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Gerard Friedlander was the son of Austrian communist intellectuals, who divorced
when he was four. From the age of two he was raised by grandparents in Vienna,
while his mother lived in Berlin as a communist organizer. Hitler came to power in
1933; Friedlander was sent to England, aged sixteen, in 1934; two years later, he won
a scholarship to Trinity College, Cambridge. By 1940 he was a fully fledged applied
mathematician who came to embrace both the European and British traditions of
that subject. His work was marked by profound originality, by the importance of its
applications and by the mathematical rigour of his treatment. The applications of his
work changed over the years. The first papers (written in 1939 -1941 but published
only in 1946 for security reasons) were a contribution to Civil Defence: they presented
entirely new and explicit results on the shielding effect of a wall from a distant bomb
blast. The late papers were contributions to the general, more abstract theory of partial
differential equations, but, characteristically, with concrete examples that illuminated
obscure aspects of the general theory. Between these two, the middle years brought a
flowering of results about the wave equation (including results for a curved space-time)
of importance to both physicists and mathematicians.



INTRODUCTION

The first major conference in England on the modern theory of partial differential
equations took place at the University of Durham in July 1976. The membership of the
meeting consisted of twenty three celebrated experts from abroad, four master craftsmen
from England and a mixture, numbering thirty four, of young Europeans and British
mathematicians of widely varying ages and of widely varying competence in the theory.
The four master craftsmen from England were Atiyah (later Sir Michael Atiyah OM, PRS
1990 -1995), Eells, Friedlander and Friedlander’s recent pupil Melrose, but Friedlander
and Melrose were not widely known at the time.

Two Swedish giants of the subject, G̊arding and Hörmander, were there; Friedlander
and Melrose had corresponded with Hörmander, but they had not met previously.
G̊arding and Hörmander seemed surprised to find that Friedlander was fully conversant
with Hörmander’s recent work; perhaps even more surprised that this small, modest,
bearded Englishman (as they thought) had just produced, in a paper of fifteen pages,
an example that shed much light on a question that was troubling Hörmander. Those
few, among Friedlander’s colleagues, who took a close interest in his mathematics, were
not surprised.

Gerard Friedlander came to England, aged sixteen and alone, in August 1934. He
had spent his childhood in Vienna, living with grandparents while his mother, adopting
the name Ruth Fischer, promoted communist causes in Berlin. He had spent much of
the period 1929 -1934 in Berlin and, after the rise of Hitler in 1933, in Paris with his
mother and her lifelong lover Arkadij Maslow. By then Maslow was also a professional
communist; previously he had been a youthful concert pianist and then a student of
mathematics to doctoral level.

In the autumn of 1936 Gerard won a major scholarship to Trinity College, Cambridge.
He went up in October 1937 and obtained a first-class degree in Mechanical Sciences in
1939. By the end of February 1940, G.I. Taylor (FRS 1919, later Sir Geoffrey Taylor), to
whom Gerard was assistant (nominally for turbulence measurements in a wind tunnel),
had submitted to the Proceedings of the Cambridge Philosophical Society and to the
Proceedings of the Royal Society three papers by Gerard on the reflection and diffraction
of sound pulses by various obstacles.

These papers contain mathematics of astonishing virtuosity; they led to Gerard’s
election to a Fellowship of Trinity in October 1940. At the time he was interned as
an enemy alien in Canada; we defer to later pages the details of that affair and of the
confidential war work to which he was co-opted upon his return to England in January
1941.

After a post-war year as a Fellow of Trinity and Assistant Lecturer in Cambridge,
Gerard moved to a Lectureship at Manchester for eight years; it was a golden age of
Applied Mathematics there. By the time that he returned to Cambridge in 1954, his work
was exceptional in that it combined the European style of the subject (Courant-Hilbert,
K.O. Friedrichs, Laurent Schwartz and, above all, Hadamard) with the more pragmatic
British approach emphasizing explicit solution of particular problems. He was respected
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and liked by his colleagues, but most of them paid little attention to his mathematics
before the events at Durham in 1976. These led to his replacing G̊arding at Lund for a
semester in 1977, to his promotion to Reader in 1979 and to his election to the Royal
Society in 1980.

Upon retirement in 1982, Gerard moved from Applied Mathematics and Theoretical
Physics in Cambridge to Pure Mathematics and Mathematical Statistics and to an
Honorary Research Fellowship at University College London.

FAMILY BACKGROUND AND EARLY LIFE

Gerard Friedlander was born in Vienna on 25 December 1917, the only child of Paul
Friedländer and Elfriede (née Eisler). Much of what we know of his forebears comes from
an autobiographical memoir kindly passed to us by Richard Melrose; a shorter version is
deposited in the Churchill Archives Centre. His paternal grandfather, Jakob Friedländer,
was born in 1859 near Karlovy Vary, in what was then the Sudetenland. He became
a prosperous lawyer after studying in Vienna, and in 1890 married Bertha Weinstein,
with whom he had four children: Paul and his twin Peter (born in 1891), Elizabeth and
Alexander. Paul read law in Vienna but disliked it, switching to Philosophy, Sociology
and Art History after one year. This was a particularly momentous change, for he then
met Gerard’s mother, Elfriede Eisler, who was also studying Sociology.

The Eislers came from Prague. Gerard’s great-grandfather Ferdinand Eisler owned
a textile factory in Bohemia but lived in Vienna, where his son Rudolf was born in
1873. Rudolf studied philosophy in Vienna and Prague, moving to Leipzig when twenty
one to work under Wilhelm Wundt, often referred to as one of the founding fathers of
modern psychology. There he fell in love with Maria Ida Fischer, the daughter of the
owner of his lodgings. Ferdinand did not want his son to marry a gentile, and so when
Elfriede arrived on 11 December 1895 her parents were not married; nevertheless she was
registered as Elfriede Eisler. A softening of Ferdinand’s attitude enabled the marriage to
take place, after which two further children, Gerhart and Johannes (later to call himself
Hanns), were born. The family moved to Vienna, but life was hard because despite
academic distinction, Rudolf was unable to obtain a regular position at the University.
The three children grew up in a liberal and agnostic household; soon after the war had
begun in 1914, they founded a left-wing student group opposed to it. Paul was also a
member of this group.

Paul and Elfriede were married on 10 July 1915. In September 1919 she moved to
Berlin, leaving Gerard in the care of the Eisler grandparents, with whom he was to
stay for the next ten years. Soon after arrival in Berlin she met Isaak Tschemerinsky.
Russian-born and German-educated, he was a gifted pianist who studied mathematics
to doctoral level at the University of Berlin. In 1919 his thesis was lost or stolen in
Copenhagen; rather than rewrite it for formal submission he turned to politics and
became an active communist party member. Elfriede and Isaak were instantly attracted
to one another and within weeks they were living together. As the German Communist
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Party had been forced to go underground, they had to live under assumed names, Elfriede
becoming Ruth Fischer, while Tschemerinsky was transformed into Arkadij Maslow,
known as Max by Gerard. These names stuck. Max’s lifelong union with Ruth meant
that, in effect, he became Gerard’s stepfather. In 1921 Ruth decided to divorce Paul,
and she and Max returned briefly to Vienna for the legal niceties. Matters did not go
entirely smoothly, for initially Paul threatened to shoot himself if the proceedings went
ahead, but it appears that eventually agreement was reached over a meal and divorce
followed in 1922.

Ruth’s life up to that point had been remarkable enough, but her subsequent activities
proved to be even more singular. As a leader of the German Communist party and a
member of the Reichsrat from 1924 to 1928, she became one of Europe’s most prominent
women. In 1933 when Hitler became Chancellor she fled to Paris, leaving for the United
States in 1941. There she underwent a political epiphany and wrote books denouncing
Stalinism. She formed the view that her two brothers were active in a Stalinist campaign
against her and Max, who had been found dead in Havana on 21 November 1941. She
was convinced (with some reason) that he had been murdered by Stalin’s secret police.
Eventually she testified to the House UnAmerican Activities Committee against her
brother Hanns, an action that resulted in his blacklisting and deportation in 1948. This
made quite a stir, for Hanns was by then a celebrated composer who, after studying
with Schoenberg, had written much well-regarded classical and film music, and had
collaborated extensively with Bertold Brecht. She also testified that her other brother,
Gerhart, was a major communist agent. It appears that for about eight years from 1945
she worked for The Pond, an American secret service that was created during World
War II by military intelligence as a counterweight to the Office of Strategic Services, the
forerunner of the CIA. She left the USA for Paris in 1955 and died there on 12 March
1961.

