Monthly Notices

MNRAS 500, 4173-4180 (2021)
Advance Access publication 2020 November 20

doi:10.1093/mnras/staa3587

How to build a catalogue of linearly evolving cosmic voids

Stephen Stopyra “,'* Hiranya V. Peiris'> and Andrew Pontzen'

' Department of Physics and Astronomy, University College London, London WCIE 6BT, UK
2The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

Accepted 2020 November 12. Received 2020 October 30; in original form 2020 August 10

ABSTRACT

Cosmic voids provide a powerful probe of the origin and evolution of structures in the Universe because their dynamics can remain
near-linear to the present day. As a result, they have the potential to connect large-scale structure at late times to early Universe
physics. Existing ‘watershed’-based algorithms, however, define voids in terms of their morphological properties at low redshift.
The degree to which the resulting regions exhibit linear dynamics is consequently uncertain, and there is no direct connection
to their evolution from the initial density field. A recent void definition addresses these issues by considering ‘anti-haloes’. This
approach consists of inverting the initial conditions of an N-body simulation to swap overdensities and underdensities. After
evolving the pair of initial conditions, anti-haloes are defined by the particles within the inverted simulation that are inside haloes
in the original (uninverted) simulation. In this work, we quantify the degree of non-linearity of both anti-haloes and watershed
voids using the Zel’dovich approximation. We find that non-linearities are introduced by voids with radii less than SMpc h~!,

and that both anti-haloes and watershed voids can be made into highly linear sets by removing these voids.

Key words: methods: data analysis —large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

A large fraction of the volume in the evolved Universe consists of
void regions — areas of significantly lower density than the filaments
and clusters where most galaxies are found. When considering the
mapping of initial conditions in the early Universe to such regions, the
underdensities that evolve into void regions can typically be usefully
approximated by linear dynamics for a significantly longer period
than overdensities of similar magnitude. If such regions exhibiting
linear dynamics can be reliably identified in the evolved Universe,
they provide new routes to extracting reliable cosmological infor-
mation, suppressing some of the uncertainties and computational
expense associated with non-linear evolution. Further, the study of
such regions has the potential to provide a sharper view of the pristine
early Universe, before information is erased by non-linear evolution.

A substantial literature explores the utility of underdense regions
exhibiting linear dynamics as cosmological probes. For example,
Lavaux & Wandelt (2010) constructed an analytical model of void
ellipticity using the Zel’dovich approximation (Zel’Dovich 1970).
This can be used to probe tidal effects (Park & Lee 2007; Lee
& Park 2009) and to measure cosmological parameters using the
Alcock—Paczynski test (Sutter et al. 2012, 2014b). Hamaus, Sutter &
Wandelt (2014) constructed a universal density profile for voids and
use the Zel’dovich approximation to predict the expected velocities
given this density profile. This can be used, for instance, to model
the redshift space distortions expected around voids (Hamaus et al.
2015). Furthermore, a good understanding of how void profiles
change under different models of cosmology allows for precision
constraints on e.g. modified gravity (Zivick et al. 2015; Falck
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et al. 2018). However, such tools are most useful in practice if
they are applied to void-like regions with dynamics captured by
the Zel’dovich approximation (which is linear in the velocity field
and displacements, and mildly non-linear in the density field), since
applying them to highly non-linear regions would yield unquantified
modelling systematics.

However, many existing methods for identifying voids (in simula-
tions and in observations) are based not on the dynamical properties
of cosmic large-scale structure, as is the case with the Lavaux &
Wandelt (2010) method,! but rather on the morphological properties
of the cosmic web. The majority of the literature relies on ‘watershed’
void-finders such as zobov (Neyrinck 2008), which is also used
as the primary void-finding component of the widely used vide
package (Sutter et al. 2015). The fundamental idea behind watershed
voids is that one first computes a density field from a catalogue
of density tracers (which may be haloes, galaxies, or simulation
particles), and then locates minima of this density field to form
the core of low-density regions. Adjacent regions are then joined
together to form voids by filling outwards with an imaginary rising
water level, that incorporates neighbouring regions that the ‘water’
flows into as sub-voids if they are shallower in density, and stops
if it encounters a deeper minimum. This approach has been used
successfully to extract the void ellipticity distribution and stacked
radial density profiles from the Sloan Digital Sky Survey (Sutter
et al. 2014a). Other authors have used vide to extract information
about cosmological parameters from observations, for example
by comparing the void size distribution (Nadathur 2016), or by

