
The Gauss-Newton matrix for Deep Learning
models and its applications

Aleksandar Botev

August 2020

Declaration

I, Aleksandar Botev confirm that the work presented in this thesis is my own and
includes experiments and results done in collaboration as declared in the preface.
Where information has been derived from other sources, I confirm that this has been
indicated in the thesis. The thesis does not exceed the word limit of 100,000 words
including footnotes, tables, figures, appendices and bibliography as per the Research
Degree Regulations.

Aleksandar Botev
August 2020

Acknowledgements

I would firstly like to thank my family for all the support they have provided me with
during my studies. I would also to like to thank my supervisor David Barber, for
his many pieces of advice, help and support throughout my PhD program. I’m also
very grateful to all my colleges from my group at University College London who
have corrected me endless times and made my studies so much enjoyable - Thomas
Anthony, Thomas Bird, Raza Habib, Zhen He, Louis Kirsch, Julius Kunze, Hippolyt
Ritter, Harshil Shah, James Townsend, Tianlin Xu, Mingtian Zhang, Bowen Zheng.
1 Furthermore, I would like to thank all my friends, colleges and reviewers who have
helped me during the writing and submitting of my publications and thesis.

I’m also very grateful to both OpenAI and Google DeepMind for the opportunity
they have provided me with during my studies to learn and do research outside of
academia. Lastly, I would like to thank the Centre for Doctoral Training in Financial
Computing and Analytics for supporting my four years of PhD studies.

1Listed in alphabetical order.

Abstract

Deep Learning learning has recently become one of the most predominantly used
techniques in the field of Machine Learning. Optimising these models, however, is
very difficult and in order to scale the training to large datasets and model sizes
practitioners use first-order optimisation methods. One of the main challenges of
using the more sophisticated second-order optimisation methods is that the curva-
ture matrices of the loss surfaces of neural networks are usually intractable, which
is an open avenue for research.

In this work, we investigate the Gauss-Newton matrix for neural networks and
its application in different areas of Machine Learning. Firstly, we analyse the struc-
ture of the Hessian and Gauss-Newton matrices for Feed Forward Neural Networks.
Several insightful results are presented, and the relationship of these two matrices
to each other and to the Fisher matrix is discussed. Based on this analysis, we
develop a block-diagonal Kronecker Factored approximation to the Gauss-Newton
matrix. The method is experimentally validated in the context of second-order op-
timisation, where it achieves competitive performance to other approaches on three
datasets. In the last part of this work, we investigate the application of the pro-
posed method for constructing an approximation to the posterior distribution of
the parameters of a neural network. The approximation is constructed by adapting
the well known Laplace approximation using the Kronecker factored Gauss-Newton
matrix approximation. The method is compared against Dropout, a commonly used
technique for uncertainty estimation, and achieves better uncertainty estimates on
out of distribution data and is less susceptible to adversarial attacks. By combin-
ing the Laplace approximation with the Bayesian framework for online learning, we
develop a scalable method for overcoming catastrophic forgetting. It achieves signif-
icantly better results than other approaches in the literature on several sequential
learning tasks. The final chapter discusses potential future research directions that
could be of interest to the curious reader.

Impact Statement

The presented work demonstrates a wide spectrum of applications for the Gauss-
Newton matrix of Deep Learning models. The analysis from the Chapter 3 can be of
particular use to other researchers investigating the curvature of neural networks and
it could potentially give further insights into the loss surface structure. Chapter 4
proposes a practical algorithm for optimization, which can have a practical impact
on practitioners both inside and outside academia. The much lower number of
hyperparameters involved could also reduce the energy and hardware needed for
training models, as it does not require the extensive grid search that is usually
required for other methods. Chapter 5 demonstrates how to use the curvature
approximation to get uncertainty estimates of the model predictions. Uncertainty
is of great importance to any real-world applications where decisions based on the
model output can have significant consequences, such as applications in the medical
domain, human-robot interactions and self-driving cars. As such, the demonstrated
benefits of using the proposed approximation scheme can be used both as a starting
point for further research in this direction as well as an important improvement in
practical applications. In addition, this chapter further shows improvement when
our method is applied to the problem of continual learning. Our publications have
already been used in other’s research work. The code for the empirical experiments
presented in any chapter is available at https://github.com/BB-UCL/Lasagne, with
which we hope to speed up the adoption of the ideas presented.

https://github.com/BB-UCL/Lasagne

Contents

1 Why is the curvature of neural networks important 1
1.1 Structure of the Thesis . 3

2 Background 5
2.1 Deep Learning . 6

2.1.1 Feed Forward Neural Networks 8
2.1.2 Convolutional Neural Networks 9
2.1.3 Recurrent Neural Networks 11
2.1.4 Modelling distributions . 12

2.2 Optimization . 13
2.2.1 First-Order Optimisers . 14
2.2.2 Adaptive First-Order Optimizers 15
2.2.3 Second-Order Optimizers . 16

2.3 Model Uncertainty and its applications 18

3 Curvature Matrices of Feed Forward Neural Networks 20
3.1 Modelling formulation and assumptions 21
3.2 The Kronecker product and related properties 22

3.2.1 Properties . 22
3.2.2 The vectorization operator . 25

3.3 Neural network notations . 26
3.4 The structure of the sample Hessian matrix 28

3.4.1 The Block Diagonal Hessian Recursion 30
3.4.2 The special case of piecewise linear activation functions 32

3.5 The Generalised Gauss-Newton matrix 34
3.5.1 Relationship with the Fisher matrix 38

3.6 On the rank of the empirical matrix 39

5

4 Tractable approximations of the Generalized Gauss-Newton ma-
trix 41
4.1 Motivating the block diagonal approximation 42
4.2 Approximating the Diagonal Blocks of G 44
4.3 Practical calculations for Gl . 45

4.3.1 Exact low rank calculation . 45
4.3.2 Recursive Mean Propagation 46
4.3.3 Using The Fisher identity . 46
4.3.4 Using Random Projections . 47

4.4 The full optimization algorithm . 47
4.4.1 The role of damping . 49
4.4.2 Inverting the approximate curvature matrix 50

4.5 Experiments . 52
4.5.1 Comparison to First-Order Methods 53
4.5.2 Alignment of the Approximate Updates 56
4.5.3 Non-Exponential Family Model 60

5 Uncertainty estimation for Deep Learning models 62
5.1 A scalable Laplace approximation . 64

5.1.1 Practical approximations . 65
5.2 Experiments on uncertainty estimation 67

5.2.1 Toy Regression Dataset . 68
5.2.2 Out-of-Distribution Uncertainty 70
5.2.3 Adversarial Examples . 72
5.2.4 Uncertainty on Misclassifications 75

5.3 Online learning . 77
5.3.1 Bayesian online learning for neural networks 78
5.3.2 Alternative methods . 82

5.4 Experiments on online learning . 84
5.4.1 Online learning on Permuted MNIST 85
5.4.2 Online learning on Disjoint MNIST 88
5.4.3 Online learning on multiple datasets 90

6 Conclusion and future research directions 93

List of Figures

2.1 Feed Forward Neural Network . 9
2.2 Convolutional Neural Network . 10
2.3 Recurrent Neural Network . 11

3.1 Loss surface for piecewise linear activation functions. 33

4.1 Optimizers comparison . 55
4.2 Alignment of the diagonal approximate updates 58
4.3 Alignment of the full approximate updates 59
4.4 Fisher vs Gauss-Newton for non-exponential family models 61

5.1 Toy regression uncertainty . 69
5.2 Predictive entropy on out of distribution data 71
5.3 Uncertainty in untargeted adversarial attacks 73
5.4 Uncertainty in targeted adversarial attacks 74
5.5 Uncertainty estimates for Wide ResNets 77
5.6 Effect of the value of λ on the MAP estimate 82
5.7 Online learning on permuted MNIST. 85
5.8 Effect of λ for different approximations. 86
5.9 Online learning on Disjoint MNIST 88
5.10 Online learning experiments using "Online Laplace" 91
5.11 Online learning experiments using "Non-Online Laplace" 92
5.12 Online learning experiments using "EWC Laplace" 92

