance over the whole time series as our summary value but
this has a number of significant drawbacks.

If the summary measure is the distance across the whole time series, we’re failing
to capture specific changes that we know to be physiologically important. In the
case of our hypoxia simulation, for example, we want to select parameters that are
important in controlling the overall change from baseline. Taking the Euclidean
distance over the time series as a whole however does not prioritise this behaviour.

Figure 7.6a shows three sets of data generated from the same toy model function

yi=axsin(x)+b+¢, (7.3)

where a, b are both model parameters and € is random Gaussian noise.

Assume that without modification, our model produces data yg, with the default
parameters ®g : a = 0,b = 0, and that the behaviour we want to reproduce is sinu-
soidal but, for some reason, we don’t know which parameter is most important in
producing this specific behaviour. We decide to undertake sensitivity analysis, us-
ing a distance measure of some kind as our summary statistic in order to identify
the parameter most important in producing sinusoidal behaviour. If when altering a
parameter that distance measure increases, then the behaviour summarised by that
distance is sensitive to changes in that parameter. In this case, to produce sinusoidal
behaviour, we would want parameter a to be identified as important rather than pa-

rameter b.
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To generate our data x was varied from O to 27, producing datasets y; and y, for

the parameter sets @1 : a = 1,b =0, where only a is changed from baseline, and

0, :a=0,b=0.707, where only b is changed from baseline, respectively. yy and

parameter set ®g provide our baseline data. This is seen in figure 7.6a. It is clear

from the figure that the two outputs y; and y, show very different behaviour, the

behaviour we want to optimise for is seen in y;.

Despite both y; and y; being qualitatively very different they are very similar when

b)
Yo range = 0.02
baseline-to-peak
distance = 4.82
SBTP = 4.82/0.02
= 240.5
— Yo=¢
y1=Xxsin(x) + €
— y2=25+¢ IR P
1 2 3 4 5 6 0 1 2 3 4 5 6
X X

Figure 7.6: Figure 7.6a shows data generated from the same test function y; = ax sin(x) +

b+ €, where a,b are both model parameters and € is random Gaussian noise.
x was varied from O to 27, producing data yg,y; and y, for the parameter sets
®p:a=0,b=0,0;:a=1,b=0and O, :a = 0,b = 2.5 respectively. Despite
both y; and y; being qualitatively very different they are very similar when sum-
marised using only the Euclidean distance, with y; having a Euclidean distance
€euc,1 = 35.58 and y; having a Euclidean distance &2 = 35.44. If we instead
look at the scaled baseline-to-peak (SBTP) distance we find that y; has a SBTP
distance SBT P(y;) = 240.5 and y, has a SBTP distance SBT P(y,) = 0.27, giv-
ing ESBTP,1 — 240.2 and ESBTP,2 — 0.11.

Figure 7.6b illustrates how the scaled baseline-to-peak distance is defined using
x sin(x) + € as the example signal. The baseline-to-peak distance is the abso-
lute distance from the baseline to max ({|Ymax/|, [Ymin|}). This is then divided by
the range of the ‘default’ data, yg, to get the distance as a proportion of the total
change seen within the data. In this example, baseline-to-peak distance is 4.82
and the range is 0.02, giving the previously mentioned SBTP distance of 240.5.
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summarised using only the Euclidean distance, with y; having a Euclidean distance
€euc,1 = 10.01 and y, having a Euclidean distance &> = 10.03. This means that
we would fail to clearly identify parameter a as being important than parameter b
in producing sinusoidal behaviour.

Instead we can define a new summary measure, which we will call the “scaled
baseline-to-peak” (SBTP) distance. We know that we want to find the parameter
that determines how sinusoidal our model is. One way to emphasise this behaviour
is to find the distance from our baseline to the maximum or minimum (whichever
has the largest absolute value) of our data, as illustrated in Figure 7.6b. We then
scale this by the range of our ‘default’ signal, yg, to normalise it and avoid issues
comparing data of different magnitudes. This gives us

sBTp() = T )

(7.4)

We then find the Euclidean distance between the SBTP value for our ‘default’ data,
SBTP(yp), and SBTP(y;) and SBT P(y»)

gSBTP,i = \/(SBTP(y()) — SBTP(yl‘))Z, (75)

where here i € {1,2}.

If we use &sprp as our summary measure, we find that y; has a distance €sgtp,1 =
240.2 and y; has a distance &sgtp,2 = 0.11. This would mean that parameter a could
be clearly identified as being more important in producing sinusoidal behaviour than
parameter b.

We scale our baseline-to-peak distance because a number of model outputs sig-
nificantly vary over different scales. For example, cerebral oxygenation can be
measured through TOI which is a percentage and, as seen in figure 7.3 can vary
over 10-20%. Cytochrome-c-oxidase however, varies over a much smaller range,
with a change of less than 1 uM being typical. Failing to account for these different
scales will lead to parameters that affect larger magnitude outputs being identified

as more sensitive than those that affect smaller magnitude outputs, even if the rela-
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tive change is significant.

For example, if changing a parameter 0; causes the CCO change seen in figure 7.3¢)
to double to a minimum of —2 uM, whilst a change in a parameter 6, causes TOI to
decrease to 55%, without scaling the model seems more sensitive to 6, because the
magnitude of the change is much more, even though the relative change is smaller.
If we consider this change proportional to the range of our data however, we ac-
count for their relative size.

It should also be noted that this choice of metric is specific to the behaviour being
optimised for. For example, in the case of a signal that is non-oscillatory, a different
summary method would be required based around the behaviour to be replicated
within that particular signal. We also acknowledge that there are a variety of dif-
ferent methods for identifying a sinusoidal signal from a linear signal and that our
choice of metric here is one of many. We have chosen it as in the case of our
hypercapnia data, we expect to see our signal to change from baseline to maxima
or minima, depending on the signal, before then returning to baseline. The SBTP
distance emphasises this behaviour in a single number whilst also being easily com-
parable to previous work where the Euclidean distance was used.

We used the Morris elementary effect method [Morris, 1991] variant devised by
Saltelli et al. [Saltelli et al., 2002]. This provides us with two notable statistics: the
mean of the absolute values of the changes, L., and their standard deviation, o. The
larger the value of ., the more influential parameter is on the output, whilst the
larger the standard deviation, the more non-linear the influence of the parameter is.
The top ten most sensitive parameters, as per W, were chosen to fit the model. o was
not used to determine which parameters to fit as, whilst knowing the non-linearity of
a parameter is useful, in previous work [Caldwell et al., 2015b,a] we have opted to
use simply p, as this gives a good summary of the sensitivity of a single parameter
and feel it is pertinent to continue to do so here. The parameter range considered for
sensitivity is the default value £50%. Sensitivities are calculated for each output as
well as across all outputs jointly. This joint sensitivity is calculated by summing the

SBTP value for each output and then determining variability in this total.
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7.2.4 Approximate Bayesian computation

After selecting the most important parameters, the model was fit using the rejection
algorithm as out lined previously in Section 5.3.1.

The output of the ABC algorithm used will be a sample from the distribution
p(0|d(y,yP) < €). If € is sufficiently small, then p(0|d(y,y"*?) < €) will be a
good approximation for the posterior p(6|y).

The choice of d(-,-) is important, just as with the sensitivity analysis. We’ve cho-
sen different metrics to the SBTP distance used in the sensitivity analysis as one
metric is chosen for moedul reduction and to isolate specific parameters, whilst
the metric used for fitting should instead optimise for simulation accuracy. Pre-
viously the Euclidean distance has been used to fit the model but, as in the case
of the sensitivity analysis, this fails to account for outputs that vary over different
magnitudes. Instead, we have chosen to include a number of other distance metrics
including the root-mean-square error (RMSE) and the normalised root-mean-square

error (NRMSE). These are defined as

T _ 2
RMSE — \/ Lo : *24) (7.6)

RMSE(XI,Xz)

NRMSE = (1.7)

X1,max — X1,min

where x| and x; are the two time series being compared, running overt =1tot =T,
with 7" being the total number of time points.

By dividing the RMSE by the range of the data, the errors for time series that
vary over different magnitudes are comparable. Without doing this, parameters that
mainly affect outputs that vary over larger magnitudes are preferentially optimised.
Normalisation prevents overfitting of one output at the expense of others, providing
a more reliable joint posterior distribution after fitting.

After an initial exploratory fitting of the different datasets, it was found that setting
an absolute tolerance value was not a suitable selection criteria. This was due to
massively differing distance values between datasets, with all parameter combina-

tions in the simulated healthy dataset producing NRMSE values smaller than almost
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all parameter combinations on the impaired dataset.

In general, the number of accepted samples that gives an adequate approximation
of the posterior distribution is problem dependent; dispersed posterior distributions
will ultimately require more samples. Poor estimation of the posterior can in most
cases result in a wide posterior predictive distribution which appears to give a poor
quality fit because outlier posterior samples cause biases. To address this issue in
a pragmatic way, a fixed acceptance rate of 0.01% was set. This meant the 0.01%
parameter combinations with the lowest d(y,y"?) were used as the posterior. The
posterior was visualised through kernel density estimation on a pairplot using the
Seaborn plotting package [Waskom et al., 2018]. The posterior predictive density
is then generated by sampling directly from the posterior 25 times and the model
simulated for each sample. The results are aggregated and plotted, with the median
and 95% credible interval marked on the plot.

The model was run in batches of 10,000,000 and the parameter combinations within
the acceptance rate were used as a posterior. This batch size was chosen as a com-
promise between sufficient sampling of the parameter space and the computational
time required to run the batch. The quality of the fit obtained from this posterior
determined if the model had been run a sufficient number of times to sample the
posterior adequately. If the posterior predictive distribution failed to capture the be-
haviour seen in the “true" data, then the process was repeated until a more adequate

fit was obtained.

7.3 Results

Supporting information is found in Appendix C but includes a number of additional

model checking figures. These are referred to in the text where relevant.

7.3.1 Sensitivity Analysis

Simulated Data
Sensitivity analysis was performed for the simulated healthy dataset for the CCO,
HbO,, HHb and TOI outputs. Figure 7.7 shows the sensitivity analysis results

across all four outputs individually and for the outputs considered jointly. The re-
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sults are plotted as bar charts, with sensitivity, as per the (. value, on the x-axis.
The corresponding o values for each parameter can be seen in Figure C.1 in S1
Sensitivity Analysis ¢ values - simulated data.

Table 7.2 shows the selected parameters, their respective U, values and their defini-

a) All Outputs b) TOI
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Figure 7.7: Sensitivity analysis across all outputs for simulated dataset. Bar charts
showing .. for the 10 most sensitive parameters across all model outputs, with
values plotted on a log scale where appropriate. Distance used for calculation
is the sum of ggprp across all model outputs. All outputs except cytochrome-
c-oxidase alone have p, values that vary on a logarithmic scale. Figure 7.7a
shows results for all outputs combined, figure 7.7b for TOI, figure 7.7c for
HbO,, figure 7.7d for HHb and figure 7.7¢ for CCO.

tions and default values. The total sensitivity analysis results, shown in figure 7.7a,

produced 10 parameters to be used in fitting the model. Sensitivity analysis based
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Table 7.2: Sensitivity analysis results for simulated data, including each selected parame-
ter’s definition and default value. * See Caldwell et al. [2015a] and Banaji et al.
[2008] for a full explanation of this parameter and the stimulus p.

Parameter W | Definition Default
value

sigma_coll 1.32 x 10° | Pressure at which blood vessels 62.79 mmHg
collapse.

R_auto 1.16 x 10° | Autoregulatory reactivity to 1.5
oxygen.

n_h 1.68 x 10° | Hill coefficient for oxygen 2.5
dissociation from haemoglobin.

r_t 8.82 x 10* | Radius in the muscular tension 0.018cm
relationship.

mu_max 8.82 x 10* | Upper bound for the transformed 1
stimulus u”.

n_m 9.97 x 103 Exponent in the muscular tension 1.83
relationship.

r m 9.77 x 103 | Vessel radius at which muscular 0.027 cm
tension is maximal.

P_v 4.88 x 103 | Venous blood pressure. 4mmHg

phi 7.85 x 10 | Oxygen concentration at 0.036 mMm
half-maximal saturation.

Xtot 5.54 x 10% | Total concentration of haemoglobin 9.1mMm
O binding sites in blood.

on individual outputs showed that different parameters were important for different
outputs, with TOI, in figure 7.7b being dominated by r_m, P_v and sigma_coll and
oxyhaemoglobin, in figure 7.7¢, and deoxyhaemoglobin, in figure 7.7d, dominated
by sigma_coll and R_auto. Cytochrome-c-oxidase however showed levels of de-
pendence that were similar across many parameters, as seen in figure 7.7e, with .
values falling within a range of 0.7. For all individual outputs and the combined
output, only Xtot, r_m and sigma_coll were within the 10 most sensitive in all

casces.

Experimental Data

Sensitivity analysis was undertaken on the experimental dataset to determine the
parameters to be fit. Table 7.3 shows the selected parameters, their respective L,
values and their definitions and default values. Figure 7.8 shows the results across

all outputs. The corresponding o values for each parameter can be seen in Fig-
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Figure 7.8: Sensitivity analysis across all outputs for experimental dataset. Barplots
showing ., values for the 10 most sensitive parameters across all model out-
puts, with the x-axis plotted using a log scale where appropriate. Distance used
for calculation is the sum of €sprp across all model outputs. Figure 7.8a shows
results for all outputs combined, figure 7.8b for TOI, figure 7.8c for HbT, figure
7.8d for HbD and figure 7.8e for CCO.
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ure C.2 in S2 Sensitivity Analysis o values - simulated data. When considering all
outputs jointly, the effect of n_m and r_m is significantly larger than all other param-
eters, but when looking at the individual outputs it’s clear that the other parameters
are still important, but the magnitude of the impact n_m and r_m have on the overall
variability is drastically larger.

Unlike the simulated dataset, 9 of the top 10 most sensitive parameters have [,
values between approximately 10 and 1000 which is significantly smaller than the
range of the u, values for TOI in the simulated data.

Similarly, the most sensitive parameters for HbD fall within a very small range with
no one parameter obviously determining the majority of the output’s behaviour.
In contrast, the two most sensitive parameters for HbT, r_m and n_m, are approxi-
mately 109 times larger than the third highest. As with the simulated data, p, values
for CCO have much smaller values than all other outputs and fall within a range of
1.0. Unlike the simulated data, no parameters were sensitive across all individual

and joint outputs.

Parameters

Whilst a full exploration of the parameters within the BrainSignals model is outside
the scope of this paper, we advise the reader to look at the original publications
Banaji et al. [2008], Caldwell et al. [2015a], and provide a brief overview of some
of those identified as important here.

A number of the parameters identified as being important for the above datasets,
such as R_auto and mu_max, are dimensionless parameters. They are often model
specific parameters that cannot be directly measured and instead need to be consid-
ered in the context of their meaning within the model. For example, an increase in
R_auto would mean that the autoregulatory response would become more sensitive
to changes in oxygen concentration. In contrast, other parameters such as Xtot,
which is four times the concentration of haemoglobin, are more easily measured in
an experimental or clinical setting.

Some of the parameters identified as important are linked closely to the shape of
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Table 7.3: Sensitivity analysis results for experimental data, including each selected param-
eter’s definition and default value.
*See Caldwell et al. [2015a] and Banaji et al. [2008] for a full explanation of this
parameter and the stimulus u.
This is the arterial PaCO, input put through a first order filter to simulate vary-
ing time response and is typically the same as arterial PaCO;. For more infor-
mation see Banaji et al. [2008]

Parameter W, | Definition Default
Value

n_m 1.87 x 107 Exponent in the muscular tension 1.83
relationship.

r_m 1.87 x 107 | Vessel radius at which muscular 0.027 cm
tension is maximal.

K_sigma 1.01 x 10® | Parameter controlling the 10
sensitivity of o, to vessel radius "

p_tot 6.29 x 10° | Total protons removed from the 20
mitochondrial matrix by the three
modelled electron transport
reactions.

k_aut 3.65 x 10% | Parameter controlling overall 1
functioning of autoregulatory
response, with a value of 1
meaning intact autoregulation.

v_cn 2.76 x 10% | Normal filtered PaCO,". 40 mmHg

sigma_e0 | 2.37 x 10? | Parameter in the elastic tension 0.1425 mmHg
relationship.

k2 n 2.17 x 10? | Normal forward reaction rate for 3915.68 s~ 1
the reduction of as3.

Xtot 1.48 x 10? | Total concentration of haemoglobin 9.1mM
O, binding sites in blood (4 times
the haemoglobin concentration).

R_autc 1.31 x 10* | Autoregulatory reactivity to carbon 2.2

dioxide.
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the autoregulatory response of the model and its sensitivity to changes in model
inputs. These are R_auto and mu_max in the simulated dataset, and v_on, v_un,
R_autc and v_cn in the experimental dataset. As we are driving the model with a
changing input, the identification of these parameters as important seems physio-
logically sensible. It should also be noted that, despite other parameters not directly
controlling the autoregulation response, the interconnected and complex nature of
the BrainSignals model means that other parameters may still have an impact on
it indirectly, for example the parameter r_t controls the stiffness of blood vessel
walls, which is important in controlling blood flow during autoregulation.

More detailed information on the exact nature of these parameters and how they

function within the BrainSignals model can be found in [Caldwell et al., 2015a].
7.3.2 Bayesian Analysis

Simulated Data

The BrainSignals model was fit to the simulated “healthy” dataset initially. The
model was run for 10,000,000 different parameter combinations before determin-
ing that the posterior had been estimated sufficiently well, based on the quality of
the posterior predictive distribution. The samples in the posterior were found to
have 0.019170 < exnrmse < 0.098098. Figure 7.9 shows this posterior distribution
in blue. Xtot, phi and r_t show narrow marginal distributions whilst the others
are much wider. Median values for all parameters are close to the model value,
with R_auto showing a skew towards lower values in its marginal distribution that
also leads to a median slightly lower than the model value. Figure 7.10a shows the
posterior predictive distribution produced by sampling 25 times directly from the
posterior, and shows a very good fit.

This healthy posterior was then used to define an impaired brain, as mentioned
above. r_t was set to 0.013 cm and the model driven with the same inputs as the
healthy simulation. This “impaired” dataset was then fit using the same approach
as above, using the sensitivity analysis results. The model was run 30,000,000 dif-
ferent parameter combinations, with the increased run number required in order to

sufficiently estimate the posterior. With an acceptance rate of 0.01%, a posterior
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was produced based on 3000 samples having 0.019170 < engmsg < 0.267152. De-
spite the higher error values as compared to the healthy data, the resulting fit was
still deemed very good. Figure 7.9 shows this posterior in orange and figure 7.10b
shows the time series generated by sampling 25 times directly from this posterior.
Xtot, phi and r_t show marginal distributions that are narrower than the others,
but wider than those seen in the healthy posterior. All parameters have median val-
ues close to the value set in the model. A separation between the healthy r_t and
impaired r_t marginal distributions is clearly visible.