'Lavaux & Wandelt (2010) used Lagrangian methods to trace galaxies back
to their origin in the initial conditions, and then identified voids by searching
for maxima of the divergence of the displacement (or velocity) field.
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performing the Alcock—Paczynski test (Sutter et al. 2014b). However,
since this morphological definition of voids does not link directly
to dynamical aspects of void evolution, in general such algorithms
will produce void catalogues that are a mixture of regions that are
well described by the Zel’dovich approximation, and those strongly
affected by fully non-linear evolution.

Pontzen et al. (2016) introduced an alternative approach that leads
to a simple dynamical definition of void regions. This relies on
comparing a pair of N-body simulations that are related by inverting
the sign of the Gaussian initial conditions of one simulation with
respect to the other, thereby transforming initial underdensities into
overdensities and vice versa. By evolving both simulations forward,
one can identify voids with anti-haloes — regions defined by particles
within the original uninverted simulation that end up in haloes in
the inverted simulation. Since the relationship between haloes and
initial conditions is well understood, the same analytical methods,
such as excursion set models (Press & Schechter 1974; Bond et al.
1991; Sheth & Tormen 1999; Sheth & van de Weygaert 2004), can
be used to predict the anti-halo abundance. This is in contrast to
watershed voids, where it is difficult to link their abundance to
excursion set predictions (Nadathur & Hotchkiss 2015). While the
anti-halo definition is currently difficult to link directly to galaxy
catalogues, this situation will soon change through the advent of
methods to probabilistically reconstruct the dynamical evolution
of large-scale structure underlying galaxy surveys, such as borg
(Jasche & Wandelt 2013).

In this paper, we will use the Zel’dovich approximation to quantify
and compare the dynamical linearity of void catalogues obtained by
applying the watershed and anti-halo void definitions to the same
N-body simulation. Our technique for quantifying the dynamical
linearity relies on comparing the density field of the fully non-linear
simulation to that obtained by extrapolating the initial density field
to redshift z = O using the Zel’dovich approximation. By applying
this technique to stacked void profiles from the two void catalogues,
we will find that the anti-halo definition yields a pure sample of
underdense regions accurately described by linear dynamics well
into late times, and confirm that the watershed definition can also
provide such a sample provided that an appropriate cut is made on
the void radius.

In Section 2, we describe how we construct stacked void profiles,
present the simulations used in this work, and introduce our method
for quantifying linearity. In Section 3, we apply this method to void
catalogues constructed using the anti-halo and watershed definitions
on the same simulation, compare the results, and show how to
make radius cuts to select regions with linear dynamics from void
catalogues. We discuss the results and future directions in Section 4.

2 METHODS

In this work, we make heavy use of the radial density profile of
a stack of voids: we discuss how these stacks are constructed in
Section 2.1. In Section 2.2, we describe the simulations and explain
how we obtain void catalogues from them; the selection criteria
applied to the voids identified in the simulations are then presented
in Section 2.3. We outline our method for quantifying linearity of the
voids in the resulting catalogues in Section 3.3.

2.1 Void stacking

Stacked void density profiles are key observables used to characterize
voids and extract cosmological information. The idea is to take a
sample of voids, rescale them by their effective radius, and average
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the density over the whole set. Such stacks have successfully been
used, for example, to perform the Alcock—Paczynski test using voids
(Sutter et al. 2012).