List of Tables

5.1 Test accuracy of the Feed Forward Neural Network trained on MNIST 72
5.2 Accuracy on the final 5, 000 CIFAR100 test images for a wide residual

network trained with and without Dropout. 76
5.3 Final test accuracy for sequential vision tasks 90

Chapter 1

Why is the curvature of neural
networks important

Machine Learning is a field, whose main goal is to extract the most relevant infor-
mation for a given task from the observational data. It is tightly connected with
statistics and computer science, as most of the models are based on statistical mod-
elling assumptions and are usually highly scalable on computing hardware. However,
compared to classical statistics, it is mostly focused on achieving good empirical re-
sults. In this direction, neural networks have demonstrated to be one of the most
flexible models that are also easy to train. They have become the de facto stan-
dard for applications using unstructured data, such as images, raw text, sound and
others. Training neural networks was very difficult in the early 90s and 2000s, but
several methods have been developed since then, both for optimising them better,
as well as for constructing random initialisations which allow being trained easily
[104, 61, 50, 48]. Unfortunately, some of the best optimizers used in more classical
Machine Learning models, could not be applied to neural networks directly. The
main reason for this is that they required to compute the Hessian matrix, or some
approximation of it, which will be referred to as a curvature matrix. Its size is the
number of parameters squared, however, modern neural network models have on
the order of millions or billions of parameters. This makes computing and storing
a curvature matrix infeasible for any practical purposes. Additionally, as the name
suggests, it is usually informative of the curvature of the objective loss that the
model optimises. This has been investigated by researchers with the goal of better
understanding what makes neural networks work as well as they do [38, 20]. In prac-
tice, however, the only thing that is possible to achieve is to either compute only

1

The Gauss-Newton matrix for Deep Learning models and its applications

the diagonal entries of the curvature matrix or compute its projection onto some
much smaller subspace. The work in this thesis tries to partially address this issue.
Instead of computing the full curvature matrix, we propose to approximate only
its diagonal blocks, corresponding to parameters in the same layer of the network,
using Kronecker products. Although it might seem quite limited, we demonstrate
that an approach like this provides a feasible alternative, that shows practical gains
in several applications. Compared to the diagonal approximation, this preserves any
intra-layer parameter dependencies, while ignoring any inter-layer ones.

Additionally, the curvature matrix plays an important role when used for mod-
elling statistical dependencies between observed variables. In this scenario, the Hes-
sian matrix is equal to the negative of the Fisher Information Matrix, also referred
to as just the Fisher. This matrix is a measure of how much information the data
carries over to the parameters of the model. It plays an important role in the famous
Cramer-Rao bound, which provides a lower bound on the variance of any unbiased
estimate of the true model parameters [109, 22]. Another important area, where the
curvature matrix plays a central role, is Information Geometry. This arises when
one considers the space of models that are defined by neural network as a Rieman-
nian manifold. Specifically, when they define a distribution, this defines a Statistical
manifold, where the Fisher matrix plays the role of a local metric tensor. This al-
lows one to move along geodesics on the manifold in the direction of the gradient
of any function. Since this is usually infeasible to compute, rather than computing
the exact geodesic, in practice the Riemannian retraction is used 1. If used for op-
timisation, the famous work of Amari proved that this retraction, termed Natural
Gradient, is statistically efficient — it achieves the Cramer-Rao bound [2]. Other
practical applications, where the Riemannian perspective has shown to provide sig-
nificant improvements, are gradient-based Markov Chain Monte Carlo methods [75].
In practice, however, because it is infeasible to compute the curvature matrix, prac-
titioners were restricted to only use diagonal approximations, which showed limited
improvements as they ignore any intra-parameters correlations.

One of the main applications that we are interested in is constructing a Laplace
approximation to the posterior density of a neural network. In this case, the curva-
ture matrix will become the precision matrix of the approximate Gaussian distribu-
tion. This has been successfully applied before on small scale models [79]. Because

1The Riemannian retraction can be thought of as a first-order approximation to a geodesic
differential equation.

2

The Gauss-Newton matrix for Deep Learning models and its applications

of the size of the curvature matrix, this method is infeasible to apply even to an
average modern neural network model. In the literature, a diagonal approxima-
tion has been tried, but in practice, this does not seem to give very good results.
Hence, the approximation that we have developed, would enable the application of
the Laplace methods with richer curvature information. In the context of having
multiple sequential observations, Assumed Density Filtering is a classical method
that constructs a Laplace approximation on every new observation [87]. This can
be applied for the problem of online learning for neural networks, where the data
from different tasks would play the role of different observations. Our experiments
demonstrate that including curvature information with intra-layer dependencies im-
proves significantly compared to the diagonal approximation or previously published
methods. Furthermore, in general, for local Gaussian approximations, the curvature
matrix is closely related to the evidence of the model conditioned on the data. This
is a quantity of great importance in Bayesian statistics, that is used for model se-
lection and comparisons. Unfortunately, we did not have the opportunity to apply
our method to this problem.

1.1 Structure of the Thesis

The thesis is split into another five chapters. The next Chapter 2 presents a very
broad introduction to topics regarding Deep Learning. This includes a short pre-
sentation of different neural network architectures as well as how they are used in
practice. Also, a short introduction to optimisation methods, which are applied to
Deep Learning models, is done, as it is one of the central problems that this work
tries to solve in the later chapters. Finally, a short discussion of uncertainty estima-
tion is presented, as well as its possible applications in different areas such as online
learning. Chapter 3 will introduce the mathematical notations and background that
will be used throughout the whole thesis. Moreover, it will present several impor-
tant theoretical results regarding the structure of different curvature matrices for
Feed Forward Neural Networks and their relationships with each other. This will
layout the foundations that have motivated the work in Chapter 4, where our work
on practical and more computationally efficient approximations to the Generalised
Gauss-Newton matrix for a neural network is presented. At the end of the chap-
ter are presented empirical evaluations and comparisons with other methods in the
literature, together with further discussion on recent advancements in the same di-

3

The Gauss-Newton matrix for Deep Learning models and its applications

rection. Chapter 5 will then build upon the practical curvature approximations
developed and will show how they can be used to build an approximate posterior
distribution over the parameters of a model. Several experiments have validated
this idea and demonstrated that this method achieves better uncertainty estimates
on multiple datasets, then competing approaches. Additionally, it would showcase
how the posterior distribution can be applied to online learning and empirically
demonstrate that it outperforms other methods from the literature. In the final
Chapter 6, several standing problems with the presented curvature approximations
will be discussed as well as potential future research directions.

All of the work in this thesis is based on the three conference papers, published
during my PhD studies at University College London, listed below with the full list
of collaborators:

Botev, A., Ritter, H., and Barber, D. “Practical Gauss-Newton Optimisation
for Deep Learning”. In: Proceedings of the 34th International Conference on
Machine Learning. Vol. 70. Proceedings of Machine Learning Research. In-
ternational Convention Centre, Sydney, Australia, 2017, pp. 557–565

Ritter, H., Botev, A., and Barber, D. “A Scalable Laplace Approximation for
Neural Networks”. In: International Conference on Learning Representations.
2018

Ritter, H., Botev, A., and Barber, D. “Online Structured Laplace Approxima-
tions for Overcoming Catastrophic Forgetting”. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. NIPS’18.
2018, pp. 3742–3752

In addition, the following papers have been published during my PhD:

Botev, A., Lever, G., and Barber, D. “Nesterov’s accelerated gradient and
momentum as approximations to regularised update descent”. In: 2017 In-
ternational Joint Conference on Neural Networks (IJCNN). 2017, pp. 1899–
1903

Botev, A., Zheng, B., and Barber, D. “Complementary Sum Sampling for
Likelihood Approximation in Large Scale Classification”. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics. Vol. 54.
Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA, 2017,
pp. 1030–1038

4

Chapter 2

Background

In the years before Deep Learning became the popular technique it is today, in
the field of Machine Learning researchers used to train significantly smaller models
with smaller datasets. Some of the best tools used for optimising the parameters of
their models were based on second-order optimisation — techniques which required
the estimation of a curvature matrix of the objective function. However, what is a
curvature matrix? It is difficult to give a precise definition, but we will describe it
as a matrix that tries to capture properties of the loss function by approximating
in some way the matrix of second-order derivatives and can be used to speed up
optimisation in practical terms. Unfortunately, none of the previous second-order
techniques scale well to the modern demands of Deep Learning models despite the
ever-improving computational hardware that is being used. As a result, models in
more recent years are predominantly optimised using first-order methods as they
scale very easily to both large models and datasets.