Figures 7.10c and 7.10d show a zoomed in view of each output in order to show
the 95% credible interval of the posterior predictive distribution. This is not clearly
visible on the full trace as it is reasonably small.

Sections S6 Statistical Analysis - Simulated Healthy Data and S7 Statistical Analy-
sis - Simulated Impaired Data of Appendix C show a number of different statistical
analyses of the results for the healthy and impaired datasets respectively. These are
all posterior predictive checks, where the posterior predictive distribution is used
to produce a number of statistical results that can be used to assess the quality of
the model fit. Figure C.3 shows the autocorrelation of both the posterior predictive
and observed data as a function of lag for each signal in the healthy data. Figure
C.4 shows the distribution of the residuals for each signal in the healthy dataset,
with the mean and standard deviation drawn on. Q-Q plots for these distributions
are shown in Figure C.5 and are used to assess the normality of the residuals. Fig-
ure C.6 shows the prior and posterior distributions for each parameter along with
the Kullback-Leibler Divergence for each of these, giving us a sense of how much
information was gained when moving from prior to posterior distribution. Figures
C.7, C.8, C.9 and C.10 show these same posterior predictive checks but for the im-
paired distribution.

The autocorrelation plots in figures C.3 and C.7 show that the autocorrelation of
the posterior predictive distribution and the observed data match closely across all
lag values for both healthy and impaired datasets. Looking at the distributions of

the residuals for each signal in figure C.4 and C.8 we can see that the residuals for
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TOI appear to be normally distributed, whilst the other three signals all show gen-
erally symmetric but leptokurtic distributions. The Q-Q plots in figures C.5 and C.9
confirm this, suggesting that the residuals across all signals are generally normally
distributed, with some slight differences at the highest and lowest quantiles. Resid-
uals for HHb and CCO both appear to be generally more leptokurtic than both TOI
and HbO,.

Healthy: 65
Impaired: 64.6 . .
—— Posterior Median - Healthy

N . . .
é@f —— Posterior Median - Impaired
S Healthy: 1.35
Impaired: 1.49

Healthy: 2.54
Impaired: 2.34

Healthy: 0.0182
Impaired: 0.0136

Healthy: 1.01
Impaired: 1.08

Healthy: 1.99
Impaired: 1.93

I Healthy: 0.0288
Impaired: 0.0274

Healthy: 4.11
Impaired: 4.02

Healthy: 0.0361
IS Impaired: 0.0372

wﬁ@@@é@mﬁﬁm

\ 3 N
° fO\ o2 o ot ¢ R N *°
Q\Q((\ - «

| \'u‘

Figure 7.9: Comparison of posterior distributions for healthy and impaired simulated data.
Fig 7.9 shows the posteriors for healthy and impaired data based on an accep-
tance rate of 0.01%. Posterior are shown over the full prior range as defined in
S3 Table and S4 Table.

Experimental Data
When approaching the experimental data, the criteria for a good fit were different
to those in the simulated dataset. With the simulated dataset, any parameters not

chosen for fitting would have the same value during the fitting process as during
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Figure 7.10: Comparison of predictions for healthy and impaired simulated data. Figures
7.10a and 7.10b show the predicted time series data from the healthy and
impaired posteriors respectively. Each posterior was sampled 25 times and
the resulting runs aggregated, with the median and 95% credible intervals
plotted in dark blue and light blue respectively. Figures 7.10c and 7.10d show
a zoomed in view of each output in order to show the credible interval of the
posterior predictive distribution.
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the generation of the simulated dataset. In the experimental data however, it is al-
most certain that the default values of any parameters not chosen for fitting would
not have the exact same value as their biological, real-world analogue. As a result,
instead of looking for a perfect fit, we instead look for qualitative behaviours to be
reproduced, such as the periodic increase and decrease in output values due to the
repeated hypoxia challenges.

The fitting process required 20,000,000 parameter combinations before a satisfac-
tory fit was obtained, and with an acceptance rate of 0.01% the posterior in figure
7.11 consisted of 2000 samples with 0.778492 < exrmse < 0.802900. The model
was also fit using the previous OpenOpt method, and the values obtained from that
are also shown for comparison. We can see that for parameters with reasonably
well defined posterior, the OpenOpt values and the posterior median are reason-
ably close, but for those showing a wider distribution, the OpenOpt value can vary
massively from the posterior median. For sigma_e0 and k2_n the OpenOpt value
is at one extreme end of the prior range, whilst the median remains central due to
the distribution being uniform. Figure 7.12 shows the predicted time series for all
outputs based on the posterior shown in figure 7.11. The posterior was sampled 25
times with the resulting time series aggregated, with the median and 95% credible
intervals plotted. Overall behaviour is reflected in the predicted trace, with 3 distinct
periods of hypoxia visible as periodic behaviour within all signals. Shown in green
is the fit obtained using the OpenOpt method, which has an error engmsg =0.77518.
It is clear that both methods are able to achieve similar fits, but the Bayesian method
provides more information about the space of possible parameter combinations and
the resultant uncertainty in fitted model output.

As with the simulated datasets, we have produced posterior predictive checks to
assess the fit of the model to the data. These are shown in Section S8 Statistical
Analysis - Experimental Data of Appendix C. Figures C.11, C.13 and C.14 show
the autocorrelation comparisons, Q-Q plots and prior-posterior comparisons plots
respectively.

The autocorrelation plot in Figure C.11 show that the autocorrelation of the pos-
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Figure 7.11: Posterior distributions for the experimental dataset.Fig 7.11 shows the
posterior distribution for the experimental dataset, based on an acceptance
rate of 0.01%. The posterior median is shown in black and the OpenOpt pre-
dicted value is shown in red. Posterior are shown over the full prior range as
defined in S5 Table

terior predictive distribution and the observed data generally match across all lag
values, with the same shape seen in both plots, but with a slight difference in the
magnitude of the autocorrelation. The distributions of residuals in figure C.12 all
appear to be relatively normally distributed, with TOI, CCO and HbD showing a
mean close to zero. HbT however has a mean noticeably less than zero, which is
due to the simulation predicting generally lower values than in the observed data,
as seen in figure 7.12. These results are more clearly seen in figure C.13, which
suggests that the residuals for all signals are generally normal, with some bimodal-

ity in the HbT distribution and a significant amount of positive skew in the HbD
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Figure 7.12: Predicted fits for the experimental dataset for all outputs, based on the poste-
rior shown in Fig 7.11. The posterior was sampled 25 times with the resulting
time series aggregated, with the median and 95% credible intervals plotted in
dark and light blue respectively. Overall behaviour is reflected in the predicted
trace, with 3 distinct periods of hypoxia visible as periodic behaviour within
all signals. The fit obtained using OpenOpt is shown in red.

distribution.

7.4 Discussion

In this work we have introduced a new Bayesian analysis for interpretation of the
BrainSignals models. The process was tested and used to analyse two simulated
datasets and one experimental dataset. The Bayesian approach provides us with
complete information about the parameter space and takes into account the prior
information we have about physiological parameters via the proposal distribution,
p(0), which allows us to simulate distributions of input parameters. Both of these

factors are extremely important when drawing physiological conclusions from any
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parameter estimates.

Using the posterior predictive checks in sections S6 Statistical Analysis - Simulated
Healthy Data, S7 Statistical Analysis - Simulated Impaired Data and S8 Statisti-
cal Analysis - Experimental Data of Appendix C we have shown that the Bayesian
method is able to produce good fits for a range of different datasets, including both
overly simplistic test cases, with just a single parameter change, and real world
measured data which contain inherently more complexity than simulated data. It
can also be seen from direct observation of the posterior predictive distribution in
Fig 7.12 that the Bayesian method is able to provide a fit equally as good as the
previous OpenOpt method.

We have shown how the method can be used to define healthy and impaired pa-
rameter spaces, as shown with the simulated datasets, and how for some parameters
these spaces may overlap. We have also shown how the new Bayesian approach
provides more information about the parameter space than the previous OpenOpt
maximum likelihood method. Looking at only the healthy dataset, the parameters
sigma_coll, P_v and mu_max all have marginal posteriors with a median at the
default value set in the model, but with distributions that cover the entirety of the
prior distribution initially set. Determining that a parameter’s posterior distribu-
tion is not tightly constrained is important when drawing physiological conclusions
from the model fitting process. This is seen even more clearly in the direct com-
parison between prior and posterior distributions for these parameters in Fig C.6
and in their K-L divergence values of 0.00971 nats, 0.0109 nats and 0.014 nats re-
spectively. If we compare these to the plots and K-L divergence values for phi
and Xtot, which have values of 1.38 nats and 1.04 nats respectively, it is clear
that the Bayesian process provides significantly more information than the previ-
ous OpenOpt method, both in terms of producing posteriors that have significant
information gains compared to prior distributions, and in identifying parameters
where a good fit is produced despite minimal information gain. Using only sensi-
tivity analysis and OpenOpt would not provide this extra insight.

This is seen more clearly when looking at the experimental data. Many of the
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parameters show relatively narrow marginal posteriors, but sigma_e0 and k2_n,
which were both identified as important by the original sensitivity analysis, are both
shown to have wide distributions, suggesting insensitivity within the prior range.
The previous OpenOpt method produces an almost identical fit as the Bayesian ap-
proach but provides significantly less information about the parameter space. For
sigma_e0, k2_n, v_cn, R_autc and k_sigma the OpenOpt values fall outside of
the interquartile range of the posterior distribution, yet produce equivalent model
simulations. If considering the OpenOpt estimate alone, it would be simple to draw
the conclusion that these parameters have shifted away from the default ‘healthy’
value, showing some sort of physiological change during the hypoxia challenge.
However, when we look at the posterior obtained through the Bayesian method, the
median value is close to the default value and in fact parameter values across the
entire prior range produce similar results. As a result we can instead say that for
these data the model is insensitive to these parameters, with a median value that
would be considered ‘healthy’. Again, if we look at the comparison between prior
and posterior distributions and consider the K-L divergence for each parameter in
Fig C.14, it is clear to see where we have and have not gained information through
the use of the Bayesian process.

There are a number of other methods that can also be used to explore and define
the parameter space. The previously used maximum likelihood based method, for
example, can provide estimates and confidence limits of parameter values, but un-
der the assumption that the maximum likelihood estimator is normally distributed
around the maximum. It may also be possible to use a profile likelihood [Venzon
and Moolgavkar, 1988], but whilst this will provide information about the distri-
bution of the parameter space without assuming normality, it is computationally
expensive and does not take into account prior information about the parameters.

It is acknowledged that the Bayesian approach is not without its own limitations.
Historically, non-trivial problems were not solvable analytically due to the high di-
mensional integrals required. However, with the relatively recent availability of

more computational power, a number of algorithms and approaches are now avail-
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able that allow these problems to be approximated. This has seen increased uptake
of Bayesian approaches within the fields of systems biology and genetics, where the
inherently complex models and noisy data that these fields involve are particularly
well suited to being analysed through the Bayesian approach. As long as a statis-
tical model can be used to relate the relevant quantities, Bayesian inference can be
used to give full probabilistic information on all unobserved model variables.

One of the main drawbacks to this method is that the number of model runs re-
quired to have sufficient samples in the posterior may be prohibitively high, espe-
cially where the tolerance is low or the prior distribution is very different from the
posterior distribution.

This requirement for a large number of simulations for a reliable posterior is seen
in all of the datasets used here. For the simulated ‘healthy’ data, the model sampled
10,000,000 parameter combinations in order to achieve the obtained fit. In contrast,
to fit the ‘impaired’ simulated data the model required 30,000,000 parameter com-
binations to be sampled and for the same acceptance rate the accepted samples had
generally higher exrMmsg values. Finally, the experimental data were only able to
obtain a good posterior after being sampling 20,000,000 parameter combinations
and all enrmsg values were significantly above those seen in the simulated datasets.
This is clearly visible in figure 7.13, where the distribution of exrmsg values for
each posterior are clearly very different. This figure clearly highlights the variance
in both the error values that define a ‘good’ fit and the number of samples required
for a reliable posterior distribution for different datasets.

It should be noted that all of the obtained posterior distributions produce what are
considered good fits, with those obtained for the simulated datasets far more ac-
curate than we would ever expect to achieve when fitting experimental data. When
looking at the experimental data in particular, despite the exgmsg values being much
higher than in the simulated data, the obtained fit captures all important behaviour
and phenomena, with three clear hypoxia events visible in the inferred data trace.
More efficient methods of ABC, may alleviate the problem of requiring so many

model runs to obtain good posteriors. An approach based on MCMC is more effi-
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Figure 7.13: Distribution of exgMmsg values for the posteriors of each dataset. It can
be seen here that the three datasets had very different distributions exrmse
values for the samples that made up their respective posteriors. Despite this,
the posterior predictive distributions for all datasets were good fits.

cient than ABC REJ but the chain may become stuck in regions of low probability
for long periods of time [Marjoram et al., 2003]. In order to deal with this problem
and also the disadvantages of the rejection algorithm, an approach based on sequen-
tial Monte Carlo (ABC SMC) [Toni et al., 2009] was first proposed by Sisson et al.
[Sisson et al., 2007], as well as Beaumont et al. [Beaumont et al., 2009] and Cappé
et al. [Cappé et al., 2004]. In this approach, a number of sampled parameter values,
known as particles, are sampled from the prior distribution and then propagated
through a number of intermediate distributions before reaching a final target distri-
bution. The tolerance for each successive distribution is smaller than the previous,
allowing them to evolve towards the target posterior. Additionally, for a sufficiently
large number of particles, the problem in MCMC of getting stuck in areas of low
probability can be avoided. Developing the BayesCMD framework to use an ABC

SMC approach is a key focus for future work.
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7.4.1 Conclusion

We have outlined how this new Bayesian framework for model analysis can be
used with models of brain haemodynamics to extract information from physiolog-
ical data. A more comprehensive picture of the parameter space is obtained, al-
lowing physiological conclusions to be based on a broader picture. This is most
clearly seen in the experimental data, where point estimates suggested that the val-
ues for a number of parameters had changed significantly during fitting, whilst the
Bayesian method showed that the parameters were defined by a broad, roughly uni-
form distribution. We have also shown, through the use of data simulated from
the BrainSignals model in healthy and impaired states, how the Bayesian approach
allows us to better distinguish different parameter spaces. Finally, whilst we have
focussed on using the BrainSignals model here, any model that can be written in a
format compatible with BCMD can use this method to estimate model parameters.
A major interest within our research group is to use these models and approaches
to understand and investigate further our novel measures of brain tissue physiology
and metabolism and how they are linked to brain injury [Mitra et al., 2017, Bale
et al., 2018]. In particular, we are interested in neonatal hypoxic ischaemic injury.
The Bayesian approach provides a better representation of the parameter space and
can inform a better distinction between different brain states, such as between a mild
and severe injury. The method will also be adapted to use more efficient methods
of parameter estimation, such as ABC SMC, reducing the number of model runs

required to obtain a given tolerance.



Chapter 8

Modelling Therapeutic Hypothermia

8.1 Piglet Data

Data were collected as per Kaynezhad et al. [2019]. Piglets aged less than 36 hours
were sedated and their common carotid arteries isolated and occluded. Arterial
oxygen saturation was monitored continuously as well as mean arterial blood pres-
sure and heart rate. bNIRS was used to collected haemoglobin and cytochrome-c-
oxidase signals. Prior to the hypoxic-ischaemic insult piglets were monitored for
1 hour to ensure stability and the insult lasted approximately 20-22 minutes. All
animals received TH at 33.5°C 1 hour after injury with some receiving additional
treatments and additional pharmacological interventions throughout the 48-hour ex-
periment.

Data were considered for four piglets that had previously been found to exhibit
different behaviour and have different outcomes following the same clinical inter-
vention to emulate HIE. These were LWP475, LWP479, LWP481 and LWP484.
Of these, LWP475 and LWP481 were identified as having had a mild injury whilst
LWP479 and LWP484 were identified as having had a severe injury. Table 8.1 in-
dicates the HI duration, 10 minute CCO recovery fraction (RF) and Lac/NAA at
24 hours for each piglet. All data needed cleaning in order to remove artefacts
and were chosen to encompass the period of cooling only, with data before and
after this period removed. Cleaning involved passing data through a Sth-order, low-

pass, 0.05 Hz Butterworth filter, as per Caldwell et al. [2015a], to remove high
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Piglet HI Duration | 10 min CCO | 24hr Injury Sever-
(mins) RF Lac/NAA ity

LWP475 24 122% 0.21 Mild

LWP479 29 69% 1.03 Severe

LWP481 20 55% 0.26 Mild

LWP484 25 53% 8.32 Severe

Table 8.1: Table detailing each piglet’s injury severity.

frequency noise before interpolating missing data using the interpolate method
on the pandas.DataFrame[Mckinney, 2010]. During the cleaning process it was
decided that only data from LWP477 and LWP479 would be used due to problems
with data from the other two piglets. Figure 8.1 shows the data for both of these
piglets. Piglet LWP481 showed signs of a large external intervention in the NIRS
signals with a sudden increase coinciding with a drop in the measured arterial oxy-
gen saturation and a sharp increase in ABP. Similarly, piglet LWP484 showed a
similar sharp change coinciding with a dramatic change in blood pressure and oxy-
gen saturation. Given that these changes are likely to be due to external stimuli,
the model would be unable to properly model the observed behaviour and any con-
clusions and derived model parameters would be unreliable. Using the data up to
this point was not a valid approach as it would have prevented us from modelling
equivalent periods of cooling.

Figure 8.2 shows the final data for piglets LWP475 and LWP479. Though there is
still some noise within the data, particularly in LWP475, the data were deemed suf-
ficiently clean for modelling with a balance between removing any obvious artefacts
or measurement noise and ensuring all relevant physiological information was re-
tained. A clear difference is seen between the two piglets in terms of their response
to cooling. LWP479 shows an initial increase in both AHbD and ACCO before then
decreasing again whilst LWP475 shows a general decrease from the start of cool-
ing. Conversely, LWP479 shows an initial decrease in AHbO, followed by a sharp
increase, whilst LWP475 shows a steady increase from the start of cooling. It is
this opposite behaviour that we hope to be able to identify mechanisms for in the

hypothermia model.
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(b) Measured data for piglet LWP484

Figure 8.1: Measured data for piglets LWP481 and LWP484. Data were filtered using a
low-pass, Sth-order Butterworth filter at 0.05 Hz. External intervention is visi-
ble in both piglets.

8.2 Hypothermia models

A total of four BrainPiglet model variants were analysed and compared for this
work. BrainPiglet 2.1 is a control model in which temperature is fixed and hypother-
mia has no direct effect. All three hypothermia model variants, BP Hypothermia 1,
2 and 3, are affected by hypothermia but have slightly varying structures,as outlined
below. Figure 8.3 provides a summary of these models as well as showing the gen-
eral hierarchy of the models. Models are abbreviated as BPH*, where * refers to
the model variant. BrainPiglet2.1 is referred to as BPHO as it is our control model.
The BrainPiglet 2.1 model already contains temperature as a constant value in

the calculation of the model parameter Z, which is a proportionality constant found
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Figure 8.2: Measured data for piglets LWP475 and LWP479. Data were filtered using a
low-pass, Sth-order Butterworth filter at 0.05 Hz with anomalous data removed.
Any missing data were interpolated using the interpolate method on the
pandas.DataFrame[Mckinney, 2010].

in equations within the metabolic sub-model that deal with the electron transport
chain, specifically in the calculation of driving forces due to concentration differ-
ences.

