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This paper is concerned with the interaction of vertically-sheared currents with two-
dimensional flexural-gravity waves in finite depth. A third-order Stokes expansion is
carried out and fully nonlinear computations are performed for symmetric, steadily
travelling waves on a linear shear current. For upstream periodic waves, two global bi-
furcation mechanisms are discovered. Both branches bifurcate from infinitesimal periodic
waves, with one stopping at another infinitesimal wave of different phase speed, and the
other terminating at a stationary configuration. Generalised solitary waves are found
for downstream waves. More surprisingly, the central pulse of the generalised solitary
wave can become wide and flat as the computational domain is enlarged. This provides
strong evidence for the existence of wave fronts in single-layer free-surface waves. Particle
trajectories and streamline structures are studied numerically for the fully nonlinear
equations. Two patterns, closed orbits and pure horizontal transports, are observed for
both periodic and solitary waves in moving frames. The most striking phenomenon is the
existence of net vertical transport of particles beneath some solitary waves due to wave-
current interactions. The streamline patterns alternate between net vertical transport
and closed orbit resulting in the formation of a series of nested cat-eye structures.
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1. Introduction

There has been a long-standing scientific interest in flexural-gravity waves (also called
hydroelastic waves in the literature) due to their importance for marine structures and sea
transport. Flexural-gravity waves resulting from the interaction between moving fluids
and deformable sheets have a wide range of applications in the polar regions where
large floating ice sheets are used as roadways and landing strips. More recently, very
large floating structures, such as floating airports (e.g. the Maga-Float project in Tokyo)
and ultra-large merchant container vessels were thought to be environmentally friendly
and self-sustained for converting ocean waves into energy. A better understanding of
large-scale fluid-structure interactions, including flexural-gravity waves, is of fundamental
importance in the process of building and utilizing these engineering structures.
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The study of flexural-gravity waves was initiated by Greenhill (1886, 1916) who
obtained the dispersion relation of this new type of waves and proposed the first prac-
tical application. Thereafter, flexural-gravity waves and their applications in marine
engineering received growing attention from the scientific community. Research findings
before the 1990s, most of which are based on linear theories, are summarised in the
monograph by Squire et al. (1996). Observations of intense waves-in-ice events reported
by Marko (2003) indicate that nonlinearity may play an important role. The first
mathematical result on nonlinear flexural-gravity waves was the computation of large-
amplitude periodic waves carried out by Forbes (1986) via a high-order series truncation
method. However, a key motivation to study nonlinear flexural-gravity waves is the
generation of waves as a load moves on an ice cover. The linear theory shows that
there exists a critical speed cmin such that if the speed of the moving load is close to
cmin, energy can hardly radiate away from the load. Although the linear theory identifies
the critical speed, it fails to describe accurately the wave phenomenon near cmin since it
predicts unlimited growth of wave amplitudes. Părău & Dias (2002) first performed the
weakly nonlinear normal-form analysis for both free and forced problems near cmin which
showed the existence of envelope solitons in shallow fluids that are qualitatively similar
to the experimental measurements carried out at Lake Saroma in Hokkaido (Takizawa
1988). However, their analysis and numerics cannot be generalised to the deep-water case,
though a similar critical phenomenon was observed at McMurdo Sound in Antarctica by
Squire et al. (1988). Milewski et al. (2011) revisited the problem and showed numerically
from the full Euler equations that even though small amplitude localised traveling-wave
solutions are not predicted to exist in deep water by standard perturbation analyses,
they do occur along a new type of bifurcation branch.
All the aforementioned nonlinear analyses are based on the nonlinear Kirchhoff-Love

plate theory, which has been widely used but does not have a clear conservation form for
the elastic potential energy. Most recently, Toland (2007) proposed a model for plates
based on the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypotheses, with
the elastic energy being the total squared curvature. Since then, nonlinear flexural-gravity
waves with the Toland elastic model have attracted intensive attention. Of interest are
the works of Guyenne & Părău (2012, 2014) who searched for hydroelastic solitary waves
for the full Euler equations using the boundary integral method and performed unsteady
simulations by truncating the Dirichlet-Neumann operator in arbitrary depth, Gao &
Vanden-Broeck (2014) who investigated the elevation generalised solitary waves in finite
depth, Gao et al. (2016) who studied the stability and dynamics of solitary waves for
the fully nonlinear equations via a time-dependent conformal mapping technique, and
Trichtchenko et al. (2019) who carried out the linear spectral analysis for periodic waves
using the Fourier-Floquet-Hill method and compared the results with those obtained by
a modulational instability analysis.
Satellite measurements of ice cover displacements induced by moving vehicles reported

by Sanden & Short (2017) stress the need for continued efforts in the research of three-
dimensional fully localised flexural-gravity waves, known as lumps. The nonlinear elastic
model in three dimensions was proposed by Plotnikov & Toland (2011) using the Will-
more functional (namely the total squared mean curvature). Milewski & Wang (2013)
derived the Benney-Roskes-Davey-Stewartson system in the vicinity of the minimum
of the phase speed to predict the existence and elucidate the bifurcation mechanism of
hydroelastic lumps. Recently, hydroelastic lumps were found numerically for the full Euler
equations by Trichtchenko et al. (2018) using a boundary integral equation method.
The results mentioned above were obtained for irrotational flows. However, sea surface

waves are commonly accompanied by underlying currents, and sometimes the current
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speed varies with depth (e.g. tidal currents and wind-driven currents). Early numerical
works in this direction were carried out by Simmen & Saffman (1985); Teles Da Silva &
Peregrine (1988); Milinazzo & Saffman (1990); Vanden-Broeck (1994) who computed
surface gravity waves for the fully nonlinear equations with constant vorticity. Recently,
the cubic nonlinear Schoödinger equations was derived by Thomas et al. (2012) for pure
gravity waves and by Hsu et al. (2018) for capillary-gravity waves to investigate the
modulational instability of wave trains propagating on a linear shear current. Curtis et al.
(2018) expanded the primitive equation to the next asymptotic order to obtain the Dysthe
equation with constant vorticity and investigated the motion and mean properties of
particle paths. In addition, Hsu et al. (2016) extended the Stokes expansion to capillary-
gravity waves and paid particular attention to the effect of vorticity on the phase velocity,
wave profile andWilton-type waves. On the theoretical side, the wave-current interactions
have received great attention since the pioneering work by Constantin & Strauss (2004)
on local and global bifurcations of periodic gravity waves propagating on an arbitrary
vorticity distribution. Subsequent researches focus on particle paths and flow structures
beneath free surface waves in the presence of vorticity. The interested reader is referred to
Ehrnström & Villari (2008); Matioc (2014); Wahlén (2009) and the references therein
for more details.

