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Abstract
We study the Ricci flow on R

4 starting at an SU(2)-cohomogeneity 1 metric g0 whose
restriction to any hypersphere is a Berger metric. We prove that if g0 has no necks and is
bounded by a cylinder, then the solution develops a global Type-II singularity and converges
to the Bryant soliton when suitably dilated at the origin. This is the first example in dimension
n > 3 of a non-rotationally symmetric Type-II flow converging to a rotationally symmetric
singularity model. Next, we show that if instead g0 has no necks, its curvature decays and
the Hopf fibres are not collapsed, then the solution is immortal. Finally, we prove that if the
flow is Type-I, then there exist minimal 3-spheres for times close to the maximal time.

Mathematics Subject Classification 53E20

1 Introduction

Given a smooth Riemannianmanifold (M, g0), Hamilton’s Ricci flow starting at g0 is defined
to be the geometric heat-type evolution equation [25]

∂g

∂t
= −2Ricg(t), g(0) = g0.

Shi proved that if (M, g0) is complete and has bounded curvature, then theRicci flowproblem
admits a solution [41]. Moreover, such solution is unique in the class of complete solutions
with bounded curvature by the work of Chen and Zhu [18]. A solution to the Ricci flow
encounters a finite-time singularity at some T < ∞ if and only if [29,41]

lim sup
t↗T

sup
M

|Rmg(t)|g(t) = ∞.

Finite time singularities of the Ricci flow are classified as follows [29]:

Type-I : lim sup
t↗T

(T − t) sup
M

|Rmg(t)|g(t) < ∞,

Type-II : lim sup
t↗T

(T − t) sup
M

|Rmg(t)|g(t) = ∞.
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According to results of Naber [36] and Enders-Müller-Topping [20] any parabolic dilation
of a Type-I Ricci flow at a singular point converges to a non-flat gradient shrinking soliton.
On the other hand, far less is known about Type-II singularities.

The first examples of Type-II singularities in dimension n ≥ 3 were found in [24] by
Gu and Zhu, who considered a family of rotationally invariant Ricci flows on Sn . Angenent,
Isenberg and Knopf later discovered Type-II spherically symmetric Ricci flows on Sn that
are modelled on degenerate neckpinches [1]. Type-II singularities were also derived for
rotationally invariant Ricci flows onRn byWu in [44] and later, for a larger set of initial data,
by the author in [19].

Only very recently the first explicit examples of non rotationally symmetric Type-II Ricci
flows in dimension higher than three have been analysed by Appleton in [4] and by Stolarski
in [43], where they both obtained Ricci flat singularity models.

In our first result we show that a large family of 4-dimensional cohomogeneity 1 Ricci
flows develop Type-II singularities modelled on the Bryant soliton [10]. The Ricci flow on
4-dimensional cohomogeneity 1 manifolds has been recently studied on various topologies
[4,6,31,32]. In [31] Isenberg, Knopf and Šešum showed that the Ricci flow starting at a family
of generalized warped Berger metrics on S1 × S3 is Type-I and becomes rotationally sym-
metric around any singularity. This behaviour is regarded as a Type-I example of symmetry
enhancement along the Ricci flow.

In this work we study the Ricci flow evolving from a generalized warped Berger metric on
R
4. Namely, consider a metric g0 invariant under the cohomogeneity 1 left-action of SU(2)

on R
4 = C

2. We can then write g0 in Bianchi IX form as [22]

g0 = (ds)2 + a2(s) σ1 ⊗ σ1 + b2(s) σ2 ⊗ σ2 + c2(s) σ3 ⊗ σ3,

where {σi }3i=1 is a coframe dual to some Milnor frame {Xi }3i=1 on SU(2), with X3 tangent
to the Hopf fibres. We further assume that g0 is invariant under rotations of the Hopf fibres.
The last condition means that the left-invariant vector field X3 is Killing thus extending the
Lie algebra of g0-Killing vectors to u(2). In particular, we can write g0 as

g0 = (ds)2 + b2(s) (σ1 ⊗ σ1 + σ2 ⊗ σ2) + c2(s) σ3 ⊗ σ3.

In analogy with [31] we finally assume that c ≤ b so that each non-degenerate fiber {s}× S3

is a Berger sphere. We call such metric a warped Berger metric on R
4.

We first focus on initial data with linear volume growth.

Definition 1 We let G be the set of complete bounded curvature warped Berger metrics g0
on R

4 satisfying the following conditions:

(i) bs ≥ 0, H ≥ 0, where H(r) is the mean curvature of the centred Euclidean sphere of
Euclidean radius r with respect to g0.

(ii) supp∈R4 b(p) < ∞.

The control on the sign of H amounts to ruling out the existence of necks [2]. We also
note that the condition in (i) is weaker than asking for both b and c to be monotone. We prove
that any Ricci flow starting in G converges to the Bryant soliton once suitably rescaled. This
provides Type-II examples of symmetry enhancement and constitutes the first explicit case
in dimension higher than three of a non-conformally flat Type-II Ricci flow converging to a
rotationally symmetric singularity model.

Theorem 1 Let (R4, g(t))0≤t<T be the maximal complete, bounded curvature solution to
the Ricci flow starting at some g0 ∈ G. The solution develops a Type-II singularity at some
T < ∞ which is modelled on the Bryant soliton once suitably dilated.
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Theorem 1 resembles an analogous result recently derived in [4], where Appleton studied
the Ricci flow on the blow-up of C2/Zk starting from a subclass of U(2)-invariant metrics as
above. In particular, he showed that when k = 2 if the initial metric is bounded by a cylinder
at infinity and both b and c are increasing and satisfy a differential inequality, then the flow
is Type-II and converges to the Eguchi-Hanson metric once suitably dilated.

Theorem 1 characterizes the Type-II singularity only partially. Indeed, while the Type-II
singularity is not isolated, being the Bryant soliton asymptotically cylindrical (see, e.g., [8]),
in general there is no control on the blow-up sequence giving rise to a family of shrinking
cylinders. Moreover, the symmetries and the lack of necks suggest that the curvature ought
to become large locally around the singular orbit (see also [4]). Equivalently, one should
detect the Bryant soliton when dilating the flow at the origin o by suitable factors. In our
next result we address these issues hence providing a much clearer picture of the Type-II
singularity developed by Ricci flows in G. In the following statement Rg(t) represents the
scalar curvature of the Ricci flow solution.

Theorem 2 Let (R4, g(t))0≤t<T be the maximal complete, bounded curvature solution to the
Ricci flow starting at some g0 ∈ G. Then the following conditions hold:

(i) (The Bryant soliton appears at the origin.) There exists t j ↗ T such that the rescaled
Ricci flows (R4, g j (t), o) defined by g j (t)

.= Rg(t j )(o)g(t j + (Rg(t j )(o))
−1t) converge

to the Bryant soliton in the Cheeger-Gromov sense.
(ii) (The singularity is global.) For any p ∈ R

4 we have

lim sup
t↗T

(|Rmg(t)|g(t)(p)
) = ∞.

(iii) (Type-I blow-up at infinity.) For any t j ↗ T there exist a sequence {p j } and α > 0
such that dg0(o, p j ) → ∞, (T − t j )Rg(t j )(p j ) ≤ α, and the rescaled Ricci flows
(R4, g j (t), p j ) defined by g j (t)

.= Rg(t j )(p j )g(t j + (Rg(t j )(p j ))
−1t) converge to the

self-similar shrinking cylinder in the Cheeger-Gromov sense.
(iv) (Classification of singularity models.) Any non-trivial singularity model is isometric to

either the self-similar shrinking cylinder or the Bryant soliton.

We note that as an immediate consequence of (i) the scalar curvature and the full cur-
vature are comparable in certain regions up to the singular time. We also point out that the
phenomenon of Type-II enhancement of symmetries along the Ricci flow is intrinsic to the
classification of 3-dimensional κ-solutions obtained by Brendle in [9]. We also note that item
(iv) in Theorem 2 relies on the recent extension of Brendle’s work to higher dimensions by
Li and Zhang [35].

Next, we show that the long-time property is satisfied by a class of Berger metrics whose
curvature decays at infinity. General long-time existence results on non-compact manifolds
usually rely on controlling the sign of the curvature and the volume growth [16]. From a
different perspective, similar conclusions may be achieved when the analysis is restricted to
families of homogeneous Riemannian metrics [34]. In this case the behaviour of the flow
for long times is also understood [7]. Instead of assuming a transitive action of a Lie group,
one may study cohomogeneity 1 manifolds. In this direction, Oliynyk and Woolgar proved
that the Ricci flow on R

n starting at an asymptotically flat spherically symmetric metric
without necks is immortal [38]. The author improved this result by allowing any decay of
the curvature [19].

In our setting we consider the following set, whose intersection with G is empty.

Definition 2 We let G∞ be the set of complete warped Berger metrics g on R4 with positive
injectivity radius and satisfying the following conditions:
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(i) bs ≥ 0, H ≥ 0.
(ii) |Rmg|g(s) → 0 as s → ∞ and there exist μ > 0 and s0 > 0 such that c(s) ≥ μ for any

s ≥ s0.

We prove the following:

Theorem 3 Let (R4, g(t))0≤t<T be the maximal complete, bounded curvature solution to the
Ricci flow evolving from some g0 ∈ G∞. Then the solution is immortal.

The long-time property may in general fail if we omit the requirement on themonotonicity
of b and H . Indeed by the adaptation of [2] to Rn+1 obtained in [19] we deduce that if g0 is
asymptotically flat with b = c and (R4, g0) contains a neckwhich is sufficiently pinched (in a
preciseway), then theRicci flow is Type-I. It therefore remains to address the relation between
Type-I singularities and existence of minimal hyperspheres for Berger Ricci flows. We recall
that Angenent and Knopf constructed the first examples of nondegenerate neckpinches by
evolving rotationally invariant metrics on Sn containing minimal (stable) hyperspheres [2].
Later the link between Type-I singularities and minimal spheres has been explored for Ricci
flows on closed 3-manifolds by Song in [42]. In our setting we prove the following:

Theorem 4 Let (R4, g(t))0≤t<T be the maximal complete, bounded curvature solution to
the Ricci flow evolving from a complete warped Berger metric g0 with positive injectivity
radius and curvature decaying at infinity. If g(t) develops a Type-I singularity at T < ∞,
then there exists δ > 0 such that (R4, g(t)) contains minimal embedded 3-spheres for any
t ∈ [T − δ, T ).

We may also apply Theorem 1 and Theorem 3 to derive two simple corollaries. First we
immediately deduce that neither G nor G∞ contain shrinking solitons.

Corollary 1 There are no Taub-NUT like shrinking Ricci solitons on R4.

In the second application we classify warped Berger Ricci flows with bounded nonnegative
curvature. In particularwe show that for positively curvedwarpedBergerRicci flows bounded
by a cylinder at infinity, parabolic dilations at the origin along any sequence of times give
rise to the Bryant soliton.

Corollary 2 Let (R4, g(t))0≤t<T be the maximal complete, bounded curvature Ricci flow
starting at some complete warped Berger metric g0 with bounded nonnegative curvature.
Then T is finite if and only if b(·, 0) is bounded. If T is finite, then for any t j ↗ T the rescaled
Ricci flows (R4, g j (t), o) defined by g j (t)

.= Rg(t j )(o)g(t j + (Rg(t j )(o))
−1t) (sub)converge

to the Bryant soliton.

Outline

We briefly describe the organization of the paper.
In Sect. 2 we discuss Berger metrics on R

4 and we comment on the main assumptions.
In Sect. 3 we show that the condition on the lack of necks persists along the Ricci flow. The
main step consists in adapting the analogous argument adopted in [4], which relies on the
application of a general maximum principle for systems of parabolic equations. In Sect. 4 we
study warped Berger Ricci flows evolving from initial data either in G or in G∞. Similarly
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to [31] we show that the curvature is controlled by the size of the principal orbits and that
the solution becomes rotationally symmetric around any singularity at some rate that breaks
scale-invariance. An important ingredient, for the case of G∞, is also given by the application
of the Pseudolocality formula in [17] by Chau, Tam and Yu. In Sect. 5 we prove that any
singularity model is rotationally symmetric by showing that the left-invariant Milnor frame
diagonalizing the metric generates a copy of su(2) in the Lie algebra of Killing fields acting
on the singularity model. We then apply the rigidity result obtained by Zhang in [45] to
classify these singularity models. In Sect. 6 we prove the main results. Theorem 1 heavily
relies on the characterization of Type-I singularities in [36] and [20]. The appearance of the
Bryant soliton follows from a result by Hamilton [27] once we know that the singularity is
Type-II. The localization of the Bryant soliton in (i) of Theorem 2 is a direct consequence
of the convergence of left-invariant vector fields obtained in Sect. 5. The property that the
singularity is global depends on the monotonicity assumption (bs ≥ 0, H ≥ 0), which allows
us to control the space-time regionwhere theflowstays smooth. TheType-I blow-up at infinity
follows once we know that the solution becomes singular everywhere at some finite time T .
We then obtain the classification of singularity models by combining the characterization
of singularity models in Sect. 5 with the analysis in [35]. The proof of Theorem 3 follows
from a contradiction argument. We show that if a Ricci flow in G∞ develops a finite-time
singularity, then any singularity model is a non-compact κ-solution with Euclidean volume
growth. However, in [39] Perelman showed that this is not possible. We finally address the
proof of Theorem 4, which again depends on the characterization of Type-I Ricci flows
obtained in [20]. The last section is devoted to deriving some easy applications of the main
results.