This proportionality constant is defined as:

Z=—
F

where R is the ideal gas constant, F is the Faraday constant and 7 is absolute body
temperature as a constant value. We make this proportionality ‘constant’ a function

of temperature, 7'(¢), which we set as a model input that can vary over time.
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Hypothermia Model Hierarchy
| BrainPigkt21 | BP Hypothermia2

® Control model. ® Same scaling relation as in
BPHA1.
® Fixed temperature.
® Haemodynamics and
metabolism reaction rates
controlled by separate Q¢ co-
efficients.

® Based on Orlowski et al. [35]. ® Metabolism reaction rate
scaling controlled by Qqq co-
efficient.
® Haemodynamics and metabolism
reaction rates both controlled by ® Haemodynamics reaction rate
same Qqq co-efficient. scaled by ratio of temperatures
times proportionality constant.

Figure 8.3: Hierarchy of the hypothermia models. Brain Piglet 2.1 is included here as our
control model in which temperature is fixed and hypothermia has no effect.
Models BP Hypothermia 1, 2 and 3 all have slightly varying structures as out-
lined below, but all are affected by hypothermia.

This adds temperature into the calculation of driving forces due to concentration
differences, such as the proton motive force.

By making this proportionality constant a function of temperature it is possible to
incorporate temperature within the calculation of driving forces due to concentra-
tion differences, without adding excessive complexity to the model. However, there
are still other areas within the model where we expect temperature to have an im-
pact, such as in diffusion of oxygen within the oxygen delivery sub-model or in the
Michaelis-Menten type behaviour of many reactions that take place in the metabolic

sub-model.

8.2.1 BP Hypothermia 1

The first hypothermia model variant, BP Hypothermia 1 (BPH1), is the simplest of

the model variants with only a single major addition to the model. This is based on
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work by Orlowski et al. [2014], in which they expanded an existing model of cellu-
lar metabolism by incorporating temperature dependence into the rates of reaction
and ion diffusion. This was done to model the impact of therapeutic hypothermia
on stroke prevention. Their model was based on previous work modelling pH dy-
namics in brain cells after stroke that included capillaries, neurons, astrocytes, and
extracellular space with one compartment per tissue type [Orlowski et al., 2011].
Reaction rates, Michaelis-Menten rate constants and diffusion rates are modified
such that
Tnew=Tprevious
kinew = ki previous - Q19 " s 8.1)

where k; ;. 18 the new rate constant for reaction i at the new temperature 7,
ki previous 18 the rate constant for reaction i at temperature Tpevious, and Qqg is the
temperature coefficient, defined as the ratio of reaction rates measured for the same
reaction at two temperatures 10 °C apart.

Figure 8.4 illustrates how different Q1o values have differing effects on reaction
rates. For Q19 = 1 temperature has no effect on the ratio of reaction rates at the two
temperatures, whilst Q19 > 1 has increasing temperature increase the reaction rate
ratio and decreasing temperature decrease the ratio and Qo9 < 1 does the inverse,
with increasing temperature decreasing the reaction rate ratio and decreasing tem-
perature increasing it. We expect that Q19 will be between 2 and 3 in healthy brains
[Reyes et al., 2008], as this is the typical value for organic reactions, but with some
of the piglets showing the opposite behaviour to what is expected during cooling and
all having suffered a severe injury to the brain, an initial prior range 1 < Q¢ < 5 has
been set, with the potential to consider Q1o < 1 should initial explorations suggest
this. We add this modification to the model by adding a temporary variable Qyep

based on equation 8.2.1 such that

Tnew 7Tprevious

Qremp =019 " (8.2)

and therefore ki,new = ki7 previous * Qtemp-

These additions to the model therefore produce the new model structure seen in
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Figure 8.4: Graph showing the impact of Q;0 on reaction rates and how the change in
temperature affects the ratio for different values. In particular, it is worth noting
that a Q¢ value between 0 and 1 has the inverse affect of a value greater than
1. For a cooling to 10°C lower than the starting temperature, the reaction
rate doubles for Q9 = 0.5 whilst for Q;p = 2, the reaction rate doubles for
an increase in temperature to 10 °C above the starting temperature. This may
prove important when we look at the piglets where their metabolic response is
inverted compared to what is expected during the process of cooling.

figure 8.5.

8.2.2 BP Hypothermia 2

BP Hypothermia 2 (BPH?2) is based closely on BPH1 but with one small but im-
portant change. The decision was made to split the effect of temperature on the
reaction rates of diffusion/haemodynamics and metabolism into two separate equa-
tions with two separate Q1o values. This allows for tighter control over the subtleties
of hypothermia and how it affects the two compartments inside the model, without
adding the unmanageable levels of complexity that allowing each equation to have
its own Q1o would entail.

Both equations have the exact same form as in BPH1 but with individual Q¢ values.
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Figure 8.5: Structure of the BPH1 model. Additions are shown in bold, with parameters
shown in a circle and temporary variables shown in a diamond. In this case,
Q10 and Qrepp in the Metabolism and Blood Flow compartments refer to the
same parameter and variable.

Tnew*Tprev

ki,new = ki,previous : QlO,haemo (8.3)
Tnew - Tprev
— 10
kj,new - kj,previous ’ QlO,met (8.4)

where all model terms are the same as in equation 8.2.1, but with separation of
reactions such that Q19 suemo 18 the temperature co-efficient for the reaction i within
the oxygen transport and blood flow compartments and Q1 s 1s the temperature
co-efficient for reaction j within the metabolic submodel.

These additions to the model therefore produce the new model structure seen in

figure 8.6.
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Figure 8.6: Structure of the BPH2 model. Additions are shown in bold, with parameters
shown in a circle and temporary variables shown in a diamond. The separation
of haemodynamic and metabolic reaction rate modification is clearly seen here.

8.2.3 BP Hypothermia 3

The final model variant, BP Hypothermia 3 (BPH3) is similar to BPH2 in that
haemodynamics and metabolic reaction rates are controlled separately. However,
since the haemodynamic compartment has only a single reaction that is controlled
directly by the reaction rate modifications in BPH1 and BPH2, it was decided that it
would be best to try a different approach here to see how this affected the model out-
come and results. With this in mind, the metabolic effect is the same as in equation

8.2.2 of BPH2, but the diffusion reaction is instead modified such that

D027new = kdiff 'D027prev (85)
T,
kaipr = qdiff-Tnﬂ (8.6)
prev

where gg;rr is a dimensionless scaling parameter and ky;r¢ > 0. In doing this the

diffusion rate is scaled directly by the change in temperature. This approach is not
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Figure 8.7: Structure of the BPH3 model. Additions are shown in bold, with parameters
shown in a circle and temporary variables shown in a diamond.

based on any particular previous approach, but is instead simply a case of applying
a constant scaling factor to determine the impact this has. This is arguably the
simplest approach possible but is likely to lose much of the nuance captured by the
previous two approaches.

These additions to the model therefore produce the new model structure seen in

figure 8.7.

8.3 Initial Model Analysis

In ordered to assess the potential viability of each model we can perform some
simple checks, looking at steady state behaviour of the models under different con-
ditions. In particular we will focus on autoregulatory behaviour during changes to
system input variables and model output behaviour during cooling.

There is some work within the literature which will allow us to qualitatively assess
the models based on their responses during these checks. Lee et al. [2011] inves-

tigated the effect of cardiac arrest and hypothermia on autoregulation of cerebral
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blood flow in neonatal piglets. In this work they found that hypothermia did not
change autoregulation for both hyper- and hypotensive changes. As a result, if a
model is to be considered a reasonable candidate, we should expect to find minimal
to no difference in the autoregulation curves for increasing and decreasing blood
pressure when looking at hypothermic temperatures. In terms of considering output
response to temperature changes, Ehrlich et al. [2002] looked at the effect of tem-
perature on cerebral blood flow and metabolism in the pig model. In this work, they
cooled pigs down to 8 °C, with cerebral blood flow, cerebral oxygen consumption
and cerebral vascular resistance determined at 37 °C, 28 °C, 18 °C and 8 °C. They
found that both CBF and CMRO, decrease with decreasing temperature for a Q10
value of 2.46.

It should be noted here that the BrainSignals and BrainPiglet models are only ex-
pected to operate down to typical therapeutic hypothermia temperatures of 33.5 °C
and so cooling will not be investigated as low as the temperatures in the work by
Ehrlich et al.. Additionally, quantitative agreement by the models with collected
data typically requires fitting of parameters which is not possible here. Regardless,
we should expect any good candidate model to be able to qualitatively reproduce
their findings and so we will expect to find that both CBF and CMRO, decrease

during cooling within the model.

8.3.1 Autoregulation

In order to assess autoregulatory behaviour, each model was driven by one of the
three main systemic input quantities - arterial blood pressure, arterial oxygen sat-
uration and partial pressure of CO; - whilst the other two are kept constant. Fifty
equally sized steps were defined and the model was run for 100 seconds at each step.
The cerebral blood flow value at the end of each 100 second interval was recorded
and used for analysis. This process was done for temperatures of 37 °C, 35 °C and
33.5 °C in order to assess behaviour across temperatures.

Figures 8.8, 8.9 and 8.10 shows the autoregulation curves of models BPH1, BPH2
and BPH3 respectively. In these we see the response of cerebral blood flow to

changes in each of the three systemic input quantities at three different tempera-
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Figure 8.8: Autoregulation curves for each measurable input quantity to model BPH1 - ar-
terial blood pressure, arterial oxygen saturation and partial pressure of CO, - at
three distinct temperatures. Figures a)-c) show the autoregulation response with
decreasing input quantity and figures d)-f) show the autoregulation response for
increasing input.

tures. Subfigures a)-c) show the response curves for model inputs decreasing from
a maximum value to a minimum value, whilst subfigures d)-f) show the response
curves for the opposite. This is to determine the presence of hysteresis within the
model. Model parameters were kept at their normal, ‘healthy’ values in all models.
In all models, we see that across all three temperatures, which includes a hypother-
mic temperature of 33.5 °C, autoregulatory behaviour is maintained. In particu-
lar we see that autoregulation is maintained at hypothermic temperatures for both
hyper- and hypo-tensive changes in blood pressure, as found by Lee et al. [2011].
Autoregulation curves for models BPH1 and BPH2 are identical for the default,
‘healthy’ parameter combinations. This is due to model BPH2 being a submodel
of BPH1 such that when Q10 mer = Q10 haemo- the model structure is identical. Au-

toregulation in model BPH3 also appears to be very similar to that in models BPH1
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Figure 8.9: Autoregulation curves for each measurable input quantity to model BPH2- ar-
terial blood pressure, arterial oxygen saturation and partial pressure of CO, - at
three distinct temperatures. Figures a)-c) show the autoregulation response with
decreasing input quantity and figures d)-f) show the autoregulation response for
increasing input.

and BPH2, with the most notable difference being in the response of arterial oxygen
saturation at each temperature. For model BPH1 and BPH2 there is a slight but no-
ticeable difference to the response curve at an oxygen saturation of around 50-75%
at each temperature, but for model BPH3 this difference is negligibly small.

In conclusion, the autoregulatory response of each model agrees with the available
literature in so far as this is possible, particularly with regards to the maintaining
of autoregulation at hypothermia temperatures during both hyper-and hypo-tensive
changes. As a result we can say that all models can be considered good candidates
based solely on this initial exploration. Further investigation requires analysis and

observation of the response of different outputs to changes in temperature.
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Figure 8.10: Autoregulation curves for each measurable input quantity to model BPH3 - ar-
terial blood pressure, arterial oxygen saturation and partial pressure of CO, -
at three distinct temperatures. Figures a)-c) show the autoregulation response
with decreasing input quantity and figures d)-f) show the autoregulation re-
sponse for increasing input.

8.3.2 Output response to temperature

To investigate the effect of cooling on model output, the model was run with the
three main systemic variables kept at their default values and with temperature re-
duced gradually from 37 °C to 33.5°C. To consider the full effect of temperature
on model outputs, this process was repeated for a range of parameter values. For
BPHI1, with only one new parameter added to the model, Q19 was varied between
0.1 and 5.0 in steps of 0.1 leading to a total of 50 runs. For model BPH2, both
Q10,mer and Q10 paemo Were varied jointly between 0.1 and 5.0 in steps of 0.1, lead-
ing to a total of 2500 runs. Finally, for model BPH3 Qo was varied between 0.1
and 5.0 in steps of 0.1 and g4, s was varied between 0.01 and 1.0 in steps of 0.02,
leading to a total of 2250 runs.

To visualise this information two approaches are taken. For model BPHI1, where
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only one model parameter is varied, we can visualise the response of an output
across the full range of temperatures for each parameter value. For models BPH2
and BPH3 however, which each have two new parameters to consider, we instead
visualise the output value at 33.5 °C only. This is plotted on a heatmap for each
parameter combination. Where there are results requiring further investigation, we
can visualise output in detail across the full range of temperatures by fixing one
parameter at a constant value and varying the other.

Figure 8.11 shows the responses of CBF, CMRO,, AoxCCO, AHbD and TOI to
cooling for a range of Qo values. The color map has been chosen to aid in distin-
guishing between general ranges of Q¢ values.

There are a number of important features to note. First of all if we consider Q¢ > 1,
which is the range we would expect to find in a healthy subject, we can see a number
of important behavioural trends. Both CBF and CMRO; decrease approximately
linearly during cooling to as low as 98.5% and 93.5% respectively. This qualita-
tively matches up with the experimental observations of Ehrlich et al. [2002] even
though the exact amounts don’t match. This could be due to a combination of the
lack of overall parameter fitting and the maintaining of constant systemic inputs
which we would expect to vary with temperature also.

In addition to this confirmation of behaviour, we also gain some useful insights into
the behaviour of other measurable quantities. Firstly, both TOI and AHbD increase
during cooling, suggesting an increase in oxygenation if systemic signals stay con-
stant. Secondly, in line with the CMRO; response, we see a decrease in AoxCCO
during cooling, indicating a decrease in metabolic activity. These results are in line
with the behaviour seen in Piglet LWP475 which suffered a mild injury, as outlined
in Piglet Data.

For extremely low Q1o values, particularly those at the bottom end of the consid-
ered scale at about Q19 = 0.1, behaviour between 37 °C and 35 °C is opposite to
behaviour between 35 °C and 33.5 °C. For example, cerebral blood flow increases
when cooling from 37 °C to 35 °C for Q9 = 0.1 but then decreases when cooling

further temperatures less than 35 °C. We wouldn’t expect to find these parameter
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values in a healthy subject, but it is important to consider them and their behaviour
as they may be present in severely injured neonates. In particular, the general in-
version of the expected response at these lower values seems in line with the data
collected from Piglet LWP479 which suffered a severe injury. This observation will
prove useful when determining the prior ranges to be used for Bayesian analysis in
this piglet.

Figure 8.12 show the responses of model BPH2 outputs to cooling, with output
values at 33.5 °C given for each parameter combination. General behaviour of the
model is similar to that seen in BPH1 but with some noticable differences. Figures
8.12a and 8.12b show that cooling for the healthy parameter ranges of Q10 naemo > 1
and Q10 ner > 1 results in reductions in both outputs. Additionally, the majority of
the impact seems to come from changes in Q1¢ e, With the colour change due to
changes in Q10 sqemo being much less drastic and noticeable.

Looking at the NIRS outputs of AoxCCO, AHbD and TOI we see a similar pat-
tern, with most of the change seeming to come from changing Q19 .. However,
for AoxCCO we also see that for values of Q19 e < 1, changing Q10 saemo has a
significant effect, with Q10 pgemo >~ 3.5 causing the signal to decrease rather than
increase. This is seen even more clearly in figure 8.13, where AoxCCO has been
plotted against Q10 saemo for specific values of Qg mer. For Q1o.mer = 0.1 a clear
decrease in the value of AoxCCO is visible when Q10 naemo >~ 3.5. This behaviour
suggests that careful fitting of both parameters will be required, as the effect of one
can easily cancel out that of the other.

Figure 8.14 show the responses of model BPH3 outputs to cooling, with output
values at 33.5 °C given for each parameter combination. General behaviour of the
model is noticeably different to that of models BPH1 and BPH2, with distinctly
non-monotonic behaviour observed when increasing g4;rs in the range 0.1 to 1.0.
Figures 8.14a and 8.14b show that for Q4,7 <~ 0.52 the desired behaviour of cool-
ing causing a decrease in each signal is observed. However, for Qg;rr >~ 0.52 we
instead observe an increase, with this most noticeable at Qo < 1, as was the case in

Figure 8.13.
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Figure 8.12: Output response to cooling for different parameter combinations in model
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combinations.
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Figure 8.13: Cytochrome-c-oxidase output for changing Q10 saemo- The figure shows how
the value AoxCCO at 33.5 °C varies with Q10 jaemo for specific Q10 mer values.
We can see clearly here that increasing Q10 ngemo quickly causes a drop in
AoxCCO.

Looking at the NIRS signals, we see some particularly interesting behaviour. For
AoxCCO, in figure 8.14c, we see that for the cases where we have either Q19 >~ 2.5
and qg;rr < 0.52 or Q10 < 1 and g4;¢r > 0.7, AoxCCO increases with cooling, but
for either low Q1o and low gy;ss or high Q19 and high gg;¢r cooling causes a de-
crease in g4 In addition, for a specific area of parameter space, a drastic change
in AoxCCO can be clearly seen. For 0.52 < g4;rr < 0.7 and Qj9 < 2.5, cooling
causes a drop in AoxCCO much larger than seen outside this region. This is clearly
visible in Figure 8.15a, where for Q19 = 0.1 increasing gg4;rs first causes a grad-
ual and then sudden decrease in AoxCCO until gg4;rr ~ 0.6, after which AoxCCO
increases above values seen for larger Q19. In contrast, for Q19 = 4.1 AoxCCO
gradually increases as qg;ry is increased from 0.1 to ~ 0.5 after which there is a
decrease between qg;rr = 0.5 and ggiry = 0.6, after which AoxCCO is approxi-
mately constant. Qo values between these two extremes show a combination of
these behaviours, with the sudden decrease and increase being more prominent as
Q10 decreases.

For AHbD, in figure 8.14d, we see some similarly interesting behaviour. Notably
we see that cooling generally causes an increase in AHbD apart from in the region of
parameter space bounded by approximately Qjo € [0.1,1.0] and gg4;sf € [0.55,1.0],

where cooling causes a decrease. Figure 8.15b shows how the value AHbD at
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Figure 8.15: AHbD and AoxCCO output for changing g ;s. Figure 8.15a shows how the
value AoxCCO at 33.5 °C varies with g,if f for specific Q¢ values. We can
see clearly here that increasing gg4; ¢ has a varying effect on AoxCCO depend-
ing on the Qy¢ value. For lower values of Qj, increasing gg; ¢y causes first a
decrease and then an increase in AoxCCO, whilst for higher values of Q¢ in-
creasing gy causes a gradual increase followed by a sharp decrease and than
an approximately constant value. Figure 8.15b shows how the value AHbD at
33.5°C varies with ggif f for specific Qo values.