In 1929 Gerard’s prolonged stay with his grandparents came to an end and he joined
his mother and Max in their flat in Berlin. There he went to school at the Kaiser-
Friedrich-Realgymnasium, later to form part of what was called Karl-Marx-Schule at the
behest of the Communist members of the local council. Although the prevailing idea at
home was that he should become an engineer, Max pushed Gerard hard in mathematics,
even taking him through parts of such weighty tomes as Jordan’s Cours d’Analyse. In
February 1933 a Nazi guard was posted at the gates of the school to bar entry to some
staff; soon after, the Karl-Marx-Schule name was removed. Then came the Reichstag
fire of 27 February 1933. When Gerard came home the following day he found the flat
empty: in a phone message Ruth told him that she and Max would not be coming home
and that he was to go and stay with a colleague of hers. He met Ruth and Max during
the next few days and was taken by them to a flat in which they had been living as a
temporary refuge. This served them well, but shortly after the Reichstag election (in
which the Nazis gained only 44% of the vote) Gerard returned to find it ransacked; even
worse, a Nazi living in the flat above had phoned the SA squad that had broken into
the flat, alerting them to Gerard’s presence. Gerard was arrested and taken to an SA
prison, from which he was rescued by the regular police and transferred to a Juvenile
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prison. Ruth and Max had, in the meantime, escaped and reached Prague, where they
employed a lawyer to find out exactly where Gerard was being held. Grandfather Jakob
then arranged for Gerard to be deported to Vienna as an ‘undesirable alien.’

He stayed in Vienna until the end of June 1934, when he was re-united with his
father, Paul. On 29 June 1934 he left Vienna to join Ruth and Max in Paris. There he
discovered that she had a plan to send him to London: with the aid of some friends she
had persuaded the Jewish Refugees Committee in London to accept him as a bona fide
refugee and to help him continue his education in England. He travelled to London on 17
August, where bizarrely the Committe initially suggested that he should be apprenticed
to a tailor or articled to an architect. When he turned these ideas down the Committee
arranged for him to be seen by Augustus Kahn, a retired mathematics master. Gerard
told him that he wanted to study mathematics at university (the idea of engineering
having been dropped), the interview went well and Kahn suggested that he should try
for a Cambridge Entrance Scholarship, provided that a school could be found that would
take him in the Sixth form to prepare for the examination. After rejection by the Central
Foundation School, which did not rate his chances of success highly enough, he was
accepted by Latymer Upper School in Hammersmith and went to the seventh (!) form of
this direct grant school in September 1934. In January 1935 he had to leave the flat at
147 Abbey Road in which he had been staying with his uncle Hanns Eisler, and became a
lodger with Mrs Hugo (the mother of the school secretary) at 2 Roman Road, Chiswick,
remaining there until June, when he had to leave at rather short notice, apparently
because Mrs Hugo needed the room. Once more the Committee came to his rescue: they
arranged for him to spend a few weeks with a middle-class Jewish family in a large flat
in Kensington. The results of his matriculation examinations came through in July 1935
and were entirely satisfactory except for a bare pass in arithmetic! Kahn was pleased
with his performance and persuaded the Committee to fund a trip to Copenhagen, where
he appears to have seen his mother and Max. On return he lodged at 36 Hazlitt Road
and began his preparation for the Scholarship examination, constantly spurred on by
Max, who emphasised the need to give elegant answers to the questions. At the request
of the Committee he was entered for the group of colleges that included King’s and
Trinity; the examinations went well and on 20 December 1936 he was able to telegraph
the good news to Paris that he had been awarded a major scholarship at Trinity. The
following October (1937) he went up to Trinity with the proposal that he should read
Mechanical Sciences rather than Mathematics. There seem to be various reasons for
this volte face: Gerard was unsure that he really wanted to study mathematics; Ruth
and Max put the point to him that an engineering qualification would make him more
globally employable; and Max also wrote along Marxist lines that engineering would
involve him more with real workers. At any rate, support for this change came not only
from Trinity but also from the Committee, which had promised some financial support,
and the Director of Studies in Engineering, who arranged for Gerard to skip the first
year because of his knowledge of mathematics and go immediately into the two-year
honours course.

The first year Tripos examinations in 1938 went well: he won the prize for the
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best script in the aeronautics paper. Because of this he was offered the chance to
spend the remaining undergraduate year in the Aeronautics Lab instead of reading for
another Tripos. G.I. Taylor suggested that he should help with his experimental work
on turbulence: essentially he would be a research student but could not be formally
registered as such since he was still an undergraduate. In April 1939 he was told that
Trinity would support him for another year and that he would be registered with the
Board of Graduate Studies. His B.A. degree was awarded in 1939. A change of direction
came when Taylor, perhaps sensing that Gerard was not ideally suited to laboratory work,
proposed that he should calculate the pressure in the shadow of a semi-infinite plane
screen (or half-plane) resulting from the diffraction of a plane wave normally incident on
the screen. This was an inspired suggestion, leading eventually to work on reflection
and diffraction by various obstacles. His conversion to an applied mathematician was
complete.

THE WAR YEARS

The war began in September 1939, and as Gerard had legally been a German citizen since
the Austrian Anschluss, he was technically an ‘enemy alien’ and had to appear before
a Home Office panel. His claim to be a genuine refugee from the Nazis was accepted
and he was allowed to continue with his studies. In January 1940 Taylor suggested that
he should submit his current work to Trinity as a Fellowship dissertation for the next
election, in October. A draft version was almost finished by the end of April, but then
the Nazi successes in Holland, Belgium and France led to the decision to intern all male
Germans. Gerard was collected from his rooms and taken to the police headquarters
in Bury St Edmunds, where such dangerous enemies of the state as Hermann Bondi
(FRS 1959), Tommy Gold (FRS 1964) and Max Perutz (FRS 1954) were also assembled.
They were then transferred to the Isle of Man, where an internment camp had been
formed. Before long it was decided that all such people between twenty and thirty years
old would be sent to Canada. Two days before sailing Gerard posted his fellowship
dissertation to Trinity. In Canada, he was first lodged in Quebec in a disused army
compound, and then in ‘Camp N’, an empty railway engine shed near Montreal. It was
in Camp N that he received telegrams of congratulation on his fellowship election from
G. I. Taylor and Duff (Senior Tutor at Trinity). The absurdity of deporting Gerard,
a refugee from the Nazis who had just been elected to a Fellowship at Trinity, soon
attracted comment. A letter to the Times from A. V. Hill pointed out that with no
suspicion whatsoever of his loyalty and integrity he had been deported simply because
he was of ‘enemy’ origin, and that the action of Trinity seemed more sensible than that
of the Government. This was followed by critical pieces in the Spectator (17 and 24
October 1940), and in the House of Commons both the Foreign Secretary Ernest Bevin
and the Home Secretary Herbert Morrison had to face hostile questioning (Hansard
365, 1120-2). Morrison stated on 24 October that a ‘communication’ had been sent to
Canada ordering that Mr Friedlander should be released and, if he desired, sent back
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to England. The Spectator commented on 28 November that on 21 November a tutor
at Trinity had received a cable from Gerard to the effect that nothing had happened.
The paper added that ‘something more than suave assurances that proposals have been
adopted and action has been taken’ was needed. Action was then forthcoming, but it
was not until January that Gerard was able to sail back from Halifax, in convoy, and
eventually to exchange the pleasures of Camp N for those of the Trinity High Table.

Gerard’s war work proceeded in three stages, each of which followed recommendations
by G.I. Taylor.

(a) In January 1941, the papers (1) and parts I and II of (5) had already been accepted
for publication. Now back in Cambridge, Gerard did the work reported in parts III
and IV of (5), which were submitted to the Royal Society in November 1941. The
four parts of (5) can certainly be described as war work; publication was delayed
until 1946 for security reasons. At the same time Gerard prepared other parts of
his fellowship dissertation for publication; these became the papers (2), (3) and
(4).

(b) Probably in 1942, Gerard was co-opted by R.E. Peierls (FRS 1945, later Sir Rudolf
Peierls) to his team in Birmingham working on development of the atomic bomb.
Gerard’s role was to advise on the accompanying problems in fluid dynamics;
he worked mainly in his College rooms in Cambridge, with occasional visits to
Birmingham.

(c) When Peierls’s group was moved to Canada in 1943, Gerard preferred to stay in
England. He became a Temporary Experimental Officer in two Admiralty research
establishments: first, the Underwater Explosion Establishment in Rosyth dockyard,
where he felt himself to be of little use, then the Admiralty Signal Establishment
at Witley in Surrey. Naval radar was being developed at Witley; Gerard was in
the Aerials section and had to learn the theory of electromagnetic waves and of
geometrical optics. This led to the papers (6) and (7); perhaps more importantly,
the similar subject of geometrical acoustics became a recurrent theme in his work.

SOUND PULSES, 1939 -1941

In the summer of 1939, before the outbreak of war and approximately a year before Ger-
ard’s internment, the scientific branch of the Home Office was charged with preparations
for Civil Defence. The head of that branch, J.D. Bernal (FRS 1937), asked G.I. Taylor
what was known about the shielding effect of a wall from a bomb blast. Since a sound
pulse can approximate the weak shock wave and the disturbance behind it due to a
distant explosion, Taylor suggested to Gerard that he compute the pressure behind a
half-plane when a sound pulse impinges on the front side. The means to this end that
Taylor suggested were
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(a) two papers by Horace Lamb (1906, 1910);

(b) a Brunsviga calculator, which was a primitive, mechanical, hand-powered ancestor
of today’s machines.