We begin by reviewing how we construct a stacked void profile.
The effective radius, Re, of a void is defined as the radius of a sphere
that would have the same volume, V, as the void,

3y 13
R = — . 1
i <47_[> (D

Obtaining R therefore requires us to measure the void volume. The
void finders we consider are all able to identify the set of particles
in a simulation snapshot that correspond to a particular void. By
performing a Voronoi tessellation (which is already accomplished as
part of the zobov void finder), we can assign a unique volume to
each particle that is related to the local density in the vicinity of that
particle. This defines the volume, V;, of the ith particle. Voronoi cells
tessellate by definition, so the total volume of a void can be defined
as the sum of the volumes associated with each particle. Since each
particle has a well-defined mass, this also simultaneously defines a
mass for each void.
We can then define the volume-weighted density,

Dy = Z,’ Pi Vt

v Zl ‘/l £
which is the mean density of the particles in a void, weighted by the
volume assigned to each particle. The advantage of this weighting
is that it avoids the estimate being biased by the high density of
haloes, which contain a large fraction of the particles and mass
in a simulation, but only a very small fraction of the volume. An
unweighted mean density will be dominated by the particles that lie
within haloes, and hence fails to measure the density of the void.

Following Nadathur et al. (2015), we then use a volume-weighted

void stacking procedure. We average the density in the shell at a
given effective radius for each void with a weight given by the shell
volume, with a small correction to account for bias? that otherwise
occurs when tracer counts are low. This means the density of a mass
shell at a given effective radius is given by

(Z,N=1 Ni,SheII) +1
Z,N:l Vi shell

where N is the number of voids in the stack, N; spen the number of
particles in the shell for void i, and V; spe the (unscaled) volume of
shell i for that void. In our case, the tracer is dark matter particles
that therefore have a constant mass, m.

We use a different procedure for computing uncertainties on the
stacked void profile compared to Nadathur et al. (2015). For this
particular stacking method, they suggested the Poisson error derived
from the tracer counts in radial shells, which is appropriate for use in
settings utilizing sparse tracers of the density field (such as galaxies).
In our setting, where N-body particles are used to define the voids,
and therefore have a much high tracer density, Poisson errors are
subdominant in our case to the inherent variability of the void profiles.
We discuss this point further in Section 3.2.

@

; 3

Pshell = M

2.2 Simulations and data processing

We used a pair of simulations previously described in Pontzen et al.
(2016), where full details can be found. In brief, a pair of 5123

2In practice, this does not make a significant difference for our study, since
we use simulations with a much higher tracer count than galaxy catalogues.

0202z Jaquiaoa( 60 Uo Jasn (uopuoT absjjo) Ausiaaiun) T1oN Aq 961966S/S/ L 17/S/00S/20Ie/seiuw;/woo dnoolwepese//:sdiy woll papeojumod



simulations denoted A and B were performed, each one with a side
200Mpc 2! in comoving units. The A simulation was used as the
reference universe, in which we would like to identify voids. The
B simulation was obtained by inverting the initial conditions of
the A simulation. After evolving forward to z = 0, haloes in the
B simulation were identified using the ahf (Knollmann & Knebe
2009) halo finder. The particles associated with each halo in the
B simulation were identified in the A simulation using pynbody
(Pontzen et al. 2013). This defined the A anti-halo associated with
each B halo, yielding an anti-halo catalogue for the A simulation.
To compare this approach with existing void finders, we ran the
vide code (Sutter et al. 2015) that uses zobov (Neyrinck 2008)
as its primary void finder, on the A simulation. In the following,
we will refer to the regions in the resulting catalogue as zobov
voids.

For each zobov void and anti-halo, the volume was computed
using the sum of the Voronoi cells as determined from the output
files of vide. These were then used to compute the effective radii,
as well as the volume-weighted barycentres defined by

>ixiVi

X =
VWB Zi V, )

where X; is the position of each particle in the void, and V; its volume
weight as determined from the particle’s Voronoi cell. This step was
performed accounting for the periodic boundary conditions, ensuring
that the resulting centres actually lie within the void for regions that
cross the periodic boundary. The volume weighting of the barycentre
ensures that it is less susceptible to large fluctuations due to shot noise
induced by the location of individual large haloes.