Figure 8.15b shows how the value AHbD at 33.5 °C varies with g if f for spe-
cific Q19 values. Here we can see clearly that behaviour between different
values of Q¢ diverges for gg;rr >~ 0.6.

33.5°C varies with gg;rs for specific Q1o values. Here we can see clearly that
behaviour between different values of Qj¢ diverges for ggirr >~ 0.6, with Q19 > 1
having AHbD > 0 and Q9 < 1 having AHbD < 0.

Finally, the results for TOI are much simpler than those of the other considered out-
puts. Varying Q1o appears to have minimal impact on TOI value, whist increasing
Quiry causes TOI to decrease fairly rapidly at first before levelling off to being ap-
proximately constant for g4;rr > 0.5.

It is clear from this initial analysis of model BPH3 that the choice of priors for
these parameters is particularly important, with the model output being notably
non-monotonic across parameter space and sharp changes in behaviour occurring
at specific boundary values. We might expect that we will find posterior distri-
butions with small variance, especially if parameters fall within one of the tightly
bounded regions, such as that seen in the top right corner of figure 8.14d.

Having now considered our model behaviour and determined that for all three mod-

els we are able to qualitatively agree with experimentally determined behaviour, al-
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beit within certain parameter boundaries, we can now move on towards using these
models to analyse our data. This process has been outlined in Development of a
Bayesian framework for model analysis in Figure 6.3, although a number of small

changes have been made to the sensitivity analysis process as outlined below.

8.4 Bayesian Modelling

Including the original BrainPiglet 2.1 model, a total of four BrainPiglet model vari-
ants were analysed and compared for this work. Additionally, small variations on
these models were also considered for dataset LWP479 with different hyperparam-
eters (parameters describing the distribution, e.g. the mean or standard deviation)
placed on the prior distributions. This is because initial hyperparameter settings
were determined based on the assumption of the expected physiological response
to hypothermia. However, initial analysis of dataset LWP479 highlighted a flaw in
this assumption: the physiological response of the more severely injured piglet is
inverted as compared to the healthy piglet, therefore assumptions that the tempera-
ture co-efficient must be greater than 1 are not valid.

As aresult it was decided to perform further fitting of the model for this dataset us-
ing different hyperparameters for the prior distributions, allowing Qj¢. < 1 param-
eters, where Q¢ . are the temperature co-efficients in each model. These submodel
variants are labelled as BP Hypothermia x.1, where x denotes the major model ver-
sion as outlined below. Information about the changed hyperparameters are men-
tioned within the description of the main model version. These x.1 variants are used
below for posterior and posterior predictive distributions for piglet LWP479. The
x.0 variants are not analysed directly for piglet LWP479 as they failed to produce
meaningful results for reasons that will become clear. They are included however

in model selection in order to validate the decision to exclude them from analysis.

8.4.1 Sensitivity Analysis

As explained in section 5.1, in order to successfully use the BCMD framework and
model it is necessary to perform model reduction via sensitivity analysis. In this

case we needed to reduce a model such that the selected parameters would be ap-
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plicable to multiple datasets based on brains in distinctly different states. To ensure
that this reduced model would be applicable to all piglets and their outcomes, rather
than being specific to a single piglet and its brain state, sensitivity analysis results
were considered jointly across all piglets . It is fair to assume that a model applied
to a piglet having suffered severe HIE is likely to have different parameter sensitiv-
ities to a model applied to a piglet with a very mild HIE injury.

Sensitivity analysis was performed twice per dataset and per model - once where
failed runs that result in NaN values for the summary metric were replaced first by
10,000,000 and then again with them replaced by 0. This was done to try and avoid
the problem of parameters being selected that would overwhelmingly produce many
failed runs.

When using only one of the above substitutions we can run into two separate issues.
When replacing NaN values by an extremely large value, we bias the sensitivity
analysis method towards parameters that produce failed runs. This is still important
however, as the case where varying a parameter can cause the model run to fail is
arguably a good sign of that parameter being sensitive. It also makes it very clear
where a parameter has failed many times as (. values tend to be extremely higher
where this is the case.

When replacing NaN values by zero however we are able to observe different in-
formation. By doing this we can select parameters that are sensitive to variation
but are less likely to cause the model runs to fail. This biases the method towards
parameters that are potentially less tightly bound than in the case of substitution by
a large value, but are still identified as sensitive. The downside to this method how-
ever is that parameters that are potentially important but have a very small viable
parameter region tend to be ignored.

To try and combine these two approaches the following criteria were used for each,
before selecting final parameters as those found to be sensitive in both. The term
results here refers to the sensitivity results for a given piglet and output. The top 20
most sensitive parameters for each combination of dataset and output were selected

and the union of these is the total set of results considered.
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Figures 8.16 to 8.19 show heatmaps of the sensitivity analysis results. The param-
eters shown are the union of the twenty most sensitive parameters for each output
and dataset combination. As a result, the number of parameters considered in each
heatmap varies.
These heatmaps provide a general overview of what parameters were shown to be
sensitive within each output and dataset. It also allows us to clearly see where spe-
cific parameters are found to be sensitive in all situations e.g. NADpool or r_t in
Figure 8.16a.
There is an interesting result within Figure 8.16a here we can see that parameter
Q_10_haemo is identified as being sensitive in CCO-LWP484 despite not being
present within the model or its definition. Because all models call their parameter
distributions from the same file, Q_10_haemo appears to have been varied by the
SA method and has potentially been altered at the same time as another parameter
that was important. As a result the method has erroneously identified it as important
despite it having zero effect by definition. This is further justification for applying
prior knowledge and common sense when performing model reduction. As we saw
in chapter 7 and will see below in section 8.4.2, the Bayesian framework provides
much more information about the sensitivity of the model to a given parameter, both
in term of its joint posterior and its marginal posterior.

What is also clear within these figures is how a parameter may be important within
a single output but not all, especially when looking at the metabolic subcompart-
ment and the CCO output. For example, in every BPH model variant where substi-
tution by zero was performed, cytox_tot_tis is identified as important in the CCO
output for all piglets, but is rarely important in any other output. As a result, if we
were to only select parameters that were important in 75% of all Output-Dataset
combinations, we would inevitably bias the selection against parameters that were
important in only metabolism due to only the CCO output being specific to that
compartment.

After having performed this process of selecting parameters that were in 75% of

all results or occurred in 3 or more datasets for a single output, the number of pa-
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Figure 8.16: Sensitivity Analysis results for model BrainPiglet 2.1, with NaN substitution
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parameter and Output-Run combination.
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Figure 8.17: Sensitivity Analysis results for model BPH1, with NaN substitution by
10,000,000 and zero. Each cell is coloured based on the i, value for that
parameter and Output-Run combination.

rameters was still relatively high. Whilst it was important to make sure we provided
adequate coverage of parameter space in order to sufficiently fit the model, we could
potentially reduce the number of parameters that required fitting by removing those
which were unlikely to vary physiologically.

For example, changing ‘temp_n‘ clearly has a large impact on the model, but it is
extremely unlikely that the normal body temperature of a piglet was significantly
different from the default value of 37 °C. Similarly, the normal SaO; value given
by SaO2_n is unlikely to be very different from the default value given that we have

recordings of this value at the start of the measurement period and it is similar if not
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exactly the same as the default value for most piglets.

Other parameters that may fall into this category include normal blood pressure,
P_an, and normal partial pressure of CO2, PaCO2_n. These parameters are im-
portant, but when focussing on the impact an injury has had in terms of function,
parameters that control what we expect a 'normal’ input to be are unlikely to pro-
vide useful information when fitting. It is potentially more useful to leave many of
the 'normal value’ parameters at their default values. The normal value of blood
pressure, for example, should probably be kept the same across all piglets. Then,
if the impact of blood pressure is different from the expected "healthy’ behaviour,
it should be more dynamic parameters that control these changes, rather than mod-
ifying what we consider to be a normal blood pressure to try and force a better fit
despite the change being unrealistic. This appears to be an inversion of the more
typical ‘Occam’s razor’ approach to solving a problem, in which the simplest an-
swer is usually the correct one, but the complex nature of the models means that
many potential solutions may be found to a given problem. With this in mind, a
certain amount of common sense must be used when performing model reduction
in order to ensure that we focus on producing physiologically reasonable results and
conclusions.

Final parameter selection results are outlined below in Tables 8.2 to 8.5, along with
each parameter’s distribution limits and default value. All parameters are varied
over a uniform distribution and parameters are ordered by how many of the sen-
sitivity analysis results they are within the 10 most sensitive parameters, with the

most present at the top and the least present at the bottom.
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Parameter ‘ Min. Value ‘ Max. Value ‘ Default Value

r_m
rocc

r 0
R_autc

P ic
K_sigma
k_1k2

r_t
NADpool
phi
Vol_mit
k_aut
n_m

0.0216
0.0000
0.0101
0.0000
3.6000
8.0000
0.0304
0.0144
1.5000
0.0288
0.0536
0.0000
1.4640

0.0324
1.0000
0.0151
10.0000
5.4000
12.0000
0.0456
0.0216
4.5000
0.0432
0.0804
1.0000
2.1960

0.0270
0.0000
0.0126
2.2000
4.5000
10.0000
0.0380
0.0180
3.0000
0.0360
0.0670
1.0000
1.8300

Table 8.2: Table showing final sensitivity analysis parameters for model BrainPiglet 2.1.

Parameter ‘ Min. Value ‘ Max. Value ‘ Default Value

NADpool
r_t

1.5000
0.0144
2.0000
1.0000
0.0101
8.0000
0.0000
0.0000
0.0150
0.0064
0.0192
0.0288
3.5000

4.5000
0.0216
3.0000
6.0000
0.0151
12.0000
1.0000
10.0000
0.0224
0.0096
0.0288
0.0432
8.0000

3.0000
0.0180
2.5000
2.4000
0.0126
10.0000
1.0000
1.5000
0.0187
0.0080
0.0240
0.0360
5.4000

Table 8.3: Table showing final sensitivity analysis parameters for model BPH1.
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Figure 8.18: Sensitivity Analysis results for model BPH2, with NaN substitution by
10,000,000 and zero. Each cell is coloured based on the i, value for that
parameter and Output-Run combination.
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Figure 8.19: Sensitivity Analysis results for model BPH3, with NaN substitution by
10,000,000 and zero. Each cell is coloured based on the i, value for that
parameter and Output-Run combination.

Parameter ‘ Min. Value ‘ Max. Value ‘ Default Value
K_sigma 8.0000 12.0000 10.0000
Q_10_met 1.0000 6.0000 2.4000
a_frac_n 0.0000 1.0000 0.6700
pH_mn 7.2000 7.6000 7.4000
Q_10_haemo | 1.0000 6.0000 2.4000
Xtot_n 3.5000 8.0000 5.4000
NADpool 1.5000 4.5000 3.0000
r 0 0.0101 0.0151 0.0126
r_n 0.0150 0.0224 0.0187
_LOn 0.1000 5.0000 3.0000
phi 0.0288 0.0432 0.0360

Table 8.4: Table showing final sensitivity analysis parameters for model BPH2.
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Parameter \ Min. Value \ Max. Value \ Default Value

CBFn

phi
NADpool
q_diff
_LOn
CMRO2_n
pH_on

r 0

Q_10
Xtot_n
k_aut

rt

r_n

0.0064
0.0288
1.5000
0.0000
0.1000
0.0160
6.8000
0.0101
1.0000
3.5000
0.0000
0.0144
0.0150

0.0096
0.0432
4.5000
5.0000
5.0000
0.0240
7.2000
0.0151
6.0000
8.0000
1.0000
0.0216
0.0224

0.0080
0.0360
3.0000
1.0000
3.0000
0.0200
7.0000
0.0126
2.4000
5.4000
1.0000
0.0180
0.0187

Table 8.5: Table showing final sensitivity analysis parameters for model BPH3.
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8.4.2 Model Posterior and Posterior Predictive Distributions

For each dataset and model we can generate posterior and posterior predictive dis-
tributions. These are generated for an acceptance rate of 0.1%, leading to 50,000
samples for each dataset-model combination. By comparing the posterior predictive
distributions we can assess the quality of fit for each model. This is done prior to
the model selection process, so the posterior and posterior predictive distributions
for each model and dataset are determined independently of each other.

For each model we will first look at the posterior predictive distributions in each
piglet for each model. This will allow us to consider the posterior distributions of
each model in the context of how well it has performed.

We will then look at the posterior distributions for dataset LWP475, which is known
to be the data from a piglet showing the expected healthy response. Following this
we will look at the posterior distributions for dataset LWP479, which is the piglet

showing the unexpected response, for each model x.1 variant.

Posterior Predictive Distributions

Figures 8.20 and 8.21 show the posterior predictive distributions for each dataset.
Figure 8.20 shows the posterior predictive distributions for piglet LWP475 for each
output and model. BPHO is clearly unable to properly reflect the CCO, HbO, and
HHb signals. It does appear to be able to better reflect some of the more small scale
changes than the new model variants, closely matching a number of small periodic
increases, but is unable to properly reflect broader scale changes that are caused by
changes in temperature.

The three new model variants appear to match the longer scale and broader changes
caused by decreasing temperature and out of these, model BPH2 seems to be able
to more closely match some of these broader changes. It is also generally smoother
than models BPH1 and BPH3. This is notable as all three model variants appear
to exhibit an inverted behaviour during the small scale periodic increases that occur
throughout the signal. This suggests that the reduced form of these models appears
to be unable to fully capture these short term changes and that the parameter con-

trolling this is either missing or is damped by the added temperature changes.
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Figure 8.20: Posterior predictive distributions for piglet LWP475. Figures 8.20a, 8.20b
and 8.20c show the posterior predictive distributions for CCO, HbO, and HHb
respectively for each of the four models. 95% credible intervals are included
but too small to be visible.
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Figure 8.21 shows the posterior predictive distributions for piglet LWP479 for each
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Figure 8.21: Posterior predictive distributions for piglet LWP479. Figures 8.21a,8.21b
and 8.21c show the posterior predictive distributions for CCO, HbO, and HHb
respectively for each of the four models.

output and model. A clear difference can be seen between the three new model vari-
ants that include temperature as a variable and the original unmodified model. In
particular we can see that BPHO is unable to respond to reflect the changes in CCO,
HbO; and HHb that are caused by temperature changes. This is most obvious in the
CCO response which is completely flat.

When comparing between the new model variants, in Figure 8.21a we see that by
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setting a prior range to include Q19 e < 1 in model BPH2.1, the CCO response is
able to invert as seen in the data. A small amount of lag is visible in the response,
suggesting that other parameters not selected by the sensitivity analysis process
may be important here. Models BPH1.1 and BPH3.1, despite the prior range for
Q10 including values less than 1, are less able to closely match the CCO response,
with both increasing over time but failing to return to baseline within the time pe-
riod measured. In the case of BPHI.1 this may be due to the haemodynamic and
metabolic compartments sharing a temperature co-efficient.

All three model variants seem to be able to reasonably reproduce the haemody-
namic measurements, with model BPH2.1 generally performing better and both

model BPHI1.1 and model BPH3.1 producing similar results.

BP Hypothermia 1.0/1.1 Posterior Distributions

Figure 8.22 shows the posterior distributions of models BPH1.0 and BPH1.1 with
piglets LWP475 and LWP479 respectively, with piglet LWP475 in blue and piglet
LWP479 in orange. Looking at the marginal posteriors we can see that only a small
number of parameter posteriors differ between piglets, such as Q_10 of CBFn.
Others, such as NADpool or r_n, are almost exactly the same in both piglets. We
can consider the distributions in more detail by looking at them in comparison to
the prior distribution alongside their K-L divergence values. Figure 8.23 gives this
information for model BPH1.*. Here we can see that both k_aut and Q_10 show
significant information gain as compared to the prior in both piglets, whilst R_auto
only show significant information gain for piglet LWP475. Additionally, we see
a number of parameters that differ from the prior by a not insignificant amount
and have almost identical posteriors and K-L divergences values in both piglets.
These are NADpool, r_n and r_0. These highly similar posteriors suggest a shared
parameter space for the piglet models that differs from the uniform priors estab-
lished here. Finally, k_sigma, phi, n_h, Xtot_n and O2_n all have posteriors that
have small K-L divergence values, suggesting that minimal information is gained
as compared to the prior. This suggests that the model is insensitive to changes in

these parameters within the physiologically reasonable region and highlights the
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difficulties faced when using the previously outlined sensitivity analysis method in

identifying parameters that are actually important and/or physiologically important.
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Figure 8.22: Posterior distributions using models BPH1.0/1.1 with piglets LWP475
and LWP479 respectively Posteriors for piglet LWP475 are shown in blue
and those for piglet LWP479 are shown in in orange.

BP Hypothermia 2.0/2.1 Posterior Distributions

As above, Figure 8.24 shows the posterior distributions of models BPH2.0 and
BPH2.1 with piglets LWP475 and LWP479 respectively, with piglet LWP475 in
blue and piglet LWP479 in orange.

Looking at the marginal posteriors we again see that only a small number of

parameter posteriors differ between piglets, which in this case are Q_10_met,
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Figure 8.23: K-L Divergence plots for model BPH1.0/1.1 The figure shows marginal dis-
tributions for both piglet LWP475 and piglet LWP479, as well as the prior
distribution, for model BPH1.*.
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Figure 8.24: Posterior distributions using model BPH2.0/2.1 with piglets LWP475 and
LWP479 respectively Posteriors for piglet LWP475 are shown in blue and
those for piglet LWP479 are shown in in orange.

Q_10_haemo, a_frac_n and Xtot_n. Figure 8.25 shows the marginal posteriors for
each piglet, the prior range and the K-L divergence values. A number of things are
clear from this figure. We again see a potentially shared ‘piglet parameter space’,
with the posteriors of NADpool, r_n, r_0 and phi being similar in both piglets, yet
dissimilar to the prior.

We also see that Q_10_met is very different in the two piglets with a lot of infor-
mation gained in both cases as compared to the prior. In particular, we see that
Q_10_met for LWP479 is a tightly bound distribution well below 1, suggesting that
the temperature response of the metabolic reactions is inverted in this piglet. We

also see that q_10_haemo for LWP479 is more heavily skewed towards larger val-
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Figure 8.25: K-L Divergence plots for model BPH2.0/2.1 The figure shows marginal dis-
tributions for both piglet LWP475 and piglet LWP479, as well as the prior

distribution, for model BPH2.*.
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ues for LWP479 than LWP475 suggesting that the cooling effects of hypothermia on
haemodynamic reactions are more pronounced in the more severely injured piglet.
Finally, it is interesting to note that where the two piglets show different param-
eter spaces, the K-L divergence values for piglet LWP475 are generally higher,
such as in a_frac_n (LWP475=1.6, LWP479=0.102) or Xtot_n (LWP475=0.565,
LWP479=0.0274). This suggests that the less severely injured piglet has a more

tightly bound parameter space.