There are relatively fewer studies on the interaction between an underlying current
and flexural-gravity waves. This is a special kind of wave-current-structure interaction.
Peake (2001, 2004) considered the nonlinear stability and the dynamics of a fluid-loaded
elastic plate interacting with a mean flow using the method of multiple scales. He showed
that the interaction gives interesting phenomena including negative energy waves and
convective instability. Xia & Shen (2002) studied flexural-gravity waves in river channels
in the presence of a mean flow, and derived the fifth-order Korteweg-de Vries equation
in the weakly nonlinear shallow-water regime. Bhattacharjee & Sahoo (2009) examined
the effect of underlying shear currents on flexural-gravity waves in the linear shallow-
water approximation. Wave scattering and trapping by jet-like shear currents were both
analysed. For hydroelastic waves with constant vorticity, a cubic nonlinear Schrödinger
equation was derived by Gao et al. (2019), together with equations in the resonant
cases. Fully nonlinear computations of solitary waves and the study of Benjamin-Feir
instabilities were carried out to validate the weakly nonlinear models and to extend
their results. Based on the same physical setting (a schematic is shown in Figure 1), we
focus in the present paper on asymptotics, global bifurcations, new steady solutions, and
particle trajectories in both periodic and solitary waves, as well as flow structures beneath
solitary waves. The numerical computations used in this paper to solve the fully nonlinear
equations rely on a conformal mapping method. This is similar to the approaches of Choi
(2009) who studied the influence of a linear shear current on the Benjamin-Feir instability
of a gravity wave train, and of Ribeiro et al. (2017) who investigated the flow structure
as multiple stagnation points appear due to wave-current interactions.

The outline of the paper is as follows. The mathematical formulation of the problem is
given in §2. The results for symmetric, periodic, and steadily travelling waves, including
the third-order Stokes expansion, global bifurcations, generalised solitary waves and
wave fronts, and particle trajectories, are presented in §3. The numerical results for
solitary waves are shown in §4, with particular attention paid to particle paths and
streamline patterns beneath the free surface. Finally, §5 contains our conclusions and
further remarks.
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elastic sheet

Figure 1. Sketch of the flow configuration.

2. Governing Equations

We consider a two-dimensional incompressible and inviscid fluid of finite depth h cov-
ered by an elastic sheet that provides a restoring force through its bending deformation.
We introduce Cartesian coordinates with the x-axis along undisturbed elastic sheet and
the z-axis directed vertically opposite to gravity. In non-perturbed states, the flow is
assumed to be a shear current varying linearly in z, namely U(z) = U0 + Ω0z where
U0 and Ω0 are both constants and Ω0 is called the vorticity strength. There exists a
frame of reference where the velocity vanishes at the undisturbed free surface, therefore
without loss of generality, we can let U0 = 0 throughout the paper. Flow perturbations
superimposed on the shear are assumed to be irrotational with a potential function φ.
Therefore the governing equations of the problem are

φxx + φzz = 0 for − h < z < η , (2.1)

ηt − φz + (φx +Ω0η)ηx = 0 at z = η , (2.2)

φt +
1

2
|∇φ|2 + gη +Ω0ηφx −Ω0ψ +

p

ρ
= 0 at z = η , (2.3)

φz = 0 at z = −h , (2.4)

where η(x, t) is the elevation of the elastic sheet, ρ the density of the fluid, p the pressure
at the top surface, and g the acceleration due to gravity. We denote by ψ the stream
function satisfying the Cauchy-Riemann equations ψz = φx and ψx = −φz . Following
Toland (2007), the pressure across the elastic sheet is assumed to be

p = Pa +D

(
∂ssκ+

κ3

2

)
, (2.5)

where Pa is atmospheric pressure, D the flexural rigidity, κ = ηxx/(1 + η2x)
3/2 the

curvature of the sheet, and s the arclength parameter with ∂s = ∂x/
√
1 + η2x.

We study longitudinal progressive waves translating at a constant wave speed c. Waves
become steady in a reference frame moving with the speed c and the kinematic boundary
condition can be written as

ψ +
1

2
Ω0η

2 − cη = const or (φx +Ω0η − c) ηx − φz = 0 . (2.6)

The pressure equation at z = η can be recast as

1

2

[
(φx +Ω0η − c)2 + φ2z

]
+ gη +

D

ρ

(
κ3

2
+ ∂ssκ

)
= B , (2.7)
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where B is the Bernoulli constant. It is noted that the bulk equation (2.1) and the bottom
condition (2.4) are unchanged by changing the reference frame.

3. Periodic Waves

3.1. Stokes expansion

An exact solution of Equations (2.1), (2.4), (2.6) and (2.7) is

φ = cx , ψ = cz , η = 0 , B =
c2

2
, (3.1)

which is simply a uniform stream with velocity c and an undisturbed flat free surface.
Non-trivial travelling waves can be obtained by perturbing the solution (3.1). To achieve
this we introduce a small parameter ε, which is a measure of the amplitude of the wave,
and write the expansions

φ = cx+ εφ1(x, z) + ε2φ2(x, z) + ε3φ3(x, z) + · · · , (3.2)

η = εη1(x) + ε2η2(x) + ε3η3(x) + · · · , (3.3)

c = c0 + εc1 + ε2c2 + ε3c3 + · · · , (3.4)

B = B0 + εB1 + ε2B2 + ε3B3 + · · · , (3.5)

where B0 = c20/2 and a precise definition of ε will be given later. This expansion was
pioneered by Stokes (1847) for pure gravity waves, now bearing the name of the Stokes
expansion. It was generalised to capillary-gravity waves by Wilton (1915) and to flexural-
gravity waves by Vanden-Broeck & Părău (2011). In the presence of a linear shear
current, the Stokes expansion was carried out by Kishida & Sobey (1988) for gravity
waves and by Hsu et al. (2016) for capillary-gravity waves.
The difficulty due to the unknown free surface can be overcome by writing the potential

function on the free surface as a Taylor series

φ(x, η) = φ(x, 0) +
∂φ

∂z
(x, 0)η +

1

2

∂2φ

∂z2
(x, 0)η2 + · · · ,

and expanding the kinematic and dynamic boundary conditions around z = 0. Substitut-
ing the various expansions into Equations (2.1), (2.4), (2.6) and (2.7) and equating the
powers of ε lead to a succession of linear systems. The linear system obtained at order ε
reads

φ1,xx + φ1,zz = 0 for − h < z < 0 ,

c0η1,x + φ1,z = 0 at z = 0 ,

(g −Ω0c0)η1 − c0φ1,x +
D

ρ
η1,xxxx = B1 − c0c1 at z = 0 ,

φ1,z = 0 at z = −h .