After computing the barycentre and effective radius for each void
in the catalogues, and assigning each void particle a density using
the inverse of its Voronoi volume, p; = m/V;, we then computed the
average density and the central density of each void. The average
density, §, is defined as the volume-weighted density contrast for all
particles making up a void,

“

g — Pu __ 14 , (5)
p

where p is the cosmological average density and p, is given by
equation (2). The central density 4. is obtained by computing the
volume-weighted density contrast of the 64 particles® closest to the
volume-weighted barycentre of the void given by equation (4). Note
that some authors (Lavaux & Wandelt 2012) define this to be the
density in a sphere of some fraction, usually 1/2 or 1/4, of the effective
radius around the barycentre — this can lead to particularly sparse
and pancake-shaped voids having no particles within such a sphere.
Our estimate instead adapts naturally to the sparse distribution of
particles at the void centre. For the smallest voids, this may include
a significant fraction of the void particles. However, we do not use
such small voids in our analysis.

A stacked volume-weighted density profile was then computed
for each void by counting the number of particles found in spherical
shell bins, and dividing by the sum of their Voronoi volumes as
in equation (3). We used 30 equally spaced radial bins between 0O
and 3 effective radii, so that the position and size of the bins scale
with the void size. The resulting tracer counts and shell volumes
of all voids were stored for use in computing stacks of arbitrary
subsets.

3The precise number of particles is arbitrary, but needs to be sufficient to
suppress shot noise in the central density estimate.
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2.3 Void selection

In order to split the data by void size, we could bin the voids
by effective radius. Equivalently, and for easier comparison with
Pontzen et al. (2016), we instead choose to bin by void mass.
We consider a low-mass bin in the range 103 < M/Mgh™') <
10" and a high-mass bin defined by 10 < M /(Mg h~") < 103,
Pontzen et al. (2016) showed that smaller masses M < 103 Mg 7!
correspond to regions that are frequently crushed by larger over-
densities, and hence in this range underdensities do not uniquely
map to voids. Therefore, we do not consider them here. The
low-mass bin corresponds approximately to voids with radii 4—
10Mpc h~!, while the high-mass bin contains voids in the range
1021 Mpch~!. In this 200Mpch~! simulation box, anti-halo
masses larger than 10> Mg h~' are excluded because they are
too few in number to obtain good statistics. From the Tinker
et al. (2008) mass function, on average 1.4 such anti-haloes or
haloes are expected in our simulation box (this is identical to
the expected number of haloes since these voids are too large
to have been crushed). In our specific realization, we actually
observe zero anti-haloes and three haloes above this threshold,
which is consistent with the mass function at the 95 per cent
level assuming Poisson uncertainties. By contrast, zobov voids
are not constructed in a way that matches the halo mass function,
and indeed much larger void regions can be found in the zobov
catalogues.

2.4 Quantifying linearity

We now wish to quantify the notion of linearity in voids. First,
it is necessary to precisely articulate what is meant by ‘linearity’.
Voids cannot be accurately described by the (Eulerian) linear growth
of the density field, since the density contrast extrapolated in this
way would become unphysically negative. However, it is possible
to obtain a non-negative solution at all epochs that is linear in
the displacement, i.e. well described by first-order Lagrangian
perturbation theory. From a dynamical perspective, what causes the
breakdown of analytical predictability is the onset of shell-crossing,
which causes first-order Lagrangian perturbation theory, also known
as the Zel’dovich approximation (Zel’Dovich 1970), to break down
(Mo, Van den Bosch & White 2010). Prior to shell-crossing, the
evolution of spherical mass shells can be understood using the
spherical collapse model (for haloes) and the spherical void model
(Sheth & van de Weygaert 2004).