The problem is illustrated in Figure 1. The half-plane (or screen) S is represented by
the positive x-axis because its edge is the z-axis of Cartesian co-ordinates x, y, z. (In
order to regard S as a wall, one must turn Figure 1 through 90◦ clockwise.) The flow
is assumed to be independent of z. The incident pulse, propagating downwards from
infinity in Figure 1, is constant along each moving line

y = constant− ct, −∞ < t <∞,

where t denotes time and c is the speed of sound. This incident pulse has velocity
potential

Φ0(y, t) = F (y + ct),

where F is a given function; the pressure field of a typical incident pulse will be shown
presently.

In Lamb’s paper of 1910, the total velocity potential Φ(x, y, t) satisfies three condi-
tions.

In the xy-plane (now also called R2) outside the closure S = S∪{(0, 0)} of the screen
S, the wave equation is satisfied:

∂2Φ

∂x2
+
∂2Φ

∂y2
− 1

c2

∂2Φ

∂t2
= 0 for (x, y) ∈ R2 \ S and −∞ < t <∞. (A)

On both sides of S (for x > 0 and y ↓ 0 or y ↑ 0) the velocity perpendicular to S is
zero:

∂Φ

∂y
= 0 for x > 0 and y = 0±. (B)
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Far to the left in Figure 1, the incident pulse is not disturbed: with x+ iy = reiθ

and 0 ≤ θ ≤ 2π,

Φ(x, y, t)− F (y + ct)→ 0 as r →∞ and θ → π. (C)

Lamb’s solution is partly in terms of parabolic co-ordinates ξ, η defined by

x+ iy = (ξ + iη)2, 0 ≤ arg(ξ + iη) ≤ π;

it is

Φ(x, y, t) =
1

2
F (ct+ y) +

∫ ξ+η

0
f(ct+ y − v2) dv

+
1

2
F (ct− y) +

∫ ξ−η

0
f(ct− y − v2) dv, (D)

where f is determined from the given function F (which describes the incident pulse) by
the integral equation

∫ ∞

0
f(s− v2) dv =

1

2
F (s), −∞ < s <∞. (E)

Lamb did not claim that (D) and (E) define the only solution of (A), (B) and (C).
The only flaw in his beautifully lucid paper is the statement that, in the paper by Arnold
Sommerfeld (1901) on the diffraction of X-rays, the boundary condition on S is not (B).
In fact, Sommerfeld had considered two separate cases: Φ = 0 on S and ∂Φ/∂y = 0 on
S in the present notation; but it is not always easy to separate the wheat from the chaff
of Sommerfeld’s massive paper.

Gerard set to work with a will. The pressure rise above atmospheric pressure is given
by

p = ρ
∂Φ

∂t
,

where ρ is the density of air, assumed to be constant. To compute numerical values of
the pressure rise from (D) and (E) is straightforward in principle but difficult in practice.
Gerard adopted a form of the solution f of (E) more useful than the form used by Lamb;
thereby he could obtain explicit answers for functions F that are more realistic than
Lamb’s single explicit example. Gerard’s favourite incident pulse has a non-dimensional
pressure rise (above atmospheric pressure)

p0(y + ct) =





0 if y < −ct,
(

1− y + ct

λ

)
exp

(
−y + ct

λ

)
if y > −ct,

(F)

where −∞ < t <∞ and λ is a “pulse thickness” such that p0 passes through 0 when
y + ct = λ. Figure 2 shows this pressure rise; evidently y = −ct describes a wave front
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ahead of which the incident pulse vanishes. A form of Figure 2 now appears in Wikipedia
with the legend: “A Friedlander waveform is the simplest form of a blast wave.”

In part I of (5), Gerard presented substantial tables of the total pressure field caused
by this incident pulse, and by some others, according to (D) and (E). An anonymous,
skilled draughtsman turned these tables into three-dimensional graphs of a kind that
modern computers produce without effort, but that was not common in 1940. Gerard
must have spun the Brunsviga with patience and skill.

After answering Bernal’s question fully in part I of (5) and dealing with a relevant
integral in part III, Gerard went much further. The background of his paper (1) on
reflection by parabolic obstacles is as follows.

Lambs’s paper of 1906 had concerned a half-plane with incident waves that are not
pulses, but are sinusoidal wave trains with velocity potential

Φ0(y, t) = Re eik(y+ct), −∞ < t <∞,
for a given wave number k > 0. The symbol Re denotes “the real part of”, the exponential
being more convenient than a cosine or sine. The Fourier integral theorem allows one
to pass from sinusoidal wave trains to pulses, but only if one has accurate estimates of
high-frequency Fourier integrals (k →∞); even then, the method is not a good one for
numerical computation. It was this fact that caused Lamb to write his paper of 1910.

In the paper of 1906, but not that of 1910, Lamb had also considered parabolic
cylinders and paraboloids of revolution. Following Gerard’s paper (1), we take our basic
parabola to have the equation

y = ±
√

4a(x+ a) or r ≡
√
x2 + y2 = x+ 2a for −a ≤ x <∞, (G)

where a > 0 denotes the focal length. Henceforth the words parabolic cylinder will mean
the convex solid bounded by the same curve (G) in each plane z = constant. The words
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⇠F = 0 : x = ct � 2a

x

s

(0, 2a)

(�a, 0)

time ct < a

⇠F = 0

x

s

⌘F = 0

time ct = a

3

⇠F = 0 : x = ct � 2a

x

s

(0, 2a)

(�a, 0)

time ct < a

⇠F = 0

x

s

⌘F = 0

time ct = a

3

⇠F = 0

x

s

time ct > a

( r =
ct,

⌘F
=

0

4

Figure 3
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paraboloid of revolution will mean the convex solid bounded by the surface (Figure 3)

s ≡
√
y2 + z2 =

√
4a(x+ a) or r ≡

√
x2 + s2 = x+ 2a for −a ≤ x <∞. (H)

For such obstacles, Lamb (1906) had considered incident wave trains with velocity
potential

Φ0(x, t) = Re e−ik(x−ct), −∞ < t <∞.

In (1), Gerard solved the problem of the reflection, by a paraboloid of revolution or
by a parabolic cylinder, of an incident pulse with velocity potential

Φ0(x, t) = F (x− ct) = F0

(
ct− x− 2a

a

)
, −∞ < t <∞;

the notation is that in (G) and (H). We sketch his construction for the (slightly harder)
case of a paraboloid of revolution. Gerard introduced non-dimensional co-ordinates ξF ,
ηF (Figure 3) defined by

ξF =
ct− x− 2a

a
, ηF =

ct− r
a

. (I)

We have added the suffix F to Gerard’s ξ, η in order to avoid confusion with the parabolic
co-ordinates ξ, η used in (D). There is no suggestion of this pulse problem, nor of these
co-ordinates, in the papers of Sommerfeld (1895, 1901) and Lamb (1906, 1910). A priori,
it seems far from obvious that

(a) when the incident pulse has a sharp front, as was the case for the pressure rise (F),
the reflected wave front emanates not from the leftmost point, (x, s) = (−a, 0), of
the paraboloid, but from the focus (x, s) = (0, 0);

(b) the condition of zero normal velocity ∂Φ/∂n = 0, on the boundary (H) of the
paraboloid, transforms to

∂Φ

∂ξF
=

∂Φ

∂ηF
for ξF = ηF ; (J)

(c) the wave equation

∂2Φ

∂x2
+
∂2Φ

∂s2
+

1

s

∂Φ

∂s
− 1

c2

∂2Φ

∂t2
= 0

transforms to an equation that can be integrated twice, by elementary means, to
yield

Φ(x, s, t) = F0(ξF ) +

∫ ηF

−∞

`(v)

ξF − v + 2
dv, ηF ≤ ξF , (K)

where ` is an unknown function that will be determined by (J);
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(d) there is a solution Φ(x, s, t) = Φ̃(ξF , ηF ) that depends only on the two variables
ξF , ηF and satisfies not only the wave equation and the boundary condition (J),
but also the condition that the incident pulse is undisturbed at infinity:

Φ̃(ξF , ηF )− F0(ξF )→ 0 as ηF → −∞ with ∞ < ξF <∞. (L)

It is now safe to omit the suffix F from ξF and ηF .
Gerard established the surprising facts (a) to (d) and noted that (J) and (K) combine

to the integral equation

`(η) + 2

∫ η

−∞

`(v)

(η − v + 2)2
dv = 2F ′0(η), −∞ < η <∞, (M)

and that (K) implies (L) when the integral in (K) exists. He showed that, when F0 is
chosen to represent a sinusoidal wave train, Lamb’s solution of 1906 is recovered.

Next, restricting attention to incident pulses with sharp fronts, for which F0(ξ) = 0
if ξ < 0 and for which (M) is restricted to 0 ≤ η < ∞ and 0 ≤ v ≤ η, he extracted a
“well known” solution of this form of (M) from tome 3 of Goursat’s Cours d’analyse.
From this solution he produced tables and graphs of pressure once more.

All this was done, it should be remembered, in addition to the answer to Bernal’s
question, within the seven months following Gerard’s two -year course in Mechanical
Sciences.