In light of this, this thesis is mainly concerned with investigating the Generalised
Gauss-Newton matrix for Deep Learning models, a specific type of curvature matrix,
as well as different practical approximations of it. Despite the original motivation,
the benefits of having a curvature matrix go beyond just optimisation — it also
allows us to make a richer scalable approximation to the posterior distribution of
the parameters of a neural network. This approximation, although not perfect, still
performs better compared to other alternatives presented in the literature. Further-
more, it has many practical applications in other areas of research, some of which
will be demonstrated experimentally.

5

The Gauss-Newton matrix for Deep Learning models and its applications

2.1 Deep Learning

Deep Learning is a field that in the past couple of years has become more and
more popular and nowadays is one of the most prominent tools that is used in Ma-
chine Learning. Its development has led to achieving better state-of-the-art results
in a variety of areas, and it has revolutionised the application of Machine Learn-
ing to real-world problems [70]. The most prominent initial breakthroughs were in
computer vision, where it was one of the first methods to achieve near-human per-
formance on difficult object recognition challenges such as ImageNet [66, 139, 125,
128]. Another area that has seen significant improvements using Deep Learning
models is Natural Language Processing (NLP), where models are now capable of
generating coherent paragraphs of text, answering questions and performing simple
dialogues [136, 106, 26, 105, 17]. Reinforcement Learning has also shown significant
progress, where models have achieved human performance on Atari games playing
directly from pixels, manipulating robotic hands with improved dexterity and more
recently by achieving a long standing challenge in AI — defeating top human players
in the game of Go without any supervision [90, 3, 124, 1]. Applications like image
generation, voice recognition and voice generation have been improved enough that
they are being used now in our everyday life through smartphones, digital assistants
and other devices. [47, 98, 134, 100]. This is just the tip of the iceberg with many
more areas and applications being improved upon every year.

The field of Machine Learning can be split into three major categories — Su-
pervised Learning, Unsupervised Learning and Reinforcement Learning. Supervised
Learning deals with problems where we are given a collection of N data points
D = {(xn,yn)|n = 1, . . . , N}, referred to as the dataset, and the goal is to learn to
predict the variable y given x. As an example, x could be an image while y could
be a binary label of whether in the there is a dog or a cat present.

In probabilistic modelling, this would be equivalent to estimating the conditional
distribution p(y|x). In Unsupervised Learning, on the other hand, we are given a
dataset of observations x, without any labels, and the goal is to learn to generate new
values, which are similar to the dataset 1, or to compress the observation to a much
lower-dimensional representation which captures the essential features of the data.
In the probabilistic modelling literature, this would constitute directly estimating
the marginal distribution p(x) in a way that it is possible to take samples from
it. Reinforcement Learning is somewhat different in that it does not have a fixed

1This is an oversimplification, as in general, it is possible to have data of various modalities.

6

The Gauss-Newton matrix for Deep Learning models and its applications

dataset. Instead, it focuses on the very general problem of how does an agent learn
to act in a given environment. Commonly, there is an external reward that the
agent is trying to maximise. Hence, the data that it receives depends on its actions,
although there are subfields which assume some form of offline supervision. There
are various connections between the three categories, but this area is closest to what
people outside the research community consider as Artificial Intelligence.

In this thesis, we are concerned only with Supervised Learning problems. Un-
less otherwise explicitly specified, it should always be assumed that the neural
network model considered is trying to estimate the conditional distribution
p(y|x) for a given dataset D.

To introduce Deep Learning as a concept, we shall start with one of the first
and simplest models proposed — the perceptron, which one could call a shallow
network [117]. It was initially designed as a binary classification algorithm which
assumed that the label can be represented by applying a threshold function to linear
combination of the input features plus a bias term:

h =

1 if wTx + b > 0,

0 otherwise.
(2.1)

In the cases where the output is an arbitrary vector rather than just a binary value,
a more general computational model is used. If the input x is a vector in Rd and the
target output y is a vector in Rk, given a weight matrix W in Rk×d, a bias vector b

in Rk and a non-linear activation function φ the output is computed as

h = φ(Wx + b). (2.2)

This computationally is commonly referred to, in the context of Deep Learning, as
a fully connected layer and the weight matrix and bias are its parameters. To train
a layer one iteratively adjusts its parameters such that the output h is as close as
possible to the targets y given x. This procedure can be formalised as minimising
the averaged square loss over the whole dataset, which is equal to

1

N

∑
n

||yn − φ(Wxn + b)||22. (2.3)

In general, one could use any activation function φ; however, in practice, it is chosen
based on the exact problem and some prior knowledge about the dataset. For

7

The Gauss-Newton matrix for Deep Learning models and its applications

instance in the case of binary classification, where y = {0, 1}, the standard choice
for an activation function is the sigmoid — φ(x) = 1

1+e−x
.

A simplified description of Deep Learning models is that they are a hierarchy
of multiple layers, each taking inputs from its predecessors, composing together to
produce output features. Although a seemingly obvious idea, it took significant time
for the research community to see its potential. The main reasons were that initially
it was proven that the capabilities of the shallow perceptron are very limited [103].
Moreover, at that time hardware was not yet well developed and capable of training
very deep models. In time it was theoretically proven that stacking multiple fully
connected layers with non-linear activation functions has universal approximation
capabilities [23]. Additionally, many more type of layers have been developed, which
improved even more model capabilities. This representation of a very sophisticated
model in a simple form of building blocks connected together revolutionised the field
and allowed its widespread research and adoption in the research community.

The following sections formalise the construction of a deep neural network math-
ematically. After that, some of the most popular variants of neural networks are
presented and discussed. The final section discusses how in the modern use of Deep
Learning models, they are usually used together in a probabilistic framework, and
their outputs represent distributions over the outputs rather than singular values.

2.1.1 Feed Forward Neural Networks

Feed Forward Neural Networks are the simplest deep learning models — a stack of
multiple fully connected layers. Each one performs the computation of Equation 2.2
by taking as input the output of the previous layer. Only the final layer does not
have an activation function and directly outputs its pre-activations. The reason for
this will be clarified in Section 2.1.4. This can be formalised mathematically in the
following way:

a0 = x,

hl = Wlal−1 + bl ∀l ∈ [1, L],

al =

φ(hl) if 0 < l < L,

hL if l = L.

(2.4)

Common activation functions φ used in practice are the sigmoid function described
earlier, the hyperbolic tangent, the rectified linear unit (ReLu) [46] and some more
sophisticated ones such as the exponential linear unit [21] and Swish [107].

8

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 2.1: Feed Forward Neural Network. A three layer network with two hidden
layers and a scalar output. The input values are marked in green, the weight matrix
connections and layer activations in blue and the biases connections in red. Note
that the final output does not have an activation function in our notations.