2 Setting

2.1 Warped Berger metrics onR4

A compact Lie group G acting on a Riemannian manifold (M, g) via isometries is said to
act with cohomogeneity 1 if the orbit space M/G is 1-dimensional. If M is a non-compact
manifold, then the orbit space is either homeomorphic to [0, 1) or toR, depending onwhether
there exists a singular orbit of codimension greater than one (see, e.g., [23]). We analyse the
first case, with G and M being SU(2) and R4 respectively.

Let us identify S3 with SU(2) via the map h : S3 ⊂ C
2 → SU(2) defined in Euler

coordinates by

(ei(θ+ψ) cos(φ), ei(θ−ψ) sin(φ)) 
→
[
ei(θ+ψ) cos(φ) −e−i(θ−ψ) sin(φ)

ei(θ−ψ) sin(φ) e−i(θ+ψ) cos(φ)

]
,

where φ ∈ [0, π/2), ψ ∈ [0, π), θ ∈ [0, 2π). By using the Maurer-Cartan formalism we
find a basis of left-invariant 1-forms {σi } given by (see also [22])

σ1 = sin(2θ)dφ − sin(2φ) cos(2θ)dψ,

σ2 = cos(2θ)dφ + sin(2φ) sin(2θ)dψ,

σ3 = cos(2φ)dψ + dθ,
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with dual left-invariant frame

X1 = sin(2θ)∂φ − cos(2θ)

sin(2φ)
∂ψ + cot(φ) cos(2θ)∂θ ,

X2 = cos(2θ)∂φ + sin(2θ)

sin(2φ)
∂ψ − cot(2φ) sin(2θ)∂θ ,

X3 = ∂θ . (1)

The vector fields {Xi } satisfy the relations [Xi , X j ] = 2εi jk Xk , with εi jk the anti-symmetric
symbol. Consider a left-invariant Riemannian metric ḡ on S3 = SU(2). Such metric can be
diagonalized along some Milnor frame [14, Chapter 1]. Without loss of generality we may
identify the Milnor frame with the left-invariant frame {Xi } and write ḡ as

ḡ
.= λ21 σ1 ⊗ σ1 + λ22 σ2 ⊗ σ2 + λ33 σ3 ⊗ σ3,

for some positive constants {λ j }. From the Koszul formula it follows that the left-invariant
vector field X3 is a ḡ-Killing vector if and only if λ1 = λ2. In this case the metric ḡ is also
invariant under rotations of the Hopf-fibres and its Lie algebra of Killing vectors contains
a copy of u(2). We note that the choice λ1 = λ2 = λ3 = 1 recovers the round metric of
constant curvature one while the choice λ1 = λ2 = 1 and λ3 = ε < 1 parametrizes the
classic family of Berger spheres collapsing along the Hopf fibres as ε → 0.

Let now g be a Riemannian metric on R
4 = C

2 invariant under the cohomogeneity 1
left-action of SU(2). The action admits one singular orbit consisting of the origin o of R4.
All the geometric information can then be obtained by restricting g along a radial geodesic
starting at o and meeting the 3-hyperspheres orthogonally. Namely, on R4 \ {o} we have (see
also [22])

g = ξ2(x)dx ⊗ dx + ḡx

= ξ2(x)dx ⊗ dx + a2(x) σ1 ⊗ σ1 + b2(x) σ2 ⊗ σ2 + c2(x) σ3 ⊗ σ3,
(2)

where ξ, a, b, c : (0,+∞) → (0,+∞) are smooth radial functions. Since we are interested
in SU(2)-invariant metrics onR4 whose restrictions to any hypersphere are Bergermetrics we
further require themetric g to be invariant under rotations of the Hopf fibres. Equivalently, we
assume that a ≡ b in (2). Moreover, we also restrict the analysis to those metrics satisfying
the ordering constraint c ≤ b. For any radial coordinate x > 0 the metric

ḡx
.= b2(x) (σ1 ⊗ σ1 + σ2 ⊗ σ2) + c2(x) σ3 ⊗ σ3

is then a left-invariantmetric on the Euclidean hypersphere S(o, x)with the S1-fiber squashed
by a factor c(x)/b(x) ∈ (0, 1].

If we denote the g-distance from the origin by s, then we can write g as

g = ds ⊗ ds + b2(s) (σ1 ⊗ σ1 + σ2 ⊗ σ2) + c2(s) σ3 ⊗ σ3. (3)

We note that given a radial map f onR4, then we interpret f = f (s) = f (s(x)) as a function
of x unless otherwise stated. We also have the relation

∂s = 1

ξ(x)
∂x . (4)

It is a general fact that g in (3) extends smoothly at the origin o ∈ R
4 if and only if b and c

extend to smooth odd functions at x = 0 and the following is satisfied:

lim
s→0

db

ds
(s) = lim

s→0

dc

ds
(s) = 1. (5)
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We note that the underlying topology plays a role in the analysis of the Ricci flow dynamics
via the boundary conditions above.

We point out that, as previously observed, the Lie algebra of Killing vectors for g contains
a copy of u(2). Indeed, any U(2)-invariant metric on R4 = C

2 can be written as in (3), up to
choosing a suitable Milnor frame (see, e.g., the case k = 1 in Sect. 2.1 of [4]). In analogy
with [31] we refer to any (U(2)-invariant) metric on R4 of the form (3) and satisfying c ≤ b
as a (generalized) warped Berger metric.

2.2 Curvature terms

Given a warped Berger metric g0 a simple application of the Koszul formula (see also [31,
Appendix A]) allows to compute the sectional curvatures of the vertical planes

k12 = 4b2 − 3c2

b4
− b2s

b2
, (6)

k13 = k23 = c2

b4
− bscs

bc
(7)

and of the mixed ones

k01 = k02 = −bss
b

, (8)

k03 = −css
c

. (9)

We also note that we can write the scalar curvature as

Rg = 2(k01 + k02 + k03 + k12 + k13 + k23). (10)

2.3 Initial data for the Ricci flow

In this work we study the Ricci flow problem on R4 with initial condition given by a warped
Berger metric g0. We first assume that g0 is bounded by a cylinder at infinity so that the Ricci
flow evolving from g0 always encounters a finite-time singularity.

According to [2,19] if (R4, g0) contains necks, then the Ricci flow solution may be Type-I
and converge to a shrinking cylinder once rescaled. In order to construct Type-II singularities
we thus need to exclude these initial geometries. A generalization of the notion of neck
discussed in [2] to the SU(2)-invariant setting consists in considering whether the mean
curvature of embedded hyperspheres changes sign. Namely, we introduce the quantity H :
x → (2bs/b + cs/c)(x) representing the mean curvature of the centred Euclidean sphere of
Euclidean radius x with respect to g0. We say that g0 does not have necks when the mean
curvature H is nonnegative on R4 \ {o}.

While in the rotationally symmetric setting a Sturmian type of argument guarantees that
minimal hyperspheres cannot appear along the flow, one might expect that in the SU(2)-case
the mean curvature could generally change sign along the flow. In order to prevent the latter
phenomenon from happening, we require the spatial derivative bs to be nonnegative as well.

Definition 2.1 We let G be the set of complete bounded curvature warped Berger metrics on
R
4 satisfying the following conditions:

(i) bs ≥ 0, H ≥ 0.
(ii) supp∈R4 b(p) < ∞.
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Remark 2.2 From the formula for the mean curvature of the embedded hyperspheres we
immediately derive that the assumption (i) in Definition 2.1 is weaker than asking for the
monotonicity of both b and c.

In the second class of initial data for the Ricci flow we consider warped Berger metrics
without necks but whose behaviour at infinity is not controlled by that of a cylinder. Namely,
we require the curvature to decay to zero and the Hopf fibres to be not collapsed.

Definition 2.3 We let G∞ be the set of complete warped Berger metrics g onR4 with positive
injectivity radius and satisfying the following conditions:

(i) bs ≥ 0, H ≥ 0.
(ii) |Rmg|g(s) → 0 as s → ∞ and there exist μ > 0 and s0 > 0 such that c(s) ≥ μ for any

s ≥ s0.

Remark 2.4 We point out that the sets G and G∞ are disjoint. For if g0 ∈ G∩G∞, then b < m,
for some m > 0, and hence by (6) we find

|4 − 3
c2

b2
− b2s | ≤ |k12|b2 < m2|k12|.

Since the curvature is decaying to zero at infinity and c ≤ b we see that |bs | ≥ 1/2 out-
side some Euclidean ball B(o, r), for r large enough. Therefore b(s) → ∞ and this is a
contradiction. We conclude that if g0 ∈ G∞, then b(s) → ∞ being bs ≥ 0.

Remark 2.5 We observe that the well known Taub-NUT metric on R
4 [30] is a hyperkähler

metric belonging to G∞ since the curvature decays to zero at cubic rate while both b and c
are increasing.

2.4 The Ricci flow equations

If g0 is a complete bounded curvature warped Berger metric on R4, then by [41] there exists
a smooth complete solution to the Ricci flow problem. Such solution is unique among those
complete solutions with bounded curvature [18]. Therefore we have a well-defined notion
of maximal time of existence for the Ricci flow solution. In the following we always let
(R4, g(t))0≤t<T be the maximal complete, bounded curvature solution to the Ricci flow
starting at some complete bounded curvature Berger metric g0.

The Ricci flow diffeomorphism invariance and the uniqueness property ensure that the
symmetries persist. Moreover, since the Ricci tensor is diagonal along the global frame
{∂x , X1, X2, X3}, the maximal Ricci flow solution starting at g0 must be of the form

g(t) = ξ2(x, t) dx ⊗ dx + b2(x, t) (σ1 ⊗ σ1 + σ2 ⊗ σ2) + c2(x, t) σ3 ⊗ σ3

= ds ⊗ ds + b2(s(x), t) (σ1 ⊗ σ1 + σ2 ⊗ σ2) + c2(s(x), t) σ3 ⊗ σ3,
(11)

where s = s(x, t) is the g(t)-distance from the origin. In terms of the variables s and t the
Ricci flow equations can be written as

bt = bss +
(
cs
c

+ bs
b

)
bs + 2(c2 − 2b2)

b3
(12)

ct = css + 2
bs
b
cs − 2c3

b4
. (13)
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The choice of a meaningful geometric coordinate s provides us with a parabolic form of the
Ricci flow equations. However, we get a non vanishing commutator between ∂t and ∂s given
by

[
∂

∂t
,

∂

∂s

]
= −(ln(ξ))t

∂

∂s
= −

(
2
bss
b

+ css
c

)
∂

∂s
. (14)

We also report the formula for the (time-dependent) Laplacian along the Ricci flow. For any
smooth function f ∈ C∞(R4) we have

� f ≡ fss +
(
2
bs
b

+ cs
c

)
fs . (15)

We dedicate the end of this subsection to proving that the Ricci flow solution g(t) starting
at g0 remains a warped Berger metric until its maximal time of existence T ≤ ∞. More
precisely, we show the following:

Lemma 2.6 Let (R4, g(t))0≤t<T be the maximal solution to the Ricci flow starting at some
complete bounded curvature warped Berger metric g0 and let ε

.= infx≥0 c/b(x, 0). Then
for any (p, t) ∈ R

4 × [0, T ) we have

ε ≤ c

b
(p, t) ≤ 1.

Proof We first verify that the ordering c ≤ b is preserved along the flow for any t ∈ [0, T ).
By [41] the curvature is bounded at any time slice R4 × {t}, with t ∈ [0, T ); thus from the
Ricci flow equations we find that there exists some time dependent positive constant α(t)
such that c/b(·, t) ≤ α(t) < ∞ on R

4. As long as a (smooth) solution exists the boundary
conditions (5) are satisfied, which then imply that the function f

.= log(c/b) is smoothly
defined onR4 and equal to zero at the origin for any time. From the evolution equations (12),
(13) and the formula for the Laplacian (15) we get

ft = � f + 4

b2

(
1 − c2

b2

)
. (16)

Therefore whenever c/b > 1 we find

ft < � f .

We can then apply the maximum principle [15, Corollary 7.45] and conclude that since
c/b(·, 0) ≤ 1, the same ordering persists along the flow. In fact, once we know that c ≤ b
is preserved in time, a standard application of the strong maximum principle shows that if
c = b at some (p0, t0) ∈ R

4 × (0, T ), then c = b in a space-time neighbourhood of the point
and thus c = b everywhere for all earlier times by real analyticity of solutions to the Ricci
flow [5].

We now let ε ∈ [0, 1) be defined as in the statement. If ε = 0 there is nothing to show;
we can then take ε > 0. Again from [41] it follows that c/b(·, t) ≥ α(t) > 0; if we define
f

.= log(ε−1c/b), since we have just shown that c ≤ b along the solution, we obtain

ft = � f + 4

b2

(
1 − c2

b2

)
≥ � f .

We can apply the maximum principle and conclude that c(·, t) ≥ εb(·, t) for any t ∈ [0, T ).
�
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3 Ricci flowwithout necks

In this section we show that the monotonicity assumptions bs ≥ 0 and H ≥ 0 are preserved
along the Ricci flow solution. The main ingredient is given by a maximum principle for
systems of parabolic equations [40, Theorem 13, p. 190] that recently Appleton used to derive
similar conclusions for a family of U (2)-invariant Ricci flows with cylindrical asymptotics
[4]. In the following we mainly adapt the argument in [4] to the topology of R4, i.e. to the
boundary conditions given in (5).