We turn now to parts II and IV of (5). In part II Gerard compared some of his
results for the half-plane with corresponding results for an infinite wedge; necessarily, he
restricted this work to the pressure at a point on the back face of the wedge when a pulse
impinges on the front face. A solution had been found by Sommerfeld (1901), but there
had been no numerical evaluation of the elaborate functions that form Sommerfeld’s
solution. Gerard presented graphs showing the variation with time of the pressure rise
at a fixed point on the back face of the wedge. The shape of these curves is nearly
independent of the wedge angle (which is zero for the half-plane), but the magnitude of
the pressure rise increases with wedge angle.

In part IV Gerard explained a result that was considered at the time to be paradoxical.
Suppose that in Figure 1 the incident pulse does not propagate vertically; rather, the
direction of propagation makes an angle α with the screen S, so that the incident pulse
has a velocity potential

Φ0(x, y, t) = F (y sinα− x cosα+ ct), 0 < α ≤ π

2
.

For our previous case, α = π/2. If the obstacle were a complete plane, represented by
−∞ < x <∞, y = 0, then the total velocity potential would be

Φ(x, y, t) = F (y sinα− x cosα+ ct) + F (−y sinα− x cosα+ ct), y ≥ 0,

which satisfies the wave equation and the boundary condition on the plane. The direction
of propagation of the pulse represented by the second term accords with the classical
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rule for the reflection of light. The total pressure rise on the plane y = 0 would be twice
that of the incident pulse, for every α in the interval (0, π/2]. Hence this would persist
in the limit as α ↓ 0 and for the complete plane there is a paradox: the incident pulse
with velocity potential F (−x+ ct) propagates in a direction parallel to the plane and
therefore should be undisturbed by the plane, yet the total pressure rise on the plane is
twice that of the incident pulse.

Gerard argued that the complete plane (−∞ < x < ∞, y = 0) is too far from
physical reality to be relevant. Using yet another solution of Sommerfeld (1901), he
examined the case of a pulse incident at angle α to the half-plane S. Let p(x, t;α) denote
the total pressure rise on the upper side (y = 0+) of S. In effect, Gerard’s results were
as follows (although he stated them differently). As x → ∞ with x cosα − ct fixed,
p(x, t;α) approaches twice the pressure rise of the incident pulse, for every α in the
interval (0, π/4]. However,

lim
x→∞

lim
α↓0

p(x, t;α) 6= lim
α↓0

lim
x→∞

p(x, t;α),

where it is to be understood that x → ∞ with x cosα − ct fixed. He derived similar
results for some wedges.

One final remark must be made. It is not known whether Lamb’s solution of (A), (B)
and (C) is the only one, even though, for given F , equation (E) has only one solution f
in a large class of functions. It is known that, if the problem is changed to (A), (B) and

Φ(x, y, t)− F (y + ct)→ 0 as r →∞ and r1/2 cos
θ

2
→ 0, (C′)

then there are infinitely many solutions of (A), (B) and (C′). Therefore it is of interest
whether Sommerfeld and Lamb, following different paths and using partly different
equations, reached the same conclusion from (A), (B) and (C). Sommerfeld (1901) gave
an argument (pp. 20 - 22) that he seemed to regard as a uniqueness proof under an
additional condition, but his argument is incomplete. In part I of (5), Gerard asserted
that Sommerfeld’s and Lamb’s solutions are the same, which is true. However, in a rare
lapse, Gerard failed to prove this assertion. Where four identities are required, Gerard
gave only two, one of which is conspicuously wrong. In claiming that the false identity
“agrees with the result given by Sommerfeld (1901, p. 40)”, he referred to a page which
does not contain Sommerfeld’s solution, but discusses only one component of it.

On the other hand, in parts II and IV of (5) Gerard seemed familiar with every
aspect of Sommerfeld’s paper. It is just possible that the errors in part I were the result
of hasty transcription. In any case, the important thing is that Lamb’s solution, which
Gerard used carefully to compute the pressure, is the same as Sommerfeld’s.

MANCHESTER

According to our enquiries, no close colleague of Gerard’s Manchester years (1946 -1954)
survives as we prepare this Memoir (2014 - 2016). However, one of us had some contact
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with Applied Mathematicians at Manchester during the period 1950 -1954 and remains
in awe of the Department at that time. After wartime work on aerodynamics at the
National Physical Laboratory, Sydney Goldstein (FRS 1937) was appointed to the Beyer
Chair of Applied Mathematics in 1946. He recruited not only Gerard Friedlander but
also D.S. Jones (FRS 1968), M.J. Lighthill (FRS 1953, later Sir James Lighthill), R.E.
Meyer, F.J. Ursell (FRS 1972) and G.N. Ward. In 1950 Goldstein moved to Israel and
was replaced by Lighthill, then aged 26. Lighthill had huge respect for Goldstein and for
Goldstein’s style; the Department continued much as before and flourished. We have
the impression that Gerard was very much a part of this group and that he was a close
observer of the mathematical techniques that each of his colleagues used. Possibly he
stood a little apart because Hadamard’s text Lectures on Cauchy’s problem in linear
partial differential equations (Yale 1923) was the greatest single influence on his work
from 1939 onwards. However, it would not have occurred to him to lay claim to the
rigour and width of vision that distinguished much of his work from the impressive
(often dazzling) but more pragmatic work of his colleagues.

Towards the end of his time at Manchester, Gerard was offered the chance to spend
six months doing research at New York University. The photograph shows Gerard,
Yolande and Paul, then aged two, dining with another family aboard the Queen Mary
on their way to New York. Soon after his return to England, Gerard was offered a
lectureship at Cambridge.

CAMBRIDGE, 1954 -1976

As a lecturer in Cambridge, Gerard cut a distinctive figure with his feathered hat and
pack of French cigarettes. Though not the most organised teacher, he was certainly one
of the most inspiring, with many insights and anecdotes to pass on to his audience. Only
he could produce an analogy between the breakdown of the solution of the transport
equation and the Jean-Luc Godard film Weekend !

To other lecturers, Gerard was a wonderfully knowledgeable colleague. Edward
Fraenkel consulted him regularly about awkward mathematical points that standard
texts treated dishonestly or incompletely. Invariably, Gerald gave a satisfactory answer.
(“Yes, the local argument in the books of X and Y and of Z is not enough. But there is
an old and difficult global theorem due to Kamke; I believe that there is a full reference
to it in . . . ” Again, on the Lebesgue spine, which dates from 1912: “Yes, a uniqueness
proof is needed; you will find it in a book of lectures that Hadamard gave in China in
1964.”) Others found him as helpful in other ways.

In 1937 Gerard had met his future wife, Yolande Morris Moden, at the Footlights
Club in Cambridge while he was an undergraduate. A talented artist, she never gained
the recognition she deserved. They were married in St George’s Church, Cambridge in
1944, and had three children: Paul, who describes himself as a scientific artist and has
produced light installations all over the world; Peter, who teaches Hindi and Buddhism
at the Australian National University; and Liz, who opted for a quiet life and still lives
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Yolande, Gerard and Paul (left side of table) on the Queen Mary, 1954.

in Cambridge. Yolande died tragically young in 1968 before all her children had grown
up, so that Gerard had to bring up Liz and Peter largely on his own. His appearance at
lectures complete with a shopping bag for grocery shopping after the lecture reinforced
his image as a family man with a strong human side.

In the early 1970s the field of differential equations at Cambridge was re-energised
by the introduction of two new courses: one on non-linear ordinary differential equations
was given by Peter Swinnerton-Dyer (FRS 1967, later Sir Peter Swinnerton-Dyer) in
Part II of the Tripos, while at Part III level Edward Fraenkel lectured on applications of
functional analysis to continuum mechanics. Seminars were stimulating affairs, sometimes
attended by Dame Mary Cartwright (FRS 1947); Stephen Hawking (FRS 1974) was a
regular in the DAMTP coffee room and would occasionally ask Gerard for advice about
a differential equation he had encountered in his work. It was around this time that
Gerard took on Richard Melrose as a research student. As Richard soon made great
strides in the abstract theory of hyperbolic differential equations, Gerard encouraged
him to write to Lars Hörmander who, though initially less than enthusiastic, quickly
realised that both Gerard and Richard were forces to be reckoned with. A lighter note
was struck by Gerard’s recollections of various pop concerts he had attended with Liz
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and by his claim to prefer marking examination papers with Bob Dylan playing loudly
in the background.

BICHARACTERISTIC STRIPS AND WAVE FRONT SETS

The purpose of this section is twofold: to give the reader with mathematical interests a
sketch of some of the tools that Gerard used repeatedly and to prepare for a description
of the remarkable papers (8) and (9). An account of this material seems in order because
in Britain wave front sets are not widely known; here most Applied Mathematicians
dismiss such things as Pure Mathematics, while most Pure Mathematicians dismiss them
as Applied Mathematics.

Much of this section is taken from the first volume of Hörmander’s treatise (Hörmander
1983), but with some change of notation and with a very different style of exposition.