If we assume a periodic surface elevation with a fundamental wavenumber k, the solution
to this system takes the form

η1 = A11 cos(kx) , φ1 = c0A11

cosh(k(z + h))

sinh(kh)
sin(kx) ,

with B1 = c0c1 where c0 satisfies the linear dispersion relation

k coth(kh)c20 +Ω0c0 −
(
g +

D

ρ
k4
)

= 0 , (3.6)
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and c1 will be determined at the next order in ε.
At the second order in ε, we have the following sequence of equations

φ2,xx + φ2,zz = 0 for − h < z < 0 ,

c0η2,x + φ2,z = −c1η1,x + Ω0η1η1,x + η1,xφ1,x − η1φ1,zz at z = 0 ,

(g −Ω0c0)η2 − c0φ2,x +
D

ρ
η2,xxxx = B2 −

c21
2

− c0c2 +Ω0c1η1

−
1

2
Ω2

0η
2

1 −
1

2
φ21,x −

1

2
φ21,z + c1φ1,x −Ω0η1φ1,x + c0η1φ1,xz at z = 0 ,

φ2,z = 0 at z = −h .

Eliminating the secular term yields c1 = 0 and hence B1 = c0c1 = 0. Solving for other
modes yields

η2 = A22 cos(2kx) , φ2 = C22 cosh(2k(z + h)) sin(2kx) ,

B2 = c0c2 +
1

4

[
Ω2

0 + 2kΩ0c0 coth(kh) +
k2c20

sinh2(kh)

]
A2

11 ,

where

A22 =
coth(2kh)c0F22 +G22

g + 16Dk4/ρ−Ω0c0 − 2k coth(2kh)c2
0

,

C22 =
(g + 16Dk4/ρ−Ω0c0)F22 + 2kc0G22

2k sinh(2kh) [g + 16Dk4/ρ−Ω0c0 − 2k coth(2kh)c2
0
]
,

with

F22 = −
[
kΩ0

2
+ c0k

2 coth(kh)

]
A2

11 ,

G22 = −
1

4

[
Ω2

0 + 2c0k coth(kh)Ω0 + c20k
2 coth2(kh)− 3c20k

2

]
A2

11 .

It is noted that the Stokes expansion is valid provided that the denominators of A22 and
C22 are non-zero. However, if

g + (jk)4D/ρ−Ω0c0 − (jk) coth(jkh)c20 = 0 for j #= 1 ,

then the expansion needs to be modified to include two modes: k and jk (the interested
reader is referred to Vanden-Broeck & Părău (2011) for more details). This was first
achieved by Wilton (1915) for capillary-gravity waves who provided evidence for the
non-uniqueness of periodic water waves.
In the same vein, by collecting the terms of O

(
ε3
)
we obtain

φ3,xx + φ3,zz = 0 for − h < z < 0 ,

c0η3,x + φ3,z = −c2η1,x +Ω0η1,xη2 +Ω0η2,xη1 − φ1,zzη2

−φ2,zzη1 −
1

2
φ1,zzzη

2

1 + φ1,xη2,x + φ2,xη1,x + φ1,xzη1,xη1 at z = 0 ,

(g −Ω0c0)η3 − c0φ3,x +
D

ρ
η3,xxxx = B3 − c0c3 +Ω0c2η1 −Ω2

0η1η2

−φ1,zφ2,z − φ1,zφ1,zzη1 + c2φ1,x −Ω0φ1,xη2 −Ω0φ2,xη1 − φ1,xφ2,x

−Ω0φ1,xzη
2

1 + c0φ1,xzη2 − φ1,xφ1,xzη1 + c0φ2,xzη1 +
1

2
c0φ1,xzzη

2

1 at z = 0 ,
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φ3,z = 0 at z = −h .

Eliminating the secular term yields

c2 =

{[
2Ω2

0 + 4c0kΩ0 coth(kh) +
2c20k

2

sinh2(kh)

]
A22 +

[
3c0k

2Ω0

+ 4c20k
3 coth(kh)

]
A2

11 + 4
[
2c0k

2 cosh2(kh) coth(kh) (3.7)

+ kΩ0 cosh(2kh)
]
C22

}/[
4Ω0 + 8c0k coth(kh)

]
.

Solving for non-resonant modes gives

η3 = A33 cos(3kx) ,

φ3 = C31 sin(kx) cosh(k(z + h)) + C33 sin(3kx) cosh(3k(z + h)) ,

where

C31 =
c2A11 − 3

8
k2c0A3

11 − 1

2
kc0A11A22 coth(kh)− kA11C22 cosh(2kh)− 1

2
Ω0A11A22

sinh(kh)
,

A33 =
coth(3kh)c0F33 +G33

g + 81k4D/ρ−Ω0c0 − 3k coth(3kh)c2
0

,

C33 =
(g + 81k4D/ρ−Ω0c0)F33 + 3kc0G33

3k sinh(3kh) [g + 81k4D/ρ−Ω0c0 − 3k coth(3kh)c2
0
]
,

with

F33 = −
3

2

[
kΩ0 + c0k

2 coth(kh)
]
A11A22 −

3

8
c0k

3A3

11 − 3k2 cosh(2kh)A11C22 ,

G33 = −
Ω2

0

2
A11A22 −

kΩ0

4

[
c0kA

2

11 + 2c0 coth(kh)A22 + 4 cosh(2kh)C22

]
A11

+
c0k2

8

[
16 sinh(2kh)C22 − 8 coth(kh)C22 + c0k coth(kh)A

2

11 + 4c0A22

]
A11 .

In addition, B3 = c0c3 and the next order of ε gives B3 = c3 = 0.
Upon noticing that

η(x) = εA11 cos(kx) + ε2A22 cos(2kx) + ε3A33 cos(3kx) + · · ·

we denote by a the first Fourier coefficient of η(x), i.e.

a =
2

λ

∫ λ/2

−λ/2
η(x) cos(kx) dx = εA11 .

Following Vanden-Broeck (2010), if we define the parameter ε as ε = a
λ , it then follows

that A11 = λ.
In the discussion above, we carried out the Stokes expansion to the third order, which

results in a correction to the linear speed of wave propagation since c1 = 0 and c2 #= 0.
This procedure was previously applied by Kishida & Sobey (1988) and Hsu et al. (2016)
in different contexts. As a check we compare c2 with the value of Hsu et al. (2016) when
only gravity is considered (i.e. taking p = constant in (2.3)). It turns out that, under this
circumstance, (3.7) can be reduced to

c2 =
kc20

8 [2 +Ω0σ]

[
Ω4

0

k4c4
0

+

(
6 + 2σ2

)
Ω3

0

k3c3
0
σ

+

(
15 + 3σ2

)
Ω2

0

k2c2
0
σ2
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+

(
18− 4σ2 + 2σ4

)
Ω0

kc0σ3
+

9− 10σ2 + 9σ4

σ4

]
, (3.8)

where σ = tanh(kh) and we have used 1/k, Ω0

√
gk, and c0

√
g/k to replace A11, Ω0, and

c0 respectively for comparison purpose. The expression (3.8) is exactly the same as (3.32)
in Hsu et al. (2016) when surface tension is neglected, providing a partial verification
for our calculation.