3.1 Basic estimates

Let g0 be a complete bounded curvature Berger metric on R
4. We collect a few preliminary

bounds that are necessary to apply the maximum principle for systems to the evolution
equations of cbs/b and cH .

Lemma 3.1 For any x0 > 0 there exists δ > 0 such that b(x) ≥ δ > 0 for all x ≥ x0.

Proof By assumption there exists α > supR4 |Rmg0 |g0 . Suppose for a contradiction that there
exists x0 such that b(x) ≤ δ for any x ≥ x0, with δ2α < 1/2. From (6) we derive

|4 − 3
c2

b2
− b2s | ≤ αb2 ≤ 1

2

for all x ≥ x0. Since c ≤ b, we see that b2s (x) ≥ 1/2 for any x ≥ x0 which contradicts
the fact that b is bounded. Therefore there exists a sequence of points p j → ∞ such that
b(p j ) > δ, with δ given above. Assume that there exists a sequence q j → ∞ such that
b(q j ) ≤ δ. It follows that there exists a sequence of minima q̃ j → ∞ such that b(q̃ j ) ≤ δ.
From (6) we get

|4 − 3
c2

b2
− b2s |(q̃ j ) ≡ |4 − 3

c2

b2
|(q̃ j ) ≤ αb2(q̃ j ) ≤ 1

2
,

which is not possible. The proof is then complete. �
A simple consequence of the previous Lemma is the following

Corollary 3.2 Given x0 > 0 there exists α > 0 such that

sup
R4\B(o,x0)

∣∣∣∣
bs
b

∣∣∣∣ ≤ α.

Proof From (6) we derive

b2s
b2

≤ 4b2 − 3c2

b4
+ α.

Given x0 > 0 we may apply Lemma 3.1 and conclude the proof. �
We also need to check that both bs and cs are exponentially bounded at spatial infinity.

Lemma 3.3 There exist M > 0 and α > 0 such that

|cs | + |bs | ≤ M exp(αs).
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Proof According to (8) and the uniform bound on the curvature we see that b and hence bss
are exponentially bounded; thus the same holds for bs by integrating bss . Similar conclusions
are satisfied by cs . �

Finally a bound similar to Corollary 3.2 is satisfied by cs/c as well.

Lemma 3.4 Given x0 > 0 there exists α > 0 such that

sup
R4\B(o,x0)

∣
∣
∣
cs
c

∣
∣
∣ ≤ α.

Proof [4, Lemma 3.4]. �

3.2 Maximum principle for systems

We consider the maximal Ricci flow solution (R4, g(t))0≤t<T evolving from a complete
bounded curvature warped Berger metric g0. We note that given t0 < T then the estimates
above hold uniformly for any t ∈ [0, t0] being the curvature uniformly bounded in the space-
time region R

4 × [0, t0]. From the evolution equations (12), (13), the commutator formula
(14) and the expression for the mean curvature of embedded hyperspheres H : (x, t) →
(2bs/b + cs/c)(x, t), we compute
( c
b
bs

)

t
=

( c
b
bs

)

ss
+

( c
b
bs

)

s

(
2
bs
b

− cs
c

)
+ 1

b2

( c
b
bs

)(
8 − 10

c2

b2
− 2b2s

)
+ 4

c2

b4
cs,

(17)

(cH)t = (cH)ss + (cH)s

(
2
bs
b

− cs
c

)
+ 2

cH

b2

(
c2

b2
− b2s

)
+ 16

b2

( c
b
bs

) (
1 − c2

b2

)
.

(18)

We may now prove the main result of this section.

Lemma 3.5 Let (R4, g(t))0≤t<T be the maximal Ricci flow solution starting at a complete
bounded curvature warped Berger metric g0. If (c/b)bs(·, 0) ≥ 0 and cH(·, 0) ≥ 0 then
(c/b)bs(·, t) > 0 and cH(·, t) > 0 for any t ∈ (0, T ).

Proof Suppose that there exist x0 and t0 > 0 such that (c/b)bs(x0, t0) = −z < 0, for some
z > 0. By the boundary conditions x0 > 0 and there exists δ = δ(t0) > 0 such that

inf
B(o,δ)×[0,t0]

c

b
bs(x, t) ≥ 1

2
, inf

B(o,δ)×[0,t0]
(cH)(x, t) ≥ 1

2
.

Using the commutator formula (14) we may rewrite the evolution equations (17) and (18) in
the space-time region (R4 \ B(o, δ)) × [0, t0] as

( c
b
bs

)

t
= 1

ξ2

( c
b
bs

)

xx
+ 1

ξ

(
2
bs
b

− cs
c

− ξx

ξ2

) ( c
b
bs

)

x

+ 1

b2

( c
b
bs

) (
8 − 18

c2

b2
− 2b2s

)
+ 4

c2

b4
(cH)

and

(cH)t = 1

ξ2
(cH)xx + 1

ξ

(
2
bs
b

− cs
c

− ξx

ξ2

)
(cH)x

+ 16

b2

( c
b
bs

) (
1 − c2

b2

)
+ 2

b2
(cH)

(
c2

b2
− b2s

)
.
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From Lemma 3.1 and Corollary 3.2 we derive that the zero order coefficients are uniformly
bounded in (R4\B(o, δ))×[0, t0]. Moreover, by Lemma 2.6we know that the ordering c ≤ b
is preserved along the flow, therefore the coupling coefficients 4c2/b4 and 16/b2(1− c2/b2)
are both nonnegative. Similarly to [4] we can introduce a barrier function

W : (x, t) → exp

(
s2(x, t)

1 − βt
+ λt

)

for t ≤ min{t0, (2β)−1} and compute the evolution equations of cbs/b+ εW and cH + εW
for any ε > 0. Using Corollary 3.2, Lemma 3.4 and standard distortion estimates of the
distance function it is straightforward to check that there exist β = β(t0) and λ = λ(t0) such
that

( c
b
bs + εW

)

t
>

1

ξ2

( c
b
bs + εW

)

xx
+ 1

ξ

(
2
bs
b

− cs
c

− ξx

ξ2

) ( c
b
bs + εW

)

x

+ 1

b2

( c
b
bs + εW

) (
8 − 18

c2

b2
− 2b2s

)
+ 4

c2

b4
(cH + εW )

and similarly for the evolution equation of cH + εW . By assumption cbs/b+ εW (·, 0) > 0
and cbs/b + εW (δ, t) > 0 for any t ∈ [0,min{t0, (2β)−1}]. Since by Lemma 3.3 cbs/b
is exponentially bounded in space uniformly in the time interval [0, t0] we also get that
(cbs/b+εW )(x, t) → ∞ as x → ∞ for any t ∈ [0,min{t0, (2β)−1}]. The same conclusions
are satisfied by cH + εW . We can then apply [40, Theorem 13, p.190] and conclude that
cbs/b and cH stay nonnegative along the flow. The strict inequality in the statement then
follows from using the maximum principle [21, Theorem 3, p.38] and the real analyticity of
the Ricci flow solutions [5] once we know that bs and H are nonnegative. �

4 Analysis of the Ricci flow

In this section we derive the main curvature estimates for the Ricci flow solution (R4, g(t))
evolving from a warped Berger metric metric g0. In the first part we focus on the case g0 ∈ G.
Similarly to the analyses in [31] and [32] (which are performed on S1 × S3 and S2×̃S2

respectively) we prove that away from the origin the Ricci flow is controlled by the size of
the principal orbits. In particular, we show that the formation of a singularity at some positive
x (i.e. along the Euclidean hypersphere of radius x) is equivalent to b(x, t) converging to zero
as t → T . We also describe the behaviour of the flow as the time approaches T . Analogously
to [31], we prove that around any singularity the solution becomes rotationally symmetric at
some rate that breaks scale-invariance.

In the secondpartwe extend theprevious estimates toRicci flows starting at some g0 ∈ G∞.
Moreover, for this class of solutions we also prove that (a scale-invariant version of) the mean
curvature of minimal hyperspheres admits a uniform positive lower bound in the compact
region where singularities may form.

For notational reasons we always let α denote a positive constant only depending on g0
that may change from line to line.

4.1 Curvature estimates inG

Throughout this section we let (R4, g(t))0≤t<T be the maximal complete, bounded curvature
Ricci flow solution evolving from some g0 ∈ G. Since b(·, 0) is bounded from above and
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cb2(·, 0) is increasing, because we have (cb2)s = cb2H , we deduce that there exists ε > 0
such that c/b(·, 0) ≥ ε. By Lemma 2.6 we obtain

ε ≤ c

b
(·, t) ≤ 1, (19)

uniformly in the space-timeR4 ×[0, T ). We observe that (19) is not available for the topolo-
gies analysed in [32] and [4].

Next, we show that the maximal time of existence T is finite.

Lemma 4.1 Let (R4, g(t))0≤t<T be the Ricci flow solution starting at g0 ∈ G. Then
sup
p∈R4

b(p, t) ≤ sup
p∈R4

b(p, 0)

for any t ∈ [0, T ). Moreover, we have T ≤ sup b2(·,0)
4 .

Proof From the boundary conditions we deduce that b2(·, t) is a smooth function on R
4 as

long as the solution exists. By (12) and (15) we get

∂t b
2 = �b2 − 4b2s + 4

c2

b2
− 8 ≤ �b2 − 4.

The conclusions then follow from the maximum principle [12, Theorem 12.14]. �
Remark 4.2 From Lemmas 3.5 and 4.1 we derive that the set G is preserved along the Ricci
flow.

Next, we prove that bs and cs are uniformly bounded in the space-time. The evolution
equations of the first order spatial derivative are given by

(bs)t = �(bs) − 2
bs
b

(bs)s +
(

4

b2
− b2s

b2
− c2s

c2
− 6

c2

b4

)
bs + 4

c

b3
cs (20)

and

(cs)t = �(cs) − 2
cs
c

(cs)s −
(
6
c2

b4
+ 2

b2s
b2

)
cs + 8

c3

b5
bs . (21)

Lemma 4.3 There exists α > 0 such that |bs | ≤ α and |cs | ≤ α in R
4 × [0, T ).

Proof From Lemma 3.5 and Lemma 4.1 we derive that bs(·, t) is integrable for any t ∈
[0, T ). Moreover, by [41] we see that for any t ∈ [0, T ) there exists α(t) < ∞ such that
|bss/b| ≤ α(t). Since by Lemma 4.1 b is uniformly bounded from above we deduce that
bs(x, t) → 0 as x → ∞ for any t ∈ [0, T ). Therefore, if bs becomes unbounded (from
above) as t ↗ T , then there exists a critical point p0 for bs(·, t0) where bs = ᾱ for the first
time, for some ᾱ large to be chosen below and for some t0 > 0. Evaluating (20) at (p0, t0)
we get

(bs)t (p0, t0) ≤ 1

b2

(
4ᾱ − ᾱ3 − ᾱc2s − 6ᾱ

(
c2

b2

)
+ 4

c

b
cs

)
.

By choosing ᾱ > max{sup|bs |(·, 0), 2} one easily checks that the cs− quadratic polynomial
in the brackets does not admit roots, thus proving (bs)t (p0, t0) < 0. The exact same argument
works for the lower bound of bs . In fact, the lower bound for bs also follows from Lemma
3.5.
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We now adapt the argument for cs . Since b2cH = (b2c)s and b2c is bounded from above,
we see that b2cH(·, t) is integrable. By differentiating we find

(b2c)ss = 2bcbss + 2b2s c + 4bbscs + b2css .

From (7) we derive |bscs |(·, t) ≤ α(t)bc(·, t) + c3/b3(·, t) ≤ α(t) being the curvature
bounded at any time slice R

4 × {t} for t ∈ [0, T ). Similarly |css |(·, t) ≤ α(t). Therefore,
since bs is uniformly bounded in the space-time we conclude that |(b2c)ss |(·, t) ≤ α(t),
which implies b2cH(x, t) → 0 as x → ∞ for any t ∈ [0, T ). In particular cs(x, t) → 0 as
x → ∞ because b (and hence c) is uniformly bounded from above and bs(x, t) → 0. One
can then argue as above that if cs becomes unbounded as t ↗ T , then there exists a first
maximum p0 where cs attains a sufficiently large value ᾱ at some t0 > 0 for the first time.
It follows that

(cs)t (p0, t0) ≤ 1

b2

(
ᾱ

(
−6

c2

b2
− 2b2s

)
+ 8

c3

b3
bs

)
.

By Lemma 2.6 we know that the ordering c ≤ b is preserved. Therefore for ᾱ large enough
the right hand side is strictly negative. The same conclusion holds for the lower bound. �
From the previous Lemma and the condition c ≤ b we immediately derive the following
bounds for the vertical sectional curvatures. From now on any estimate is satisfied in the
space-time R4 × [0, T ) unless otherwise stated.

Corollary 4.4 There exists α > 0 such that

|k12| + |k13| ≤ α

b2
.

The following estimate is a necessary step to prove that the solution to the Ricci flow becomes
spherically symmetric at any singularity forming away from the origin.

Lemma 4.5 The following holds as long as the solution exists:

sup
R4

(
1

b

(
b2s − 4

))

+
(·, t) ≤ sup

R4

(
1

b

(
b2s − 4

))

+
(·, 0).

Proof Let us denote the quantity (b2s −4)/b by ϕ. By the boundary conditions ϕ is uniformly
bounded from above as x → 0. Moreover, as we have already argued in the proof of Lemma
4.3, we find that ϕ(x, t) becomes negative for x large enough. We may then let (p0, t0)
be the maximum point among prior times where ϕ attains some positive value α. A direct
computation gives

ϕt = �ϕ − 2
b2ss
b

− ϕ2

b
− ϕ

(
2
b2s
b2

+ 2
c2

b4

)
− 12

c2

b5
b2s + 2csbs

(
4
c

b4
− csbs

bc2

)
.