Although very simple it turns out that this model, given enough units in each
layer, can approximate any function arbitrarily well [23]. However, specifically when
dealing with image data, a different type of neural network have been established
as the most successful.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have been developed specifically for solving
computer vision and image recognition tasks. Rather than using a direct linear
combination of the whole input image, each convolutional layer applies a discrete
spatial convolution of the image with a bank of small filters, which play a similar
role to the weight matrix of the fully connected layer. For each filter, this results
in an image like output that also has two spatial dimensions. These image like
outputs are then stacked together in the depth dimension which in turn results in
another 3D array that gets propagated to the next layer. The number of stacked
outputs, corresponding to the number of filters, is usually referred to as channels.
The main reason for this is that the depth dimension plays a comparable role as to
how the input image has red, green and blue colour channels. Similar to the fully
connected layer after applying the convolutional filters, a bias term is added, and a

9

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 2.2: Convolutional Neural Network. A standard convolutional neural network
architecture, similar to AlexNet. The input image is indicated in green, which is
processed by a series of convolutional layers until finally at the end they are passed
through several fully connected layers and the output is produced. The numbers
show example dimensions of both the image like tensors as well as the convolution
kernels that are applied.

non-linear activation function is applied. Additionally, spatial pooling is commonly
used in order to shrink the spatial size of the output, while the number of channels
is usually progressively increased. The sequence of convolutional layers continues
until the spatial dimensions are sufficiently small. Then the full 3D array is flattened
into a single vector, and a small Feed Forward Neural Network is then applied to
produce the final output.

One of the main inspirations for applying convolutions was its resemblance to
some functionality of the human vision as well as its capabilities of extracting fea-
tures independent of where they are in the image [32]. In the literature, this is
referred to as spatial translation invariance. One of the most famous CNNs, named
AlexNet, for the first time, achieved better performance than other classical models
on the ImageNet challenge [66]. Since its success, many more architectural develop-
ments have been done. Some improve the performance of the network across many
tasks, while others are tailored to specific tasks. One example of an architectural
change that generally improved the performance of Convolutional Neural Networks
is the introduction of residual connections [49]. By including these connections in
a network, it is now possible to train extremely deep networks and achieve bet-
ter state-of-the-art results for different vision tasks, such as segmentation, as well

10

The Gauss-Newton matrix for Deep Learning models and its applications

as for improving training times. The UNet, on the other hand, is an architecture
introduced explicitly for improving the task of image segmentation [116].

Similarly, neither feed forward nor convolutional networks are well suited when
working with sequential data, for which another model has been established.

2.1.3 Recurrent Neural Networks

Figure 2.3: Recurrent Neural Network. The figure shows a standard recurrent net-
work computation. The inputs are depicted in red and all of the hidden representa-
tion at each time steps in blue. The outputs and their connections are in red.

Recurrent Neural Networks (RNN) were developed as an extension to the stan-
dard Feed Forward Neural Networks for data which comes in sequences, like language
or sound. Since sequential data can have variable length, it is very challenging to
process such inputs with the network architectures discussed earlier. Instead of pro-
cessing the whole sequence as a single vector, recurrent models process the inputs
sequentially forming a chain over the sequence length as depicted in Figure 2.3.
At every time step, the network has a hidden state representing all the necessary
information from the past and the current inputs. It is computed by combining
the hidden state at the previous time step with the inputs at the current time step
using a fully connected layer and then applying a non-linear function. An important
distinction with other models is that the weight matrix and bias of this layer are
the same across all time steps. The actual output at time t is computed by applying
a separate fully connected layer to the hidden state representation of the RNN at
time t. Mathematically this can be formalised as follows:

ht = φ(Wxxt + Whht−1 + bh),

yt = Wyht + by.
(2.5)

11

The Gauss-Newton matrix for Deep Learning models and its applications

This specific construction is usually referred to in the literature as a vanilla Re-
current Neural Network. The reason is that the actual transformation of the pair
(ht−1,xt) into ht does not need to be the same as a standard fully connected layer.
Empirically, it was observed that this model struggled with learning data depen-
dencies that span across many time steps. To address this issue, the Long-Short
Term Memory (LSTM) [55] and Gated Recurrent Unit (GRU) [19] were developed,
which provided alternative forms of recurrent transition functions. They showed
significantly better results in tasks that the vanilla architecture was not capable of
solving. More recently, the self-attention mechanism has been used to construct
sequential models which empirically outperforms even the LSTM and GRU on a
variety of tasks [130]. Stacking multiple such layers in a hierarchical fashion lead
to the famous Transformer architecture, which is currently a basis for many of the
state-of-the-art models in NLP [26, 105].

2.1.4 Modelling distributions

Originally neural networks were used to provide point estimates of the target val-
ues — the output was treated as a direct prediction and training them was done
by regression. A more powerful paradigm is to use the network in a probabilistic
modelling framework and use its output to parameterise a distribution over the out-
put domain. Firstly, this allows the model to assign uncertainty to the value it is
predicting. More importantly, it allows training of neural networks using Maximum
Likelihood Estimation (MLE), which has several important properties such as con-
sistency and efficiency [24, 59]. Denoting the collection of all network parameters
as θ in the Supervised Learning setting this corresponds to maximising∑

n

log p(yn|xn, θ). (2.6)

Whereas mentioned earlier, the pairs (xn,yn) are taken from the dataset D. The
standard squared loss is a special case of MLE when the distribution p(y|x, θ) is
a Gaussian with mean hL and identity covariance. Experimentation has shown,
however, that Deep Learning models trained using MLE often tend to overfit the
training data and perform poorly when presented with out of sample data. In light of
this, it is common to additionally introduce a prior distribution over the parameters
and instead of using MLE the parameters are selected by maximising the logarithm

12

The Gauss-Newton matrix for Deep Learning models and its applications

of the posterior distribution:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=

∏
n p(y

n|xn, θ)p(θ)
p(D)

,

log p(θ|D) =
∑
n

log p(yn|xn, θ) + log p(θ) + const.
(2.7)

This is a well known procedure in statistics called Maximum A Posteriori (MAP)
estimation. The most common prior distribution used over the parameters of neural
networks is the isotropic Gaussian.

The specific choice of the type of distribution that the network outputs is problem
dependent. As an example in the case of binary classification, the standard choice
would be a Bernoulli distribution, in the case of multi-class classification would be
a categorical distribution, in the case when dealing with continuous values the most
common choice is a Gaussian. All of the distributions used in practice are chosen
from the exponential family, and commonly the network parameterises them by
treating its final layer outputs hL as the natural parameters of the distribution. This
is the main reason why in our treatment of the model the last layer does not have
an activation function, as usually it is dictated by how the natural parameters map
to the actual probability density function. In the case of a Bernoulli distribution,
the natural parameter is the logit, while the probability of the variable being equal
to one is the sigmoid function of the logit.

2.2 Optimization

So far, we have introduced what Deep Learning models are and how in practice they
can be used as part of a probabilistic framework, which defines a clear objective to be
optimised. The next step is to figure out given this objective how do we find the best
parameters of the network. For complicated models such as neural networks, this is
very challenging as the resulting problem can be highly non-linear. In all problems
considered it would be assumed that the objective function E(θ,D) is differentiable
with respect to the parameters of the model θ, as well as that the goal is to minimise
it. In the case of maximisation, as in MLE and MAP estimation, the objective is
defined as the negative of the original function. By definition, the gradient points in
the direction of steepest ascent of the function value, hence a simple idea is to make
small steps in the opposite direction. This method is called Gradient Descent (GD)

13

The Gauss-Newton matrix for Deep Learning models and its applications

and given some initial parameters θ0 it iteratively updates them via the equation

θt+1 = θt − α∇θE(θt). (2.8)