Bicharacteristic strips are geometrical properties of an operator L defined by

Lu =

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+ lower-order terms,

x = (x1, . . . , xn) ∈ Ω ⊂ Rn, aij ∈ C∞(Ω),

where Ω is an open subset of the real n-dimensional space Rn (possibly the whole space)
and functions in the set C∞(Ω) have continuous partial derivatives of all orders at each
point x in Ω. The principal symbol of L is

L(x, ξ) = ξ · a(x) · ξ =
n∑

i,j=1

ξi aij(x) ξj , x ∈ Ω, ξ ∈ Rn.

For our purpose here, it will be sufficient to let n = 3 and to suppose that L is uniformly
hyperbolic. This means that we may regard x1, x2 as space variables and x3 as time,
and that Lu = 0 is a wave equation. More precisely, it means that the symmetric matrix
a(x) has two strictly positive eigenvalues and one strictly negative eigenvalue at each
point x in Ω. Of course, specialists consider more general operators.

For a solution u of Lu = 0 or Lu = f , a characteristic surface is one that can act as
a weak shock wave or as a carrier of other singularities; it is described by an equation
ψ(x) = constant if also

L (x,∇ψ (x)) =

3∑

i,j=1

∂ψ

∂xi
(x) aij(x)

∂ψ

∂xj
(x) = 0.

A family of bicharacteristic strips describes a characteristic surface in more detail: each
strip is a pair (x(s), ξ(s)) such that x = x(s) is the parametric form of a curve in the
surface, while the ξ(s) are (non-zero) vectors normal to the surface (perpendicular to the
surface) along the bicharacteristic curve x = x(s). More precisely, the pair (x(s), ξ(s)) is
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a bicharacteristic strip of the operator L if x(s) is in the closure Ω of Ω (now a subset of
R3), if ξ(s) is in R3 \ {0} and if the pair is a solution of the Hamiltonian system

ẋ(s) = (∇ξL)(x(s), ξ(s)), (1)

ξ̇(s) = −(∇xL)(x(s), ξ(s)), (2)

L(x(s), ξ(s)) = 0, (3)

where (·̇) = d(·)/ds and s need not be arc length. Since (1) and (2) imply that

d

ds
L(x(s), ξ(s)) = 0,

condition (3) need be applied at only one point. Since ξ is merely a direction, it is often
convenient to normalize it by ξS = ξ/|ξ|. (The suffix S denotes restriction to the unit
sphere S2 in R3.)

Here is an example. Reduced to two space variables x1, x2 and time x3, the partial
differential equation in the paper (8) is

Lu =
∂2u

∂x2
1

+
∂2u

∂x2
2

− (1 + x1)
∂2u

∂x2
3

= 0,

in
Ω =

{
x ∈ R3

∣∣ x1 > 0, (x2, x3) ∈ R2
}
,

so that
L(x, ξ) = ξ2

1 + ξ2
2 − (1 + x1) ξ2

3 , x1 ≥ 0.

Then the bicharacteristic strip with initial values

x(0) = (0, x0
2, x

0
3), ξ(0) = (1, 0,−1),
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is

x = x(0) +

(
2s+ s2, 0, 2s+ 2s2 +

2

3
s3

)
,

ξ = (1 + s, 0,−1),

ξS =

(
1 + s√

(2 + 2s+ s2)
, 0,

−1√
(2 + 2s+ s2)

)
,





0 ≤ s <∞.

Figure 4 shows the curve x = x(s) and the vectors ξ(s) in a way that explains the word
strip. Figure 5 shows the curves x = x(s) in R3 and ξ = ξS(s) in S2; this representation
will be more useful in what follows. Figure 5 also shows a piece of a characteristic
surface, one of many in which our bicharacteristic curve might be embedded.

Other initial values ξ(0) are possible, but it is necessary that ξS,3(0) = ± 1√
2
.

The wave front set of a distribution, which is designed to indicate the singularities of
a wave motion, is a more difficult object. Its mere definition involves five mathematical
devices that are not elementary, but that we shall strive to explain, nevertheless. These
five are usually called: infinitely differentiable function of compact support, distribution,
Fourier transform of a distribution, frequency set of a distribution of compact support
and, for more general distributions, frequency set at a point.

Again let Ω be an open subset of R3 (possibly the whole “ordinary” space R3). As
many readers will know, a function is in the set C∞c (Ω) and may be called an infinitely
differentiable function of compact support in Ω if

(a) it has continuous partial derivatives of all orders at each point of Ω,

(b) it equals zero at all points outside a bounded, closed subset of Ω.

The smallest such subset of Ω is the support of the function. When Ω has a boundary,
there is room between the support of a function in C∞c (Ω) and the boundary of Ω.
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There is no shortage of functions in C∞c (Ω). We define

k1(x) =

{
A exp

(
− 1

1−r2

)
if r = |x| < 1,

0 if r ≥ 1,
and kε(x) =

1

ε3
k1

(x
ε

)
(ε > 0),

where the constant A is such that
∫
r<1 k1(x) dx = 1. If the origin of R3 is in Ω (if 0 ∈ Ω)

and if ε is sufficiently small, then certainly kε ∈ C∞c (Ω). But the importance of kε is
that the recipe

fε(x) =

∫

|y−x|<ε
kε(x− y) f(y) dy

produces a function fε in C∞c (Ω) that is arbitrarily close (when ε is sufficiently small) to
any function f that we may find useful, or that may arise in a problem, provided that
f equals zero outside a bounded, closed subset of Ω and is integrable on that subset.
Figure 6 is a picture of kε when x is in R2 instead of R3 (when x = (x1, x2)). Figure 7
shows f and fε for a one-dimensional case: x = x1 and r = |x1| in the definition of k1.

One often writes D(Ω) in place of C∞c (Ω).
In the context of Ω (still an open subset of R3) a distribution is a continuous∗, linear

functional, denoted by 〈u, ·〉 ∈ D′(Ω) and with values 〈u, φ〉 for all φ in D(Ω). If a
function f is integrable on each bounded, closed subset of Ω, then the formula

〈f, φ〉 =

∫

supp(φ)
f(x) φ(x) dx for all φ ∈ D(Ω)

∗The precise definition of continuity in this context will be known to some readers; it can be found in
the book (12) or in the text of Schwartz (1950 - 51). Such technicalities are beyond us here.
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(in which supp(φ) denotes the support of φ) defines a distribution 〈f, ·〉 ∈ D′(Ω).
Moreover, although the graph of f may be far from smooth, the distribution 〈f, ·〉 has
partial derivatives of all orders; these are defined by the rule for integration by parts. For
example, with the notation (∂jφ)(x) = ∂φ(x)/∂xj , the distribution 〈∂1∂

2
3f, ·〉 is defined

by

〈∂1∂
2
3f, φ〉 = −

∫

supp(φ)
f(x) (∂1∂

2
3φ)(x) dx for all φ ∈ D(Ω).

Perhaps the most popular distribution in D′(Ω) is the Dirac distribution 〈δ, ·〉; if the
origin of R3 is in Ω (if 0 ∈ Ω), then 〈δ, ·〉 is defined by

〈δ, φ〉 = φ(0) for all φ ∈ D(Ω). (4)

Here δ is merely a symbolic function. We may secretly visualize a mystical object δ(x)
that is infinite at the origin and zero elsewhere in such a way that

∫
Ω δ(x) dx = 1, but

the meaning of 〈δ, ·〉 must be (4). The partial derivatives of 〈δ, ·〉 are defined like those
of 〈f, ·〉:

〈∂1∂
2
3δ, φ〉 = −(∂1∂

2
3φ)(0) for all φ ∈ D(Ω).

The support supp(u) of a distribution 〈u, ·〉 in D′(Ω) is, loosely speaking, the smallest
closed subset of Ω outside which the symbolic function u may be replaced by the genuine
function 0. The singular support ss(u) of 〈u, ·〉 is, loosely speaking, the smallest closed
subset of Ω outside which the symbolic function u may be replaced by a genuine function
that is infinitely differentiable in the open set Ω \ ss(u). For the Dirac distribution 〈δ, ·〉,
we have ss(δ) = supp(δ) = {0}.

For a more interesting example, we return to space variables x1, x2 and time x3 and
consider the solution 〈u, ·〉 ∈ D′(R3) of

〈∂2
1u+ ∂2

2u− ∂2
3u, ·〉 = 0, (5)
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subject to

u(x1, x2, 0) =

{
1 if x2

1 + x2
2 < a2,

0 if x2
1 + x2

2 > a2,
(6)

(∂3u)(x1, x2, 0) = 0 if x2
1 + x2

2 6= a2. (7)

Here (6) and (7) are legitimate because, as we shall see presently, the set {x2
1 + x2

2 6=
a2, x3 = 0} is outside the singular support ss(u). In fact, it is only the need to satisfy
the wave equation in a weak sense on ss(u) that has forced us to regard the solution as
a distribution rather than a genuine function.

The support supp(u) of this distribution is the set of points x in R3 that satisfy

x2
1 + x2

2 ≤ (a+ |x3|)2 (−∞ < x3 <∞).