Evaluating the evolution equation at (p0, t0) we get

ϕt (p0, t0) ≤ 1

b3

(
−7

2
b4s + b2s

(
20 − 14

c2

b2

)
− 2

b2s c
2
s b

2

c2
+ 8

bscsc

b
− 24 + 8

c2

b2

)
.

We now regard the term in the brackets as a quadratic polynomial in cs . Chosen α > 0, we
can find ε > 0 such that b2s = 4 + ε. The discriminant of the polynomial is given by

8
b2s b

2

c2

(
−8ε − 7

2
ε2 − 14ε

c2

b2
− 48

c2

b2
+ 8

c4

b4

)
< 0,
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where we have again used that the ordering c ≤ b is preserved by Lemma 2.6. Therefore,
the quantity supR4 ϕ+(·, t) is non-increasing along the solution. �
In the next Lemma we prove that if c(x, t) converges to zero as t → T (along some sequence
of times) for some x > 0, then the metric becomes rotationally symmetric at x .

Lemma 4.6 There exists α > 0 such that

ϕ
.= 1

b

(
b

c
− 1

)
≤ α.

Proof We first prove a useful characterization of the behaviour of the second order spatial
derivatives at infinity. �
Claim 4.7 For any t ∈ [ T

2 , T
)
we have

bss(x, t)
x↗∞−−−→ 0, css(x, t)

x↗∞−−−→ 0.

Proof of Claim 4.7 From the proof of Lemma 4.3we see that bs → 0 at infinity, which implies
that the integral of bss(·, t) has a finite limit for any t ≥ T /2. By Shi’s derivative estimates
and the Koszul formula we find that for any t ∈ [T /2, T ) there exists α(t) > 0 such that

α(t) ≥ |∇Rmg(t)(∂s, ∂s, X1/b, ∂s, X1/b)| = |∂sk01| =
∣∣∣∣∂s

(
bss
b

)∣∣∣∣ ,

which then proves that |bsss |(·, t) ≤ α(t) being both b and bs uniformly bounded. Therefore
bss(x, t) → 0 as x → ∞ for any t ∈ [T /2, T ).

Again from the proof of Lemma4.3we derive that the integral of (b2c)ss(·, t) is convergent
for any t ∈ [T /2, T ). By computing the derivative (b2c)sss and using again Shi’s derivative
estimates we obtain that (b2c)ss → 0, which also implies css(x, t) → 0 as x → ∞ for any
t ∈ [T /2, T ). �
By the boundary conditions the function ϕ = 1/c− 1/b is continuously defined at the origin
and identically zero. From (19) we see that ϕ is bounded along any time slice R4 × {t}, for
t ∈ [0, T ). The evolution equation of ϕ is given by

ϕt = �ϕ + b2s
b3

− c2s
c3

+ 1

b3

(
−4 + 2

c

b
+ 2

c2

b2

)
. (22)

By Lemma 4.3 and Claim 4.7 we see that for any δ > 0 and t ∈ [T /2, T ) there exists
x0 = x0(δ, t) such that the time derivative of ϕ can be bounded for x larger than x0 as

ϕt ≤ δ + 1

b3

(
−4 + 2

c

b
+ 2

c2

b2

)
≤ δ − 2c

b3
ϕ ≤ δ − 2ε

b2
ϕ ≤ δ − ηϕ,

for some η > 0, where we have used Lemma 2.6 and Lemma 4.1. Therefore, if ϕ does not
stay bounded as t ↗ T , then there exists a sequence of maxima diverging as the solution
approaches its maximal time of existence.

We introduce the quantity ᾱ
.= Lε−1(ε−1 − 1), where L = supR4(b2s − 4)/b(·, 0) and ε

is chosen to satisfy Lemma 2.6. Suppose that (p0, t0) is a space-time maximum point among
prior times where ϕ attains some value greater than ᾱ. By evaluating (22) at (p0, t0) we see
that

ϕt (p0, t0) ≤ 1

b3

(
b2s

(
1 − c

b

)
− 4 + 2

c

b
+ 2

c2

b2

)
.
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Using Lemma 4.5, we can estimate the time derivative from above as

ϕt (p0, t0) ≤ 1

b3

(
(Lb + 4)

(
1 − c

b

)
− 4 + 2

c

b
+ 2

c2

b2

)

= 1

b3

(
−2

c

b
+ 2

c2

b2
+ L(b − c)

)

= c

b3
ϕ

(
−2

c

b
+ Lb

)
≤ c

b3
ϕ (−2ε + Lb) .

From the definition of ϕ we derive

b ≤ 1

ϕ

(
ε−1 − 1

)
,

which then yields

ϕt (p0, t0) ≤ c

b3
ϕ

(
−2ε + L

1

ϕ

(
ε−1 − 1

)
)

≤ c

b3
ϕ (−2ε + ε) < 0.

�
An analogous bound holds for the first order spatial derivatives. Namely, we have the

following

Lemma 4.8 There exists α > 0 such that
∣∣∣∣
cs
c

− bs
b

∣∣∣∣ ≤ α.

Proof Define ψ
.= cs/c − bs/b. The function ψ extends to zero at the origin due to the

boundary conditions. As argued before ψ(x, t) → 0 as x → ∞ for any t ∈ [0, T ). Consider
the upper bound. Suppose that there exists a large value ᾱ which ψ attains for the first time
at some maximum space-time point (p0, t0). The evolution equation of ψ is

ψt = �ψ − ψ

(
c2s
c2

+ 8
c2

b4
+ 2

b2s
b2

)
− 8

bs
b3

(
1 − c2

b2

)
.

We can then evaluate both sides at (p0, t0) and use Lemma 4.6 to get

ψt (p0, t0) ≤ 1

b2

(
−ᾱ

(
b2c2s
c2

+ 8
c2

b2
+ 2b2s

)
+ 8

c|bs |
b

(
1 + c

b

)(
1

c
− 1

b

))

≤ 8

b2

(
−ᾱ

c2

b2
+ 2α|bs |

)
≤ 8

b2
(−ᾱε2 + 2α2) < 0,

for ᾱ sufficiently large, with ε satisfying Lemma 2.6. The same argument shows the existence
of a uniform lower bound. �
We may now improve Lemma 4.5.

Lemma 4.9 There exists α > 0 such that

1

b

(
b2s − 1

) ≤ α.

Proof Let us denote (b2s − 1)/b by ϕ. A direct computation gives

ϕt = �ϕ − 2b2ss
b

− 3
b4s
b3

+ b2s
b3

(
13 − 14

c2

b2

)
− 2

b2s c
2
s

bc2
+ 8

cbscs
b4

− 4

b3
+ 2

c2

b5
.
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Since ϕ is uniformly bounded from above at the origin and at spatial infinity we take (p0, t0)
to be the maximum space-time point where ϕ = ᾱ for the first time, for some positive ᾱ to
be chosen below. We have

ϕt (p0, t0) ≤ 1

b2

{
−2

bb2s c
2
s

c2
+ 8

cbscs
b2

− 7b4s
2b

+ 14
b2s
b

(
1 − c2

b2

)
− 9

2b
+ 2

c2

b3

}
.

According to Lemma 4.8 we can bound cs in terms of bs . It follows that there exists some
positive constant α > 0 such that

ϕt (p0, t0) ≤ 1

b2

{
α − 11b4s

2b
+ b2s

b

(
14 − 6

c2

b2

)
− 9

2b
+ 2

c2

b3

}

≤ 1

2b2

{
α − 11b2s

b

(
b2s − 1

) + 5

b

(
b2s − 1

) + 12b2s
b

(
1 − c2

b2

)
− 4

b

(
1 − c2

b2

)}
.

We finally use Lemmas 4.3, 4.6 and the fact that ϕ > 0 implies b2s > 1 to derive

ϕt (p0, t0) ≤ 1

2b2
(α − 6ᾱ) < 0,

for ᾱ large enough. �

Next, we extend the previous arguments to the second spatial derivatives. We show that away
from the origin the mixed sectional curvatures are controlled by c and hence by b as in
Corollary 4.4. The flow is singular at some radius x if and only if both c(x, t) and b(x, t)
converge to zero as t approaches T .

The evolution equations of the mixed sectional curvatures (8) and (9) are given by

(k01)t = �(k01) + 2k201 + k01

(
8

b2
− 8c2

b4
− 2c2s

c2
− 4b2s

b2

)
+ k03

(
4c2

b4
− 2bscs

bc

)

− 4c2s
b4

+ 24cbscs
b5

− 2bsc3s
bc3

− 24c2b2s
b6

+ 8b2s
b4

− 2b4s
b4

(23)

and

(k03)t = �(k03) + 2k203 − 4k03

(
b2s
b2

+ c2

b4

)
+ 4k01

(
2c2

b4
− bscs

bc

)

+ 12c2s
b4

+ 40c2b2s
b6

− 48cbscs
b5

− 4b3s cs
b3c

.

(24)

Lemma 4.10 There exists α > 0 such that

|k01| + |k03| ≤ α

b2
.

Proof By [41] there exists α > 0 such that |k01| ≤ α in R
4 × [0, T /2]. Since by Lemma

4.1 b is uniformly bounded from above, we deduce that b2|k01| ≤ α and similarly for
b2|k03| using Lemma 2.6. We may hence consider the case t ∈ [T /2, T ). Define the map
ψ

.= bbss − μb2s − νc2s in R
4 × [T /2, T ), for some μ and ν positive constants we will

determine below. According to Claim 4.7 ψ(x, t) → 0 as x → ∞ for any t ∈ [T /2, T ).
We then adapt the argument in [32, Lemma 7] to show that ψ is uniformly bounded in the
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space-time region. Explicitly, at any stationary point of ψ(·, t) we have

ψt = �ψ − bbss

(
4c2

b4
+ 2c2s

c2
+ 4μb2s

b2

)
− 16νc3bscs

b5
− (24 + 8μ)

cbscs
b3

+ 2bbsc3s
c3

− 8b2s (μ + 1)

b2
+ 4ccss

b2
+ 4νc2s css

c
− 8νbscscss

b
− 2bbscscss

c2
+ 12νc2c2s

b4
+ 4c2s

b2

+ 24c2b2s
b4

+ 12μc2b2s
b4

+ 2μb2s c
2
s

c2
+ 4νb2s c

2
s

b2
+ 2b4s

b2
+ 2νc2ss + 2(μ − 1)b2ss .

Suppose ψ attains some negative value −ᾱ for the first time at t0 ∈ [T /2, T ). By Lemma
4.3 we can choose ᾱ sufficiently large such that bbss ≤ −ᾱ/4. Therefore we get

−bbss

(
4c2

b4
+ 2c2s

c2
+ 4μb2s

b2

)
≥ ᾱ

(
c2

2b4
+ c2s

2c2
+ μb2s

b2

)
.

Evaluating the evolution equation of ψ at (p0, t0), we have (provided we set μ ≥ 1)

ψt (p0, t0) ≥ 2νc2ss + ᾱ

(
c2

2b4
+ c2s

2c2
+ μb2s

b2

)
− 16νc3bscs

b5
− (24 + 8μ)

cbscs
b3

+ 2bbsc3s
c3

− 8b2s (μ + 1)

b2
+ 4ccss

b2
+ 4νc2s css

c
− 8νbscscss

b
− 2bbscscss

c2
.

One can then estimate the remaining terms exactly as in [32] by using the uniform bound-
edness of the first spatial derivatives and Lemma 2.6. Namely, we can use the weighted
Cauchy-Schwarz inequality to get

∣∣∣∣
2bbscscss

c2

∣∣∣∣ ≤ c2ss
2

+ 2
b2b2s c

2
s

c4
≤ c2ss

2
+ 2

α2b2c2s
c4

≤ c2ss
2

+ 2
α2ε−2c2s

c2
,

and similarly for the others. Therefore there exists a uniform constant α such that the time
derivative at (p0, t0) is bounded from below as

ψt (p0, t0) ≥ (ν − 1)c2ss + ᾱ

(
c2

2b4
+ c2s

2c2
+ μb2s

b2

)

−α(μ + ν + 1)

(
c2

2b4
+ c2s

2c2
+ μb2s

b2

)
> 0,

once we choose μ = 1, ν = 2 and ᾱ sufficiently large. The existence of a uniform upper
bound follows from a similar argument by considering ψ̃

.= bbss + μb2s + νb2s . The very
same proof applies for k03. �
We can finally show that both c and b admit limits as the flow approaches its maximal time
of existence T < ∞.

Corollary 4.11 For any x ≥ 0 the limits limt↗T c(x, t) and limt↗T b(x, t) exist and are
finite.

Proof By applying Lemmas 4.3 and 4.10 we get

|(c2)t | ≤ 2|ccss | + 4

∣∣∣∣
c

b
bscs − c4

b4

∣∣∣∣ ≤ α.

The same argument works for b as well. �
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The curvature is hence uniformly controlled along any Euclidean hypersphere where the
components b and c do not converge to zero as t ↗ T . Namely, from Corollary 4.4 and
Lemma 4.10 it follows that there exists a positive constant α such that

sup
R4×[0,T )

b2|Rmg(t)|g(t) ≤ α. (25)

Next, we show that around a singularity rotational symmetry type of bounds hold for the
second spatial derivatives as well.