3.2. Validation

We start with comparing the asymptotic results of the Stokes expansion with numerical
solutions of the full Euler equations. To seek travelling waves for Equations (2.1)–(2.4),
we first non-dimensionalise the system by choosing

[
D

ρg

]1/4
,

[
D

ρg5

]1/8
,

[
gD3

ρ3

]1/8

as the units of length, time, and potential respectively. Therefore the coefficients g and
D/ρ are equal to one in Equation (2.7) and Ω0 in Equations (2.6) and (2.7) can be
replaced by a non-dimensional vorticity strength Ω defined as

Ω =

(
D

ρg5

)1/8

Ω0 .

Following Gao et al. (2019), the problem can be handled by using a conformal transfor-
mation which maps the physical fluid domain to a strip in a complex plane. For travelling
waves, after the transformation the unknown free surface can be parameterised by η(ξ),
which satisfies an integro-differential equation

1

2J

(
Ωηxξ +ΩT [ηηξ]− c

)2

+ η +
1

2

[
κξξ
J

+
(κξ
J

)

ξ
+ κ3

]
= B , (3.9)

where xξ = 1 − T [ηξ], J = x2
ξ + η2ξ is the Jacobian of the map, and the curvature κ in

the new plane is of the form

κ =
ηξξxξ − xξξηξ

J3/2
. (3.10)

It is noted that the translating speed c and the Bernoulli constant B are also unknowns
and need to be determined together with η(ξ). The detailed derivation of Equation (3.9)
can be found, for example, in Gao et al. (2019). The pseudo-differential operator T is
defined as

T [f ] =
1

2h̃

∫ λ/2

−λ/2
f(ξ′) coth

[
π

2h̃
(ξ′ − ξ)

]
dξ′ , (3.11)

where λ is the wavelength and h̃ is the thickness of the fluid in the transformed plane
defined as

h̃ = h+
1

λ

∫ λ/2

−λ/2
η(ξ)dξ . (3.12)

We approximate η(ξ) by the truncated Fourier series

η(ξ) =
N∑

n=−N

ane
i2πnξ/λ , (3.13)

where an are real and an = a−n due to symmetry. We introduce collocation points
uniformly distributed along the ξ−axis. This provides discrete algebraic equations by
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Figure 2. Comparison of surface profiles between the Stokes theory and numerical solutions
of the fully nonlinear equations. The computed solutions are shown by solid lines, and the
third-order approximate solutions are plotted by dashed lines. (a) Wave profiles when the
parameters are chosen as h = 5, λ = 4π, Ω = 1 with ε = 0.0118 (top) and ε = 0.0444
(bottom). (b) Wave profiles when the parameters are chosen as h = 1, λ = 4π, Ω = 7 with
ε = 0.0275 (top) and ε = 0.0565 (bottom).

projecting (3.9) onto each Fourier mode. The equations are solved by Newton’s method
with the classical pseudo-spectral algorithm. To obtain solutions with high accuracy, a
large number of Fourier modes is used in the computation (typically 1024 modes are
sufficient for periodic waves) and solutions are considered exact if increasing the number
of Fourier modes does not change the solutions within graphical accuracy. The solution
was considered to have converged when the l∞−norm of the residual error is less than
10−10.
The parameter space consists of four dimensionless parameters: the vorticity strength

Ω, the fluid depth h, the wave speed c, and the wavelength λ (or, equivalently, the
wavenumber k). To obtain more solutions or complete bifurcation curves, we use con-
tinuation methods where one previously computed solution is used as an initial guess to
compute a new solution for slightly perturbed values of the parameters. The validity and
accuracy of such schemes have been checked by several groups, and the interested reader
is referred to Vanden-Broeck (1994); Choi (2009); Gao et al. (2019) and references
therein for more details.
We now use both numerical results for the full Euler equations and asymptotic

predictions from the Stokes expansion to compare periodic travelling-wave solutions. The
asymptotic solutions can be obtained by substituting the expressions of φi, ηi, ci and Bi

into (3.2)-(3.5), choosing A11 = λ, and varying the value of ε. Figure 2 illustrates the
comparison between the asymptotic and numerical solutions for different values of ε. As
expected the difference between asymptotic predictions and numerical results increases
as the wave steepness increases. As opposed to downstream waves (Ωc > 0 shown in
2a), steeper waves exist in the upstream case (Ωc < 0 shown in 2b), and the third-order
approximation still works well for moderate-amplitude waves. It is observed that the
downstream waves have a flat and wide crest while the upstream waves feature a narrow
crest.
To second order the Stokes expansion predicts that the wave speed is independent

of the wave amplitude since c1 = 0. At third order, the asymptotic expansion gives a
correction c2 to the linear phase velocity. In Figure 3, wave speeds predicted by the third-
order Stokes theory (dashed lines) and the fully nonlinear numerical computations (solid
lines) are compared. Six solution branches for various values of Ω are presented. It is
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Figure 3. Speed-amplitude diagram for different values of Ω. The figure shows the comparison
of the wave speed between the Stokes theory and the numerical solutions of the fully nonlinear
equations. The computed solutions are shown by solid lines, and the third-order approximate
results are given by dashed lines. The parameters are chosen as h = 4, λ = 4π. From top to
bottom, Ω = −2, −1, 0, 0.5, 1 and 2, and the wave slopes of the computed solutions (defined
by 2[η(0)− η(λ/2)]/λ) at the termination points read 0.1273, 0.1464, 0.0875, 0.1194, 0.1210 and
0.1114 respectively.

shown that the asymptotic wave speeds match the numerical results very well for small-
and moderate-amplitude waves. We stop continuing the branches when Newton’s method
diverges or oscillates and fails to reach the desired accuracy. Wave profiles corresponding
to the right endpoints of these curves are presented in Figure 4, where the numerical
results are shown as solid lines and the asymptotic predictions are shown as dashed lines.
In general, the Stokes expansion works well for moderate-amplitude waves except the case
of zero vorticity, where the third-order solution is a poor approximation of the numerical
solution as shown in Figure 4c. If we check the denominator of A22, it is found that
1 + 16k4 − 2 coth(2kh)c20 ≈ −0.05 and the situation is very close to resonant harmonics
or Wilton ripples, which explains the poor performance of the Stokes expansion in such
a case.