The scalar α is called the learning rate and defines how large the step size is at
every iteration. For every smooth function, there exists a small enough α such that
this procedure decreases the objective. Gradient Descent is not limited to Deep
Learning and can be applied to any problem and any model as long as it is possible
to calculate a gradient. Its properties have been extensively studied in the literature
[15, 92, 80]. A computational drawback of this approach, however, is that computing
the gradient of the objective function requires its evaluation on the whole dataset.
For smaller datasets of a few thousand examples, this is not an issue, but when
dealing with bigger datasets, this quickly becomes a significant bottleneck even for
modern hardware. A way around the issue is to notice that the part of the loss E that
depends on each data point is additive and independent of the others (this is true
for the log-likelihood described earlier and all commonly used objective functions).
In this case, that part of the loss function can be expressed as an expectation over
the empirical distribution. Consequently, one can use Monte Carlo to approximate
the gradient by sampling only a smaller subset of the full dataset, referred to as a
minibatch. The procedure described is unbiased in the following sense

E(i1,...,iB)

[
1

B

∑
b

f(yib ,xib)

]
= Ei∼U [1,N]

[
f(yi,xi)

]
=

1

N

∑
n

f(yn,xn). (2.9)

Although in expectation of the gradient is correct, this introduces noise in the
estimated gradients; hence the method is called Stochastic Gradient Descent (SGD).
Despite that the algorithm is now stochastic, if the learning rate is decreased ap-
propriately, satisfying the well known Robbins-Monro conditions [115], it is still
guaranteed to converge to a local minimum. This algorithm underpins most of the
modern optimisation methods used to train Deep Learning models. The next section
will discuss some of the more advanced techniques used for stochastic optimisation
with neural networks.

2.2.1 First-Order Optimisers

First-order algorithms are probably the most well known and studied algorithms
in the literature. The term comes from the fact that their update rules use only
first-order information — the gradient. To distinguish it from the adaptive methods

14

The Gauss-Newton matrix for Deep Learning models and its applications

of the next section, we will require that every update can be expressed as a linear
combination of all previous gradients. It is clear that Gradient Descent is part
of this family of algorithms, as well as its stochastic variant. The most widely
used algorithm of this type for training Deep Learning models is the Heavy Ball
method, which is often also called Gradient Descent with Momentum [104]. The
initial inspiration for the method was to introduce an auxiliary variable which plays
a similar role to that of momentum in a physical system. Then one can treat the
objective function as the potential energy and simulate Newtonian dynamics with
friction. The resulting update rules are:

vt+1 = βvt − α∇θE(θt),

θt+1 = θt + vt,
(2.10)

where β is called the momentum coefficient2. Analogously to Gradient Descent, the
method can be extended to use sub-sampled minibatches rather than the full dataset
in order to scale to large datasets. Practitioners have found this approach to be very
successful, and with proper tuning of the learning rate and momentum coefficient,
it achieves state-of-the-art results on many problems. Its convergence properties in
the stochastic setting have also been extensively studied [135, 76, 108].

Another important first-order method is the Accelerated Gradient Descent from
the seminal work of Nesterov [95]. The authors proved that in the deterministic
case, e.g. using the full gradient, it achieves the optimal quadratic convergence rate.
There has been further theoretical analysis of using similar ideas in the stochastic
setting. However, when applying these methods to large Deep Learning models,
they rarely perform better than Gradient Descent with Momentum, hence why they
are less commonly used in practice.

2.2.2 Adaptive First-Order Optimizers

In comparison to the classical first-order methods, adaptive first-order methods ad-
ditionally have some form of rescaling of the gradient elementwise3. Most often the
term is derived from the elementwise squared values of the gradients as in RmsProp,
AdaDelta and Adam [138, 61]. The most widely used method from these algorithms

2The term 1− β would correspond to the friction coefficient in the physics interpretation.
3This is equivalent to a diagonal preconditioner, but we want to distinguish these methods from

second-order optimizers explicitly.

15

The Gauss-Newton matrix for Deep Learning models and its applications

for training Deep Learning models is Adam, arguably on par with the Heavy Ball
method in terms of its use. Its updates are based on tracking a moving average
of the first moment of the gradients and rescaling by the square root of a moving
average of the second moments of the gradients:

µt+1 = β1µt + (1− β1)∇θE(θt),

µ̃t+1 =
µt+1

1− βt1
,

vt+1 = β2vt + (1− β2)∇θE(θt)
2,

ṽt+1 =
vt+1

1− βt2
,

θt+1 = θt − α
µ̃t+1√

ṽt+1 + ε
.

(2.11)

In the expressions above all mathematical operations are applied elementwise. In
practice, it performs consistently very well and with very little fine-tuning, despite
some issues with its behaviour in particular cases having been raised [111].

2.2.3 Second-Order Optimizers

Second-order methods have a long history in optimisation of deterministic functions.
The main difference with first-order methods is that they uses the second-order
derivatives matrix — the Hessian — to construct their steps. The core idea of these
methods is to construct a local quadratic approximation by Taylor expanding the
objective function around the current parameter setting and then solving it:

E(θ + δ) ≈ E(θ) + δT∇θE +
1

2
δT∇2

θtEδ. (2.12)

The solution is simply δ∗ = −
(
∇2
θt
E
)−1∇θE which is the update for the classical

Newton’s method. However, in this formulation, if the Hessian matrix is not Positive
Semi-Definite (PSD) then this local quadratic function does not have a minimal value
and minimising it might lead to steps in directions that do not decrease the loss.
Additionally, this can converge to a saddle point rather than a minimum. Several
algorithmic developments address these issues, such as line search and trust-region
methods. An alternative approach is not to use the Hessian matrix at all, but find
a matrix that has similar properties and is PSD by construction. This is what will
broadly be called a curvature matrix, and its estimated value would be denoted
with C. Replacing the Hessian in the quadratic Taylor expansion by this matrix

16

The Gauss-Newton matrix for Deep Learning models and its applications

guarantees that the resulting function has a minimum and we can then update the
parameters using the solution:

θt+1 = θt − αC−1t ∇θE(θt). (2.13)

Practical algorithms of this kind execute more sophisticated updates, for instance, by
automatically choosing the step size based on different criteria [132, 4]. The adaptive
first-order methods can be thought of as building a diagonal curvature matrix based
only on gradient information. One example of such a curvature matrix is the Gauss-
Newton, which initially has been proposed only for non-linear least squares. It will
be of central interest of this work and will be discussed in great details in Chapter 3.
Another family of algorithms that construct an alternative matrix to the Hessian are
the so called Quasi-Newton methods. They build up iteratively a curvature matrix
using properties of the Hessian. The most notable ones are the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) and its limited memory variant LBFGS [12, 97]. Due
to its significantly lower memory usage, for a while, LBFGS was one of the most
popular algorithms for non-linear optimisation. The main challenge of applying
any of these methods is that they often require significantly more memory than
first-order methods, and they are not developed to deal with stochasticity in either
the gradient or the curvature matrix. The second point is of crucial importance
as it makes them unpractical for large datasets. In recent years there has been an
increasing interest in developing Stochastic Quasi-Newton methods which can be
applicable to large models such as neural networks [14, 91, 131]. Nevertheless, there
has not yet been developed any Stochastic Quasi-Newton algorithm which manages
to achieve better or faster performance on Deep Learning models when compared
to the more popular first-order methods.

Recently there has been increasing interest in developing second-order optimisers
specifically for Deep Learning. A Hessian-free algorithm has been developed, that
uses automatic differentiation to compute Hessian-vector products cheaply and per-
forms the gradient preconditioning via a truncated conjugate-gradient method [81].
The results from this work demonstrated that second-order methods are capable of
training neural networks on problems where first-order methods struggled to find
good solutions. Unfortunately, the method requires very large batch sizes and is still
not performing well in terms of computation time. Finally, as will be shown in this
work, several methods build a block-diagonal approximation to a curvature matrix.
A detailed discussion of such methods is deferred to later chapters.