The breakdown of spherical evolution models of collapse and
void growth due to shell-crossing is therefore closely related to the
breakdown of the Zel’dovich approximation when the first pancakes
form. This suggests that by comparing density profiles of voids
to the profiles that are predicted by the Zel’dovich approximation,
we can quantify whether a given set of voids is well described by
analytical methods and hence can be characterized as dynamically
linear. Stacks of voids that are strongly affected by non-linearities
will have density profiles that differ significantly from their linear
profiles. By computing the profiles for different radial bins, we can
also determine where non-linear effects are most important in a given
stack.

In order to implement this procedure, we took the same initial
conditions used to compute the A simulation, and evolved them to
z = 0 using the Zel’dovich approximation, which displaces particles
according to

D(z

X(2) = %0+ Tzo))xv(zo, %), ©)
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Figure 1. The distribution of void densities in the low-mass bin (10'3 < M /(Mg h~") < 10'4, top row) and the high-mass bin (10" < M /(Mg h~") < 103,
bottom row) for zobov voids and anti-haloes with (left column) average densities § and (right column) central densities, §.. zobov voids predict large numbers
of overcompensated voids with § > 0 that are in the process of being crushed by larger scale overdensities, but have not yet completed this process. In these

mass bins, very few anti-haloes are above the average density.

where D(z) is the linear growth factor, zo the redshift of the initial
conditions (zgp = 99 in this case), and W(zg, Xo) the first-order
displacement field from the initial grid of positions given by x,. This
resulted in a set of linear particle positions, from which we computed
linear Voronoi weights. These were used to compute a density field
for the Zel’dovich-evolved particles. The A and B simulations were
still used to define which particles belong to the zobov voids and
anti-haloes, but for each zobowv void and anti-halo a second volume-
weighted barycentre and effective radius were computed using the
linear particle positions. The new Zel’dovich-evolved density field
was then used to compute corresponding density profiles for the
voids, using the same procedure outlined in Section 2.1 for the non-
linear profiles, but using the new barycentres and effective radii. The
degree of linearity for a given stack of voids can then be quantified by
comparing the Zel’dovich-evolved and simulation-evolved density
profiles.

3 RESULTS

‘We now compare and contrast properties of anti-haloes and zobov
voids in the mass bins defined in Section 2.3. First, we consider their
central and average density distributions in Section 3.1. Then we
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move on to considering their stacked density profiles, first discussing
how we quantify the uncertainties in Section 3.2 and then considering
the implications of the actual profiles in Section 3.3. We find that anti-
haloes are always well described by linear dynamics in the Zel’dovich
sense and show that one can introduce a radius cut to select zobov
voids exhibiting similarly linear dynamics. We find that there are still
qualitative differences between the stacked profiles of anti-haloes or
zobov voids even in such linear samples.

3.1 Density distribution of voids

We binned the zobov voids and anti-haloes by their central and
average densities: the results are shown in Fig. 1. We notice that the
zobov voids typically have a much longer tail to higher average
densities than the equivalent anti-haloes. Particularly in the high-
mass bin, it is clear that anti-haloes are tightly concentrated in
both average and central density. For both anti-haloes and zobov
voids, the tail to higher average densities is more pronounced in
the low-mass bin, consistent with the findings of Pontzen et al.
(2016) that lower-mass anti-haloes are more likely to be crushed
due to collapsing overdensities. Further, we see from the right-hand
panel for the low-mass bin that even when they have higher average
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Figure 2. Distribution of the volume-weighted density, p, in radial bins
around the centre of the high-mass bin anti-haloes. The distribution is non-
Gaussian, but the mean (dark, solid blue line) is Gaussian-distributed; the
standard deviation of the mean is indicated by the light shaded area.

densities, anti-haloes continue to have low central densities. We
verified that, by contrast, zobov voids in the high average density
tail also have a tail to higher central densities.