BP Hypothermia 3.0/3.1 Posterior Distributions

Finally, Figures 8.26 and 8.27 give the posteriors and K-L divergence plots for mod-
els BPH3.0 and BPH3.1 with piglets LWP475 and LWP479 respectively, with piglet
LWP475 in blue and piglet LWP479 in orange. As with both model BPH1.* and
BPH2.*, only a small number of parameter show any noticeable difference between
the two piglets, and a number of other parameters suggesting a shared ‘piglet pa-
rameter space’.

In contrast to the model BPH2.*, where the haemodynamic and metabolic tem-
perature parameters were also split, only the metabolic parameter shows a distinct
separation between the piglets. For model BPH3.*, q_diff appears to share an over-

lapping parameter space in the two piglets.

BrainPiglet 2.1 (BPHO) Posterior Distributions

Figure 8.28 shows the posterior distributions of model BPHO for both piglet
LWP475 and LWP479. When analysing these posteriors we should note the results
seen in Figures 8.20 and 8.21. Model BPHO was unable to produce meaningful re-
sults and as a result any conclusions drawn from its parameter space reflect a poorly
fitted model. Instead we can use these posteriors to try and understand what param-
eter changes occur when the model tries and fails to reproduce temperature effects
without allowing temperature as an input variable. Where the same parameter oc-
curs in this reduced model and in one of the new model variants, the difference in
posterior highlights incorrect conclusions that could have been drawn had we not
improved our model.

One of the most noticeable differences between the posterior distributions of model
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Figure 8.26: Posterior distributions using models BPH3.0/3.1 with piglets LWP475
and LWP479 respectively Posteriors for piglet LWP475 are shown in blue
and those for piglet LWP479 are shown in in orange.

BPHO and the new model variants is how many parameters show posteriors that are
clearly different between the two piglets in BPHO and not in the newer variants. For
example, in the newer variants the marginal posteriors for r_0 were generally the
same but in BPHO they are clearly different. This is also the case for NADpool, phi
and k_aut. This distinct difference in the posteriors between the new model vari-
ants and the old highlights a clear failing in the older models to properly capture
behaviour and parameter information during cooling to hypothermic temperatures.
Had the older model been used to try and draw conclusions about the differences
in the two piglets, it would have identified a number of parameter spaces as being

distinct when they instead appear to closely overlap.
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Figure 8.27: K-L Divergence plots for model BPH3.0/3.1 The figure shows marginal dis-
tributions for both piglet LWP475 and piglet LWP479, as well as the prior
distribution, for model BPH3.*.



8.4. Bayesian Modelling

196

LWP475: 3.43
. LWP479:2.96
& 4
$§Q LWP475: 0.011
1 LWP479: 0.0137
< _#&:H ELWPMS: 0.0151 : _
LWP479: 0.0169 —— Posterior Median - LWP475
< — . .
G Lwpa7s:1.88 —— Posterior Median - LWP479
= LWP479: 1.92
) LWP475: 0.0719
= LWP479: 0.0623
o
RO LWP475: 0.0373
LWP479: 0.0405
N
N Ll Lwp475: 4.57
. LWP479: 4.51
< A
7] LWP475: 0.0251
T LWP479: 0.0243
< LWP475: 4.99
LWP479: 5.03
¢ 7 S B i
N (5 [N R A0 i ;
<7 ,“..‘2‘ s (o8 | '\ LWP475: 0.646
12 B T LWP479: 0.237
o 270, E SASS
< : SN
© WV 7 ' '-\\ﬁl .M LWP475: 10.6
V| A% A%e L LWP479: 9.52
o o
& :
& | Lwpa7s: 0.0383
LWP479: 0.0428
o
-
© | LWP475: 0.378
D [WP479: 0.796
N
2
-
Q \ \ \C X C 2
V\@QOO N g AR & 2 < ‘i'~/\) o SRS 2
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Figure 8.29: K-L Divergence plots for model BPHO The figure shows marginal distribu-
tions for both piglet LWP475 and piglet LWP479, as well as the prior distri-
bution, for model BPHO.
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8.4.3 Model Selection

It is reasonable to say that a priori all of the models are equally as likely and thus
we can apply a uniform prior across model space. Assuming this, we can use the
ABC framework to perform model selection on our above models, where model
probability is the fraction of the joint posterior model space occupied by a given
model. We also calculate the Bayes’ factor for every model.

The Bayes’ factor is defined as:

_P(D|M;)  P(Mp|D)P(M)

K= PO M) ~ POy | D) P(b)’

8.7)

where K is the Bayes’ Factor, P(D | M;) is the probability of seeing data D given
model M; being true, P(M; | D) is the posterior probability of model M; given data
D and P(M;) is the prior probability of model M; being true [Gelman et al., 2013].

Where we apply a uniform distribution across model space, P(M;) = P(M;), mak-

ing
P(D[M;) P(M;|D)
These are presented in a table such that
P(M; | D)
K .= J 8.9

where i is the row number, j is the column number and P(M; | D) and P(M; | D) are
the model probabilities in row i and column j respectively.

Kass and Raftery [1995] provide a table outlining interpretations of different ranges
of Bayes’ factors, which is itself based on work by Jeffreys [1998]. These classifi-

cations are outlined in Table 8.6.

LWP475

Table 8.7 shows the model probabilities for those models with a non-zero proba-
bility in piglet LWP475. An acceptance rate of 0.1% was used, leading to a total
posterior size of 200,000 samples. Only model BPH2 and BPH3 appear in the joint

model posterior for this piglet, and we can see that model BPH2 is overwhelmingly
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log;o(K) | K | Evidence against M|

Otol/2 | 1to3.2 Not worth more than a bare mention
1/2to1 | 3.2to 10 | Substantial

1to2 10 to 100 | Strong

>2 > 100 Decisive

Table 8.6: Table outlining the interpretations of Bayes’ Factor values by Kass and

Raftery [1995].
Model Name Model Median
Probability NRMSE
BPH2 99.9825% 0.6025
BPH3 0.0175% 0.6064

Table 8.7: Model selection results for LWP475. Acceptance rate of 0.1% was used, leading

to a total posterior size of 200,000 samples. BPH2 is the most likely model here,
with a probability of 99.9825%.

the most probable with a probability of 99.9825%. It also has a marginally better
median NRMSE value of 0.6025 against 0.6064 for model BPH3.

Table 8.8 show the Bayes’ factors for each model in piglet LWP475. We can see
that models BPHO and BPH1 have a Bayes’ factor of zero due to their zero prob-
ability. Model BPH2 has a Bayes’ factor of 5713.3 over BPH3. As per Table 8.6,

this is decisive evidence to choose model BPH?2 over all others in this case.

LWP479

Table 8.9 shows the model probabilities for those models with a non-zero prob-
ability in piglet LWP479, considering both only x.1 and all model variants. An
acceptance rate of 0.1% was used, leading to a total posterior size of 200,000 sam-

ples x.1 model variations (Q1o,. < 1) and 350,000 samples for all model variations.

| BPHO | BPH1 | BPH2 | BPH3
BPH2 | 0 0 — | 0.00018

BPH3 0 0 5713.3

Table 8.8: Bayes’ Factors for each model using dataset LWP475. Bayes factor is cal-
culated based on the probability of a model in a given column divided by the
probability of the model in a given row. A Bayes’ Factor of zero means that a
model had zero probability.
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Model Name x.1 Models | x.1 Models || All Models | All Models
Probability Median || Probability Median

NRMSE NRMSE

BPH2.1 72.15% 0.99944 64.54% 1.059
BPH1.1 16.05% 1.054 24.58% 1.117
BPH3.1 11.8% 1.010 10.89% 1.067

Table 8.9: Model selection results for LWP479. Acceptance rate of 0.1% was used, leading
to a total posterior size of 200,000 samples x.1 model variations (Q1g mer < 1)
and 350,000 samples for all model variations. BP Hypothermia 2.1 is the most
likely model in both cases, with a probability of 72.15% for only x.1 variants and
64.54% for all model variants. This is followed by BP Hypothermia 1.1 with a
probability of 16.05% in x.1 variants and 24.58% in all models.

In both cases models BPH1.1, BPH2.1 and BPH3.1 appear in the joint model poste-
rior for this piglet. We can see that model BPH2 is still the most probable, albeit less
so than for piglet LWP475, with a probability of 72.15% for only x.1 variants, and
64.54% for all variants. Additionally, model BPH1.1 is the second most probable
for this piglet, whilst it wasn’t at all probable for LWP475. It is also important to
note that when considering all model variants, it is clear that the x.1 variants, which
have a prior allowing Q1. < 1, are more probable than the x.0 variants, which have
aminimum Q1. of 1. This implies that allowing Q1. < I is important when fitting
subjects with a potentially severe injury.

When looking at the median NRMSE values for the three models, model BPH2.1
has the lowest error of all the three models, but BPHI1.1 actually has a higher me-
dian error than model BPH3.1 despite being a less probable model. We can clearly
see this if we plot a histogram of the error values for each model within the joint
posterior. When we do this we see that whilst more BPH1.1 samples appear in the
posterior, they tend to be at the upper end of NRMSE values.

Looking at Table 8.10 we can see the Bayes’ factors for each of the x.1 model
variants. As only x.1 variants have non-zero probability in both of the considered
cases, the probabilities of only these variants was used to calculate the Bayes’ fac-
tors. We can see that model BPHO again has a Bayes’ factor of zero due to its
zero probability. Model BPH2.1 has a Bayes’ factor of 4.95 over model BPH1.1

and 6.114 over model BPH3.1. Using Table 8.6, this is substantial evidence to use
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Figure 8.30: Distribution of NRMSE values within the joint posterior. The histogram
shows the distribution of NRMSE values within the joint posterior of all mod-
els for piglet LWP479. The median for each version is marked by a dotted
line. We can see that whilst more samples for model BP Hypothermia 1.1
appear within this posterior, model BP Hypothermia 3.1 has a wider spread of
error values, with a lower median value.

| BPHO | BPHI.1 | BPH2.1 | BPH3.1
BPHI.I | 0 — 0.222 | 1.360
BPH2.1 | 0 4.95 — 6.114
BPH3.1 | 0 0.735 | 0.164 —

Table 8.10: Bayes’ Factors for each model using dataset LWP479. Bayes factor is cal-
culated based on the probability of a model in a given column divided by the
probability of the model in a given row. A Bayes’ Factor of zero means that
a model had zero probability. Here we are using the probabilities shown in
columns 2 and 3 of Table 8.9, as only the x.1 variants appear to be valid for
piglet LWP479.

model BPH2.1 over either model BPHI1.1 or model BPH3.1. Whilst this evidence
1s not as strong as in piglet LWP475, it is still enough to suggest that a model BPH2
variant is the most likely model.

In conclusion, as seen in Tables 8.7, 8.8, 8.9 and 8.10 all of the hypothermia model
variants are more probable than the original BrainPiglet2.1 model. Of these, the
BPH2 variants perform best in both piglets and for the severely injured piglet all
x.1 variants being more probable in LWP479 than the x.0 variants. x.1 variants
were not tested for piglet LWP475, so conclusions cannot and should not be drawn

about the validity of those models against the x.0 variants for that piglet. Given that
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the Q.. posteriors for LWP475 were at the higher end of the prior, and the only
difference between the x.0 and x.1 variants were at the lower end of these priors,
it is likely that there would be minimal difference. This would however require

confirmation in any further work.

8.5 Model Fit Analysis

Having determined the most probable model for each piglet we can look at the
quality of the fit in both cases. One way of doing this is by considering the distri-
bution of the residuals for each fit. This distribution can allow us to consider how
well the fitting process has performed and what kind of fit it has provided. We do
this by looking at both the distribution of the residuals directly and by using a Q-Q
plot. Figures 8.31 and 8.32 show the residual distributions and Q-Q plots for piglet
LWP475 and LWP479 respectively.

Figure 8.31a shows that BPH2 seems to generally overestimate CCO values, with
approximately 75% of the residuals being greater than 0. Additionally there are
three distinct peaks visible, most likely due to the simulation failing to capture the
periodic increases and decrease in CCO that are seen in the measured data. In
contrast BPH2 seems to slightly underestimate the HbO; signal, with most of the
residuals being below zero. Finally, the HHb signal appears to have been simulated
relatively well with a mean of approximately zero. None of the distributions appear
to be particularly normally distributed with all showing some degree of skew and
kurtosis.

It is easier to identify this in the Q-Q plots in Figure 8.31b. The plots use a stan-
dardised diagonal line, where the expected order statistics are scaled by the standard
deviation of the sample residuals and have the mean added to them. The theoretical
mean and sample means are also shown to allow easier comparison.

All of the Q-Q plots heavier tails than would be expected in a normal distribution,
as indicated by the points in the middle generally following the diagonal line but

trailing off at the extremities. The skew of each distribution is clear from where the
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Figure 8.31: Residual analysis for model BPH2 and piglet LWP475.
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sample and theoretical mean both fall, with the sample mean of CCO being above
the theoretical mean, the sample mean of HbO, being below the theoretical mean
and the sample mean of HHb falling almost directly on the theoretical mean.
Figure 8.32a shows the residual distributions for model BPH2.1 and piglet
LWP479. Here we see that the model appears to heavily underestimate the CCO
signal, with a reasonably large amount of skew towards negative values and two
peaks both below zero. The HbO, signal appears to be slightly skewed towards
positive values, as would be expected based on its posterior predictive in Figure
8.21b, with a long tail into negative values. This long tail is likely to be due to the
simulation underestimating the HbO, signal for the later times past around 2750
seconds. The HHb signal distribution suggests a slightly better fit and a mean value
close to zero but again with some skew, this time towards negative values.
The Q-Q plots support these conclusions, with the CCO signal appearing to be fairly
platykurtic with some negative skew and the HbO, signal being fairly leptokurtic
with positive skew. We can also see that, based on the Q-Q plot, the residuals for
HHb appear to be generally normally distributed.
From Figure 8.31 and 8.32 we can see that model BPH2.* variants perform a good
job of reproducing the observed behaviour during hypothermia. Considering this
alongside the Bayesian model selection process it can be said with a good degree of
certainty that the model that is best able to incorporate temperature, and reproduce
physiology during TH, is model BPH2. It is important that the prior range include
values of Q1o,. < 1 in order to be able to successfully reproduce behaviour where
the typical response of metabolic and haemodynamic reactions to temperature has

inverted, as in LWP479.
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Figure 8.32: Residual analysis for model BPH2.1 and piglet LWP479.
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8.6 Conclusion

In this chapter I have outlined a number of model variants(BPH1, BPH2 and BPH3)
that are able to incorporate temperature and its effect on physiology. Of these three
model variants, model BPH2 was found to be the most effective at reproducing
the expected behaviour of the cerebral physiological effects during therapeutic hy-
pothermia. It did this by separating the effect of temperature on metabolic and
haemodynamic reactions into two separate temperature co-efficients. We were then
able to evaluate that the inverted response seen in piglet LWP479, which had a
more severe outcome, could be reproduced by allowing the metabolic temperature
co-efficient to be less than 1, effectively inverting the impact of temperature on
metabolic reactions. Whilst the sample size of two piglets is understandably very
small, this does point to an exciting prospect for understanding what is behind the
differing outcomes from therapeutic hypothermia. In the next chapter we will use
model BPH2 in order to investigate potential mechanisms behind differences ob-

served in human neonates during spontaneous desaturation, based on work in Bale

et al. [2018].



Chapter 9

Neonatal Modelling

9.1 Motivation

Work by Bale et al. [2018] found that a strong correlation between CCO and HbD
during spontaneous desaturation events was an indicator of newborn brain injury.
They postulated that it is “due to mitochondrial dysfunction and reduction in cere-
bral metabolic rate as a result of severe encephalopathy”. It may be possible to use
the BPH2 model developed and outlined in Chapter 8 to investigate these data and
their hypothesis on the mechanisms behind the correlation.

Figure 9.1 shows the gradient between AHbD and ACCO for two neonates, neo021
(Figure 9.1a)) and neo007 (Figure 9.1b)) during desaturation events. In their paper,
Bale et al. identify this relationship to be a key indicator of the severity of cerebral
injury. The less severely injured neonate, neo021, shows a lesser relationship be-
tween the two variables whilst the more severly injured neonate, neo007, shows a
stronger relationship as evidenced by the steeper gradient. In this section we look at

using our systems biology approach to better understand this and the mechanisms

behind it.

9.1.1 In-silico Experimentation

Before looking at these data directly, we will now leverage one of the key benefits
of our modelling approach, which is to perform in-silico experimentation. We will
take the posteriors fitted to each piglet in the previous chapter for model BPH2 and

simulate the response to a spontaneous desaturation event.
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Figure 9.1: Gradients of AHbD and ACCO for neonates a) neo021 and b) neo007. Neo007
shows a much steeper gradient, hypothesised to be due to the more severe injury
leading to a tighter coupling between brain blood oxygenation (AHbD) and
cerebral metabolism (ACCO).

Image: Bale et al. [2018].

The posterior was sampled from 1000 times and the model was driven by two in-
puts: a constant temperature of 33.5 °C and an SaO, signal generated to simulate a
potential desaturation event, with SaO, dropping to 82% at its lowest over a period
of approximately 5 minutes. Figure 9.2 shows the SaO, signal and the model out-
puts for each piglet. Column a) of Figure 9.2 shows the model response for piglet
LWP475. We can see that the haemodynamic signals correlate strongly with the
change in SaO, whilst the CCO signal shows little change. In contrast, column b)
shows the response of piglet LWP479 to the same stimuli and we can see a distinct

difference. The CCO signal is closely linked to the SaO, signal.

9.2 Data selection

Data were selected based on the work outlined above. Of the data available, two
neonates were chosen for fitting with each representing a different outcome. These
neonates were neo007 and neo021 and were chosen based on the quality of the
data and for good comparison with the work of Bale et al. [2018]. Neonate neo007
showed an unfavourable outcome with a Lac/NAA ratio of 1.32 whilst neonate
neo021 showed an favourable outcome with a Lac/NAA ratio of 0.2 [Bale et al.,
2018].

The data used are the exact same as that used to draw conclusions in Bale et al.
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Figure 9.2: In-silico desaturation experimentation. Simulations of a desaturation event
using posteriors for piglets LWP475 and LWP479. Column a) show the pos-
terior predictive distribution of the desaturation event using the posterior from
piglet LWP475, representing a mild injury response. Column b) show the pos-
terior predictive distribution of the desaturation event using the posterior from
piglet LWP479, representing a severe injury response.
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Figure 9.3: In-silico desaturation experimentation. Simulations of a desaturation event
using posteriors for piglets LWP475 and LWP479. Column a) show the pos-
terior predictive distribution of the desaturation event using the posterior from
piglet LWP475, representing a mild injury response. Column b) show the pos-
terior predictive distribution of the desaturation event using the posterior from
piglet LWP479, representing a severe injury response.
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Figure 9.4: Clinical Data for Neonates 007 and 021. Shown is arterial oxygen satu-
ration (SpO2), arterial blood pressure (ABP), change in total haemoglobin
(AHDT), change in haemoglobin difference (AHbD) and change in cytochrome-
c-oxidase ((ACCO).