Lemma 4.12 There exists α > 0 such that

|k01 − k03| ≤ α

b
.

Proof We adapt the proof in [31], whose argument works for a compact Type-I Ricci flow
setting. Once we define ψ

.= cs/c − bs/b, we consider the map

ϕ
.= (ψsb)

2 ≡
(
css
c

− c2s
c2

− bss
b

+ b2s
b2

)2

b2.

The boundary conditions (5) ensure that ϕ(o, t) = 0 for any t . From the proof of Lemma
4.3 and Claim 4.7 we derive that if ϕ is not bounded, then for any sufficiently large value ᾱ

there exist t0 ≥ T /2 and a maximum point p0 such that ϕ(p0, t0) = ᾱ for the first time. The
evolution equation for ϕ is

ϕt = �ϕ − 2(b2)s(ψ
2
s )s − 2b2ψ2

ss − 2Fϕ − 2Gb2ψψs

+2Hb2ψs − 4b2sψ
2
s − 8ψ2

s + 4ψ2
s
c2

b2
,

where

F
.= 4

b2s
b2

+ 2
c2s
c2

+ 8
c2

b4
, G

.=
(
2
b2s
b2

+ c2s
c2

+ 8
c2

b4

)

s
H

.= −
(
8
bs
b3

(
1 − c2

b2

))

s
.

Evaluating ϕ at the maximum point (p0, t0) we get

ϕt (p0, t0) ≤ 2b2sψ
2
s − ψ2

s

(
8 − 4

c2

b2

)
+ −2Fϕ − 2Gb2ψψs + 2Hb2ψs

≤ −ψ2
s

(
8 + 12

c2

b2

)
− 2Gb2ψψs + 2Hb2ψs .

From (25) it easily follows that there exists some uniform constant α > 0 such that |G| ≤
α/b3. Being ψ uniformly bounded (Lemma 4.8), we have

−2Gb2ψψs ≤ α
|ψs |
b

.

According to Lemmas 4.6 and 4.8 an analogous estimate can be found for |Hb2ψs |. Then

ϕt (p0, t0) ≤ −ψ2
s

(
8 + 12

c2

b2

)
+ α

|ψs |
b

≡ |ψs |
b

((
−8 − 12

c2

b2

) √
ᾱ + α

)
< 0,
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for ᾱ sufficiently large. Therefore ϕ is uniformly bounded and we get

b|k01 − k03| ≤ α +
∣
∣
∣
∣
b2s
b

− b

c

c2s
c

∣
∣
∣
∣

≤ α + |bs |
∣
∣
∣
∣
bs
b

− cs
c

∣
∣
∣
∣ + |cs |b

c

∣
∣
∣
∣
bs
b

− cs
c

∣
∣
∣
∣

≤ α

(
1 + α + |cs |b

c

)
≤ α

(
1 + ε−1)

)
,

where we have used Lemmas 4.8 and 2.6. �

We finally discuss the existence of lower bounds for the mixed sectional curvatures.

Lemma 4.13 There exists α > 0 such that

cssc log c ≥ −α, bssb log b ≥ −α.

Proof We adapt the analogous argument in [31]. Consider the map f
.= cssc log c, which is

smooth in R4 \ {o} × [0, T ). Moreover f extends continuously to the origin and f (o, t) = 0
as long as a solution exists. By Claim 4.7 and the fact that c is uniformly bounded from above,
we deduce that f (x, t) → 0 at spatial infinity for any t ∈ [T /2, T ). Suppose that there exist
(p0, t0) ∈ (R4 \ {o}) × [T /2, T ) and ᾱ large to be chosen below such that f (p0, t0) = −ᾱ

for the first time. From (9) and (25) it follows

ᾱ = | f (p0, t0)| ≤ α|log c(p0, t0)|.
Since by Lemma 4.1 c is uniformly bounded from above the last inequality implies
log c(p0, t0) < 0 and

css(p0, t0) = ᾱ

c|log c| (p0, t0) ≥ ᾱ. (26)

for ᾱ large enough. By direct computation we get

ft = � f − 2

(
2 + 1

log c

)
cs
c
fs − c log c

(
12

cc2s
b4

− 48
c2

b5
bscs + 40

c3

b6
b2s − 4

b3s cs
b3

)

− 8
c4

b4
log c

(
css
c

− bss
b

)
− 2

css
c

(
c4

b4
+ f

)
+ 2

c2s css
c

(
2 + 1

log c

)

− 4c log c

(
cssb2s
b2

+ bssbscs
b2

− cssc2s
c2

)
.

In the following the signs of bs and cs are not relevant. In particular we assume without loss
of generality that cs ≥ 0. By Lemma 4.8 we have

12
cc2s
b4

− 48
c2

b5
bscs + 40

c3

b6
b2s − 4

b3s cs
b3

≥ 4

b2

(
−α − b2s

c

b2

(
b2s − c2

b2

))
≥ − α

c2
,

where we have used Lemmas 4.6 and 4.9 to derive the last inequality. According to Lemma
4.12 it holds

−8
c4

b4
log c

(
css
c

− bss
b

)
≥ −α

|log c|
c

.
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By choosing ᾱ large enough (and hence c(p0, t0) small) it follows that 2(cscss/c)(2 +
1/log c)(p0, t0) ≥ 0. Finally, Lemmas 4.6, 4.8, and 4.12 yield the bounds

(
cssb2s
b2

+ bssbscs
b2

− cssc2s
c2

)
(p0, t0) ≥

(
bssbscs

b2
− cssc2s

c2

)
(p0, t0)

=
(
bscs
b

(
bss
b

− css
c

)
+ css

c

cs(c(bs − cs) + cs(c − b))

bc

)
(p0, t0)

≥
(
− α

c2
− α

css
c

)
(p0, t0).

Evaluating the evolution equation of f at (p0, t0) and using (26) we get the lower bound

ft (p0, t0) ≥ −α

( |log c|
c

+ |log c|css
)

+ 2
css
c

(ᾱ − 1)

= 1

c
(−α(|log c| + ᾱ) + 2css(ᾱ − 1))

= 1

c

(
−α|log c| + ᾱ(css − α) + css

ᾱ

2
+ css

2
(ᾱ − 4)

)

≥ 1

c

(
−α|log c| + css

ᾱ

2

)

= 1

2|log c|c2
(−2α|log c|2c + ᾱ2) > 0,

for ᾱ sufficiently large (i.e. c small enough). The case of bssb log b does not require modifi-
cations. �

4.2 Curvature estimates inG∞

We consider (R4, g(t))0≤t<T a maximal complete, bounded curvature Ricci flow solution
evolving from some g0 ∈ G∞. If the solution develops a finite-time singularity at some
T < ∞, then we can apply [17, Theorem 1.1] and conclude that there exists ρ > 0 such that

sup
(R4\B(o,ρ))×[0,T )

∣∣Rmg(t)
∣∣
g(t) ≤ 1. (27)

Remark 4.14 Wenote that the set G∞ is preserved along the Ricci flow. Consider themaximal
Ricci flowevolving fromsome g0 ∈ G∞. ByLemma3.5 condition (i) inDefinition 2.3 persists
in time. From [29] we also derive that |Rm|(s, t) → 0 as s → ∞ for all t ∈ [0, T ). If T < ∞,
then given ρ as in (27) we can find μ > 0 such that c(·, t) ≥ μ > 0 inR4 \ B(o, ρ)×[0, T ).
If instead T = ∞, then c is uniformly bounded from below away from the origin in any
compact interval of existence being the curvature bounded.

An immediate consequence of (27) is that for any radial coordinate x1 > ρ the spatial deriva-
tives (up to second order) of b and c are uniformly bounded in time along the hypersphere
of radius x1. In particular, for any x1 > ρ there exists ε = ε(x1) > 0 satisfying

inf
p∈B(o,x1)

c

b
(p, t) ≥ ε > 0, (28)

for any t ∈ [0, T ). For the function c/b is uniformly bounded from below at the origin
and along the hypersphere of radius x1 and the evolution equation (16) prevents c/b from
attaining interior minima approaching zero.
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By inspectionone can check that given x1 > ρ anyboundderived inSubsection4.1 extends
to the space-time region B(o, x1)×[0, T ). For any argument relies on a maximum principle
which still applies to this setting once we know that any relevant quantity is uniformly
bounded along the parabolic boundary of the region B(o, x1) × [0, T ). Explicitly, we have
the following

Lemma 4.15 Let (R4, g(t))0≤t<T , with T < ∞, be the maximal Ricci flow solution evolving
from some g0 ∈ G∞ and let ρ > 0 satisfy

sup
(R4\B(o,ρ))×[0,T )

∣
∣Rmg(t)

∣
∣
g(t) ≤ 1.

Then for any x1 > ρ there exists α = α(x1) > 0 such that

sup
B(o,x1)×[0,T )

b2|Rmg(t)|g(t) ≤ α,

and

sup
B(o,x1)×[0,T )

(
1

b

(
b

c
− 1

)
+

∣
∣∣
∣
cs
c

− bs
b

∣
∣∣
∣ + b|k01 − k03|

)
≤ α.

Remark 4.16 One can verify that Lemma 4.15 holds for a larger class of Ricci flows than G∞.
Indeed, it suffices to control the flow uniformly along the parabolic boundary of some space-
time region and then apply maximum principle arguments without relying on the quantities
bs and H being nonnegative.

Next, we prove that bs and H remain positive along a hypersphere of sufficiently large radius.
In the following ρ still denotes the radius defined by (27).

Lemma 4.17 Let (R4, g(t))0≤t<T , with T < ∞, be the maximal Ricci flow solution evolving
from a warped Berger metric g0 ∈ G∞. There exist x̃2 ≥ x̃1 > ρ, δ > 0 and t̃ ∈ [0, T ) such
that

bs(x̃1, t) ≥ δ > 0, H(x̃2, t) ≥ δ > 0 ∀t ∈ [t̃, T ).

Proof Wehave already shown that b(x, 0) → ∞ as x → ∞. Since the curvature is uniformly
bounded in the complement of the Euclidean ball B(o, ρ), we can pick ρ < x0 < x1 such
that

b(x1, t) − b(x0, t) ≥ ς > 0,

for some ς > 0 and for any t ∈ [0, T ). We can use the Koszul formula to write the evolution
equation of bs as

∂t (bs) = ∂s

(
−Ricg(t)

(
X1

b
,
X1

b

)
b

)
+ Ricg(t)(∂s, ∂s)bs

= −Ricg(t)

(
X1

b
,
X1

b

)
bs − ∇g(t)Ricg(t)

(
∂s,

X1

b
,
X1

b

)
b + Ricg(t)(∂s, ∂s)bs .

(29)

Therefore given x > ρ, by (27) and Shi’s derivative estimates there exists α(x) > 0 such
that |(bs)t (x, t)| ≤ α uniformly in time. Since T < ∞ the last property implies that bs(x, ·)
is Lipschitz and hence admits a finite limit as t ↗ T , which we know to be nonnegative
according to Lemma 3.5. Let us assume for a contradiction that any such limit is zero.
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Since bss is bounded in the annular region (x0, x1) × S3 uniformly in time, we deduce that
sup[x0,x1] bs(·, t) → 0 as t ↗ T . On the other hand, being the curvature controlled in the
annular region (x0, x1) × S3, we get

ς ≤ b(x1, t) − b(x0, t) ≤ sup
[x0,x1]

bs(·, t)(s(x1, t) − s(x0, t))

≤ α sup
[x0,x1]

bs(·, t)(s(x1, 0) − s(x0, 0)) ≤ α sup
[x0,x1]

bs(·, t),

for any t ∈ [0, T ), which gives a contradiction. Therefore, there exists x̃1 ∈ [x0, x1] as in
the statement. The proof for H is similar. Indeed we can write H = (log(b2c))s and then
adapt the argument above noting that by Definition 2.3 log(b2c))(x, 0) → ∞ as x → ∞. In
particular we can always pick x̃2 ≥ x̃1. �

Next we show that cH stays away from zero in the compact region B(o, ρ) for times close
to the maximal time of existence T . In the following we let x̃2 and t̃ be defined as in the
previous Lemma.

Corollary 4.18 There exists μ > 0 such that cH ≥ μ in B(o, x̃2) × [t̃, T ).

Proof By the boundary conditions we have cH(o, t) = 3 as long as the solution exists.
According to Lemmas 3.5 and 4.17 there exists δ > 0 such that cH(x̃2, t) ≥ δ for any
t ∈ [t̃, T ) and cH(x, t̃) ≥ δ for any 0 ≤ x ≤ x̃2. Suppose that cH gets smaller than
min{δ, 3} in B(o, x̃2) × [t̃, T ). Then there exists a minimum point (p0, t0) and from (18),
(28) and Lemma 3.5 we get

(cH)t (p0, t0) ≥ 2
cH

b2

(
c2

b2
− b2s

)
(p0, t0) ≥ 2

cH

b2
(
ε2 − b2s

)
(p0, t0).

From Lemma 4.8 it follows that

bs = 1

2

(
b

c
cH − b

c
cs

)
≤ 1

2

(
b

c
cH − bs + αb

)
,

for some α = α(x̃2) > 0. Thus we can find a uniform constant α only depending on x̃2 such
that

(cH)t (p0, t0) ≥ 2cH

b2
(
ε2 − αcH(1 + cH) − αb2

)
(p0, t0).

Therefore, whenever cH ≤ δ̃, for some δ̃ only depending on x̃2 and t̃ , the function t 
→
minB(o,x̃2)(cH)(·, t) is Lipschitz and satisfies

d(cH)min

dt
≥ −α(cH)min.