3.2 Stacked density profiles

We now wish to compare stacked density profiles for the two
void catalogues in the same mass bins, computed according to
the stacking procedure outlined in Section 2.1. First, we discuss
how to characterize the uncertainty in the profiles computed using
equation (3), since (as previously noted) our dominant source of
uncertainty is not Poisson errors due to tracer sparsity, but rather
the variability of individual void density profiles. To illustrate this
variability, we show the distribution of volume-weighted densities for
spherical mass shells within stacked voids in Fig. 2. It is immediately
clear that the distribution of densities within radial bins is not
Gaussian, as we might expect from the non-linear evolution of the
density field.

However, in order to make a comparison between linear and non-
linear evolution, what we wish to characterize is the uncertainty on
the mean profile in this stack. We note that the volume-weighted
mean density for a given radius shell, equation (3), can be treated as
a random variable that is approximately Gaussian-distributed in the
limit of a large number of voids in the stack. This follows from the
Lyapunov variant of the Central Limit Theorem (Billingsley 1995).
The error is a generalization of the o'/+/N standard error of the mean
to weighted means, yielding variance

onz‘lean = Z (wlz) 62' (7)
Here, w; = Vi/(3_;V;) are the weights (normalized to > _;w; = 1) and
o2 is the variance of the profiles arising from the non-Gaussian
distribution in Fig. 2. For the case of equal weights w; = 1/N,
this reduces to the standard o->/N variance of the mean. We adopt
equation (7) as the definition of our error bars in all subsequent plots.

3.3 Profile linearity

Fig. 3 shows the stacked density profiles for the four void sets under
consideration (two mass bins, for both anti-haloes and zobov voids).
We also show the linear prediction in each case as a dotted line,
constructed using the same void particles traced to the Zel’dovich-
extrapolated snapshot.
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Three key differences can be seen between stacked zobov voids
and anti-haloes. First, the former have ‘ridge’ regions in their
outskirts, which are absent for the latter. Secondly, anti-halo profiles
appear to be well predicted by the linear extrapolation in both mass
bins, whereas zobov voids are well predicted only in the largest
mass bin. Finally, the anti-halo profiles are near-universal with little
variation between the two mass bins, while the zobov profiles
are qualitatively different between bins, for example with a more
pronounced overdense ridge in the lower mass bin. We will now
consider the origin of each of these differences, and their inter-
relationships.

We verified that the existence of ridges in the zobov voids
reflects the longer tail to high average densities (Fig. 1). This can
be confirmed by calculating a zobov stack with a cut on the upper
bound of the average density §. In this case, the zobov profiles as a
function of radius smoothly and monotonically increase to the mean
density from below, much like the anti-halo profiles. However, while
adjusting the value of the § cut can qualitatively bring the zobov
shape into agreement with anti-halo profiles, there is no value that
gives quantitative agreement.

We next consider the correspondence between the non-linear
profiles (with density determined from the simulation) and the linear
profiles (with density determined from the Zel’dovich extrapolated
snapshot). The anti-haloes closely match the linear profile at all radii
and in both mass bins; the correspondence is particularly close in
the outskirts for the high-mass bin, and in the central core for the
low-mass bin. By contrast, the zobov voids match the linear profile
poorly in the low-mass bin, but extremely well in the high-mass bin.

A possible origin for these differences is the process of ‘crushing’,
which is inherently non-linear since it involves a turnaround in the
trajectory of the particles. It was shown by Pontzen et al. (2016) that
smaller voids are more likely to be crushed by z = 0, prompting
us to check whether the departures from linearity seen in Fig. 3 are
dominated by small radius voids. In Fig. 4, we show the effect on our
stacked profiles of including only those voids with effective radius
Rer > 5Mpch~'. The differences between linear and non-linear
behaviour seen in the right-hand panel of Fig. 3 have now largely
disappeared. However, there is still a difference between the shapes
of the zobov and anti-halo profiles, with the anti-haloes remaining
universal and the zobov voids showing a mass dependence in the
prominence of their ridge. (This mass dependence is reversed relative
to the uncut case: now the higher mass bin shows a more prominent
ridge than the lower mass bin, because the former does not contain
any voids small enough to be affected by the radius cut.) The overall
result demonstrates that the origin of the ridge is kinematical rather
than dynamical, i.e. it does not rely on the non-linear dynamics of
turnaround.