17

The Gauss-Newton matrix for Deep Learning models and its applications

2.3 Model Uncertainty and its applications

The standard setting in which Deep Learning models are trained is MLE or MAP
where the result of the training procedure is just a single parameter value. Although
these results show excellent performance on data similar to the training data they
have been observed to be overconfident in predictions on data that is very different
from what they have been trained on. Consider, an image classifier that has been
trained to recognise car models from images. When, however, presented with a
plane, it would still provide us with a prediction of which car model it is. It would
be beneficial if the model can also provide us with a level of uncertainty that it has
about its prediction, which in this example is likely to be high as it knows nothing
about planes. The measure of uncertainty is especially important when trying to
apply models in real-world applications, where decisions based on their predictions
can be of great importance. Examples of such applications are autonomous vehicles
and medical treatment for patients, where real lives could be at stake if the wrong
decisions are made. The uncertainty in the model predictions can be split into types:

• aleatoric uncertainty — this arises from noise in the data generation process,
e.g. from corrupted labels or inherited noise in measurement instruments.

• epistemic uncertainty — this arises from the uncertainty of the model param-
eters, e.g. there are many parameters values that could explain the observed
data

A trained model usually captures well aleatoric uncertainty as the training data
is expected to be noisy and contain information about the noise. However, the point
estimate that is the result of standard training is not capable of expressing any form
of epistemic uncertainty. The Bayesian framework provides a principled way of
avoiding such problems by treating the parameters of the model as an unknown
quantity and integrating over all possible values of the posterior distribution. For
many practical models, the full posterior distribution is intractable and instead some
approximation of it has to be made in order to perform the integration. Variational
approaches try to find simpler tractable distributions that well approximate it via
divergence minimisation [62]. Another common approach is to introduce, during
training, stochastic noise into the model and perform training with it [126, 35,
5]. At test-time instead of removing this noise process, it is possible to perform
Monte Carlo sampling and get multiple predictions over the outputs. One can
relate this procedure to variational approaches under conditions which, however,

18

The Gauss-Newton matrix for Deep Learning models and its applications

are not met in practice [57]. The most popular strategy to get epistemic uncertainty
is to find multiple MAP solutions by training a model from different initial points
and constructing an ensemble from the resulting parameters [28, 73, 25, 67]. This
is both the simplest and the empirically best performing technique. It is somewhat
orthogonal to the other approaches as it can be combined with them, by making a
mixture of approximate distributions (each mixture corresponds to a single ensemble
member). Hence, in this work, ensemble methods will not be discussed in any more
details. Other applications of prediction uncertainty is active learning, where the
uncertainty of the model can be used to select the optimal unlabelled data which to
be given to a human to annotate.

The applications of having an approximate posterior distribution over the pa-
rameters go beyond using them for predictive uncertainty. Online learning is a field
where the model observes multiple tasks in a row without being able to return to
the previous tasks data. This is similar to how people often learn different tasks
in sequence and at the end are capable of then executing each one successfully. In
practice, it is challenging to train Deep Learning models in this setting as they tend
to quickly forget the information that they have learned in earlier tasks. By having
an approximate distribution to the posterior and continuously updating it based
on the new task, the model is capable of retaining information from all previous
tasks. Another avenue where the posterior distribution can be useful is Reinforce-
ment Learning, where it can be used in order to achieve much better exploration
lower regret via approximate Thompson Sampling [122, 36, 16, 60, 56].

19

Chapter 3

Curvature Matrices of Feed Forward
Neural Networks

The chapter lays out all theoretical foundations which will be the core of any of the
practical algorithms developed in the later chapters. The first three sections present
the exact problem setup and mathematical background that the reader should be
familiar with in order to understand the derivations thoroughly thereafter. Firstly,
the Hessian matrix of a Feed Forward Neural Network will be analysed, as it is the
basis of all approximate curvature matrices. As demonstrated in Lemma 3.15 for
a single input, it has a very particular structure. This result will be used to prove
several interesting facts about the objective function of neural networks when using
piecewise linear activation functions. However, since it is not Positive Semi-Definite
in general, Section 3.5 will analyse the Generalised Gauss-Newton matrix and its
relationship to the Hessian and Fisher matrices. The final section of the chapter
discusses the implication of having a finite dataset on the rank of this curvature
matrix.

The work in this chapter was done in collaboration with my supervisor Prof.
David Barber at University College London. Most of the results have been previ-
ously publish [10], however, I have tried to formalise them better and describe the
intuitions behind them in much more details than it was possible in the short page
limit of a conference publication.

20

The Gauss-Newton matrix for Deep Learning models and its applications

3.1 Modelling formulation and assumptions

The main focus of all theoretical results will be training a Deep Learning model on
a Supervised Learning task. In light of this, it is assumed that a dataset D is given,
consisting of N data points. Each pair (xn,yn), where xn ∈ Rdx and yn ∈ Rdy ,
are assumed to have been sampled from some unknown distribution ptrue(x,y). The
upper indexing with the variable n would be used to indicate indexing over the data
points in D. The empirical distribution of the data is defined as a mixture of delta
functions around each data point and will be denoted as pd(x,y):

pd(x,y) =
1

N

∑
n

δ(x− xn)δ(y − yn). (3.1)

The particular objective function that will be optimised is assumed to be provided as
part of the modelling problem. There can be many variants of the exact functional
form, but the discussion will be restricted to loss functions of the form

E(θ,D) =
1

N

∑
n

Lθ(xn,yn) + λΩ(θ). (3.2)

The loss for a single data point would be denoted by Ln, keeping in mind that it
depends on θ, xn and yn. In the cases where the derivation is invariant to the
specific choice of the data point values, the index n will be dropped, and only L will
be used. The average values over the whole dataset of quantities that are data point
dependent will be denoted via an over-line, for instance the average dataset loss is

L =
1

N

∑
n

Lθ(xn,yn). (3.3)

Additionally, the regulariser Ω(θ) should be a convex function of the parameters. In
the case when the neural network is part of a statistical framework, it is assumed
that it approximates the conditional distribution p(y|x). To distinguish this from
the true data distribution, this approximation will be denoted as pθ(y|x). In this
setting, since the objective is minimised, the loss for a single data point is the
negative log-likelihood:

Ln = − log pθ(y
n|xn). (3.4)

In the case of MAP estimation, the regulariser is nothing more than the negative
log prior:

Ω(θ) = − log p(θ), (3.5)

21

The Gauss-Newton matrix for Deep Learning models and its applications

and then its coefficient λ is equal to 1
N
. The construction defines the objective as

the log-posterior rescaled by a factor of one over the number of data points. In all
practical cases considered in later chapters, the prior will be an isotropic Gaussian
distribution, whose covariance is the identity multiplied by σ2. The full objective
function then is

E(θ,D) =
1

N

∑
n

Ln +
λ

2
||θ||22, (3.6)

where for convenience the new variable λ is defined as λ
σ2 .

3.2 The Kronecker product and related properties

The Kronecker product plays an essential role in the structure of many of the cur-
vature matrices and their approximations. As such, the reader needs to familiarise
himself with it and its various properties in order to be able to understand the
mathematical derivations easily.

Definition 3.1. Given a m×n matrix A and a p×q matrix B the Kronecker
product between A and B, denoted as A⊗B, is a block matrix consisting of
m× n blocks each of size p× q and the ijth block is equal to AijB.

For clarity this is depicted below

A⊗B =


A11B A12B . . . A1,nB

A21B A22B . . . A2,nB
...

...
Am1B Am2B . . . Am,nB

 . (3.7)

3.2.1 Properties

From the definition, it is clear that the Kronecker product is a bilinear map be-
tween the two matrices A and B. As such one can prove the following associative
properties:

• (A + C)⊗B = A⊗B + C⊗B.

• A⊗(B + C) = A⊗B + A⊗C.

• (αA)⊗B = A⊗(αB) = αA⊗B.

• (A⊗B)⊗C = A⊗(B⊗C) = A⊗B⊗C.

22

The Gauss-Newton matrix for Deep Learning models and its applications

A few more properties of the Kronecker product that are used in this work are
listed below.