We conclude that cH cannot approach zero in the interior of B(o, x̃2) as t ↗ T . �

5 Singularity models of warped Berger Ricci flows

In this section we perform a blow-up analysis of warped Berger Ricci flows. We first recall
the following general notion.
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Definition 5.1 A complete bounded curvature ancient solution to the Ricci flow
(M∞, g∞(t))−∞<t≤0 is a singularity model for a warped Berger Ricci flow (R4, g(t))0≤t<T

if T < ∞ and there exists a sequence of space-time points (p j , t j ) with t j ↗ T such that
λ j

.= |Rmg(t j )|g(t j )(p j ) → ∞ and the rescaled Ricci flows (R4, g j (t), p j ) defined by

g j (t)
.= λ j g

(
t j + t

λ j

)

converge to (M∞, g∞(t), p∞) in the pointed Cheeger-Gromov sense for t ∈ (−∞, 0].
Remark 5.2 We note that by the Cheeger-Gromov convergence any singularity model
(M∞, g∞(t)) of a warped Berger Ricci flow is non-compact and non-flat.

The main goal of this section consists in classifying the singularity models of warped Berger
Ricci flows. Namely, we show the following result

Proposition 5.3 Let (R4, g(t))0≤t<T , with T < ∞, be the maximal Ricci flow solution evolv-
ing from a warped Berger metric g0 belonging to either G or G∞. Then any singularity model
is either the self-similar shrinking soliton on the cylinder or a positively curved rotationally
symmetric κ-solution.

Weprove the characterization of singularitymodels by showing that the symmetries ofwarped
Berger Ricci flows are enhanced when dilating the flow around a singularity. More precisely,
we show that the left-invariant vector fields in (1) become Killing vectors when passing to
the limit hence forcing the singularity model to be rotationally symmetric.

Given g0 ∈ G there exists ε > 0 such that c/b(·, 0) ≥ ε. Therefore g0 is bounded
between two round cylinders outside some compact region and there exists α > 0 such
that Volg0(Bg0(p, 1)) ≥ α for any p ∈ R

4. The latter condition is satisfied by any g0 ∈ G∞
being the injectivity radius positive and the curvature bounded. Thus if (R4, g(t))0≤t<T , with
T < ∞, is the maximal Ricci flow solution evolving from some g0 which belongs to either
G or G∞, then by [11, Theorem 8.26] there exists κ > 0 such that g(t) is (weakly) κ−non-
collapsed in R

4 × (T /2, T ) at any scale r ∈ (0,
√
T /2). Accordingly, there exist blow-up

sequences satisfying Definition 5.1 and hence any warped Berger Ricci flow evolving from
either G or G∞ admits singularity models ( [29, Sect. 16]). In particular, any singularity model
of a warped Berger Ricci flow is (weakly) κ-non-collapsed at all scales.

We first consider a maximal Ricci flow solution (R4, g(t))0≤t<T , with T < ∞, starting
at some warped Berger metric g0 ∈ G. Later we check that the same conclusions are satisfied
by Ricci flows in G∞. We let (p j , t j ) be a blow-up sequence of space-time points giving rise
to a singularity model (M∞, g∞(t), p∞) as in Definition 5.1 and we denote the rescaling
factors |Rmg(t j )|g(t j )(p j ) by λ j . Due to the SU(2)-symmetry we may fix θ̄ ∈ S3 and we may
set p j = (x j , θ̄ ). We also let (� j ) be the diffeomorphisms given by the Cheeger-Gromov-
Hamilton convergence (see [11, Chapter 4]).

We first provide a topological characterization of the limit manifold.

Lemma 5.4 Let (M∞, g∞(t), p∞)−∞<t≤0 be a singularity model for a Ricci flow solution
(R4, g(t))0≤t<T starting at some g0 ∈ G. Then π1(M∞) = 0.

Proof The proof follows from adapting the argument in [19, Lemma 4.1] which extends to
the SU(2)-invariant case due to (25). �
Next, we prove that the symmetries of the flow are enhanced when dilating. To this aim, we
first show that the Milnor frame passes to the singularity model. Since the proof of that relies
on an Ascoli-Arzelà argument, we need C3-bounds with respect to the rescaled solutions.
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Lemma 5.5 There exists a continuous function f : (−∞, 0] × (0,+∞) → R≥0 such that

sup
Bg j (t)(p j ,ν)

3∑

k=0

|∇k
g j (t)

Xi |g j (t) ≤ f (t, ν),

for any t ∈ (−∞, 0] and ν > 0 and for i = 1, 2, 3. Furthermore, there exists α > 0 such
that for i = 1, 2, 3

|∇g j (0)Xi |g j (0)(p j ) ≥ α, (30)

up to passing to a subsequence.

Proof We fix t = 0 and ν > 0 and we let q ∈ Bgj (0)(p j , ν). In the following we only
analyse the case of X1 since the others are proved similarly. We deal with the bounds for
|∇k

g j (0)
X1|g j (0) with k = 0, 1, 2, 3 separately.

Case k = 0. We consider a g(t j )-unit speed geodesic from p j to q . From Lemma 4.3 we
get

√
λ j (b(q, t j ) − b(p j , t j )) ≤ √

λ j

⎛

⎜
⎝ sup

Bg(t j )(p j ,
ν√
λ j

)

|bs |
⎞

⎟
⎠ dg(t j )(p j , q) ≤ α ν.

The desired estimate then follows from (25) which gives λ j b2(p j , t j ) ≤ α.
Case k = 1. By direct computation we get

|∇g(t)X1|2(·, t) = 2

(
b2s + 2

b2

c2
+ c2

b2
− 2

)
(·, t),

for any t ∈ [0, T ). Lemmas 2.6 and 4.3 imply that |∇g(t)X1|(·, t) is uniformly bounded and
that the estimate (30) is satisfied.

Case k = 2. We analyse in detail only one exemplificative instance. One of the terms

appearing in the computation of the norm (λ j )
− 1

2 |∇2
g(t j )

X1| is

(λ j )
− 1

2 |∇2
g(t j )X1(∂s, ∂s, σ1)|b(q, t j ) ≡ (λ j )

− 1
2 |bss |(q, t j ) ≤ α

√
λ j b(q, t j ),

where we have used (8). The last term is then bounded because it coincides with the case
k = 0 we have already discussed.

Case k = 3. One of the terms appearing in the computation of (λ j )
−1|∇3

g(t j )
X1| is

(λ j )
−1b|∇3

g(t j )X1(∂s, ∂s, ∂s, σ1)|(q, t j ) = (λ j )
−1b

∣∣∣∣
bsss
b

∣∣∣∣ (q, t j ). (31)

According to Shi’s first derivative estimate the covariant derivatives of the curvature are
bounded on the singularity models, therefore there exists a uniform constant α such that

|∇g(t j )Rmg(t j )|g(t j ) ≤ α(λ j )
3
2 .

Thus we have
∣∣∣∣
bsss
b

∣∣∣∣ (q, t j ) ≤
(∣∣∣∣

bssbs
b2

∣∣∣∣ + |(k01)s |
)

(q, t j ) ≤
(

α
λ j

b
+ α(λ j )

3
2

)
(q, t j ).

123



162 Page 26 of 37 F. D. Giovanni

We can then bound the right hand side of (31) as

(λ j )
−1b

∣
∣
∣
∣
bsss
b

∣
∣
∣
∣ (q, t j ) ≤ α(1 + √

λ j b)(q, t j ) ≤ f (ν),

where the last inequality follows again from the case k = 0. The other terms are dealt with
similarly.

Let now t ∈ (−∞, 0]. By Corollary 4.11 we get

λ j

∣
∣
∣
∣b

2(p j , t j ) − b2(p j , t j + t

λ j
)

∣
∣
∣
∣ ≤ αλ j

∣
∣
∣
∣
t

λ j

∣
∣
∣
∣ ≤ α|t |.

We may then extend the proof of the bound for the case k = 0 for any t ∈ (−∞, 0]. The
cases k = 1, 2, 3 generalize easily. �
Since the rescaled Ricci flows converge to the limit ancient flow in the pointed Cheeger-
Gromov sense, from Lemma 5.5 it follows that the sequence (�−1

j )∗X1 is uniformly C3-
bounded in Bg∞(0)(p∞, 1) with respect to g∞(0). We can then apply the Ascoli-Arzelà
theorem and obtain the following

Corollary 5.6 There exists a subsequence (�−1
j )∗X1 that converges in C2 to a vector field

X1,∞ on Bg∞(0)(p∞, 1).

From now on we re-index the subsequence given by the previous Corollary. In order to prove
that X1,∞ is actually a Killing vector field for g∞(0) we need a preliminary result. The
following shows that the singularity model cannot be Ricci flat.

Lemma 5.7 For any q ∈ M∞ and for any t ∈ (−∞, 0] the following is satisfied:

lim
j→∞ b(� j (q), t j + t

λ j
) = 0.

Proof Suppose for a contradiction that there exist q ∈ M∞, t ∈ (−∞, 0], a subsequence
(which we still denote by j) and μ > 0 such that b(� j (q), t j + (λ j )

−1t) → μ. By (25) we
immediately derive that Rg∞(t)(q) = 0. Since any complete ancient solution to the Ricci flow
has nonnegative scalar curvature [13], a standard application of the maximum principle and
the uniqueness of the flow among complete and bounded curvature solutions yield Ric∞ ≡ 0
everywhere in the space-time. We then fix the time to be 0 and assume that g∞(0) is not
flat. By the uniform C1-lower bound in (30) there exists an open subsetU ⊂ Bg∞(0)(p∞, 1)
where |X1,∞|g∞(0)|U > 0, with X1,∞ given by Corollary 5.6. From the real analyticity of
the ancient limit flow [5] it follows that there exists q̄ ∈ U such that |Rmg∞(0)|g∞(0)(q̄) > 0,
otherwise the limit would be flat. Moreover, b(� j (q̄), t j ) → 0 as j → ∞. For if such
condition did not hold, then by (25) the Riemann tensor would vanish at q̄. Since g∞(0) is
Ricci flat we get

0 = ∣∣Ricg∞(0)
∣∣2
g∞(0) (q̄)

= lim
j→∞

1

λ2j

(
(k01 + k02 + k03)

2 + 2(k01 + k12 + k13)
2 + (k03 + k13 + k23)

2) (� j (q̄), t j )

= lim
j→∞

1

λ2j b
4

(
b4

(
(2k01 + k03)

2 + 2(k01 + k12 + k13)
2 + (k03 + 2k13)

2)) (� j (q̄), t j ).

By the Cheeger-Gromov convergence we get � j (q̄) ∈ Bgj (0)(p j , 2) for j large enough.
Therefore, from Lemma 5.5 (the case of k = 0) it follows that λ j b2(� j (q̄), t j ) ≤ α for j
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large and for some positive α. From the estimate in Lemma 4.12 we finally derive that the
limit above is zero if and only if

lim
j→∞

(
b2|secg(t j )|

)
(� j (q̄), t j ) = 0,

with secg(t j ) the maximal sectional curvature of g(t j ). Therefore by Corollary 5.6 and the
choice of q̄, up to passing to a diagonal subsequence, we conclude that

0 < |X1,∞|2g∞(0)|Rmg∞(0)|g∞(0)(q̄) = lim
j→∞|X1|2g j (0)|Rmg j (0)|g j (0)(� j (q̄))

= lim
j→∞

(
b2|Rmg(t j )|g(t j )

)
(� j (q̄)),

which is a contradiction because we have just proved that the right hand side must vanish. �
We can now show that X1,∞ is a Killing vector field on the limit manifold for any time.

Lemma 5.8 There exists a unique smooth extension of X1,∞ to the limit manifold M∞ such
that (�−1

j )∗X1 converges in C2 to X1,∞ on compact sets. Moreover X1,∞ is a g∞(t)-Killing
vector field for any t ∈ (−∞, 0].
Proof We first prove that X1,∞ is a Killing vector field in Bg∞(0)(p∞, 1) with respect to
g∞(0). Suppose for a contradiction that there exist q ∈ Bg∞(0)(p∞, 1), δ > 0 and Z ,W ∈
C∞(T M∞) such that

g∞(0)
(
∇g∞(0)
Z X1,∞,W

)
+ g∞(0)

(
Z ,∇g∞(0)

W X1,∞
)

≥ δ > 0

in some compact neighbourhood � of q . By Corollary 5.6 and the Cheeger-Gromov conver-
gence we get

(
g j (0)

(
∇g j (0)

(� j )∗Z X1, (� j )∗W
)

+ g j (0)
(
(� j )∗Z ,∇g j (0)

(� j )∗W X1

)) (
� j (q)

) ≥ δ

3
,

for some j large enough. If at� j (q)wewrite (� j )∗Z = z0j∂s(t j )+
∑3

k=1 z
k
j Xk and similarly

for (� j )∗W , then by the Koszul formula we get

δ

3
≤

(
2λ j b

2
(
1 − c2

b2

) (
z2jw

3
j + z3jw

2
j

)) (
� j (q)

)
.

Since |Z |g∞(0)(q, 0) ≥ lim j→∞
√

λ j |zkj |b(� j (q), t j ), for k = 1, 2 and similarly for W , we
can use Lemma 2.6 (with ε > 0) for the case k = 3 and conclude that there exists a positive
constant β depending on q such that

δ

3
≤ 2β

(
1 − c2

b2

) (
� j (q), t j

) ≤ αb
(
� j (q), t j

)
,

where we have used Lemma 4.6. According to Lemma 5.7 we can choose j sufficiently large
such that the right hand side is as small as we need, thus obtaining the contradiction.