The singular support ss(u) consists of the conical surfaces described by

x2
1 + x2

2 = (x3 + a)2 (−∞ < x3 <∞),

x2
1 + x2

2 = (x3 − a)2 (−∞ < x3 <∞).
(8)

All this is illustrated in Figure 8. This description of supp(u) and ss(u) does not require
knowledge of the solution 〈u, ·〉; it follows from the mere statement (5), (6) and (7).

When a distribution 〈v, ·〉 in D′(R3) has bounded support, usually called compact
support, one writes 〈v, ·〉 ∈ E ′(R3) and admits values 〈v, φ〉 for functions φ in C∞(R3)
(for infinitely differentiable functions that need not have compact support). Then 〈v, ·〉
has a genuine Fourier transform defined by

v̂(ξ) = 〈v, e−iξ〉,
e−iξ(x) = exp(−iξ · x),

where ξ ∈ R3 and ξ · x = ξ1x1 + ξ2x2 + ξ3x3. The frequency set F(v) of a distribution
〈v, ·〉 in E ′(R3) is the set of those (bad) directions ξS = ξ/|ξ| in the unit sphere S2 of
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R3 for which v̂(ξ) fails to decrease rapidly as |ξ| → ∞; here rapidly means faster than
|ξ|−m for every integer m ≥ 0. Accordingly, δ̂(ξ) = 1 and F(δ) = S2.

Here is a better example. Let b = (b1, b2, 0) be a fixed point of R3, let w ∈ C∞c (R)
(let w be a function of only one variable that is infinitely differentiable and has compact
support) with

∫
supp(w)w(t) dt 6= 0, and define

〈v, φ〉 =

∫

supp(w)
φ(b1, b2, x3) w(x3) dx3 for all φ ∈ C∞(R3). (9)

The support and singular support of 〈v, ·〉 are equal and are a vertical line segment
(Figure 9):

ss(v) = supp(v) =
{
x ∈ R3

∣∣ x1 = b1, x2 = b2, x3 ∈ supp(w)
}
. (10)

The Fourier transform of 〈v, ·〉 is

v̂(ξ) =

∫

supp(w)
exp(−iξ1b1 − iξ2b2 − iξ3x3) w(x3) dx3

= exp(−iξ · b)
∫

supp(w)
exp(−iξ3t) w(t) dt.

If ξS,3 6= 0, then v̂(ξ) decreases rapidly as |ξ| → ∞ because repeated integration by parts
yields

v̂(ξ) =
exp(−iξ · b)

(iξ3)k

∫

supp(w)
exp(−iξ3t) w

(k)(t) dt (ξ3 6= 0),

for every integer k ≥ 0. If ξS,3 = 0, then

|v̂(ξ)| =

∣∣∣∣∣

∫

supp(w)
w(t) dt

∣∣∣∣∣ 6= 0.
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Thus the frequency set F(v) is the equator of S2 (Figure 9):

F(v) =
{
ξS ∈ S2

∣∣ ξS,3 = 0
}
. (11)

In this exceptionally simple case, the definition of wave front set reduces to a Cartesian
product:

WF(v) = ss(v)× F(v)

=
{

(x, ξS) ∈ R3 × S2
∣∣ x ∈ ss(v), ξS,3 = 0

}
, (12)

where ss(v) is defined in equation (10) and both sets are displayed in Figure 9.
We turn to the difficult definition of wave front set WF(u) for a distribution 〈u, ·〉

that is merely in D′(Ω); in general, it lacks compact support. To this end, we fix an
arbitrary point z ∈ Ω and truncate 〈u, ·〉 smoothly to have arbitrarily small support
near z. First, we observe that, if 〈u, ·〉 ∈ D′(Ω) and ψ ∈ C∞c (Ω), then 〈ψu, ·〉 ∈ E ′(R3)
(then 〈ψu, ·〉 has compact support in R3) when it is defined to be the zero distribution
in R3 \ supp(ψ). Accordingly, we define a set T (z) of truncation multipliers at z by

T (z) = { ψ ∈ C∞c (Ω) | ψ(z) 6= 0 } , (13a)

and then define the frequency set of 〈u, ·〉 ∈ D′(Ω) at a point z ∈ Ω by

Fz(u) =
⋂

ψ∈T (z)

F(ψu). (13b)

If Ω = R3 and ψ ∈ T (z) and we apply multiplication by ψ to the distribution 〈v, ·〉
defined by equation (9), then, when z 6∈ ss(v) (when z is not in the singular support of
〈v, ·〉), both F(v) and F(ψv) will be the empty set; when z ∈ ss(v), the distributions
〈v, ·〉 and 〈ψv, ·〉 will usually differ, but their frequency sets F(v) and F(ψv) will be equal,
because the bad directions ξS of their Fourier transforms are the same.

At last we are in a position to define the wave front set WF(u) of a distribution 〈u, ·〉
in D′(Ω) as the set of those pairs (x, ξS), with x in ss(u) and ξS in S2, that are related
by ξS ∈ Fx(u). In other words,

WF(u) =
{

(x, ξS) ∈ ss(u)× S2
∣∣ ξS ∈ Fx(u)

}
. (13c)

In general, the wave front set is far more elusive than the example that we encountered
in equation (12) for the distribution 〈v, ·〉 defined by (9). For that case, the equator was
the relevant subset of S2 for every point x of ss(v). In general, the relevant subset of S2

depends on the point x of ss(u). For the example (9), localization by ψ did not change
the frequency set of 〈v, ·〉; in general, there will be a change. The only simple, general
facts that we know are (Hörmander 1983, p. 254)

(a) the projection of WF(u) into Ω is ss(u);

(b) when 〈v, ·〉 ∈ E ′(R3), the projection of WF(v) into S2 is F(v).
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Nevertheless, much is known. Reduced to Ω ⊂ R3, Hörmander’s definition of the
characteristic set CharL, which describes all bicharacteristic strips of an operator L,
amounts to the following†. CharL is the set of pairs (x, ξS) in Ω × S2 such that x(s)
and ξ(s) are related by the Hamiltonian equations (1), (2) and (3). In other words,

CharL =
{

(x, ξS) ∈ Ω× S2
∣∣ (x(s), ξ(s)) is a solution of (1), (2) and (3)

}
.

A theorem of Hörmander (1983, p. 271), the first of several in this direction, states
that, if 〈u, ·〉 ∈ D′(Ω) is a solution of 〈Lu, ·〉 = 0, then

WF(u) ⊂ CharL. (14)

In order to illustrate this, we return to the solution 〈u, ·〉 ∈ D′(R3) of equations (5),
(6), (7) and exploit the cylindrical symmetry of that problem. Let

x = (r cos θ, r sin θ, t) and ξ = (ρ cosλ, ρ sinλ, τ).

Then the relevant operator and principal symbol are

L2 =

(
∂

∂r

)2

−
(
∂

∂t

)2

+
1

r

∂

∂r
and L2(x, ξ) = ρ2 − τ2 ;

the relevant subset of R2 is

Ω2 = { (r, t) | r > 0, −∞ < t <∞} .

The corresponding bicharacteristic equations (1), (2) and (3), now for (r(s), t(s)) and
(ρ(s), τ(s)), are easily solved; one finds that the characteristic set of L2 is

CharL2 = R3 × Γ, (15a)

where (Figure 10)

Γ =

{
ξ ∈ S2

∣∣∣∣ ρ =
1√
2
, τ = ± 1√

2
, λ = constant

}
; (15b)

the condition λ = constant is included because it holds for each solution ξ(s) of equation
(2). The factor R3 occurs in (15a) because all lines

0 ≤ r <∞, t = t0 ± r, θ = constant, (15c)

for arbitrary t0 ∈ R, are bicharacteristic curves of L2; the points in these lines fill R3.
The definition (13c) and the theorem (14) combine, for the present case, to

WF(u) ⊂ { (x, ξS) | x ∈ ss(u), ξS ∈ Γ } , (16)

†Of the equivalent notions of a cone C in Rn \ {0} and its intersection CS = C ∩ Sn−1 with the unit
sphere, Hörmander usually preferred C, while we find use of CS more helpful.
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where ss(u) is described by equation (8) and is shown in Figure 8. This result is
remarkable, even though it does not describe WF(u) exactly, because explicit formulae
show that the singularities of 〈u, ·〉 along ss(u) are complicated, making it unlikely that
WF(u) can be found exactly even in this relatively simple case.

Here is an indication of these singularities. Let

ϑ = tan−1 t− a
r
∈
[
−π

2
,
π

2

]
.

Then, for 0 < r < a,

u(x) =





1 if ϑ < −π
4

and t > r − a,

1− 1

2

(r
a

)−1/2
{1 +O(1 + tanϑ)}+O

((r
a

)1/2
)

as ϑ ↓ −π/4,

1− 1

2π

(r
a

)−1/2
(

log
32

1− tanϑ

)
{1 +O(1− tanϑ)}+O

((r
a

)1/2
)

as ϑ ↑ π/4,

1− 1

2π

(r
a

)−1/2
(

log
32

tanϑ− 1

)
{1 +O(tanϑ− 1)}+O

((r
a

)1/2
)

as ϑ ↓ π/4.