Property 3.2. If a and b are vectors then their outer product can be written in
terms of a Kronecker product in the following way:

a bT = a⊗ bT = bT⊗a.

Proof. Directly follows from Definition 3.1.

Property 3.3. Given a m × n matrix A and a p × q matrix B the transpose of
the Kronecker product between A and B is the Kronecker product of the individual
matrices transposed:

(A⊗B)T = AT⊗BT.

Proof. Directly follows from Definition 3.1.

Property 3.4. Given a m×m diagonal matrix A and a p× p diagonal matrix B

then the Kronecker product A⊗B is a diagonal matrix as well.

Proof. Directly follows from Definition 3.1.

Property 3.5 (Mixed Matrix Property). Given a m × n matrix A, n × r matrix
C and a p × q matrix B, q × s matrix D the following identity, referred to as the
mixed-product property, holds:

(A⊗B)(C⊗D) = (AC)⊗(BD).

Proof. Since both (A⊗B) and (C⊗D) are block-matrices with compatible block
sizes, we can directly analyse for the resulting m× r ijth block of the product:

Pij =
∑
k

(AikB)(CkjD) =

(∑
k

AikCkj

)
BD = (AC)ijBD.

Property 3.6. Given a m×m unitary matrix A and a p×p unitary matrix B then
the Kronecker product A⊗B is also a unitary matrix.

Proof. (A⊗B)T(A⊗B) = (AT⊗BT)(A⊗B) = (ATA)⊗(BTB) = I⊗ I = I.

23

The Gauss-Newton matrix for Deep Learning models and its applications

Property 3.7. Given am×n matrix A with Singular Value Decomposition UAΣAVT
A

and a p×q matrix B with Singular Value Decomposition UBΣBVT
B then the Singular

Value Decomposition of the Kronecker product A⊗B is:

(A⊗B) = (UA⊗UB)(ΣA⊗ΣB)(VA⊗VB)T.

Proof. The factorisation follows from Property 3.5, the fact that UA⊗UB and
VA⊗VB are unitary matrices follow from Property 3.6, finally ΣA⊗ΣB is diagonal
from Property 3.4.

Property 3.8. Given a m×m square matrix A and a p× p square matrix B then
the Kronecker Product A⊗B raised to the power n is equal to the Kronecker product
of each individual matrix raised to the power n:

(A⊗B)n = An⊗Bn.

Proof. Directly follows from Property 3.7.

Property 3.9. Given a m×m square matrix A and a p× p square matrix B then
the Kronecker product A⊗B has a rank equal to the product of the rank of A and
the rank of B.

rank (A⊗B) = rank (A) rank (B) .

Proof. Directly follows from Property 3.7.

Property 3.10. Given a m×m square matrix A and a p×p square matrix B then
the determinant of the Kronecker product A⊗B is equal to the determinant of A

to the power p times the determinant of B to the power m.

det (A⊗B) = det (A)p det (B)m .

Proof. From Property 3.7 it follows that the determinant is equal to the determinant
of the diagonal matrix ΣA⊗ΣB. The elements of this matrix are [ΣA]ii[ΣB]jj for
every pair of indices i and j. Hence, each element [ΣA]ii appears as many times as
the dimensionality of B, which is p, and analogously each [ΣB]jj appears exactly m
times.

24

The Gauss-Newton matrix for Deep Learning models and its applications

Definition 3.11. The Khatri-Rao product of two block matrices A and B,
each one consisting of m × n blocks, is a block matrix whose k, l block is the
Kronecker product of the k, l blocks of A and B. The operation will be denoted
by A ∗B.

For clarity the definition is depicted below:

A ∗B =


A1,1⊗B1,1 A1,2⊗B1,2 . . . A1,n⊗B1,n

A2,1⊗B2,1 A2,2⊗B2,2 . . . A2,n⊗B2,n

...
...

Am,1⊗Bm,1 Am,2⊗Bm,2 . . . Am,n⊗Bm,n

 . (3.8)

3.2.2 The vectorization operator

When dealing with parameters which are matrices, it is sometimes convenient to still
treat them as vectors. For this purpose we introduce the vectorization operator:

Definition 3.12. The vectorization operator is defined as an isomorphism between
the space of real matrices of size m × n to the space of real vectors of size mn

by stacking the columns of the matrix sequentially into a single vector. Formally
vecm,n() : Rm×n → Rmn such that:

vecm,n(A) =

A·,1

. . .

A·,N

 .
For convenience, when the input to the operator is a vector rather than a matrix, we
define it as the identity map.

Since vecm,n() is an isomorphic map, note that its inverse exists. The operator
has one important property that would be often used throughout the thesis:

Property 3.13. Given a vector a ∈ Rm and a vector b ∈ Rn the following equality
holds:

vecm,n(a bT) = a⊗ b .

Proof. Follows directly from Definition 3.12.

25

The Gauss-Newton matrix for Deep Learning models and its applications

Property 3.14. Given a m× n matrix A, a p× q matrix B and a n× p matrix X

the following equality holds:

vecm,q(AXB) = (BT ⊗A)vecn,p(X).

Proof. Let’s consider the ith block of the right hand side, which is a vector of size
m:

Pi = [B11A,B21A, . . . ,Bn,iA]vec (X) =
∑
j

Bj,iAXj,· = AXB·,i.

which is indeed the ith column of the matrix AXB.

Notations note: Through the text whenever the matrix sizes m and n are
clear from the context the subscripts will be omitted and we will use vec (·)
instead of vecm,n(·).

3.3 Neural network notations

As discussed in the Section 2.1, there are many different Deep Learning models used
in practice. However, in this chapter, the main focus will be on investigating the
curvature matrices of Feed Forward Neural Networks. The reason for this choice
is that they are the most simple neural networks, whose properties, however, are
similar to those of more complicated architectures. Also, the fact that they have the
potential to be universal function approximators implies that some of the conclusions
drawn from them can be extended to other architectures as well. Therefore, from
this point forward unless explicitly specified, it is always assumed that the model
under consideration is a Feed Forward Neural Network.

The original notations introduced in Equation 2.4 are somewhat inconvenient
for presenting our results. In this regard, let us introduce the concatenated weight
matrix Ŵl for each layer l. It is defined by stacking the bias as an additional last
column to the standard weight matrix:

Ŵl = [W; b] . (3.9)

Equipped with this, the original recursive definition of a Feed Forward Neural Net-
work can be expressed in an alternative form, by additionally appending a unit with

26

The Gauss-Newton matrix for Deep Learning models and its applications

a value of 1 to all activations except for the final layer:

â0 =

[
a0

1

]
=

[
x

1

]
,

hl = Ŵlâl−1 ∀l ∈ [1, L],

âl =


al

1

 =

f(hl)

1

 if l < L,

aL = hL if 0 < l = L.

(3.10)

When taking derivatives, it is advantageous to represent parameters as vectors rather
than matrices or other tensors. Hence, the flattened parameters for layer l are defined
via the vectorization operator, see Section 3.2.2:

wl = vec
(
Ŵl
)
. (3.11)

This further allows us to define the equation for the pre-activations hl as a linear
map of wl using the properties of the Kronecker product:

hl = Ŵlâl−1 = vec
(
Ŵlâl−1

)
= vec

(
IŴlâl−1

)
=
(
âT
l−1 ⊗ I

)
vec

(
Ŵl

)
=
(
âT
l−1 ⊗ I

)
wl.

(3.12)

It is now possible to formally define the collection of all parameters as the concate-
nation of all layer’s wl variables — θ = [wT

1 ; wT
2 ; . . . ; wT

L]T.
Finally, we want to highlight an important distinctions, when manipulating

derivative expressions, between the gradient and Jacobian matrix. In Machine
Learning in most cases practitioners are working with gradients, they are commonly
treated as vectors 1. However, when writing the multi-dimensional chain rule, it is
much more suitable to use the correct mathematical definition of Jacobian matrices.
In order to emphasis and make this distinction clear for the reader we will use the
following convention:

Given a vector valued function f : Rd → Rk we will denote the Jacobian
matrix of f with respect to its inputs x with ∂f

∂x
defined as[

∂f

∂x

]
i,j

=
∂fi
∂xj

.