Since the limit ancient flow is real analytic [5] and by Lemma 5.4M∞ is simply connected,
it is a classic result that X1,∞ extends uniquely to a globalKilling vector field on (M∞, g∞(0))
[37]. Being g∞(0) complete, we also get that X1,∞ is smooth.

Given ν > 1, Lemma 5.5 implies that for any subsequence of (�−1
j )∗X1 there exists a

subsubsequence that converges in C2 to some vector field on Bg∞(0)(p∞, ν). The argument
above shows that the limit vector field must be a Killing field for g∞(0). By the uniqueness
result in [37] we conclude that such limit vector field is indeed X1,∞. The statement is then
proved when t = 0. The very same proof for the case t = 0 works when t ∈ (−∞, 0]. �
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The lower bound (30) and the previous Lemma extend to the sequences (�−1
j )∗X2 and

(�−1
j )∗X3 which then define analogous Killing vector fields X2,∞ and X3,∞ for the singu-

larity model. Moreover, from the Cheeger-Gromov-Hamilton convergence we derive that the
system {Xi,∞}3i=1 is an orthogonal frame with respect to g∞(t) for any t ∈ (−∞, 0]. We can
now prove that this frame of Killing fields implies that the singularity model is spherically
symmetric.

Lemma 5.9 The metric g∞(t) is rotationally symmetric for any t ∈ (−∞, 0]. Moreover
M∞ = R

4 or M∞ = R × S3.

Proof According to (30) and the orthogonality of the vector fields Xi,∞ there exists at least a
point q ∈ M∞ where this frame spans a 3-dimensional subspace of TqM∞. Therefore, since
the Lie brackets are preserved in the limit, Lemma 5.8 implies that there exists a (non-trivial)
copy of su(2) in the Lie algebra of Killing fields iso(M∞, g∞(t)). By integrating the Killing
fields we derive that SU(2) acts isometrically with cohomogeneity 1 on (M∞, g∞(t)) for any
t ∈ (−∞, 0]. In particular, by the Lie algebra constants we see that {Xi,∞}3i=1 is a Milnor
frame for g∞(t).

By the classification of connected non-compact manifolds supporting the cohomogeneity
1 action of a compact Lie group there exists at the most one singular orbitOsing for the SU(2)
action on M∞ [23]. Moreover, we can write M∞ = Osing ∪ Mprin, where Mprin is an open
dense submanifold foliated by maximal orbits of the form

Mprin = R × SU(2)/H , (32)

with H the isotropy group of the action along principal orbits [23]. We note that when
Osing = ∅ Lemma 5.4 implies that M∞ = R × S3.

All the information about g∞(t) can be obtained by restricting it to a geodesic starting at
the singular orbit and meeting the principal orbits orthogonally. Namely, once we denote the
dual coframe associated with {Xi,∞}3i=1 by {σi,∞}3i=1, we have

g∞(t)|Mprin = (dyt )
2 + φ2

1,∞(y, t) σ 2
1,∞ + φ2

2,∞(y, t) σ 2
2,∞ + φ2

3,∞(y, t) σ 2
3,∞,

with φi,∞(y, t)
.= |Xi,∞|g∞(t)(y) for any y > 0, t ≤ 0 and i = 1, 2, 3.

Let q ∈ Mprin. By the convergence of (�−1
j )∗Xi to Xi,∞ on compact sets, we get

1

φ1,∞

(
φ1,∞
φ3,∞

− 1

)
(q, t) ≡ 1

|X1,∞|g∞(t)

( |X1,∞|g∞(t)

|X3,∞|g∞(t)
− 1

)
(q)

= lim
j→∞

1
√

λ j b

(
b

c
− 1

) (
� j (q), t j + t

λ j

)
≤ 0,

where we have used the estimate in Lemma 4.6. Since the ratio b/c ≥ 1 is scale invariant
we obtain φ1,∞ = φ3,∞. The final identity φ1,∞ = φ2,∞ is a consequence of the extra U(1)-
symmetry. Thus g∞(t) is rotationally symmetric. Furthermore, if there exists a singular orbit,
then φi,∞ ≡ φ∞ is an odd function with ∂yt φ∞(Osing, t) = 1 (see, e.g., [23]). From the
boundary conditions (5) we deduce that M∞ = R

4. We may finally conclude that M∞ = R
4

or M∞ = R × S3 with

g∞(t) = (dyt )
2 + φ2∞(y, t)ḡS3 , (33)

where ḡS3 is the standard constant curvature 1 metric on S3 and

φ∞(q, t) = lim
j→∞

√
λ j b

(
� j (q), t j + t

λ j

)
,
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for any (q, t) ∈ M∞ × (−∞, 0]. �
We now show that Lemma 5.9 actually extends to any singularity model of a warped Berger
Ricci flow in G∞. Indeed, given a blow-up sequence (p j , t j ) as above and a radial coordinate
x1 > ρ, with ρ satisfying (27), then by Lemma 4.15 it suffices to prove that any rescaled
geodesic ball Bgj (t)(p j , ν) lies in B(o, x1) for j sufficiently large.

Lemma 5.10 Let (M∞, g∞(t), p∞)−∞<t≤0 be a singularitymodel for awarpedBergerRicci
flow (R4, g(t))0≤t<T , with T < ∞, starting at some g0 ∈ G∞. For any t ≤ 0, for any ν > 0
and for any x1 > ρ, with ρ satisfying (27), there exists j0 = j0(t, ν, x1) such that for all
j ≥ j0 we have

Bg j (t)(p j , ν) ⊂ B(o, x1).

Proof Given a blow-up sequence (p j , t j ) with p j = (x j , θ) for some θ ∈ S3, we observe
that up to a finite number of indices we have x j < ρ otherwise |Rmg(t j )|g(t j )(p j ) would be
bounded. Suppose for a contradiction that there exist a time t , a radius ν, a coordinate x1 > ρ

and a subsequence q jk = (y jk , θ jk ) ⊂ Bgj (t)(p j , ν) such that y jk > x1. Then by (27) and
standard distortion estimates of the Riemannian distance we get

ν
√

λ jk

> dg(t jk + t
λ jk

)(p jk , q jk ) ≥ inf
y∈S(o,ρ)
z∈S(o,x1)

dg(t jk + t
λ jk

)(y, z)

≥ α inf
y∈S(o,ρ)
z∈S(o,x1)

dg0(y, z),

which then gives us a contradiction for k large enough. �
We may then adapt all the arguments above and conclude that any singularity model of a
warped Berger Ricci flow in G∞ is rotationally symmetric. We finally address the proof of
the classification result in Proposition 5.3.

Proof of Proposition 5.3 Lemma 5.9 implies that any singularity model is in particular con-
formally flat. Thus by [45] we derive that any singularity model has nonnegative curvature
operator. Since we have shown that singularity models are weakly κ-non-collapsed at all
scales, we find that any singularity model is a κ-solution to the Ricci flow. If the curvature
operator is not strictly positive at some point in the space-time, then the same argument in
[19, Lemma 4.3] shows that (M∞, g∞(t)) splits off a line and must hence be isometric to
the self-similar shrinking soliton on the cylinder R × S3.

Conversely, if the curvature operator is strictly positive at a point, then by the strong
maximum principle we conclude that the singularity model is positively curved. �
Remark 5.11 We point out that Proposition 5.3 extends to warped Berger Ricci flows for
which both the estimate (25) and the rotational symmetry type of bounds in Lemmas 4.6, 4.8
and 4.12 are satisfied.

6 Proofs of themain results

6.1 Bryant soliton singularities

In this subsection we show that any Ricci flow in G encounters a Type-II singularity and that
Theorem 2 is satisfied.
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Proof of Theorem 1 According to Lemma 4.1 the Ricci flow develops a finite-time singularity
at some T < ∞. Suppose that the Ricci flow is Type-I and let � be the singular set defined
as in [20, Definiton 1.5].

If the origin o does not belong to �, then the flow stays smooth on B(o, 2r) for some
r > 0. Thus there exists δ > 0 such that b(r , t) ≥ δ > 0 for any t ∈ [0, T ). Lemma 3.5
then implies b(x, t) ≥ δ for any x ≥ r and for all t ∈ [0, T ). From the estimate (25) we
finally deduce that the curvature stays uniformly bounded outside B(o, r) and hence on R4.
The latter condition contradicts that the flow develops a singularity at T [41].

If o ∈ �, then we can apply [20, Theorem 1.1] and derive that any parabolic dilation of the
flow at o (sub)converges to a non-flat shrinking soliton. By the classification in Proposition
5.3 we get that any such singularity model is a shrinking cylinder [33]. However by the
SU(2) symmetry and the Cheeger-Gromov convergence we have just shown that the cylinder
R× S3 is exhausted by open sets diffeomorphic to R4, which is not possible. Therefore, the
singularity is Type-II.

Since the flow is Type-II and non-collapsed we can choose a blow-up sequence giving rise
to a singularity model which consists of an eternal solution [29, Sect. 16]). By the classifi-
cation in Proposition 5.3 we deduce that such eternal solution is rotationally symmetric and
positively curved1. Therefore the scalar curvature and the Riemann curvature are comparable
up to the singular time and we can hence adapt the argument in [29] to extract a space-time
sequence (p j , t j ), with t j ↗ T , such that if we set λ j

.= Rg(t j )(p j ), then the rescaled Ricci
flows (R4, g j (t), p j ) defined by g j (t)

.= λ j g(t j + (λ j )
−1t) (sub)converge in the pointed

Cheeger-Gromov sense to a κ-solution whose scalar curvature attains its supremum in the
space-time. According to [27] the singularity model is then a gradient steady soliton and
must hence be isometric to the Bryant soliton by the classification in Proposition 5.3. �
Proof of Theorem 2 We prove the four points in Theorem 2 separately.

(i) The Bryant soliton appears at the origin. Let (p j , t j ) and λ j be defined as in the
proof of Theorem 1, let � j be the family of diffeomorphisms given by the Cheeger-Gromov
convergence and let (R4, g∞(t), p∞) be the Bryant soliton arising as limit singularity model.
By the SU(2) symmetrywemay choose p j of the form (x j , θ) for some θ ∈ S3. Suppose for a
contradiction that there exists δ > 0 such that for j sufficiently large we have dg j (0)(o, p j ) ≥
2δ > 0. We may then find points q j ≡ (x̃ j , θ), with x̃ j < x j , such that, up to passing to a
subsequence,�−1

j (q j ) → q∞ for some q∞ satisfying dg∞(0)(p∞, q∞) = δ. Since the scalar
curvature of the Bryant soliton g∞(t) attains its maximum at the centre of symmetry, i.e. at
the origin of R4, we deduce that p∞ = o ∈ R

4 and therefore that the Killing vectors {Xi,∞}
constructed above need to vanish at p∞. Equivalently, from the argument in Lemma 5.9 we
derive that

0 = |X1,∞|g∞(0)(p∞) = lim
j→∞

√
λ j b(x j , t j ).

Since the warping coefficient b is monotone in space and x̃ j < x j we have

|X1,∞|g∞(0)(q∞) = lim
j→∞

√
λ j b(x̃ j , t j ) ≤ 0,

which is not possible because the Killing fields generating the rotational symmetry cannot
vanish along a principal orbit, i.e. away from the origin. Therefore, up to choosing a sub-
sequence, we have dg j (0)(o, p j ) → 0. In particular, we may pick a subsequence such that

1 At this point, one can also rely on the recent classification of rotationally symmetric κ-solutions in [35] to
conclude that such eternal solution must be isometric to the Bryant soliton. However, we chose to present a
more self-contained argument which is sufficient to complete the proof of Theorem 1.
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Rg(t j )(o) ≥ (1− δ j )λ j for some δ j → 0. If we then dilate the Ricci flow by factors Rg(t j )(o)
we still obtain the Bryant soliton as pointed Cheeger-Gromov limit.

(ii) The singularity is global. Consider the set of points where the flow becomes singular
as t ↗ T :

�
.=

{
p ∈ R

4 : lim
t↗T

b(p, t) = lim
t↗T

c(p, t) = 0.

}
.

We note that the previous definition makes sense due to Corollary 4.11 and the estimate (25).
Part (ii) in the statement of Theorem 2 is equivalent to showing � = R

4. Indeed we have
proved above that the curvature cannot stay uniformly bounded at the origin, while away
from the origin the estimate (25) implies that both b and c need to converge to zero as t ↗ T
for the curvature to blow-up. We assume for a contradiction that � �= R

4. By Lemma 3.5
there exists x̄ ≥ 0 satisfying � = B(o, x̄). We may always take the Euclidean ball B(o, x̄)
to be closed because by Corollary 4.11 there exists a uniform constant α > 0 such that
b2(x, t) ≤ α(T − t) for all x < x̄ . �
Claim 6.1 Let (R4, g(t))0≤t<T be the Ricci flow starting at some g0 ∈ G. Then
limt↗T cH(x, t) = 0 for any x > x̄ .

Proof of Claim 6.1 We prove the Claim by a blow-up argument. Namely, we show that if the
statement was false, then any singularity model would have Euclidean volume growth, thus
leading to a contradiction.