[2018], thus ensuring that any confirmation of their hypothesis is not a side effect of
the data cleaning process. Figure 9.4 shows the arterial oxygen saturation (SpO2),
arterial blood pressure (ABP), change in total haemoglobin (AHbT), change in
haemoglobin difference (AHbD) and change in cytochrome-c-oxidase (ACCO) data

for each neonate.

9.3 Model Fitting

9.3.1 Sensitivity Analysis

Sensitivity analysis was performed using the gradient between HbD and CCO as
the summary metric. This is in line with the work in Bale et al. [2018] outlined
above, and the findings from the end of Chapter 8, where the gradient between HbD

and CCO was shown to be a potential biomarker of brain injury. Using this it may
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possible to identify parameters that both control the behaviour seen during desatura-
tion events and provide good separation between the brain states of mild and severe
injury .

Figure 9.5 shows these sensitivity analysis results. Figure 9.5a shows the i, val-
ues for the 15 most sensitive parameters in each neonate. We can see clearly here
that that the most sensitive parameters in neonate neo007 were more sensitive than
those in neonate neo021, as shown by their overall higher u, values. Figure 9.5b
directly compares the u, values in each neonate, with a blank cell showing that a
given parameter was not in the most sensitive for that neonate. What is also inter-
esting to note that is neonate neo007, both CMRO2_n and CBFn were identified as
being sensitive parameters, but this was not the case in neonate neo021. Given that
the physiological reality that these parameters relate to were identified as being im-
portant by Bale et al. [2018], this suggests that the sensitivity analysis process has
potentially already identified important information: more severely injured systems
show greater sensitivity to changes in the normal states of cerebral metabolic rate
of oxygen and cerebral blood flow.

Having completed the initial sensitivity analysis run, the model parameters were
then reduced further by using prior knowledge to consider if a sensitive param-
eter is also one that needs fitting. As previously, this involved considering each
of the fifteen identified parameters and considered if they could reasonably be ex-
pected to actually differ from their default values in terms of real world physiology.
This both aids in reducing the model down further, as well as reducing the risk of
‘false positive’ parameter fits, i.e. those parameters that have large impact on the
model outcome but where the fitted value is unlikely to match up with what could
be reasonably expected in the real-world. The parameters chosen to be removed
were NADpool, P_an, SaO2_n, Xtot_n, a_frac_n, pH_on. The rationale for remov-
ing these parameters is to reduce the complexity of the model as much as possible
whilst retaining information. Finally, the parameter Q_10_met was added in as this
was found to be important in Chapter 8 when fitting data collected during therapeu-

tic hypothermia, as was the case here. Table 9.1 shows the final parameter selection,
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Figure 9.5: Sensitivity analysis results
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each parameter’s minimum and maximum values and also its default value.

Parameter ‘ Min. Value ‘ Max. Value ‘ Default Value
k_aut 0.0000 1.0000 1.0000
r 0 0.0101 0.0151 0.0126
r_m 0.0216 0.0324 0.0270
rn 0.0150 0.0224 0.0187
n_m 1.4640 2.1960 1.8300
n_h 2.0000 3.0000 2.5000
phi 0.0288 0.0432 0.0360
_PyOn 0.0800 0.1200 0.1000
CMRO2_n 0.0160 0.0240 0.0200
Q_10_haemo | 0.1000 6.0000 2.4000
Q_10_met 0.1000 6.0000 2.4000
h_0 0.0024 0.0036 0.0030
CBFn 0.0064 0.0096 0.0080

Table 9.1: Table showing final sensitivity analysis parameters for noenatal desaturation
data.

9.3.2 Bayesian Model Fitting

The model was run 40,000,000 times for each neonate using the prior distributions
described in Table 9.1. Not all runs were successful and any parameter samples that
produced a failed run were excluded from the final posterior distribution in the same
way as a parameter sample with a large NRMSE value is. For neo007 33,912,900
samples produced successful runs and for neo021 32,813,436 samples produced
successful runs.

Before looking at the posterior distributions formed from these samples, we should
look at the distribution of errors in the two neonates. This can be useful as it helps
to identify if the model is performing better for one neonate over the other.

Figure 9.6 shows the cumulative distribution of errors in the lowest 50% of samples
in each noenate based on the overall NRMSE value, i.e. the NRMSE value of all

signals combined. Two things are clear:

1. The overall NRMSE values for neonate neo021, the neonate with the milder

injury, are generally lower than those for neonate neoO07. This suggests a
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potential difficulty in the model correctly reproducing behaviour for the more

severe injury case.

2. The errors for neonate neo007 are less widely spread than those for neonate
no021. This suggests that the model showed less variance across its potential
outputs for the prior parameter distributions that were defined. This reinforces
what is seen in Figure 9.5b, where the ux values for neonate neo007 were

generally a lot lower than those seen in neonate neo021.
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Figure 9.6: Cumulative distribution of errors for the bottom 50% of samples in each
neonate, based on the overall NRMSE value.

9.3.3 All Signals

Posterior and Posterior Predictive Distributions

Final posterior distributions were calculated using an acceptance rate of 0.001%
based on NRMSE values giving a final posterior size of 4000 samples. Posterior
predictive distributions were calculated using a random 50% of the values in the
posterior. The decision not to use all samples was due to larger sample sizes being
unable to be plotted on available hardware. The type of NRMSE value used depends
on the focus. We start here by looking at the NRMSE of all signals combined. As
explained below, we will then focus on each individual signal and therefore the pos-
teriors will be determined using the NRMSE values of that particular signal.

We start by looking at the posterior predictive distributions in order to assess the
quality of the model fit across all signals. As discussed above, we will expect to see

a difference in the qualuity of fit between the two neonates. It is clear to see from
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Figure 9.7a and 9.7b that whilst the model is able to reasonably capture the haemo-
dynamic behaviour in both neonates, it is unable to capture the metabolic response
seen in the CCO signal. There is a reasonable amount of noise in the posterior pre-
dictive simulation of HbT for neo007 which reflects the same behaviour seen in the
ABP signal in Figure 9.4b).

Though the metabolic signal for both neonates is clearly a poor fit, it is also appar-
ent that the general behaviour of the simulated CCO signal for neo007 is closer to
the measured signal, even if the absolute values differ. This may be due to baseline
drift in the signal, something that was only apparent after fitting the model. A clear
decrease in CCO is visible at the onset of the desaturation event and the subsequent
recovery also occurs at a similar point as in the measured data. In contrast, the pos-
terior predictive distribution of CCO for neo021 bears minimal resemblance to the
measured signal. In fact, the measured signal shows an increase during desaturation

whilst the posterior predictive shows a small but noticeable decrease. Figure 9.8
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Figure 9.7: Posterior predictive distributions for neo007 and neo021 based on NRMSE
of all signals.

shows the posteriors for each neonate in comparison to each other. When analysing
these posterior distributions we need to remember the quality of the model fit for
each neonate. With this in mind, the key thing to notice here is that both the me-

dian value of each distribution and the distributions themselves are almost identical
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Figure 9.8: Posterior distributions for Neonates 007 and 021 based on the NRMSE of all
signals.

across the two neonates. Given that the fit of the metabolic signal for neither neonate
is good and that there was such a difference in the quality of the model fit between
metabolic and haemodynamic signals, further investigation is needed. This can be
achieved by generating posterior and posterior predictive distributions for each sig-

nal individually and then performing this same comparison.

Model Analysis

We begin by looking at the distribution of residuals for both neonates in Figure
9.9b. It’s clear from this how poor the fit of CCO is in both neonates, with neither

showing a distribution close to normal and a mean below zero in both cases. For
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neonate Ne021 we see a particularly poor fit with a strongly bimodal distribution
reflective of the initial over-prediction followed by under-prediction seen in Figure
9.7b. Both the HbT and HbD signal seen in each neonate have distributions much
closer to being normally distributed around 0 as would be expected given the good
quality of the fits seen in Figure 9.7. The distribution of HbD signal for neo021
appears to have a negligibly small, but notably present, set of residuals that are far
below zero. Ignoring these values, the distribution is otherwise indicative of a good
fit.

We can further investigate the residuals by looking at the Q-Q plots in Figure 9.9.

Ccco

-02 00 02 - 2 a4
Residuals Residuals

Hbdiff

===- Mean
—=- Standard Deviation

=== Mean
=== Standard Deviation

(a) (b)

Figure 9.9: Distribution of residuals for neo007 (Figure 9.9a) and neo021 (Figure 9.9b)
when fit using NRMSE of all signals.

One of the clearest things to note here is that the Q-Q plots seen in Figure 9.10a sug-
gest a generally better fit than those seen in seen in Figure 9.10b. CCO is generally
along a diagonal but with a sample mean far below the theoretical mean, but both
HbT and HbD are along the diagonal and with sample means close to the theoretical
mean.

Figure 9.10b however shows that none of the fits for neo021 fit the diagonal particu-
larly well ,even if the sample and theoretical means are close to each other. For CCO
we see clear evidence of the bimodality also seen in Figure 9.9b. For HbT we can
see that up until around quantile 3, the residuals lie generally along the diagonal, but

between quantile 3 and 4 there is a sudden move away from the diagonal suggesting
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a heavy right tail due to a larger spread in residuals than a theoretical, “good” fit
would have. Finally, for HbD, we see a disconnect between quantile -3 and quantile
-4. This is due to the small number of residuals that gave a heavy lower tail in the
HbD residual distribution. Aside from this we see a slightly heavier upper tail, but

with most residuals falling generally along the diagonal. Finally, we look at the K-L
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Figure 9.10: Q-Q plots of residuals for neo007 (Figure 9.10a) and neo021 (Figure 9.10b)
when fit using NRMSE of all signals.

divergence of the prior and posterior distributions for each neonate in Figure 9.11.
The first thing to note is that the posteriors for each neonate are very similar with
only a small difference in the K-L divergence values for each set of distributions.
For each parameter, both neonates share a general trend, with the difference being
by how much. For example, in both neonates we see a very tight posterior distribu-
tion for Q_10_met values, with both close to zero. The main difference seems to be
that the distribution is slightly tighter for neo007 as indicated by the K-L divergence
value of 3.09 vs 2.27 for neo021. The only parameter to show some kind of differ-
ence is CBFn, with neo021 having a K-L divergence approximately 16 times larger
than neo007. However, even with this relative discrepancy, both neonates have K-L
divergence values for CBFn that are fairly small.

Whilst we are not here able to specify a threshold above which a K-L divergence
value indicates significant information gain, it is notable that only 4 parameters have

values above 0.5 and of these, neo007 has only one greater than 1 (Q_10_met) and
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neo021 has only two (Q_10_met and Q_10_haemo).
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Figure 9.11: K-L divergence plots comparing prior and posterior distributions for neo007
(Figure 9.11a) and neo021 (Figure 9.11b) when fit using NRMSE of all sig-
nals. Plots are given as separate sub-figures due to the close similarity of
the distributions making it difficult to distinguish between the two neonates if
given on the same axes.

Gradient between HbDiff and CCO

A final important check we can do to determine the quality of our simulation is

to focus on the key indicator of injury severity, the gradient between AHbD and

AoxCCO, as determined by Bale et al. [2018]. Figure 9.12 shows the distribution

of gradients for all simulations in the posterior predictive distribution, with gradient

calculated between the start of the desaturation event and the nadir.

It is clear to see that the distribution of gradients for neo021, the less severely

injured neonate, is generally lower than that for neo007, with respective medians

of 0.00732 and 0.0293. This is in line with the findings of Bale et al. [2018] that a

larger gradient between AHbD and AoxCCO can be observed in the more severely

injured neonate.
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Figure 9.12: Distribution of gradients for simulations within the posterior predictive dis-
tribution. Gradient is calculated between AHbD and AoxCCO. The median
values are noted and marked as vertical lines. The median gradient for neo021
is clearly much lower than that of neo007, indicating that the simulation was
able to capture the important feature of a AHbD-AoxCCOgradient nearer to 0
for the less severely injured neonate.

9.34 HbLD

Posterior and Posterior Predictive Distributions

We focus here on the HbD signal, which is a good proxy for the oxygenation of
the tissue and therefore the NRMSE value used was the value for the HbD signal
alone. Figure 9.13a and 9.13b show the posterior predictive distribution for this.
We can see here that, as would be expected, the HbD signal is a good fit for both
neonates. In addition, for neo0O07 the HbT signal is a reasonably good fit, whilst the
same signal for neo021 is a poor fit. In both neonates, the CCO signal is a poor fit,
as expected, indicating the previously suggested difference in the parameter state
for haemodynamic and metabolic processes. For neonate neo021 the 95% confi-
dence interval around the median is also much more noticeable suggesting that the
posterior distributions for the HbD signal constrain the behaviour of the metabolic
reactions less tightly for the mild injury than they do for the severe injury. Reasons

for this are not fully clear but may suggest a less tight coupling between metabolic
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and haemodynamic processes for the mild injury parameter space than in the se-

vere injury parameter space. Figure 9.14 show the posterior distributions for each
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Figure 9.13: Posterior predictive distributions for neo007 and neo021 based on the
NRMSE of the HbD signal.

neonate. In contrast to Figure 9.8, we do see a number of distinctly different pa-
rameter distributions for certain parameters. We also see differences in how tightly
constrained different parameter spaces are for each injury state. r_m shows notably
different distributions for each neonate, with neo007 having a much lower median
and distribution suggesting a narrowing of the blood vessels in the more severely
injured neonate. This is not a clinical conclusion however and there may be other
effects not being accounted for that this behaviour is attempting to mimic. CMRO2_n
is much more tightly constrained and has a lower median value for neonate neo021
than neonate neo007. In terms of the response to hypothermia, there is a small dif-
ference in the Q_10_met values but neither are particularly well constrained, which
is expected given that we are focussing here on a haemodynamic signal. There is
some difference in the Q_10_haemo distributions, with the neo021 distribution being
more tightly constrained and with a higher median value, suggesting that a change
in temperature for the mild injury state has a stronger influence on the haemody-

namic reactions when focussing on the HbD signal. Comparing this observation
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Figure 9.14: Posterior distributions for Neonates 007 and 021 based on the NRMSE of
HbD.

against what we find for the HbT signal will give us a more reliable picture of the

difference in the effect of temperature here.

Model Analysis

Figure 9.15 shows the distribution of residuals for the posterior predictive distri-
butions of both neo007 and neo021 when fitting with the NRMSE of HbD. As we
would expect, the distribution of the HbD signal is better than for either of the other
two signals, but we also see that of the other two signals, CCO is clearly a much
worse fit than HbT, particularly for neo021 where the distribution of CCO is clearly
not at all normally distributed. This is further reinforced when we look at the Q-Q

plots in Figure 9.16. Other than the HbD signal being a good fit in general here, we
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also see that the plot for HbD in neo021 is missing the disconnect seen previously
in Figure 9.10b, suggesting that it may have been an optimisation for one of the
other two signals that caused the massive underfit in a small number of runs. We
also see that when optimising for HbD, for both neonates the CCO signal is clearly
not unimodal, indicated by the S-shaped Q-Q plots. The HbT signal is a reasonable
fit for neo007 but for neo021 we see heavy right-skewing in both the distribution
and the Q-Q plot reinforcing what was seen earlier in the posterior predictive. This
could suggest that there is an underlying difference in the physiological behaviour
of the two neonates meaning that the HbD and HbT signals are likely controlled by
similar mechanisms in neo007 but not in neo021. This would be indicative of a cou-
pling between blood volume and oxygenation in the more severely injured neonate.

Figure 9.17 shows the K-L divergence values and comparisons between prior and
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Figure 9.15: Distribution of residuals for neo007 (Figure 9.15a) and neo021 (Figure 9.15b)
when fit using NRMSE of the HbD signal.

posterior distributions. In contrast to when fitting using the NRMSE of all signals,
there are a number of distributions that vary massively between the two neonates.
In neo007, phi and Q_10_haemo show much more information again than it does
in neo021, whilst n_m, CBFn and CMRO2_n all show much higher information gain
in neo021 as compared to neo007. This difference may potentially explain some
of the difference in the HbT fit between the two neonates, with the difference in

sensitivity and distribution in the posteriors for the two affecting the HbT signal
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Figure 9.16: Q-Q plots of residuals for neo007 (Figure 9.16a) and neo021 (Figure 9.16b)
when fit using NRMSE of the HbD signal.

differently. Aside from this difference in information again, the two neonates show

similar trends in terms of distribution skew. Where both neonates show information

gain as compared to using the prior, only the r_m parameter shows a difference in

terms of skew, with neo007’s posterior being approximately normally distributed

around 0.025, whilst neo021 has a posterior skewed heavily to the right and pushed

up against the upper boundary of the prior. Other parameters such as r_n or r_0

have similar distributions across the two neonates.
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Figure 9.17: K-L divergence plots comparing prior and posterior distributions for neo007
(Figure 9.17a) and neo021 (Figure 9.17b) when fit using NRMSE of HbD.
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9.3.5 HbT

Posterior and Posterior Predictive Distributions

Here the NRMSE value used to determine the posterior was the value for the HbT
signal alone. Figure 9.18a and 9.18b show the posterior predictive distributions for
neonates neo0O7 and neo021 respectively. We see a very different set of results to
those seen in Figure 9.13a and 9.13b. Notably, whilst the HbT signal is a good fit
in both, the HbD signal is a better fit for neo021, the mild injury state neonate. This
is the inverse of what was seen when fitting for HbD. HbD for neo007 does show
some of the time period but it predicts a much larger desturation event than what
was actually observed.

The CCO signal shows very different behaviour in each neonate, with neo007 show-
ing almost no response whatsoever whilst neo021 shows a decrease around the time
of desaturation that fails to recover. Also, in contrast to when optimising for the
HbD signal, this time the CCO signal for neo021 is tightly constrained with a neg-
ligibly small 95% confidence interval.

Looking at the posterior distributions in Figure 9.19 we see very different distri-

a) a)
0.77 5 0.39 4
0.56 - 0.071

-0.25

o
&
&
1
ACCO (uM)

-0.57

2.8+ 3.7

0.84 o Neonate

AHbT (uM)

=
2
= 1l Neonate
=)
T
3

neo007 neo021

0.2+ -0.6 =

<)
3.5 1.9
~ -0.63 2.2+

6.4

D
I
3
1
AHbD (uM)

8.8 114

3T T T T T T ST T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (sec) Time (sec)

(a) Posterior predictive distribution for (b) Posterior predictive distribution for
neo007 based on NRMSE of only the  neo021 based on NRMSE of only the
HbT signal. HbT signal.