The second and third estimates of this list follow from

u(x) = 1− 1

π

(r
a

)−1/2
K

(
1 + tanϑ

2

)
+O

((r
a

)1/2
)

if − π

4
< ϑ <

π

4
,

where

K(m) =

∫ 1

0

1√
(1− y2)(1−my2)

dy, 0 ≤ m < 1,
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denotes the complete elliptic integral of the first kind.

We can shed a little light on the result (16) by noting that the Fourier transform of
〈u, ·〉 is, in merely symbolic form,

û(ξ) = πg†(ρ) {δ(ρ− τ) + δ(ρ+ τ)} , (17)

where g†(ρ) = 2π
a

ρ
J1(aρ),

and where J1 denotes the Bessel function of the first kind and of order 1. (This means
that, for all rapidly decreasing φ in C∞(R3),

〈û, φ〉 = π

∫∫

R2

g†(ρ) {φ(ξ1, ξ2, ρ) + φ(ξ1, ξ2,−ρ)} dξ1dξ2 ;

it implies that 〈û, φ〉 = 〈u, φ̂〉 for all such φ, and this last is the definition of 〈û, ·〉 for
the class of tempered distributions, to which our present example belongs.)

We observe from (15b) and (17) that the set Γ, which contains ξS for all bicharac-
teristic strips of the operator L2, is precisely the set of directions for which û(ξ) differs
from zero.

GLANCING RAYS, 1976 AND 1977

In the previous section we have seen difficulties in description of the wave front set even
for the case of equations (5), (6) and (7), which involve constant coefficients, cylindrical
symmetry and the whole space R3. Naturally, such difficulties are compounded by
variable coefficients, by lack of symmetry and by the presence of a boundary ∂Ω of the
set Ω. However, by 1976 Hörmander (1971 a, b, c), with contributions from Duistermaat
(1972) and Lax and Nirenberg (1973), had largely overcome these difficulties, with one
notable exception. The open question was essentially this: for the solution 〈u, ·〉 in
D′(Ω) of an equation 〈Lu, ·〉 = 0 or 〈Lu, ·〉 = 〈v, ·〉, what happens when a bicharacteristic
curve of the wave front set WF(u) meets the boundary ∂Ω tangentially? The case in
which a bicharacteristic curve of WF(u) meets ∂Ω transversely was understood; there is
reflection of the bicharacteristic curve. But it was feared that, if a bicharacteristic curve
of WF(u) meets ∂Ω tangentially, then this might cause various bicharacteristic curves
of WF(u) to emanate from ∂Ω beyond that point. In other words, it was feared that
singularities might propagate along the boundary ∂Ω.

In the paper (8), Gerard answered the question for a particular case, the simplest
form of which (two space variables and time) proceeds as follows. Let

Ω =
{

(x, y, t) ∈ R3
∣∣ x > 0, (y, t) ∈ R2

}
, (18)

and let 〈f, ·〉 ∈ E ′(R2) be a distribution of compact support acting in the boundary ∂Ω
(acting in the plane {x = 0}). Little would be lost if 〈f, ·〉 were replaced by a genuine,
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integrable function f of compact support in R2. The problem is to find a function u in
C∞

(
[0,∞)→ D′(R2)

)‡ such that, in this semi-distributional sense,

Lu =
∂2u

∂x2
+
∂2u

∂y2
− (1 + x)

∂2u

∂t2
= 0 in Ω, (19a)

subject to

〈u(0, ·, ·), ·〉 = 〈f, ·〉 in E ′(R2), (19b)

u(x, y, t) = 0 if t < inf { z | (y, z) ∈ supp(f) } . (19c)

The situation is illustrated in Figure 11. We have already met equation (19a) as the
source of the bicharacteristic strip in Figures 4 and 5.

If one can construct a fundamental solution k in C∞
(
[0,∞)→ D′(R2)

)
that satisfies

(again in a semi-distributional sense)

Lk = 0 in Ω, (20a)

subject to

k(0, y, t) = δ(y)δ(t), (20b)

k(x, y, t) = 0 if t < 0, (20c)

then the problem (19a, b, c) is solved by the distributional convolution (at fixed x)

〈u(x, ·, ·), ·〉 = k(x, ·, ·) ∗ f ; (21a)

if f were a genuine, integrable function of compact support, then this would become

u(x, y, t) =

∫∫

supp(f)
k(x, y − y′, t− t′) f(y′, t′) dy′dt′ (0 ≤ x <∞). (21b)

‡This means that u has partly symbolic values u(x, y, t) such that 〈u(x, ·, ·), ·〉 ∈ D′(R2) for each fixed
x in [0,∞) and that the map x 7→ 〈u(x, ·, ·), ·〉 is infinitely differentiable with respect to x on [0,∞).
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It seems that Gerard had no difficulty with solution of the problem that reduces
to (20a, b, c) in the case of two space variables; his method was as follows. Under a
Fourier-Laplace transform

ϕ̂(β, γ) =

∫∫

R×(0,∞)
exp(−iβy − iγt) ϕ(y, t) dydt,

β ∈ R, γ ∈ C, Im γ < 0,





for functions ϕ such that ϕ̂ ∈ C∞c (R2), and under the definition

〈
k̂(x, ·, ·), ϕ

〉
= 〈k(x, ·, ·), ϕ̂〉 in D′(R2) for all such ϕ,

the problem (20a,b,c) becomes

d2k̂

dx2
− β2k̂ + (1 + x)γ2k̂ = 0, 0 < x <∞,

k̂(0, β, γ) = 1.





(22)

(We have changed Gerard’s Fourier-Laplace transform a little in order to have an analogue
of the definition 〈v̂, ϕ〉 = 〈v, ϕ̂〉 for tempered distributions. As some readers will know, a
Paley-Wiener theorem establishes the properties of ϕ when ϕ̂ ∈ C∞c (R2).) The further
transformation

ζ = γ−4/3β2 − (1 + x)γ2/3, ζ0 = γ−4/3β2 − γ2/3, (23a)

in which

γ = |γ| exp

{
i

3

2
(π − ϑ)

}
, |ϑ| ≤ π

3
, (23b)

yields Airy’s equation

d2k̂

dζ2
− ζk̂ = 0, with k̂|ζ=ζ0 = 1, (24)

and implies that, as x increases from 0 with Im γ ≤ 0, the point

ζ(x) = ζ0 + |γ|2/3 x e−iϑ

moves along a straight path as in Figure 12. The initial value ζ0 is always in the closed
sector to the right of AOB and ζ(x) is always in the closed sector to the right of Cζ0D.
Airy’s equation has solutions Ai(ζ) and Bi(ζ) with asymptotic behaviour

Ai(ζ) ∼ 1

2
π−1/2 ζ−1/4 exp

(
−2

3
ζ3/2

)
as |ζ| → ∞ with |argζ| < π,

Bi(ζ) ∼ π−1/2 ζ−1/4 exp

(
2

3
ζ3/2

)
as |ζ| → ∞ with |argζ| < 1

3
π;
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also, Ai is an entire function, the only zeros of which are on the (strictly) negative real
axis. Accordingly,

k̂(x, β, γ) =
Ai(ζ)

Ai(ζ0)
. (25)

Evidently the domain of k̂ can be extended from Im γ < 0 to Im γ ≤ 0; then k̂ can be
inverted as a Fourier transform rather than as a Fourier-Laplace transform.

Now, there is a bijection from the set C∞
(
[0,∞)→ D′(R2)

)
of distribution-valued

functions to a set D′r
(
(0,∞)× R2

)
of distributions. (This point is obscure in the paper

(8) but clear in (9); distributions in D′r
(
(0,∞)× R2

)
are restrictions to (0,∞)× R2 of

certain distributions in D′(R × R2) that are called regular in x in the paper (9).) A
consequence of this is that a distribution 〈K, ·〉 in D′r

(
(0,∞)× R2

)
is defined by the

inversion formula

〈K, ψ̂〉 =

∫∫∫

(0,∞)×R2

k̂(x, β, γ) ψ(x, β, γ) dx dβ dγ (26a)

for all

ψ̂ ∈ C∞c
(
(0,∞)× R2

)
(26b)

and

ψ(x, β, γ) =
1

(2π)2

∫∫

R2

exp(iβy + iγt) ψ̂(x, y, t)dy dt. (26c)

The question is now: what can be inferred from (25) and (26a,b, c) about the wave front
set WF(K) of K?

Gerard dealt with this question in six and a half formidable pages of the paper (8);
these pages include a partition of k̂ into four parts, skilful use of classical analysis for
the integrals in (26a, c) and application of existing theorems of Hörmander. The result
was this.
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The wave front set WF(K) is contained in the union of those bicharacteristic strips
that project into Ω as the bicharacteristic curves described by equations (28) and illustrated
in Figure 13. (27)

In terms of x ≥ 0 and a parameter λ ∈ [0, 1], the bicharacteristic curves in question
are

y = ± 2λ1/2
(√

1− λ+ x −
√

1− λ
)
,

t = 2
{

(1 + x)
√

1− λ+ x−
√

1− λ
}
− 4

3

{
(1− λ+ x)3/2 − (1− λ)3/2

}
,

x ≥ 0, 0 ≤ λ ≤ 1.