3.3. Global bifurcation

In this subsection we study the global bifurcation of periodic waves of the fully
nonlinear equations. To avoid taking into account the effects of all the parameters, we fix
Ω, h and k where Ω is chosen to be non-zero to include vorticity effects, and explore the
wave speed-amplitude relationship. We start from the flat state and compute a branch of
solutions until it returns to a trivial or stationary solution, termed a global bifurcation in
the current paper. It is obvious that changing the signs of Ω and c simultaneously in (3.9)
results in the same equation, hence we only need to consider positive Ω. Furthermore,
numerical evidence shows that the profiles and the bifurcations are much richer for
upstream waves (waves propagating against the background shear). Therefore we choose
Ω > 0 and c < 0 in the following numerical calculations.
A small-amplitude monochromatic wave with propagating speed satisfying the linear

dispersion relation is used as the initial guess for Newton’s method. After iterating to
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Figure 4. Wave profiles corresponding to the right endpoints of the curves shown in Figure 3.
The computed solutions are shown by solid lines and the third-order approximate results are
plotted by dashed lines for h = 4, λ = 4π, and (a) Ω = −2, ε = 0.0318; (b) Ω = −1, ε = 0.0365;
(c) Ω = 0, ε = 0.023; (d) Ω = 0.5, ε = 0.0285; (e) Ω = 1, ε = 0.0285; (f) Ω = 2, ε = 0.0249.

a solution of the nonlinear integro-differential equation (3.9) within a desired tolerance,
a continuation method is used to search for more solutions along the same branch by
perturbing the previously computed solution by a small amount in some bifurcation
parameter. The translating speed c, the value of the centre point of the free-surface
displacement η(0), and the wave amplitude which is defined as

H := η(0)− η(λ/2)

are used as bifurcation parameters to complete the bifurcation curves. It is noted that
solutions with an overhanging structure are allowed in our computations due to the
formulation of water waves in holomorphic coordinates. We stop the computation when
solution reaches the boundary of the speed-amplitude diagram (i.e. the wave becomes
either a free stream or a stationary profile).
An example of a global bifurcation branch of waves, which terminates in one endpoint

at c = 0 and another atH = 0, is shown in Figure 5. We start from small-amplitude waves
and increase H to trace the branch. Then η(0) is used as the continuation parameter
to traverse the very sharp turning point labeled 2© on the curve. Finally, we vary the
wave speed to complete the bifurcation diagram. The most striking phenomenon observed
in this example is the closing of the overhanging structure and its reopening. Akers et
al. (2016, 2017) numerically investigated the global bifurcation of interfacial hydroelastic
waves based on the Birkhoff-Rott integral and arclength parameterisation. Their formula-
tion for water-wave problems also allows multi-valued wave profiles. However they had to
stop the computation at a limiting configuration where a self-intersecting point appears,
enclosing a pendant-shaped bubble. In this situation, in contrast to their results, we can
still continue the branch by changing some bifurcation parameter (speed or amplitude)
taking advantage of conformal mapping, even though solutions with multiple intersecting
points are non-physical (see 3© in Figure 5).
A global bifurcation curve can connect two trivial solutions with different propagating

speeds. It is shown in Figure 6 that a branch of waves with a wavelength of π (dashed
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Figure 5. Amplitude-speed bifurcation diagram for periodic waves with h = 5, λ = 2π and
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amplitude (labeled with stars) and intersect each other at point 4©, where they have exactly the
same wave profiles.
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Figure 7. Typical wave profiles correspond to 1© to 5© shown in Figure 6. The solid curves in
(a-d) correspond to 1©- 4© respectively. 5© is shown by a dashed curve in (c), which is the same
as 3© except for a phase shift of 2π. The π-period solution on the dashed curve at point 4© in
Figure 6 is shown by circles in (d), which exactly matches the 4π-solution.

line) intersects with the 4π-period branch (solid line) at point 4© on the curve. Following
the path 1©– 4© and starting from point 1©, Figure 7 provides a sequence of profiles that
illustrate how a profile with four crests gradually emerges. We compute the solution with
the period of π at the same speed (circles in Figure 7d), which is exactly on top of the
4π-solution (solid line in Figure 7d) confirming our observations. It is also found in Figure
6 that the 4π-period branch forms a closed loop. Waves on the half branch are the same
as those on the other half but with a phase shift of 2π. One and a half periods of solutions
3© and 5© are plotted together in Figure 7c to clearly demonstrate the phenomenon of
phase shift.

3.4. Generalised solitary waves and fronts

Generalised solitary waves are nonlinear non-periodic travelling waves with a central
core similar to a classical solitary pulse and a non-decaying train of ripples extending
up to infinity. Generalised solitary waves were previously computed by, among others,
Hunter & Vanden-Broeck (1983); Champneys et al. (2002) for capillary-gravity waves
and by Gao & Vanden-Broeck (2014) for flexural-gravity waves, and all the computations
were carried out in periodic domains (in other words the generalised solitary waves were
approximated by long periodic waves in numerics). Proofs of the existence of generalised
capillary-gravity solitary waves were provided by Beale (1991) and others.
We now compute periodic waves with non-decaying oscillatory tails akin to generalised

solitary waves for downstream flexural-gravity waves. We take a long small-amplitude
cosine function (k ≈ 0.1 say) as the initial guess for the Newton-Raphson iteration and
use the amplitude or speed as the bifurcation parameter. As the amplitude increases,
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Figure 8. Numerical evidence for the existence of generalised solitary waves. The parameters
are chosen as h = 10, Ω = 2. (a) λ = 96.96, c = 0.5180 (thick line) and λ = 127.19, c = 0.5358
(thin line). (b) λ = 132.28, c = 0.4766 (thick line) and λ = 209.44, c = 0.4346 (thin line). (b)
shows the broadening of the central core leading to a table-top structure.

the solution gradually approach the configuration of a solitary pulse in the middle with
several periodic waves in the tails (see Figure 8). Further numerical experiments show
that the algorithm appears to converge well if we add more and more oscillations to the
obtained profile as the initial guess. It is shown in Figure 8a that the profile obtained for
the wavelength λ = 96.96 is almost exactly on top of the profile for λ = 127.19, which
provides a strong evidence for the existence of true generalised solitary waves.
On the other hand, when we use the wavelength as the bifurcation parameter, the

broadening phenomenon of the central core is found. It is observed in Figure 8b that the
central core is flat and becomes broader as λ increases. This solution can even serve as a
good approximation for a true solitary wave if we split the wave profile down the middle
and glue two endpoints together considering the periodic nature of the computational
domain (see Figures 9a and 9b). As we enlarge the domain, the coexistence of the two
phenomena, the increase in the number of periodic waves in tails and the broadening of
the main core, implies the existence of wave fronts, which were previously only found in
interfacial waves in multi-layer fluid systems.
Wave fronts in hydrodynamics often occur in the flow of contiguous homogeneous fluids