We have so far shown that ridges are linked to the mean density,
whereas non-linear dynamics are primarily linked to void radius. To
understand the relationship between cutting in these two variables,
we plot the 2D distribution of mean density and radii for the anti-
haloes and ZOBOV voids, respectively, in Fig. 5. Density, radius, and
mass are interrelated variables, so we overplot lines of constant mass
at 103, 10", and 10" My, 2~!, by combining equation (1) with an
expression for overdensity, § = M /(V ) — 1. This is approximate
rather than exact because the defining relation for §, equation (5),
refers to the volume-weighted mean density p, whereas M/V gives
a mass-weighted mean density. Nonetheless, we verified that the
approximate lines correctly identify the dividing line between our
different void bins in the 2D plane of Fig. 5. Comparing the two
panels shows that, for anti-haloes, the average density contrast is
almost independent of radius provided one restricts attention to those
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Figure 3. Comparison of stacked density profiles for anti-haloes (left) and zobov voids (right) in the low- and high-mass bins. Anti-haloes show a broadly
self-similar profile that lacks a significant ridge region. The linear profiles (dashed lines) closely match the non-linear profiles (solid lines) for anti-haloes. For
zobov voids on the other hand, this is only true for the high-mass bin; the low-mass linear zobowv profile differs significantly from its non-linear counterpart.
For the zobowv case, profiles in both mass bins show significant overdense ridges outside the effective radius of the void.
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Figure 4. Stacked void profiles in the low and high-mass bins with radii Re > 5Mpch~'. Both the zobov voids and anti-haloes are close to their linear
profiles, indicating that the non-linearities apparent in Fig. 3 are primarily caused by voids with radii less than 5Mpc 2 ~!. The absence of non-linearities in
the zobov voids, despite the presence of high-density voids as indicated by Fig. 5, indicates that radius is a more important determiner of non-linearity than

average density.

with Rer > 5 Mpc h~'. The same is not true for ZOBOV voids, which
have a tail to high mean densities even at large radii.

Given the different distributions in key characteristics of zobov
voids and anti-haloes as seen in Figs 1 and 5, it is likely that the
two approaches to void-finding uncover different populations. This
is further driven home by the fact that the anti-halo profiles have
little mass dependence, while the zobov voids are strongly mass-
dependent. Fig. 5 gives a possible reason for this inequivalence: all
anti-haloes above the critical radius of 5Mpc/~! have a similar
average density, since they correspond to haloes in the reverse
simulation (Pontzen et al. 2016). By contrast, zobov voids are
much more diverse. To select a less diverse zobov population, and
examine whether the correspondence with anti-haloes improves, we
can perform a cut retaining only radius Re > 5 Mpc h~! voids that
are strongly underdense (5 < —0.5). Following this selection cut, we
regenerated the stacked profiles, finding that the difference between
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anti-haloes and zobowv voids persists and moreover, there continues
to be a mass dependence in the zobov profiles. We conclude that the
anti-haloes and zobowv catalogues select different void-like regions.

4 DISCUSSION

We have presented an analysis investigating the degree to which
cosmic voids identified in simulations exhibit dynamical linearity,
where the level of linearity is quantified by the degree to which the
Zel’dovich approximation describes the full dynamics of the voids in
the evolved simulation. We used this method to compare two different
void definitions: anti-haloes (Pontzen et al. 2016) and watershed void
finders, specifically the zobov implementation (Neyrinck 2008). We
found that the Zel’dovich approximation can accurately predict the
density profiles of anti-haloes, whereas an appropriate radius cut is
required to select zobov voids evolving linearly. We experimented
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Figure 5. Distribution of average density, 5, and effective radius Refr, for anti-haloes and zobov voids in the range 101> —~10' Mg 2~!. We overplot mass
contours defined by the relationship between density, mass, and volumes, § = M /(V ) — 1, where  is the cosmological average density, V = 47 R?/3 the void
volume, and M the total void mass. Strictly, this relationship does not have to hold for each individual void, because we use a volume-weighting in our density
estimates. However, we verified that it none the less accurately divides the histograms up into the mass bins we use for our analysis.

with different cuts, and found that removing voids with radii smaller
than 5 Mpc 2~ was effective at linearizing the stacked void profiles.
Even after imposing cuts, the detailed density structure of zobov
voids and anti-haloes is different, with only the former having
overdense ridges on their outer edges.