(28)

We note that t(x) ≥ 0 because t(0) = 0 and

t′(x) = (1 + x) (1− λ+ x)−1/2 > 0.

The most important of these curves is the widest:

if λ = 1, then y = ± 2x1/2, t = 2x1/2 +
2

3
x3/2. (29)

This meets the boundary ∂Ω tangentially. If we begin with y < 0 and let y increase
through 0, then this bicharacteristic curve causes nothing dreadful in the half-space
{y > 0}.

Figure 14 shows a set of bicharacteristic curves that emanate from a curve x = h(y),
t = 0 closer to the boundary ∂Ω than the parabola x = 1

4y
2, t = 0 appearing in (29) and

Figure 13. The result (27) ensures that such bicharacteristic curves make no contribution
to WF(K). For the particular configuration in Figure 14,

h(y) =

{
0 if 0 < y ≤ 1,

exp
(
− 1
y−1

)
if 1 < y <∞.

Gerard then applied this result for K to the more general problem (19a,b,c). There
is a distribution 〈U, ·〉 in D′r

(
(0,∞)× R2

)
that corresponds to the distribution-valued

function u, with values k(x, ·, ·)∗f , in (21a). We recall that 〈f, ·〉 is the forcing distribution
in the plane {x = 0}. The result for WF(U) resembles closely the result for WF(K); the
family of bicharacteristic curves (28) emanating from the origin, for WF(K), is replaced,
for WF(U), by a larger family of bicharacteristic curves emanating from the points of
supp(f).

The paper (9) made three further contributions; all concerned the solution 〈u, ·〉 in
D′(Ω) of 〈Lu, ·〉 = 0 or of 〈Lu, ·〉 = 〈v, ·〉, the operator L and the side conditions being
those that reduce to (19a, b, c) for two space variables. The work of Melrose (1975, 1976)
also played a part.

First, the paper made precise the relationship between the distribution 〈u, ·〉, which
determines WF(u), and the distribution-valued functions that form stepping-stones in
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the estimation of WF(u). As was noted above, this (rather delicate) relationship had
been vague in the earlier paper.

Secondly, the paper (9) extended the earlier results for the homogeneous equation
〈Lu, ·〉 = 0 to the inhomogeneous equation 〈Lu, ·〉 = 〈v, ·〉. This was achieved by means
of machinery (a pseudo-differential operator called the boundary operator) that could
also shorten the earlier proofs, but that is far beyond us here.

The third contribution had its roots in the fact that functions in the set C∞(Ω)
are by no means the best functions with domain Ω. That accolade is usually given to
the set A(Ω) of real-analytic functions with domain Ω. (These are functions having a
convergent Taylor series in a neighbourhood of every point of Ω.) For a distribution
〈u, ·〉 in D′(Ω) one can define the singular support ssA(u) with respect to A(Ω) to be
the smallest closed subset of Ω outside which the symbolic function u may be replaced
by a genuine function that is real-analytic in the open set Ω \ ssA(u). There are also
Gevrey classes G(s,Ω), with 1 ≤ s <∞ and G(1,Ω) = A(Ω), that go some way towards
filling the gap between A(Ω) and C∞(Ω). The definition of singular support ssG(s)(u)
with respect to one of these is similar to the definitions of ss(u) and ssA(u). Naturally,

ss(u) ⊂ ssG(s)(u) ⊂ ssA(u),

with strict inclusion on the right when s > 1.
By 1976 Hörmander had managed to give corresponding definitions of wave front

sets WFA(u) and WFG(s)(u), and to prove that

WF(u) ⊂ WFG(s)(u) ⊂ WFA(u)

for every 〈u, ·〉 in D′(Ω). This is surprising, because A(Ω) contains no non-trivial function
of compact support in Ω and therefore contains no truncation multiplier at a point z of
Ω.

Despite these huge difficulties, Friedlander and Melrose were able, in the third part
of the paper (9), to refine the results of (8) by estimates of WFA(u) and WFG(s)(u) for
their problem. There were parallel results by M.E. Taylor (1976) at essentially the same
time. It turned out that WFG(s)(u) with s ≥ 3 is not conspicuously different from WF(u).
But for WFA(u) certain indirect curves close to ∂Ω, which make no contribution to
WF(u), now play a part. In the language of specialists in this field, analytic singularities
can propagate along such indirect curves. That is to say, along such curves the symbolic
function u may be replaced by a C∞ function but not by a real-analytic function.

LUND

Gerard spent the period 1 January to 31 May 1977 at Lund, accompanied by Liz: details
of his visit are based on information kindly given to us by Professor Nils Dencker. During
this time Gerard was substitute professor for Lars G̊arding and gave a course entitled
“Topics in wave propagation” in which the various themes were
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Radiation fields of expanding waves
Energy estimates (of Friedrichs-Lewy type)
Lorenzian metrics
Energy tensor
Conformal spacetime
Inverse problems of radiation fields
Zonal harmonics
The Funk-Hecke formula
Radiation fields of compactly supported sources.
It seems that he had been invited partly because he was the supervisor of Richard

Melrose, whose recent results on gliding rays had been a breakthrough; thus it was
natural to want to learn about Friedlander’s own results. However, the daunting task
facing anyone coming to Lund and lecturing to Hörmander was underlined by G̊arding
when he jokingly asked Gerard “Do you want to go to hell?”

Dencker remembers Gerard as a very friendly and cultured professor of a characteris-
tically British type, whose lunchtime conversations covered a wide range of topics, from
the emerging politician Margaret Thatcher to the latest British punk bands (of which
he knew more than Hörmander). Anecdotally, his tolerance of Swedish spiced aquavit,
the so-called “snaps”, was low.

BILLIARD BALL TRAJECTORIES IN POLYGONAL DOMAINS

This section is based on comments kindly given to us by Professor D. Vassiliev. In
(10) and (11) Gerard studied the non-homogeneous wave equation in a planar domain
with a boundary that is polygonal in the sense that it is the union of a finite number
of pairwise disjoint Jordan polygons. Dirichlet boundary conditions were imposed
together with an appropriate initial condition; the prescribed right-hand side of the
wave equation was assumed to have compact support both in the spatial variables and
in time. Such problems are of great interest for spectral theory as the propagation of
singularities of the solution determines the asymptotic distribution of the eigenvalues of
the Dirichlet Laplacian. At a formal level the relation between the wave equation and
the spectral problem for the Laplacian can be seen by performing a Fourier transform in
the time variable, which replaces differentiation in time by multiplication by the spectral
parameter.

Singularities of solutions of the wave equation propagate along billiard ball trajecto-
ries (closed geodesics), reflecting from the boundary. A peculiar feature of polygonal
boundaries is that diffraction from the vertices has to be taken into account: when a
billiard trajectory hits a vertex whose angle is generic, all possible continuations of the
trajectory from this vertex must be considered. In the papers mentioned above, Gerard
paid special attention to periodic billiard trajectories as these are responsible for the
clustering (that is, uneven distribution) of the eigenvalues of the Dirichlet Laplacian.
He showed in (11) that if all the vertices are diffractive, then there are infinitely many
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minimal closed diffractive geodesics, thereby settling (in the negative) a conjecture he
made in (10). These two papers motivated a good deal of subsequent research by others
on wave propagation on Riemannian manifolds with non-smooth boundaries.

RETIREMENT

Ater retirement in 1982, he and Liz lived in London to be closer to their family. Paul’s
first child, Naomi, had just been born and Gerard’s other son, Peter, was also living in
London. Once in London, Gerard missed having contact with a mathematics department
but Ambrose Rogers (FRS 1959) was delighted to offer him an honorary position at UCL.
There he met Bill Stephenson, mathematician and keen student of communism, who was
stunned to learn that Gerard’s mother was Ruth Fischer. Further links with the past
came as a result of one of us (M.P.) attending a season of German silent films organised
by the celebrated and knowledgeable film critic John Gillett. When John learned that
Hanns Eisler was Gerard’s uncle he was tremendously keen to talk to Gerard. They met
before a screening of Hangmen also die, directed by Fritz Lang, based on a story by
Bertold Brecht and with a score written by Eisler. A memorable conversation ensued
with Gillett becoming more and more amazed at the detailed information poured out by
Gerard in his usual low key, modest way about one of Gillett’s film music heroes.

In his later years Gerard started to receive the credit he deserved for his path-
breaking work on the Airy equation and its relevance to the modern theory of hyperbolic
differential equations. In 2000, Richard Melrose organised a conference in his honour at
MIT with speakers including Peter Lax and Lars Hörmander himself. At his funeral,
Sir Hermann Bondi spoke eloquently about his friendship with him and recalled how
Gerard, as the person in DAMTP who knew more pure mathematics than anyone else,
was always willing to take time to provide the pure mathematics input for a colleague’s
paper, often to the detriment of his own career.
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Hörmander, L. 1971a Fourier integral operators. I. Acta Math. 127, 79-183.

34
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