of different densities, which are usually called internal fronts. Interfacial gravity solitary
waves under the rigid lid approximation were computed by Turner & Vanden-Broeck
(1988), and the most striking feature found in their work is the broadening of the wave,
namely the midsection of the interface develops a plateau which becomes infinitely long
when the wave speed approaches a limiting value. This numerical result provides evidence
for fronts since broad solitary waves can be viewed as the superposition of two fronts.
Dias & Vanden-Broeck (2003) later showed that in the limiting configuration, the flow in
the far field and the flow in the middle can be referred to as parallel conjugate flows, and
the wave indeed becomes a front. Fochesato et al. (2005) proposed a coupled Korteweg-
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Figure 9. Solitary waves with oscillating pulse and wave fronts with various sets of parameters.
For h = 5 and Ω = 3, small-amplitude solutions are shown in (a,c), while moderate-amplitude
solutions are shown in (b,d). The computational domains and wave speeds are listed as follows:
(a) λ = 604.15, c = 0.3237 (thick line) and λ = 604.15, c = 0.3268 (thin line); (b) λ = 314.16,
c = 0.2 (thick line) and λ = 314.16, c = 0.2038; (c) λ = 339.63, c = 0.3237 (thick line) and
λ = 502.65, c = 0.3338 (thin line); (d) λ = 223.60, c = 0.2 (thick line) and λ = 276.79, c = 0.2593
(thin line).

de Vries system for multi-layer fluids to combine generalised solitary waves and fronts,
and they found ripples can appear on one side of the wave front.
According to the above argument, we consider these solutions as solitary waves with

many oscillations in central core. And in Figure 9, the possibility of an increase in the
number of ripples in the midsection of solitary waves is shown for both small- and
moderate-amplitude solutions (see 9a and 9b). More obviously, if we consider half of
the solutions, Figures 9c and 9d provide strong evidence for the existence of wave fronts,
since both flat tails and oscillations in the center can be extended. The wave profiles
shown in Figures 8 and 9 are qualitatively similar to the travelling dispersive shock waves
(TDSWs) found by Hoefer et al. (2019); Sprenger & Hoefer (2017, 2020) in the fifth-
order Korteweg-de Vries equation and related models. As pointed out in their papers,
TDSWs feature a partial nonmonotonic solitary wave at the trailing edge connected with
a periodic travelling wave train, and can be interpreted as nonlinear resonance between
different types of nonlinear waves moving with the same speed. However, to the best of
authors’ knowledge, this is the first time to report wave fronts in the free-surface Euler
equations.

3.5. Particle trajectories

In this subsection, we calculate particle trajectories numerically for the fully nonlinear
equations and compare the results with asymptotic approximations. The particle paths
under nonlinear and periodic water waves were initially considered by Stokes in his
seminal work in 1847 for irrotational flows and pure gravity waves. He showed that in
contrast to the linear theory, the particle path in the laboratory frame is not a closed
loop but features a slight forward drift in the horizontal direction after a wave period has
elapsed. This is known as the Stokes drift. A recent breakthrough on the theoretical side
of this topic was made by Constantin (2006) who generalised Stokes’ asymptotic work to
steep waves to gain a qualitative understanding of transport properties of arbitrary Stokes
waves based on a rigorous mathematical argument. However, considering the boundary
layers at the bottom and at the free surface, recirculation orbits (a phenomenon similar
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Figure 10. Particle trajectories in upstream waves for t ∈ [0, 2π/c], obtained by direct numerical
calculations of the full Euler equations (solid curve) and by the asymptotic expansion (dashed
curve) when h = 5, λ = 2π, Ω = 1. (a) ε = 0.02, H = 0.25, c = 0.99 (Euler); (b) ε = 0.04,
H = 0.5, c = 0.97 (Euler). The trajectories are shown in the laboratory frame, while the
pentagrams represent the initial positions.

to the particle dynamics of a Gerstner wave) were shown to exist by the asymptotic work
of Longuet-Higgins (1953) and the experimental research of Grue & Kolaas (2017).
The existence of closed orbits was also proved by Constantin & Strauss (2010) when an
underlying mean flow exists, which is intuitively understandable since the forward Stokes
drift can be eliminated by the counter-propagating uniform current.
When a linear sheared current is added, theoretical studies on particle paths under

periodic gravity waves were only carried out for waves of arbitrarily small amplitude
(Ehrnström & Villari 2008; Wahlén 2009). On the numerical side, Ribeiro et al. (2017)
investigated particle trajectories under nonlinear periodic travelling waves with multiple
stagnation points in a frame moving with the wave speed, and two dynamic behaviors of
fluid particles were observed: periodic transport trajectory and closed orbit.
We start by describing the numerical scheme used to trace the trajectory of a fluid

particle. In the frame of reference moving with the wave, particle trajectories can be
obtained by solving the following ordinary differential equations:

dx

dt
= φx +Ωz − c ,

dz

dt
= φz . (3.14)

For the fully nonlinear equations, the physical space can be conformally mapped to the
ξ-ζ plane and the equations in the new plane read

dξ

dt
xξ +

dζ

dt
xζ =

1

J
(xξφξ + xζφζ) +Ωz − c ,

dξ

dt
zξ +

dζ

dt
zζ =

1

J
(zξφξ + xξφζ) .

Solving for ξt and ζt yields

dξ

dt
=
φξ + (Ωz − c)xξ

J
,

dζ

dt
=
φζ − (Ωz − c)zξ

J
. (3.15)

Equations (3.15) can be integrated numerically by the fourth-order Runge-Kutta method
and particle positions off the grid points can be obtained by interpolating the mesh grid
data. Particle trajectories in a laboratory frame can be calculated by a simple Galilean
transformation.
For the first numerical computation, we compare particle paths resulting from calcu-
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Figure 11. (a) Particle trajectories of a downstream wave with parameters c = 0.35, h = 1,
λ = 2π and Ω = 2 in the moving frame. The uppermost curve is the displacement of the
free surface, and both periodic transport trajectory and closed orbit are shown beneath it.
Calculations are done in the time interval [0,λ/c] and pentagrams represent initial positions.
(b) Particle trajectories of an upstream wave for t ∈ [0, 3λ/c] with parameters c = −5.65, h = 5,
λ = 20π and Ω = 1 in the moving frame.

lations of the full Euler equations with those obtained from the asymptotic expansion.
The particle paths based on the Stokes approximation are also computed numerically
using a fourth-order Runge-Kutta method but in the physical space (Equations 3.14).
The velocity potential is given in (3.2) with appropriate φi. Two examples of particle
trajectories for upstream waves with ε = 0.02 (H = 0.25) and ε = 0.04 (H = 0.5)
are shown in Figures 10a and 10b respectively. Numerical simulations (solid curves)
and theoretical predictions (dashed curves) show a very good agreement for small-
and moderate-amplitude waves, partially demonstrating the validity of the numerical
algorithm and confirming the asymptotic findings. It is noted that in the shallow-water
regime, long-wave models can also be used to reconstruct the velocity field beneath the
free surface so as to compute particle trajectories (see Borluk & Kalisch (2012) for
particle dynamics in the KdV approximation for irrotational gravity waves).
Figure 11 shows numerical results of particle trajectories of a downstream wave in 11a

and of an upstream wave in 11b in the moving frame. Two different patterns, periodic
transport trajectories and closed loops are both found. However the figure illustrates the
difference in the location of closed orbits between downstream and upstream waves. If we
consider waves in the laboratory frame, this phenomenon actually indicates that when Ω
and c are of the same sign, the wave carries fluid particles beneath its crests, while on the
other hand, the upstream wave moves forward with fluid particles near the bottom. It is
remarked that the frequency of the particle motion in the periodic transport regime is
not uniform due to the shear current which provides a non-uniform velocity distribution
over water depth.