Figure 9.18: Posterior predictive distributions for neo007 and neo021 based on the
NRMSE of the HbT signal.

butions to those seen in Figure 9.14. For example, whilst optimising for HbD, the
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CMRO2_n distribution for neonate neo021 was generally grouped towards the lower
bound of the prior distribution, with a median of 0.0174 mM s~!, but when optimis-
ing for HbT we instead see a distribution grouped towards the upper bound and with
a median of 0.0218 mMs~!. We also see that in contrast to the HbD posteriors, both
of the Q¢ parameters show differing distributions between neonates, rather than
just the haemodynamics reactions parameter. Q_10_met in particular here shows
very different distributions for the two neonates which goes some way towards ex-
plaining the very different CCO signals seen. For neonate neo007, the Q_10_met
distribution and median is biased heavily towards higher values, whilst for neo021
the distribution is biased heavily towards lower values, with a median of 0.78. We
can also see that the posterior parameter distributions for the normal cerebral blood
flow, CBFn, are biased towards opposite ends of the prior distribution range for each
neonate, with neo007 biased towards the upper bound and neo021 biased towards

the lower bound.

Model Analysis

Figure 9.20 shows the distributions of residuals for each neonate when fitting
against the NRMSE of HbT. It is clear here that the HbT distribution in each neonate
is roughly normally distributed around zero for each neonate, but CCO and HbD
are both poorly fit. This is also seen in the Q-Q plots in Figure 9.21. All signals in
neo007 show platykurtic behaviour in the Q-Q plots, with the distribution of CCO
being clearly non-unimodal in Figure 9.20a. This same behaviour is seen in the
CCO signal of neo021. The HbT and HbD signals of neo021 appears to be rea-
sonably well distributed aside from a small number of outlying residuals, as seen
previously in the HbD signal in Figure 9.9b. This is seen clearly in the Q-Q plots
for both signals in Figure 9.21b where the residuals generally lie on the diagonal
until around quantile 3 after which they move sharply up and away. Looking at
K-L divergence phi, Q_10_haemo, CBFn, Q_10_met and CMRO2_n all show the op-
posite behaviour in neo021 as compared to neo0O07. This would suggest that there
may be a distinct difference between the two neonates in terms of how these param-

eter affect HbT and therefore the cerebral blood volume. Aside from this subset of
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when fit using NRMSE of the HbT signal
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Figure 9.21: Q-Q plots of residuals for neo007 (Figure 9.21a) and neo021 (Figure 9.21b)
when fit using NRMSE of the HbT signal.

parameters, the K-L divergence values and the posteriors are similar between the

two neonates indicating a potentially shared parameter joint distribution. This may

prove useful in a hierarchical Bayesian model where in a shared parameter space

can be used to determine parameter distributions at a more general level, allowing

the model fitting process to focus on fitting parameters that are more specific to a

given strata of the hierarchy e.g. at a species, age or outcome level.
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Figure 9.22: K-L divergence plots comparing prior and posterior distributions for neo007
(Figure 9.22a) and neo021 (Figure 9.22b) when fit using NRMSE of HbT.
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9.3.6 CCO

Posterior and Posterior Predictive Distributions

Finally, we consider the CCO signal which was reproduced poorly in both neonates
when using all signals to generate our posterior. Figure 9.23a and 9.23b show the
posterior predictive distributions. Interestingly, when we focus on optimising our
parameters to reproduce the CCO signal only, we still fail to produce a good sim-
ulation of the CCO signal. Neonate neo021 shows almost no improvement in its
simulation despite us focussing solely on that signal, whilst neonate neo007 shows
some improvement but still under predicts the values. The main thing that we can
conclude here than is that the reason for the poor simulation is not that the poste-
rior distributions in Figure 9.8 were trying to compromise between haemodynamic
and metabolic signal and failing to cover both, but that we are not optimising the
correct parameters during our optimisation step. This is likely due to a failure by
our model reduction step in identifying the parameter most important for simulat-
ing our desired behaviour. One thing that is interesting to note here however is the
difference in the haemodynamic simulations when using the parameter spaces for
the two neonates. Even though the parameter space identified for neo021 failed to
accurately reproduce our CCO signal, it has given a much better approximation of
the HbT and HbD signals than in neo0OO7. This may be because for the mild in-
jury state and for the parameters specified here, mechanisms that provide the best
possible fit for the CCO signal (as poor as it actually is) are similar to those for a
good simulation of the haemodynamic processes. For the severe injury state how-
ever, the mechanisms that control the CCO signal are notably different to those for
the haemodynamic processes, and therefore parameters and how they influence the
underlying mechanisms are also very different. Figure 9.24 shows us the posterior
distributions for the optimised CCO signal. One very important thing to note when
considering these is that the posterior predictive distribution for both neonates was
a poor fit. Therefore we cannot analyse these posteriors in terms of what we can
reliably predict the underlying physiology to be doing, but instead we can only say

what the parameter space was in order to generate the best possible fit available
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Figure 9.23: Posterior predictive distributions for neo007 and neo021 based on the
NRMSE of the CCO signal.

given the model and parameters used.

One important difference in parameter distributions can be seen in contrast the pos-
terior distributions of the heamodynamics signals: k_aut is much lower in neo007
than in neo021, suggesting that the ability to autoregulate needs to be significantly
reduced in order to obtain the best CCO simulation possible. It is also notable that
both neonates have very similar Q_10_met distributions despite having very differ-
ent response in the CCO signal, which is a proxy for metabolic activity. Instead,
we see that the Q_10_haemo distributions are different here, with the posterior for

neo021 being heavily biased towards the lower bound and with a median of 0.138.

Model Analysis

The first thing to note for the residuals and Q-Q plots when optimising for CCO
is that the HbD and HbT plots show some extremely outlying residuals. In Figure
9.25a and Figure 9.25b this is indicated by a near invisible distribution due to the
x-axis scale whilst in Figure 9.26a and Figure 9.26b is is seen in a line which veers
massively away from the diagonal at the fourth quartile.

Focussing on the CCO signal we can see that the distribution and Q-Q plot for
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Figure 9.24: Posterior distributions for Neonates 007 and 021 based on the NRMSE of
CCO.

neo007 shows a reasonably good distribution with a median slightly below 0. For
neo021 however we see a bimodal distribution centred around 0. This is likely due
to the fact that we are unable to capture the true dynamics of the measured signal,
as seen in Figure 9.23b, and we both overestimate the signal at early time points
and underestimate at later time points.

Looking at the K-L divergence plots in Figure 9.27, Q_10_met and Q_10_haemo)
show very narrow distributions in both neonates with reasonably high K-L diver-
gence values suggesting the signal is sensitive to changes in these parameters in all
injury states. In contrast, CBFn and n_m have low K-L divergence values in both

neonates and are visibly similar to the uniform prior, suggesting that in terms of
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9.25b) when fit using NRMSE of the CCO signal.
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Figure 9.26: Q-Q plots of residuals for neo007 (Figure 9.26a) and neo021 (Figure 9.26b)
when fit using NRMSE of the CCO signal.

obtaining a good fit for the CCO signal alone they provide minimal information.

Considering differences in the two neonates, a notable difference is seen in
CMRO2_n, with neo007 showing less sensitivity than neo021 suggesting a possi-
ble difference in the importance of this parameter based on injury state. Conversely,
r_m, the vessel radius at maximal muscular tension, has a high K-L divergence
value in the more severe injury state suggesting a higher sensitivity to changes in
this parameter. There are also a number of parameters that show opposite skew.
r_n skews to the upper end of the prior for neo007 and towards the lower end for

neo021 indicating a larger normal blood vessel radius in the more severely injured
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neonate, with values close to the radius of maximal muscular tension. k_aut skews
lower for the more severely injured neonate indicating a more impaired autoreg-
ulatory mechanism. Finally, Q_10_haemo is skewed towards higher values in the
more severely injured neonate and towards lower values in the less severely in-
jured neonate. This would indicate a higher sensitivity to changes in temperature
for haemodynamic reactions. However, given that we are here focussing on the
metabolic reactions when fitting this may not be an important parameter to focus
on. In terms of the most direct interpretation, given that the neonates were cooled to
below normal body temperature, it would suggest that in order to mimic the CCO
signal for the severely injured state haemodynamic reactions needed to be slowed
down. It may be that fitting the diffusion rate parameter directly would reduce the
differences in Q_10_haemo distributions for the two neonates. This again highlights

the importance of identifying the correct parameters for fitting.
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Figure 9.27: K-L divergence plots comparing prior and posterior distributions for neo007
(Figure 9.17a) and neo021 (Figure 9.17b) when fit using NRMSE of CCO.

9.4 Discussion

The purpose of using the new framework with a systems biology model is to un-
derstand more about the underlying physiology than a simple black box model

could give us. It is the analysis process that provides us with more information
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and here this process was able to give us a good amount of information about what
is happening. We were able to look at how the behaviour of the model and our
obtained posterior distributions varied between signals. Without drawing any final
conclusions, one thing that did prove interesting to consider was how a posterior
parameter space obtained when optimising for a specific signal affected the other
two signals that weren’t being optimised for.

Further, our analysis of the residuals and the posterior distributions for each indi-
vidual signal has allowed us to look at how focussing on different signals affects
our posterior parameter distributions and how the different signals may be inter-
connected. For example, when fitting against the NRMSE of HbD alone we were
able to observe that the ability to fit HbT with the same distributions differed in
the two neonates, which allows us to conclude a difference in the two neonates in
terms of how closely related the mechanisms behind both blood volume and blood
oxygenation are. We were also able to see across all the different optimisation met-
rics that some parameters both differed from the prior and were similar between the
two neonates. This suggests the potentials for future work to focus on developing
a hierarchical model where in specific parameter distributions are determined to be
shared at a certain hierarchy e.g. species (human/pig) or age (adult vs neonate).
This would potentially allow for more accurate modelling dependent on the desired
outcome. In this particular case, by using but not fitting the the shared distributions,
computational effort could instead have been used to optimise parameters neglected
here. This may have led to a better fit and therefore allowed us to analyse on a much
more quantitative and granular level the differences in physiology between the two
neonates.

Finally, by considering the distribution of gradients for the simulations fit using
NRMSE, we were able to reproduce the work of Bale et al. [2018] in finding that
the system replicating the mild injury state of neo021 didin deed have a smaller
gradient between AHbD and ACCO than neo0O7. It is by considering these im-
portant features that we can assess the usefulness of these models. Where they

were unable to reproduce signals exactly they were still able to reproduce important
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physiological features. This serves to remind us that a useful model is not always
the one that is able to reproduce a system exactly but one that can tell us useful
information based on simplifications or approximations.

The purpose of these models is not to simply provide an accurate simulation alone.
We were able to determine distinct parameter spaces for each neonate, particularly
when isolating a single signal. For example, when isolating HbT, both CBFn and
CMRO2_n are skewed towards opposite ends of the prior for each neonate. Given
the significance of the physiological quantities these represent, the difference in
their marginal posterior distributions in order to reproduce HbT reinforces the work
by Bale et al. [2018] where they hypothesise that a reduction in CMRO is likely
to cause a larger reduction in CCO for a given change in SpO,. The use of the
systems biology models both reinforces the hypotheses and findings developed
from experimental work as well as helping to draw attention to possible new av-
enues for research. Again looking at the HbT fitting, we were able to identify a
separation in the marginal posteriors for both Q¢ temperature co-efficients. This
difference leads to the hypothesis that, when focussing on cerebral blood volume,
there is a difference in how the two neonates responded to treatment by therapeutic
hypothermia. The more severely injured neonate will have a greater reduction in
the rate of metabolic reactions due to a given reduction in temperature than the
less severely injured neonate. Conversely, the same reduction in temperature will
reduce the rate of haemodynamic reactions in the mildly injured neonate more than
in the more severely injured neonate. This could help to inform research around the

effectiveness of different treatments.

9.4.1 Limitations

When considering the shortcomings of the model and approach, there are two key
areas for improvement. Firstly, the CCO signal data are much noisier then the
haemodynamic data. This difference in noise could partially explain the compara-
tive failure in reproducing the measured CCO signal by simulation as compared to

the haemodynamic signals. Better pre-processing could help reduce the disparity in
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the different signal types and improve the ability to draw conclusion using the sys-
tems biology approach. For example, there appears to be a drift in the CCO data for
neo007 which could potentially have been removed in a pre-processing step. Figure
9.28 shows the effect of "detrending" the CCO signal to remove drift. There appears
to be an improvement in both neonates with the detrended signal closer to the pos-
terior predictive than the original signal. This “improvement” is only clear having
already produced the posterior predictive. Without this simulated signal to compare
to it is hard to determine if the drift seen is physiologically significant or a result of
measurement error. This is itself a strong point for using systems biology models to
assess the quality of measured data and to identify measurement artefacts.

Secondly, we can see that the model in its reduced form is unable to properly
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Figure 9.28: Detrended CCO signals for both neo007 and neo021. An improvement can
be seen for both neonates with the detrended data closer to the simulated data.
This assumes that the drift seen was measurement error as opposed to some-
thing physiologically significant.

capture the metabolic behaviour seen in the CCO signal. This is likely due to
the reduced model’s parameter selection not including the parameters required to
properly model the behaviour seen. Therefore, one possible place for improvement
would be to focus on the model reduction step. The fact that a number of parame-
ter identified as being sensitive are then found to have such small K-L divergence
values as compared to the uniform prior suggests that their actual importance in the

fitting process is not being correctly identified by the current model reduction step.
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This may be a poor choice of summary metric, or it may point to the need for more
data from more events in order to determine a sufficiently focussed set of parameters
for the reduced model. An improvement here would lead to a model that is better
focussed on the behaviour being considered. This improvement could come from
better summary statistics in the sensitivity analysis method, the use of something
like a Bayesian hierarchical model in which only a subset of all parameters need to
be considered, or a combination of the two.

In conclusion, we have demonstrated here that there is indeed a difference in the
parameter spaces of the two neonates, indicating a significant difference in the ef-
fect of changes in arterial oxygen saturation and temperature depending on injury
severity. The hypothesis of Bale et al. [2018] that there is a difference in a reduction
in CMRO;, is likely to cause a larger reduction in CCO for a given change in SpO;
for a more severely injured neonate. The difference in the normal CMRO, between
the two neonates when fitting HbT is a sign of this difference. We are also able to
establish from the new analysis process that an improvement in the initial model re-
duction step would likely provide a better fit, with a number of parameters showing
minimal information gain after fitting. Before the introduction of the new process,
this would not have been possible to identify. We also see from Figure 9.28 that the
modelling framework gives us the ability to identify behaviour in the data that are
likely to be a result of measurement error rather than a physiological process. In
this case, we were able to identify drift in the data, which is easily remedied once

identified.



Chapter 10

Conclusions

10.1 Summary

In this thesis I have developed and presented both a novel software tool for analysis
of cerebral measurement data via systems biology and a new model for analysis
of data collected from patients that are undergoing treatment via therapeutic hy-
pothermia. The combination of these two developments allows for a new insight
into the mechanisms behind differing outcomes following treatment. Additionally,
the software allows for a new critical analysis of models and their predictive and
analytic capabilities. By taking a Bayesian approach to model analysis, a fuller and
more useful interpretation of models is available. By using the posterior predictive
distribution, we are able to obtain a better understanding of what the model fitting
process can tell us, forging a better critical analysis of the pre-processing step of
sensitivity analysis and obtaining a fuller and more revealing picture of the mecha-
nisms behind the observed data.

Biology is complex and consists of processes, systems and mechanisms that oper-
ate at different levels in terms of both time and scale, which then come together to
produce holistic behaviour we can then observe. Mathematical and computational
models are powerful tools for starting to understand these different scales and sys-
tems and how they interact. However, a model alone is not enough. It is how we
develop, use and analyse this model that gives it utility. By developing new and

better tools for doing this, we can start to produce more and better models that will
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give better and more reliable insight into the data we can collect, and it is from that
point that we can use these data and this understanding to provide better treatment.
There is a great history in modelling the brain and its processes, as was outlined
in Chapter 4, and all provide different perspectives and use cases. The purpose of
building a model is also incredibly important. Is the goal to perfectly reproduce
the data that are measured or is it to provide a better insight in conjunction with
data? I would argue that it is the latter that is the driving force behind modelling,
with the former being a consideration when assessing the quality or accuracy of
the model. The UCL family of models are a part of this history and also is the
ways in which they are analysed. BRAINCIRC was both reduced and extended to
produce the BrainSignals model, which was then analysed using the BCMD frame-
work and used to understand the human adult cerebral metabolism. Similarly, the
first BrainPiglet model was then developed from the BrainSignals model to simulate
the cerebral metabolism of a piglet. Finally, BrainPigletHI has then extended the
BrainPiglet model to incorporate temperature in order to understand treatment of in-
jury via thereapeutic hypothermia. It has then been used with the new BayesCMD
framework to develop a new and better understanding of how the models can be
used to understand the biological mechanisms. From the original BRAINCIRC
model through to the BrainpigletHI model developing in this thesis, this interplay
between the aims and use cases of the models, the tools used to analyse them and
the available measurement techniques has driven the research forwards.

The redevelopment of the BCMD tool in Chapter 6 lays the groundwork for ensur-
ing that this tool remains usable for future work and well as making it more acces-
sible through the WeBCMD interface. This is the first step towards making this tool
and the complex models is integrates with more available and usable. It also lays the
groundwork for the incorporation of Bayesian techniques. The Bayesian approach
allows for a better understanding of the problems space than previous techniques.
Some work had been undertaken in Caldwell et al. [2015b] in an attempt to better
understand the existence of a parameter space, as opposed to a single point esti-

mate, but the Bayesian approach outlined in this thesis is a significant improvement
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on this approach. Two main benefits are clearly visible from the work undertaken
here. Firstly, the combination of visual checks of posterior parameter distributions
with more quantitative methods such as K-L divergence provides much more insight
into both the sensitivity of the model behaviour to a given parameter than sensitivity
analysis prior to model fitting. Whilst sensitivity analysis prior to fitting will remain
a key step in the process of model reduction, by looking at the shape of the poste-
rior distribution and the information gain from it over a generic uniform prior, we
can establish how important fitting a given parameter is for controlling the model’s
behaviour under a given physiological context.

Secondly, the shape and description of the posterior parameter distributions provide
much more context and information than the prior point estimate. A key example is
Figure 7.11 in Chapter 7 where a number of parameters are shown to have roughly
uniform posterior distributions, but with a point estimate that is at one of the ex-
treme ends of the prior range. Without being aware of the full distribution, it would
be easy to say that the parameter had shifted far from its default value when in fact
the model’s behaviour in this situation is simply insensitive to changes to this pa-
rameter within the prior range.

Three variants of a new BrainPiglet model, BrainPigletHI, were then developed and
the Bayesian framework used to determine the best. The three model variants were
developed to better model the effects of hypothermia on the brain, an important
consideration when the most common treatment for HIE is therapeutic hypother-
mia, and applied to data from two piglets who both suffered hypoxic brain injury
followed by treatment via therapeutic hypothermia. The first piglet, LWP475, had
suffered a mild severity injury and showed what would could be considered the
expected response to cooling, with AHbD and ACCO decreasing over the period
of cooling. The second piglet, LWP479, suffered a severe injury and showed the
converse response, with cooling leading to an initial increase in AHbD and ACCO
before then decreasing. This was done by incorporating the Q19 temperature co-
efficient following work by Orlowski et al. [2014], with the first variant, BPHI,

scaling both metabolic and haemodynamic reactions by the same co-efficient. The
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second variant, BPH2, separated the effects of temperature out into two separate
Q10 co-efficients for metabolism and haemodynamics respectively. The final vari-
ant, BPH3, had a Q) co-efficient for metabolic reactions but scaled the rate of
diffusion, the sole reaction within the haemodynamic compartment, by temperature
directly with a proportionality constant set as a model parameter. Initial analysis of
these three variants showed that all were able to maintain autoregulatory behaviour
under typical physiological conditions.