Since by (25) the curvature is uniformly controlled in time for any radius x > x̄ by some
positive constant only depending on x , the same argument in the proof of Lemma 4.17 shows
that the limit limt↗T cH(x, t) is well defined and finite (and nonnegative by Lemma 3.5)
for any x > x̄ . Suppose that there exists x0 > x̄ such that limt↗T cH(x0, t) > 0. Then the
same argument in Corollary 4.18 implies that cH is uniformly bounded from below by some
μ > 0 on the ball B(o, x0) for times close to T . In particular, by Lemma 4.15 there exists
α > 0 satisfying

bs ≥ 1

3

(
μ
b

c
− αb

)

on B(o, x0) for times close enough to T . Let us rescale the solution along a blow-up sequence
and let (M∞, g∞(t), p∞) be the associated singularity model. We note that by Lemma 5.7
if q ∈ M∞, then � j (q) ∈ B(o, x0) for j large enough. Moreover, we have

bs(� j (q), t j ) ≥ 1

3

(
μ
b

c
− αb

)
(� j (q), t j ) ≥ 1

6
μ.

Thus, from Corollary 5.6 and Lemma 5.9 we derive that

(1 − (∂yφ∞)2)(q, 0) = (φ2∞k∞
12)(q, 0) = lim

j→∞

(
4 − b2s − 3

c2

b2

)
(� j (q), t j )

= lim
j→∞

(
1 − b2s

)
(� j (q), t j ) ≤ 1 − 1

36
μ2,

which then implies ∂yφ∞(q, 0) ≥ μ/6 for any q ∈ M∞. Since the limit is rotationally
symmetric we obtain

Volg∞(0)(Bg∞(0)(p∞, r)) ≥ αr4, (34)
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for any r ≥ 1 and for some α > 0. By Proposition 5.3 and the bound (34) we conclude that
(M∞, g∞(t)) is a non-compact κ-solution with positive asymptotic volume ratio. According
to a rigidity property proved by Perelman [39, Proposition 11.4] g∞(t) must then be flat,
which is a contradiction. �

Since by Claim 6.1 (b2c)s(x, t) = b2cH(x, t) → 0 as t ↗ T for all x > x̄ we can argue
as in the proof of Lemma 4.17 and deduce that there exists γ > 0 such that

lim
t↗T

b2c(x, t) = γ, ∀x > x̄ . (35)

We now show that if b is small at x̄ for times close to T , then b cannot jump to some positive
quantity γ 1/3 for all x > x̄ when t ↗ T . Let ε < 1 and Tε < T to be chosen below such
that b2(x̄, t) ≤ ε/2 for all t ∈ [Tε, T ). We let xε > x̄ be such that b2(xε, Tε) ≤ ε and T̃ be
the first time larger than Tε such that b(xε, T̃ ) = 1, if such time exists. By Lemma 4.9 and
Lemma 4.13 we have

∂t b
2(xε, t) = 2

(
bbss + bbscs

c
+ b2s + 2

c2

b2
− 4

)
(xε, t) ≤ 2(bbss + αb)(xε, t)

≤ α

(
1

|logb| + b

)
(xε, t) ≤ α

|logb| (xε, t),

for some α > 0 independent of ε and t and for all t ∈ [Tε, T̃ ]. Thus, we can integrate the
previous inequality and obtain

b2(xε, t) (2|log(b(xε, t))| + 1) ≤ α(t − Tε) + b2(xε, Tε) (2|log(b(xε, Tε))| + 1) .

Therefore, since b2(xε, Tε) ≤ ε < 1 we get

b2(xε, t) ≤ α(T − Tε) + 3ε.

Once we choose ε and Tε accordingly, we derive that T̃ does not exist and hence that

b2(xε, t) ≤ γ
2
3 /4 for all t ∈ [Tε, T ). We then find

b2c(xε, t) ≤ b3(xε, t) ≤ γ /8,

which contradicts (35). Therefore � = R
4.

(iii) Type-I blow-up at infinity. Once we know that the singularity is global it is natural to
expect shrinking cylinders to appear when dilating the solution at infinity.

Let t j ↗ T , δ > 0 arbitrary and ε > 0 a positive quantity to be chosen below. Since the
spatial derivatives of b and c are decaying to zero at infinity for any t ≥ T /2, we may always
pick points p j such that dg0(o, p j ) → ∞ and

sup
Bg(t)(p j ,δ)

(
|k01| + |k03| +

∣∣∣∣
bs
b

∣∣∣∣ +
∣∣∣
cs
c

∣∣∣
)

≤ ε, (36)

for all t ∈ [T /2, Tj
.= (T + t j )/2]. Let us denote the factors Rg(t j )(p j ) by λ j . From (36)

we derive λ j b2(p j , t j ) ≥ β > 0 uniformly with respect to j . Since by Corollary 4.11 and
part (ii) of Theorem 2 b2(·, t) ≤ α(T − t) for some uniform constant α > 0, we also see
that λ j → ∞. Similarly, by (36) we find that ∂t b2(·, t) ≤ −α < 0 in Bg(t)(p j , δ) for all
t ∈ [T /2, Tj ]. Therefore we have

(T − t j )λ j = 2(Tj − t j )λ j ≤ α

b2(p j , t j )
(Tj − t j ) ≤ α(Tj − t j )

b2(p j , Tj ) + α(Tj − t j )
≤ α,
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where we have used (25). Analogously, given ν > 0, t ≤ 0 and p ∈ Bg(t j )(p j , ν(λ j )
−1/2)

we see that

λ j b
2(p, t j + (λ j )

−1t) ≥ λ j b
2(p, t j ) + α|t |,

for j large enough. From (36) we also derive the following spatial control:
∣
∣
∣
∣log

(
b(p, t j )

b(p j , t j )

)∣
∣
∣
∣ ≤ ε

ν
√

λ j
.

We may finally estimate the curvature of the rescaled Ricci flows as

1

λ j
|Rmg(t j+(λ j )

−1t)|(p) ≤ α

λ j b2(p, t j + (λ j )−1t))
≤ α

λ j b2(p, t j ) + α|t |
≤ α

β exp(−2 εν√
λ j

) + α|t | .

Since the flow is weakly κ-non-collapsed for some κ > 0 we may apply Hamilton’s com-
pactness theorem and conclude that the sequence of rescaled Ricci flows converge in the
pointed Cheeger-Gromov sense to a singularity model (M∞, g∞, p∞)−∞<t≤0 to which the
classification in Proposition 5.3 applies. In particular, g∞(t) is of the form (33). Arguing as
in the proof of Claim 6.1 and using (36) we see that

(1 − (∂yφ∞)2)(q, 0) = (φ2∞k∞
12)(q, 0) = lim

j→∞

(
4 − b2s − 3

c2

b2

)
(� j (q), t j )

= lim
j→∞

(
1 − b2s

)
(� j (q), t j ) ≥ 1 − (sup

R4
b2(·, 0))ε2 ≥ 1

2
,

for ε small enough, where we have used the fact that b is uniformly bounded from above.
We finally conclude that |∂yφ∞| < 1/2 which by the boundary conditions (5) and the
classification in Proposition 5.3 implies that (M∞, g∞(t)) is the self-similar shrinking soliton
on R × S3.

(iv) Classification of singularity models. According to Proposition 5.3 if the singularity
model is not a family of shrinking cylinders, then it must be a positively curved rotationally
symmetric κ-solution. By the recent classification in [35] we conclude that in this case the
singularity model is isometric to the Bryant soliton (up to scaling). �

6.2 Immortal warped Berger Ricci flows

Let (R4, g(t))0≤t<T be the maximal Ricci flow starting at some g0 ∈ G∞ and suppose that
T < ∞.

Proof of Theorem 3 Let x̃2, t̃ and μ be given by Corollary 4.18 and consider a blow-up
sequence giving rise to a singularity model (M∞, g∞(t), p∞). Since by Lemma 5.10 the
rescaled geodesic balls are included in B(o, x̃2) for j large enough, we can argue exactly as
in the proof of Claim 6.1 and deduce that any singularity model for the flow is in fact flat.
This shows that the maximal time of existence cannot be finite. �

6.3 Type-I Berger Ricci flows contain minimal 3-spheres

The existence of sufficiently pinched minimal embedded hyperspheres gives rise to Type-I
singularities for (asymptotically flat) rotationally symmetric Ricci flows on R

n [19]. Thus,
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in general we cannot extend the conclusions of Theorem 1 and Theorem 3 to include initial
data containing minimal 3-spheres.

While in the SO(n)-invariant case no minimal spheres can appear along the flow, in the
SU(2)-cohomogeneity 1 setting an analogous propertymight fail. On the other hand, minimal
spheres can disappear in finite time [19, Proposition 1.7].

In the following we consider a Type-I warped Berger Ricci flow whose curvature is
controlled at spatial infinity uniformly in time. A priori one might expect that there exist
examples of Type-I singularities where both b and c have local minima while the mean
curvature of the embedded hyperspheres remains positive. The next result rules out this
possibility. We prove that for times close to the maximal time of existence a Type-I warped
Berger Ricci flow solution (R4, g(t)) must contain minimal 3-spheres.

Proof of Theorem 4 The decay of the curvature and the lower bound for the injectivity radius
ensure that (27) holds for some sufficiently large radius ρ. Therefore Lemma 4.15 and hence
the classification of singularity models in Proposition 5.3 are satisfied in this setting (see
also Remark 5.11). A first consequence of this fact is that the same argument in the proof
of Theorem 1 shows that if the origin is in the singular set (as defined in [20]), then the
singularity cannot be Type-I.

Therefore we only need to consider the case where the curvature stays uniformly bounded
in a Euclidean ball B(o, 2r) for some r > 0. Accordingly, there exists ε > 0 such that
b(r , t) ≥ c(r , t) ≥ ε for any t ∈ [0, T ).

Assume for a contradiction that there exists a sequence t j ↗ T such that the mean
curvature of hyperspheres H(·, t j ) is strictly positive on the time slicesR4 \ {o}× {t j }. From
the identity H = (log(b2c))s we deduce that

b2c(x, t j ) ≥ b2c(r , t j ) ≥ ε3, (37)

for any j and for any x ≥ r . Since Corollary 4.11 holds in this setting, the singular set
contains a point p ∈ R

4 \ B(o, 2r) such that b(p, t) → 0 as t ↗ T and similarly for c by
Lemma 4.6. For if such p did not exist, then by the first estimate in Lemma 4.15 applied to
the region B(o, ρ) \ B(o, r) × [0, T ), the curvature would be bounded as t ↗ T which is
not possible by [41]. This contradicts the inequalities in (37). �
Remark 6.2 The proof actually shows that H has to change sign for times close to themaximal
time of existence. Equivalently, the Ricci flow solution contains neck-like regions that pinch
off in finite time at a Type-I rate.

7 Some applications

In this section we provide two simple applications of the main results. On the one hand we
rule out the existence of Taub-NUT like shrinking solitons on R

4. On the other hand, we
completely classify Ricci flows of nonnegatively curved warped Berger metrics.

7.1 Non existence of Taub-NUT like shrinking solitons

Theorem 1 immediately implies that there are no warped Berger shrinking solitons with no
necks and bounded by a round cylinder at infinity. Namely, we have the following

Corollary 7.1 The set G does not contain shrinking Ricci solitons.
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Recently, Appleton found non-collapsed Taub-NUT like gradient steady solitons on R4 [3].
It is straightforward to check that these solitons belong to G∞. Indeed the curvature decays
linearly at spatial infinity and both the warping functions b and c are increasing in space.
According to Theorem 3 there are no shrinking solitons on R4 analogous to the steady ones
constructed in [3]. More precisely, we have shown the following:

Corollary 7.2 The set G∞ does not contain shrinking Ricci solitons.

We note that by [33] it is known that there do not exist complete non-trivial rotationally
invariant shrinking soliton structures on R4.

7.2 Ricci flow of Berger metrics with nonnegative curvature

By combining Theorem 1 and Theorem 3 we are able to classify Ricci flows evolving from
complete warped Berger metrics with bounded nonnegative curvature operator. We recall
that by [26] the curvature operator stays nonnegative along the Ricci flow in any dimension.

Proof of Corollary 2 If g0 is a complete warped Berger metric with bounded nonnegative cur-
vature, then the injectivity radius of g0 is positive and bss ≤ 0 and css ≤ 0. By completeness
the latter condition implies that both bs and cs are nonnegative. Thus there exists a positive
(possibly infinite) quantity μ

.= limx→∞ b(x, 0).
If μ < ∞, i.e. b(·, 0) is bounded on R

4, then g0 belongs to G and the conclusions of
Theorem 1 and Theorem 2 apply. In particular, there exists a sequence t j ↗ T such that
the rescaled Ricci flows (R4, g j (t), o) defined by g j (t)

.= Rg(t j )(o)g(t j + (Rg(t j )(o))
−1t)

converge to the Bryant soliton in the Cheeger-Gromov sense. Given any other sequence
t̃ j ↗ T , from the trace of the Harnack estimate [28] we derive that

R(o, t̃ j ) ≥ t j
t̃ j
R(o, t j ),

up to reordering the indices. Therefore we conclude that dilations of the Ricci flow by factors
R(o, t̃ j ) still give rise to the Bryant soliton.

If μ = ∞, then consider the Ricci flow solution starting at g0 and pick 0 < t0 < T . The
vertical sectional curvatures decay to zero at infinity being the spatial derivatives bs(·, t0)
and cs(·, t0) decreasing and nonnegative. In particular bss/b(·, t0) (and css/c(·, t0) as well)
is integrable. By the same argument we used to prove Claim 4.7 we get bss/b(x, t0) → 0 at
infinity and similarly for css/c(x, t0). Therefore g(t0) ∈ G∞ and we can apply Theorem 3.

�
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