4. Solitary Waves

The existence and stability of hydroelastic solitary waves propagating on a linear
sheared current were investigated by Gao et al. (2019). Solitary waves were computed
numerically and envelope equations near and away from resonance were derived to assist
stability analyses. We follow their numerical techniques, and focus on the flow structure
beneath solitary waves. The algebraic decay of hydroelastic solitary waves usually requires
a long computational domain with a large number of grid points. Long periodic waves
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Figure 12. Speed-amplitude bifurcation diagrams of hydroelastic solitary waves for Ω = 1 and
h = 5, together with typical wave profiles. Waves corresponding to circles are plotted in the
physical space and the bifurcation point (c = 0.7652) is shown by a dashed vertical line. (a)
Elevation branch; (b) Depression branch.
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Figure 13. Speed-amplitude bifurcation diagrams and typical wave profiles of hydroelastic
solitary waves in upstream flows. Wave profiles corresponding to circles are plotted in the physical
space and bifurcation points are shown by dashed vertical lines. (a) Elevation branch with Ω = 3
and h = 2 bifurcates from c = −3.195. (b) Depression branch with Ω = 3 and h = 3 bifurcates
from c = −3.215.

with flat tails are usually considered to be a good approximation of solitary waves. Here
we take λ = 200 as the domain side and 4096 Fourier modes are used in most of the
computations to achieve a sufficient accuracy.
Two fundamental branches of symmetric solitary waves, including one family of waves

with a positive free-surface elevation at the centre (denoted waves of elevation) and
the other family of waves with a negative free-surface elevation at the centre (denoted
waves of depression) are shown in Figure 12 for downstream waves and in Figure 13 for
upstream waves. All the branches presented bifurcate from the minimum of the phase
speed shown by a vertical dashed line where the group velocity is equal to the phase
velocity. The interested reader is referred to Gao et al. (2019) for more details on the
bifurcation mechanism and its connection to the nonlinear Schrödinger equation. It is
noteworthy that a smooth transition between upstream and downstream solitary waves
along the same bifurcation curve is possible as the wave speed passes through zero (see
Figure 12a). Typical wave profiles are found to be similar to other wavepacket-type
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Figure 14. Typical particle trajectories in an upstream elevation solitary wave with h = 2,
Ω = 3 and c = −2.95. The upmost curve without a circle is the free-surface displacement, while
others represent particle trajectories with different starting points denoted by circles. Three
trajectory pattern are observed in the frame of reference moving with the surface wave: closed
orbit, pure horizontal transport, and net vertical displacement.

solitary waves (e.g. gravity-capillary waves in deep water). Hydroelastic solitary waves
with constant vorticity are also characterised by oscillatory decaying tails.
For hydroelastic solitary waves propagating against a non-uniform flow, particle tra-

jectories show interesting patterns in the frame of reference moving with the wave, the
most notable being the net displacement in the vertical direction indicating that the
interaction between a solitary wave and a linear shear current can result in vertical mass
transport (see Figure 14). This is not observed in periodic waves. We take the particle
on the left of the wave which experiences a net vertical displacement as an example.
First the particle is chased by the solitary wave and swept downwards. Because the shear
velocity increases with the water depth, the particle moves faster in deeper water and
finally leaves the solitary wave far behind. It is worth noting that particles can also be
swept upwards and never catch up with the solitary wave. In addition, Figure 14 shows
two other possibilities of particle trajectory patterns: closed orbits and pure horizontal
transport. We remark that the calculations are carried out for large time periods.
For a better understanding of the structure of the flow field, we plot a set of streamlines

which represent different particle paths in a time-independent system. We show the
flow structure resulting from an upstream elevation solitary wave in Figure 15a with
parameters c = −2.95, h = 2 and Ω = 3. Only the active part of the horizontal domain
near the main pulse is shown for better visibility. It turns out that in the moving frame
the flow field can be divided into three layers in which streamlines and dynamic behaviors
of fluid particles are significantly different. For convenience, thick solid lines are used to
show important streamlines separating different areas, while other streamlines are plotted
as dashed curves. In the layer between curve A and the free surface, particles overall keep
moving from left to right and oscillate when they are swept by the solitary wave and the
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Figure 15. Classification of streamlines under solitary waves with constant vorticity in the
moving frame. Thick solid lines represent boundaries between different regions. Closed orbits and
vertical-transport trajectories are intertwined and eventually form complex cat-eye structures.
(a) Streamlines beneath an upstream elevation solitary wave with c = −2.95, h = 2 and Ω = 3.
(b) Streamlines beneath an upstream depression solitary wave with c = −3.03, h = 3 and Ω = 3.

path profile is in general qualitatively similar to the wave profile. In the region between
curve B and the bottom, particles are less affected by the free surface and move from
right to left due to large horizontal speed of the shear current. In the region between
curve A and curve B, particles can either move along closed orbits or move vertically
when they are swept by the solitary wave but finally move in the opposite horizontal
direction. Under each crest of surface oscillations, there is a family of closed trajectories
which is bounded by another family of vertical-transport curves and eventually form a
series of cat-eyes nested from large to small. Besides these families of closed orbits are
located in a fluid layer where the shear speed is nearly equal to the wave speed and
the cat-eye structure gradually shrinks when it stays away from the middle pulse of the
solitary wave. Similar structures and trajectories can also be found in depression solitary
waves and a typical example is shown in Figure 15b with parameters c = −3.03, h = 3
and Ω = 3. It is remarked that closed streamlines were also computed in weakly nonlinear
models for rotational gravity waves at much lower computational costs (see, for example,
the numerical studies on the Benjamin equation by Segal et al. (2017)), however, richer
flow structures, such as nested cat eyes, can be expected in the fully nonlinear equations
and beneath complicated wave profiles.
In the subsequent analyses, we explore the conditions under which the vertical-