Sensitivity analysis was then performed for each model and each piglet, with a re-
duced model then used for analysis. I found that variant 2 performed best, with the
effect of temperature best separated out into a haemodynamic and a metabolic com-
ponent. This was confirmed both visually and through the use of Bayes’ Factors,
with there being a 99.9825% that variant 2 is the correct model for piglet LWP475
and a 64.54% chance of it being the correct model for piglet LWP479. Finally the
model was then used to predict the behaviour of the two piglets should they undergo
spontaneous desaturation.

Here we see all of the benefits of the framework to analysing and considering cere-
bral haemodynamic and metabolism. Firstly, we are able to use the framework to
develop and test different possible hypotheses for observed behaviour. We are able
to do this with minimal effort when compared to the effort that would be required to
develop an experimental paradigm capable of measuring the mechanisms in ques-
tion. Secondly, we can then use this framework to analyse data and validate the
models in question. In particular, the Bayesian approach has given us the ability to
quantify the probability of a given model being the correct one from a set of vari-
ants. Finally, we are able to take a model and use it to quickly and easily perform
different experiments and explore different hypotheses. In this case, it was used
to perform in-silico experiments around spontaneous desaturation and consider the
behaviour of a specific model under those conditions. In this case, we were able to
identify that the effects of desturation during hypothermia on metabolism in a more
severely injured piglet are different to those of a mildly injured piglet.

Chapter 9 applies all of the above to investigate data collected by Bale et al. [2018]
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which found that a strong correlation between CCO and HbD during spontaneous
desaturation events was an indicator of newborn brain injury. They postulated that
it is “due to mitochondrial dysfunction and reduction in cerebral metabolic rate as
a result of severe encephalopathy”. The previously developed BrainPigletHI model
was then applied to this in order to investigate their hypothesis around the mech-
anisms behind the observed correlation. Data from individual desaturation events
for two neonates with differing outcomes were analysed using the BPH2 variant.
Both neonates were being treated with hypothermia at the time of data collection.
The analysis process was able to partially validate that the hypothesis by Bale et al.
[2018] regarding a difference in CMRO; being responsible for the difference in the
observed behaviour, with a difference in the normal CMRO, being observed when
fitting HbT. Whilst there is room for improvement with regards to the accuracy of
the model simulations, as has been mentioned previously, the usefulness of a model
comes not from its accuracy alone, but from the ways in which it can be used to
analyse and understand a system. In this respect, the framework was useful a on a
number of fronts. It was possible to analyse and consider the differences in how the
model parameters change when focussing on different physiological signals, pro-
viding greater insight into coupling between these signals and the parameters that
control them. It was also possible to use the new framework to identify clear areas
for improvement in the model analysis process. By comparing the posterior pre-
dictive distributions and the K-L divergence values to the initial sensitivity analysis
results, we are able to better analyse and critically consider the existing model re-
duction step. Without the new framework and the outlook it provides this would not
be possible. We also see in Chapter 9 another potential use for the modelling frame-
work: the ability to identify likely measurement error and artefacts. In Figure 9.28
we see drift in the data, likely to be due to measurement error, which is easily reme-
died through detrending. Without comparison against a modelling simulation it is
harder to identify that this is error rather than physiological behaviour.

I would like to take a short moment to draw attention to the accuracy of the mea-

surements from both the animal models and the clinical data from neonates. Where
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there is a lot of noise and/or artefacts within the data, there is a greater chance that
the model reduction step involving sensitivity analysis will produce a set of parame-
ters that fail to fully identify the behaviour that we are trying to model. This is most
noticeable in the neonatal data where the selected parameters failed to reproduce
the metabolic signal with any great degree of accuracy. As has been mentioned
previously, one way around this would be to perform a more rigorous and thorough
pre-processing stage, for example detrending data that appears to have a baseline
shift. There is also the potential to include more data during the sensitivity analysis
step to ensure that the parameters that are selected are, perhaps paradoxically, the
most general and most specific reduced set possible. By this I mean that we obtain
parameters that are specific to the observed behaviour across all datasets, but which
are generalised across the subjects. This appears to have been the case with the
piglet data which was able to produce a reduced set of data that was able to cap-
ture the larger trend of the behaviour. In addition it is worth considering that data
collected in a lab environment from an animal model will contain far less environ-
mental noise and external factors than data collected from a clinical setting where
we are less able to control for other factors and the primary motive is the health
of the patient. This also reinforces the benefit of a hierarchical model, as outlined
below, where a shared parameter space could be investigated in greater detail using
an animal model, as compared to those parameters that may only be captured from
clinical data i.e. at a strata specific to humans who are critically ill and in need of
treatment.

In summary what I have produced in this thesis is a software tool and a process that

can be used in the following ways:

1. to test hypotheses around behaviour under differing physiological and envi-

ronmental conditions

2. analyse data from neonates, including those undergoing therapeutic hypother-

mia at the time of data collection),

3. to identify potential measurement errors in data,
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4. to run in-silico experiments to understand potential behaviours,

5. to critically assess established existing methods of model analysis.

Next I will consider future applications and improvements to the framework and

models.

10.2 Future Work and Directions

10.2.1 Data Availability

Throughout this work, ranging from the machine learning work on artefact detection
right through to the hypothermia models and investigations, a key barrier to further
and more rigorous development is the availability of varied and reliable data. In
all cases, a key requirement to develop modelling approaches is to have data from
a variety of sources that has been confirmed to be both reliable and clean of arte-
facts or data points that could serve to confound or obfuscate the research being
undertaken. In the simplest case of the artefacts detection, simply having more data
that has confirmed and clearly labelled artefact spectra would make the process of
training the algorithm much simpler.

For the more complex case of developing the BrainSignals models and any new
modelling approaches, having a variety of data that covers a range of pathologies
and subject types will allow model fitting to be more rigorous and the results to be
more reliable. For example, developing a complete model with posterior parameter
distributions that can be used to create a ‘typical behaviour’ model would require a
range of data from a number of different subjects that share traits such as health, age
and gender. From that point there could then be further work to establish a healthy
piglet model, a healthy neonatal model and so on. All of these require a range of
data for each ‘grouping’ to make sure that any typical parameter distributions are
not in fact simply typical of that individual. These typical models would help inform
clinical insights, allowing comparison between any distributions fitted to pathology
and those from the healthy, typical model. This would also then help with further
model development, identifying areas of weakness or areas that are likely to need

more work to understand differences between groups.



10.2. Future Work and Directions 246

10.2.2 Model Reduction

It is clear from the work so far that there is a need for improvement in the model
reduction step. Correct identification of the best subset of parameters required to
sufficiently model a specific behaviour is needed in order to produce reliable simu-
lations and to draw good analyses. We’ve seen from the posterior predictive distri-
butions that a number of parameters that were identified as important by the current
sensitivity analysis method were then found to be minimally useful in actual model
fitting. We see this in both the distributions themselves and the calculated K-L di-
vergence values.
One possible solution to this would be the use of a Bayesian hierarchical model. As
described by Gelman et al. [2013], many statistical applications involve parameters
that are connected by the problem structure. In the example given, this is the effec-
tiveness of cardiac treatment and the hospital in which treatment is received. For
our use case, this could occur at multiple levels. Figure 10.1 outlines a simplified
and possible structure for the BrainSignals models. The benefit of such a stratifica-
tion is that fewer parameters would need to be fit for a given level. For example,
once a model has been defined down to the Age level, there is only need to fit the
parameters that are specific to the Injury Severity level. As Gelman et al. [2013]
state, “hierarchical models can have enough parameters to fit the data well, while...
avoiding problems of overfitting.”

Should a verified hierarchical model be developed, the models then have the po-
tential to be used to perform initial in-silico experiments to help direct in-vivo ex-
perimentation. This has the benefit of reducing costs, reducing the experimental

feedback loop and reducing ethical concerns.

10.2.3 Environmental Stimuli

In this thesis I’ve outlined one extension of the model, the inclusion of temperature,
in order to better model the environment in which data are collected. However, there
are further examples of this that could also be considered as future directions for this
work. There are a number of pharmacological interventions that can occur during

treatment. The ability to simulate and model these interventions would provide two
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Figure 10.1: Example of a possible Bayesian hierarchical model for the BrainSignals mod-
els. Here we have stratified at the levels of Species, Age and Injury Severity.

obvious benefits. Firstly, data collected from subjects that have had a modelled
treatment could be interpreted with less need to clean and remove these treatments
from the data prior to analysis. Secondly, by introducing the ability to simulate ex-
ternal stimuli, there is the potential to perform in-silico experiments of these inter-
ventions under different conditions: hypothermia, severe injury, increased inhaled
oxygen concentration etc. There are a number of forms this inclusion could pos-
sibly take. All stimuli could be modelled via a small number of parameters that
vary in value to reflect the different treatment but which are shared regardless of

intervention type, or different interventions could be modelled through individual



10.3. Impact 248

parameters, with the inclusion of the parameters being decided at the model reduc-
tion step. Regardless of the form it takes, the inclusion of intervention would widen
the number of situations to which these models could be applied and improve their

validity.

10.3 Impact

The impact of hypoxic injury on a newborn infant and their families cannot be un-
derestimated. Whether it ends in death or severe neurodevelopmental disability, the
consequences of an injury that cannot be treated are grave and serious and anything
that can be done to improve outcome must be done. At present, therapeutic hy-
pothermia, the main treatment, is only effective around half the time and so a better
and more through understanding of the injury, the impact of treatment and the in-
terplay between these two factors needs to be obtained. One of the best ways to do
this is through clinical monitoring and so the ability to parse and process these data
1s paramount to any developments.

The modelling approach outlined in this thesis provides many possible pathways
leading to this end goal that analysis of the data alone could not. Furthermore, it
is only by developing a robust analysis process and toolset that these models prove
their effectiveness and here we have provided both. Whether it’s through obtaining
a better understanding of how the different levels of the system interact, identifying
measurement error in the data, a faster feedback loop for exploratory experimenta-
tion, or the verification of experimentally determined hypotheses, development of
modelling approaches is a key component in our journey to understand the brain

and the possible treatments we have for injury.



Appendix A

Table of Mathematical Models
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Appendix B

Details of WeBCMD Operation

To build the Docker container, Docker and Docker Compose need to be installed.
Once this is done, the WeBCMD Docker files can be downloaded in zipped form
or cloned from the GitHub repository [Github]. The latter allows for updates to be
easily pushed and installed using Git. After downloading, navigate to the directory
using a terminal emulator such as CMD or Powershell on Windows, Terminal on

Mac or xterm on Linux. Build the Docker container using the command:
docker-compose up

which will also load all environment variables.
There are two Docker containers used in the local distribution: the WeBCMD
container, which is the same as that used for the online version, and a MongoDB
container. The latter is used to store information about models, such as parameter
values and default inputs and outputs. It is expected that over time other features
will be added that utilise this database, such as detailed descriptions of the physio-

logical significance of each model variable.

Other Uses There are some features which have not been fully implemented within
the graphical interface. partly due to uncertainty over their continued use, such as
sensitivity analysis and OpenOpt model optimisation. It is possible to still access
these features inside the Docker container by using the command line.

To build and launch the container to do this a slightly different process is required.


https://github.com/buck06191/WeBCMD
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1. Build The container needs to be built before running, and the following com-
mand needs to be run from inside the directory with the Dockerfile in and

ensures that the most recent version of each intermediate container is used:
docker build --no-cache --rm -t webcmd:latest .

2. Running When using the command line interface, if you want access and
store data on the host computer, you will need to use the ‘working’ directory
with the following command. Any data you wish to use with the models must
be stored in the host_data directory. These can be individual files or child

directories:

docker run -it -v
~ /home/user/path/to/host_data:/BCMD/working

--entrypoint /bin/bash webcmd

The WeBCMD software is available via two main methods: accessing the software
via “the cloud", by visiting the WeBCMD website or by downloading the software
and running it from inside the Docker container. It is also possible, though not rec-
ommended, to run the interface directly using Python without using Docker. This
is most likely to work if the operating system used is a Unix variant, as this is the
operating system used within the Docker container.

If accessing the online version of the software, all models and their associated in-
formation have already been compiled and stored. The user needs only to follow
the on screen steps.

If using the local distribution, the installation steps outlined above will need to be
followed. Once this has been done and the containers built and launched, models
must be compiled and their information uploaded to the local database. This can be
done by accessing the Admin panel in the navigation menu. The local distribution

has its own admin user and password which give access to this section. They are

USER: LOCAL_USER
PASSWORD: LOCAL_PASSWORD
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Inside the admin section of the interface there are the options to compile a model
and to upload model information. Models will need compiling before information
can be uploaded, as the model information is generated by running the model itself.
Once this has been done, returning to the ‘Home’ tab allows users to review the

models that have been compiled and to run them.



Appendix C

Supporting Information for Chapter

7

S1 Sensitivity Analysis ¢ values - simulated data. Bar charts of the ¢ values

from the sensitivity analysis of the simulated data.
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Figure C.1: o values for each signal as per the sensitivity analysis. Shown are the ¢

values for each of the 10 most sensitive parameters in each signal, as per L,

for the simulated datasets.

from the sensitivity analysis of the experimental data.

S2 Sensitivity Analysis o values - simulated data. Bar charts of the ¢ values
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Figure C.2: o values for each signal as per the sensitivity analysis. Shown are the o
values for each of the 10 most sensitive parameters in each signal, as per p,,
for the experimental dataset.

S3 Table. Table of posterior and prior distribution information for healthy

simulated data.
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Posterior Prior

Parameter || Median | Lower Upper IQR Prior Prior

Quartile | Quartile Min. Max.
sigma_colll  65.04 49.4 79.87 30.47 || 31.395 | 94.185
R_auto 1.353 1.053 1.721 | 0.6679 0.75 2.25
n_h 2.541 1.988 3.079 1.09 1.25 3.75
r_t 0.01822| 0.01692 | 0.01938 | 0.002461(] 0.009 | 0.027
mu_max 1.014 | 0.7679 1.26 | 0.4922 0.5 1.5
n_m 1.992 1.493 2.369 0.876 0915 | 2.745
r_m 0.02879| 0.02568 | 0.03273 | 0.007059( 0.0135 | 0.0405
P_v 4.112 3.095 5.067 1.972 2 6
phi 0.03609| 0.03474 | 0.03775 | 0.003013|] 0.018 | 0.054
Xtot 8.898 8.463 9.406 0.943 4.55 13.65

Table C.1: Posterior and prior distribution information for healthy simulated data.
Posterior distribution values are given to 4 significant figures. Prior range values
are given as their exact values.

S4 Table. Table of posterior and prior distribution information for impaired

simulated data.

Posterior Prior

Parameter || Median | Lower Upper IQR Prior Prior

Quartile | Quartile Min. Max.
sigma_colll  64.58 48.86 79.79 30.93 || 31.395 | 94.185
R_auto 1.488 1.183 1.831 | 0.6479 0.75 2.25
n_h 2.337 1.742 3.014 1.272 1.25 3.75
r_t 0.0136 | 0.01183 | 0.01508 | 0.00325 0.009 | 0.027
mu_max 1.076 | 0.8283 1.289 | 0.4609 0.5 1.5
n_m 1.928 1.471 2.344 0.873 0915 | 2.745
r_m 0.02738| 0.02372 | 0.03174 | 0.00802 || 0.0135 | 0.0405
P_v 4.022 2.966 4.964 1.998 2 6
phi 0.03722| 0.03349 | 0.04122 | 0.007732|] 0.018 | 0.054
Xtot 8.764 7.534 10.18 2.646 4.55 13.65

Table C.2: Posterior and prior distribution information for impaired simulated data.
Posterior distribution values are given to 4 significant figures. Prior range values
are given as their exact values.



280

SS Table. Table of posterior and prior distribution information for experimen-

tal data.
Posterior Prior

Parameter || Median | Lower Upper IQR Prior Prior

Quartile | Quartile Min. Max.
n_m 2.078 1.645 2446 | 0.8011 0915 | 2.745
r_m 0.02574| 0.02342 | 0.02841 | 0.004988| 0.0135 | 0.0405
K_sigma 8.195 6.701 9.663 2.961 5 15
p_tot 18.48 17.45 19.4 1.943 10 30
k_aut 0.9799 | 0.9073 1.074 0.167 0.5 1.5
v_cn 47.88 43.93 52.13 8.199 20 60
sigma_e0 || 0.1386 | 0.1043 | 0.1739 | 0.06966 || 0.07125| 0.2137
k2 n 3870 2903 4822 1919 || 1957.83| 5873.52
Xtot 7.067 6.589 7.555 | 0.9663 4.55 13.65
R_autc 1.955 1.516 2.517 1.001 1.1 3.3

Table C.3: Posterior and prior distribution information for experimental data. Poste-
rior distribution values are given to 4 significant figures. Prior range values are
given as their exact values.
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S6 Statistical Analysis - Simulated Healthy Data. Figures of statistical checks

used to verify the method and results for the simulated healthy data.

—— Posterior Observed
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1.00 = -
c 075 = -
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-] — —
2 025
~0.50 = -
| | | | | |
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Figure C.3: Autocorrelation of posterior predictive and the observed data. The graph
shows a comparison of the autocorrelation value between observed and pos-
terior predictive time series as a function of lag. We see significant overlap
between the two suggesting an extremely good fit.
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Figure C.4: Distributions of residuals. Distributions of the residuals for each signal.
Mean and standard deviation of each plot are indicated by black and green
lines respectively.

S7 Statistical Analysis - Simulated Impaired Data. Figures of statistical checks

used to verify the method and results for the simulated impaired data.
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Figure C.5: Q-Q plot of residuals. Q-Q plots looking at the residuals for each signal.
The plots use a standardised diagonal line, where the expected order statistics
are scaled by the standard deviation of the sample residuals and have the mean

added to them.

S8 Statistical Analysis - Experimental Data. Figures of statistical checks used

to verify the method and results for the experimental data.
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Figure C.6: Comparison of marginal posterior and prior distributions for each pa-
rameter. A clearer comparison is made here between the marginal prior and
posterior distributions for each fitted parameter. The Kullback—Leibler diver-

gence is shown for each.
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Figure C.7: Autocorrelation of posterior predictive and the observed data. The graph

shows a comparison of the autocorrelation value between observed and pos-
terior predictive time series as a function of lag. We see significant overlap
between the two suggesting an extremely good fit.
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Figure C.10: Comparison of marginal posterior and prior distributions for each pa-
rameter. A clearer comparison is made here between the marginal prior and
posterior distributions for each fitted parameter. The Kullback—Leibler diver-
gence is shown for each.
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