These results can be understood from the physics of void evolution.
Spherical models (Sheth & van de Weygaert 2004) predict that the
time-scale for growth (or collapse) is shorter for small voids than
for larger ones. The profiles of collapsing voids are inherently hard
to predict from linear extrapolations: by studying the 3D evolution
of individual such voids over a series of snapshots, we observed
that infalling particles often become bound to haloes at the void
boundary. The capture of infalling particles slows and modifies the
collapse process, and cannot be reproduced by the linear physics
in the Zel’dovich approximation. This explains the structure of the
non-linear void profiles in Fig. 3: the central density is lower than
the linear profile, while the ridge density is enhanced.

On the other hand, once a cut in radius is imposed the linear
extrapolation becomes accurate even for the zobov void stack with a
pronounced ridge; that stack includes voids that are in fact overdense.
Nadathur, Hotchkiss & Crittenden (2017) show that overdense voids
must be in the process of collapsing as they constitute minima of
the gravitational potential (in contrast to underdense voids that are
maxima). Our results for such large but overdense voids show that,
although the collapse is ongoing, it has not yet had time to reach a
non-linear stage.

A key attraction of voids is that their quasi-linear evolution may
give access to information on relatively small scales (those which,
at the power spectrum level, are already non-linear). For example,
state-of-the-art galaxy clustering and weak lensing results from the
Dark Energy Survey (Krause et al. 2017) do not consider scales
below ~10Mpc h~!, due to the difficulties of modelling non-linear
effects below that scale. However, by performing a separate analysis
of void regions it should be possible to reinstate some of the lost

information. As we have shown, voids with radii R > 5Mpch™!
behave very linearly in the sense that they are well described by
the Zel’dovich approximation. Accessing these smaller scales would
therefore provide a significant gain, since halving a length scale
allows fitting eight times as many modes into the same volume
of space, significantly increasing the statistical power. Identifying
such voids requires deep data with a sufficiently high density of
tracers, but our analysis suggests there is indeed a window where
void techniques could give access to small-scale information in the
linear regime. Because of the near-linearity, the void profile must
retain considerable sensitivity to the correlation function on scales
that are even somewhat smaller than the effective radius. However,
detailed study of the information content is beyond the scope of this
work.

Both anti-haloes and zobov voids can be used to access the
information in this regime, provided a suitable cut on radius is
included. Anti-haloes retain the advantage of a dynamical description
that links their abundance and properties to well-studied excursion
set methods. However, a drawback is that they are more difficult than
watershed voids to identify in observational data.

This will change in the near future due to the development of
powerful methods such as borg (Jasche & Wandelt 2013; Jasche &
Lavaux 2019) that directly fit cosmological simulations to present-
day structures traced by galaxies. borg yields 3D, probabilistic
dynamical reconstructions of the large-scale structure underlying
galaxy surveys, which can be rewound back to the initial conditions
(Leclercq et al. 2015a; Leclercq, Jasche & Wandelt 2015b; Desmond
etal. 2018; Schmidtetal. 2019). Such a setting would allow ‘inverted’
simulations to be run starting from initial conditions corresponding
to cosmological realizations of our own Universe, allowing the
identification of anti-haloes within the galaxy survey that was recon-
structed. In future work, we will explore this possibility, investigating
its potential to produce a pure catalogue of regions that are still
undergoing linear evolution in the late-time Universe.

MNRAS 500, 4173-4180 (2021)
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