transport layer exists. Since there is no wave in the far field, the shear velocity should
coincide with the wave speed in the horizontal centerline of the vertical-transport layer.
It follows that the existence of vertical-transport zones requires a critical depth hc such
that −Ωhc = c. This condition is twofold: for positive Ω, c should be negative and
no vertical-transport zone exists if c < −Ωh, which provides two boundaries shown in
Figure 16, namely c = 0 and c = −Ωh (dashed lines). On the other hand, for fixed Ω
and h, there exists cmin < 0 such that hydroelastic solitary waves of the wavepacket
type can only exist for c > cmin, which gives another boundary shown as solid lines in
Figure 16 for different values of h. In the Ω − c plane for fixed h, these boundaries form
a semi-infinite region where vertical-transport zones exist (namely the right side of the
solid-dashed curve shown in Figure 16).
Figures 17–19 show how the vertical-transport layer varies when the parameter set

approaches each boundary for h = 5. Since hc decreases along with the absolute value of
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Figure 16. Parameter region for the existence of vertical-transport layer. The boundary of the
region is composed of c = 0, c = −Ωh (dashed line), and cmin (solid line). The regions are shown
in the Ω− c plane for h = 1, 2, 5 and vertical-transport layers only exist on the right side of the
solid-dashed line. Flow structures according to the dot and asterisk in the embedded figure (at
the top right-hand corner) are shown in Figures 18a and 18b respectively.
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Figure 17. Streamline patterns beneath upstream hydroelastic solitary waves in the moving
frame. Two distinct layers are observed. (a) Flow structure in an elevation wave with Ω = 1,
h = 5 and c = −0.37. (b) Flow structure in a depression wave with Ω = 1, h = 5 and c = −0.01.

c, the vertical-transport layer moves upwards. It is observed in Figure 17a that the layer of
right-going trajectories first disappears and the closer c is to zero, the thinner the vertical-
transport layer becomes (compare 17a and 17b). It turns out that the vertical-transport
layer totally vanishes as c becomes zero. Figure 18 compares the flow structures between
two parameter sets sitting on both sides of the dashed line, which correspond to the dot
and asterisk in the embedded picture of Figure 16. As hc increases, the vertical-transport
layer moves towards the bottom (18a) and completely disappears when hc exceeds the
upper bound h (18b). Finally, Figure 19 shows the trend of the vertical-transport layer
as the amplitude of the solitary wave decreases (or, equivalently, c approaches cmin). The
layer stays in the middle since hc ≈ −Ω/cmin, while the thickness of the layer narrows
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Figure 18. Streamline patterns beneath upstream hydroelastic solitary waves in the moving
frame. (a) The nested cat-eye structure is observed at the bottom with Ω = 0.31, h = 5 and
c = −1.51. (b) Ω = 0.29, h = 5 and c = −1.49.
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Figure 19. Vertical transport layer beneath upstream depression solitary waves in the moving
frame for h = 5 and Ω = 2. The zone shrinks as the amplitude of the free surface decreases. (a)
η(0) = −0.2, c = −2.6267; (b) η(0) = −0.08, c = −2.6361.

as the surface wave decreases from 0.2 to 0.08 in amplitude. Whether the middle layer
will completely disappear depends on the bifurcation mechanism of hydroelastic solitary
waves. More precisely, if the associated nonlinear Schrödinger equation is of focussing type
at cmin indicating that hydroelastic solitary waves bifurcate from infinitesimal periodic
waves (Gao et al. 2019), then the vertical-transport layer will vanish as the wave speed
reaches cmin, but not vice versa.

5. Concluding Remarks

In this paper the Stokes expansion up to third order has been carried out for flexural-
gravity waves with a constant vorticity so that the nonlinearity manifests itself not only in
the generation of higher-order harmonics but also in the correction of translating speeds.



Flexural-gravity waves with constant vorticity 23

The full Euler equations were solved numerically using a conformal mapping technique,
and travelling-wave solutions, including periodic waves, bright solitary waves and gen-
eralised solitary waves were computed. The Stokes expansion was used to validate the
numerical algorithm by comparing periodic wave profiles, as well as particle trajectories
and very good agreements were found.

Further numerical calculations for the fully nonlinear equations focussed on three
topics: global bifurcation mechanisms of periodic waves, existence of wave fronts, and
flow structures beneath solitary waves. For upstream periodic waves, we showed that the
global bifurcation includes a curve joining two infinitesimal periodic waves of different
phase speeds and a curve starting from an infinitesimal periodic wave and ending with a
stationary state (c = 0). For downstream waves, the key finding of the broadening of the
middle table-top structure of generalised solitary waves strongly suggests the existence
of wave fronts characterised in far field by a uniform state on one side and a train of
waves on the other. To the best of authors’ knowledge, it is the first example of wave
fronts discovered in the full Euler equations in single-layer fluid problems. For particle
trajectories beneath solitary waves, in the frame of reference moving with the wave,
three patterns including pure horizontal transport, net vertical displacement, and closed
orbit are possible due to wave-current interactions. For upstream waves, a nested cat-eye
structure of streamlines was observed for both elevation and depression solitary waves.

Our numerical results raise further questions. A natural question is whether or not there
are other global bifurcation mechanisms. On the theoretical side, the global bifurcation
of pure gravity waves with arbitrary vorticity was initially investigated by Constantin
& Strauss (2004). They showed three bifurcation mechanisms. Apart from two cases
presented in §3.3, an unbounded bifurcation is also a possibility. Akers et al. (2016)
and Akers et al. (2017) investigated the global bifurcation of interfacial capillary-gravity
waves and interfacial hydroelastic waves respectively, using analytical and numerical
tools. They provided some numerical evidence for the existence of unbounded bifurcation
curves on which the wave amplitude increases without limit. Therefore one can ask
whether or not there are unbounded branches of hydroelastic periodic waves propagating
on a linear shear current.

The discovery of wave fronts also introduces questions. Since all the wave-front so-
lutions were found in downstream waves in the present paper, a first question is if we
can also find wave fronts for upstream waves. With respect to the asymptotic models
for this phenomenon, the fifth-order KdV equation with nonconvex dispersion, which
admits TDSWs (Sprenger & Hoefer 2017), is a reduced model for flexural-gravity waves
in the shallow water regime for potential flows (Xia & Shen 2002). Therefore it is also
expected to be an appropriate model in the presence of a linear shear current so as to
explain the wave-front phenomenon found in this paper. A comparative study of wave-
front solutions between the asymptotic model and the primitive equations, as well as
numerical simulations of the generalised Riemann problem for the full Euler equations,
will be reported somewhere in the near future. Another direction of extension related to
TDSWs is to generalise the Whitham modulation equations (see Whitham (1974) for
details) to waves with vorticity. In order to use Whitham’s argument for slowly varying
wave trains, the Lagrangian formulation of the problem is a prerequisite. Therefore, it
is of great interest to find an explicit Lagrangian density for unsteady water waves with
vorticity and extend Whitham’s ‘averaged variational principle’ to these waves.
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