1Formally, gradients are covectors.

27

The Gauss-Newton matrix for Deep Learning models and its applications

In the special case, where f is a scalar function, e.g. k = 1, then we will
denote the vector of partial derivatives of f with respect to its inputs x with
∇xf defined as

[∇xf]j =
∂f

∂xj
.

Importantly, when f is a scalar function the Jacobian represents a row vector
(its a 1 × d matrix) while the gradient is a column vector. Using these notations,
we are finally ready to dive into our theoretical analysis.

3.4 The structure of the sample Hessian matrix

A central idea throughout this thesis is the approximation of the Hessian matrix of
the objective function with respect to the parameters θ of a Feed Forward Neural
Network. From the assumption in Equation 3.2 the following equality for the Hessian
follows:

∂2E
∂θ2

=
1

N

∑
n

∂2Ln

∂θ2
+ λ

∂2Ω

∂θ2
. (3.13)

Since the regulariser is convex, it is assumed that there exists a known analytical ex-
pression for its second-order derivative. This is true for all practical cases considered
later, where this is nothing more than the log-density of an isotropic Gaussian and
its Hessian matrix is a scaled identity. In this regard, the expression for our analysis
is the sample Hessian, e.g. the matrix of second-order derivatives for a single data
point:

Hθ =
∂2L
∂θ2

. (3.14)

Using the chain rule and Property 3.5 we can write the Jacobian of the objective L
with respect to wl as:

∂L
∂wl

=
∂L
∂hl

∂hl
∂wl

=

(
1⊗ ∂L

∂hl

)(
âT
l−1 ⊗ I

)
= âT

l−1 ⊗
∂L
∂hl

. (3.15)

Since âl−1 is the input to layer l observe that for k ≥ l it does not depend on either
wl or wk and so the following equalities hold:

∂âl−1
∂wk

= 0,

∂

wk

(
∂âk−1
∂hl

)
= 0.

(3.16)

28

The Gauss-Newton matrix for Deep Learning models and its applications

To find the diagonal blocks of Hθ we differentiate the Jacobian one more time with
respect to wl:

∂2L
∂wl

2
=

∂

wl

(
âT
l−1 ⊗

∂L
∂hl

)
= âT

l−1 ⊗
∂2L

∂wl∂hl
= âT

l−1 ⊗
(
∂hl
∂wl

T ∂2L
∂hl

2

)
= âT

l−1 ⊗
((

âT
l−1 ⊗ I

)T ∂2L
∂hl

2

)
= âT

l−1 ⊗
(

âl−1 ⊗
∂2L
∂hl

2

)
= âT

l−1 ⊗ âl−1 ⊗
∂2L
∂hl

2 =
(
âl−1â

T
l−1
)
⊗ ∂2L
∂hl

2 .

(3.17)

To find the off diagonal blocks of Hθ we differentiate the Jacobian one more time
with respect to wk for k > l:

∂2L
∂wk∂wl

=
∂

wk

[
âT
l−1 ⊗

∂L
∂hl

]
= âT

l−1 ⊗
∂

wk

[
∂L
∂hk

∂hk
∂âk−1

∂âk−1
∂hl

]
= âT

l−1 ⊗
∂

wk

[
∂L
∂hk

Ŵk ∂âk−1
∂hl

]
= âT

l−1 ⊗
∂

wk

[(
∂âk−1
∂hl

T

⊗ ∂L
∂hk

)
wk

]

= âT
l−1 ⊗

 ∂2L
∂wk∂hk

Ŵk ∂âk−1
∂hl

+

(
∂âk−1
∂hl

T

⊗ ∂L
∂hk

)T


= âT
l−1 ⊗

[
∂hk
∂wk

T ∂2L
∂hk

2

∂hk
∂âk−1

∂âk−1
∂hl

+

(
∂âk−1
∂hl

⊗ ∂L
∂hk

T)]
= âT

l−1 ⊗
[(

âT
k−1 ⊗ I

)T ∂2L
∂hk

2

∂hk
∂hl

+

(
∂âk−1
∂hl

⊗ ∂L
∂hk

T)]
= âT

l−1 ⊗
[
âk−1 ⊗

∂2L
∂hk

2

∂hk
∂hl

+
∂âk−1
∂hl

⊗ ∂L
∂hk

T]
=
(
âk−1â

T
l−1
)
⊗ ∂2L
∂hk∂hl

+ âT
l−1 ⊗

∂âk−1
∂hl

⊗ ∂L
∂hk

T

.

(3.18)

Combining the above results proves the following lemma

Lemma 3.15. Using the notations from Section 3.10 and the following defi-
nitions:

• ã as the concatenation of all layers inputs — [âT
0 ; âT

1 ; . . . ; âT
L−1]

T.

• h̃ as the concatenation of all layers pre-activations — [hT
1 ; hT

2 ; . . . ; hT
L]T.

• HFO as the block diagonal matrix containing the information in the Hes-
sian matrix that depends only on first order information, called The

29

The Gauss-Newton matrix for Deep Learning models and its applications

Hessian First Order Component. Its k, l block is a:

HFO
k,l = (1− δkl)

(
âT
l−1 ⊗

∂âk−1
∂hl

⊗ ∂L
∂hk

T)
.

Then the single sample Hessian matrix of a Feed Forward Neural Network with
respect to its parameters θ is equal to:

Hθ =
(
ããT

)
∗ ∂

2L
∂h̃2

+ HFO.

aHere δkl is the indicator function, which evaluates to one only when k = l and is zero
otherwise.

3.4.1 The Block Diagonal Hessian Recursion

From the previous derivation, it is easy to notice that the only second-order terms
that appear in the expressions of the sample Hessian matrix are of the form ∂2L

∂hl
2 .

These terms will be referred to as the pre-activation Hessian matrices, and for each
layer l will be denoted with Hl. In addition, the matrix of the outer product of the
inputs to layers l and k will be denoted as Al,k. Summarising these definitions:

Hl =
∂2L
∂hl

2 ,

Al,k = âlâ
T
k .

(3.19)

From this the following relationship follows:

Hl =
∂2L
∂hl

2 =
∂

∂hl

(
∂L
∂hl

)
=

∂

∂hl

(
∂L
∂hl+1

∂hl+1

∂al

∂al
∂hl

)
=

∂2L
∂hl∂hl+1

Wl+1
∂al
∂hl

+
∂L
∂hl+1

∂al
∂hl

∂

∂hl

(
∂al
∂hl

)
=
∂al
∂hl

T

WT
l+1Hl+1Wl+1

∂al
∂hl

+
∑
k

∂L
∂[al]k

∂2[al]k

∂hl
2 .

(3.20)

30

The Gauss-Newton matrix for Deep Learning models and its applications

Importantly, since [al]k depends only on [hl]k almost all entries in the last term are
equal to zero: [∑

k

∂L
∂[al]k

∂2[al]k

∂hl
2

]
ij

=
∑
k

∂L
∂[al]k

∂2[al]k
∂[hl]i∂[hl]j

=
∑
k

∂L
∂[al]k

δki δ
k
j

∂2[al]k
∂[hl]i∂[hl]j

= δij
∂L
∂[al]i

∂2[al]i
∂[hl]i∂[hl]i

.

(3.21)

Combining the previous two results proves the following lemma:

Lemma 3.16. Given the activation function φ, its first and second derivative
φ′ and φ′′ and defining the diagonal matrices Bl and Dl as a:

Bl =
∂al
∂hl

= diag (φ′(hl)) ,

Dl = diag

(
∂L
∂al
◦ φ′′(hl)

)
.

(3.22)

Then the pre-activation sample Hessian for every layer of a Feed Forward
Neural Network satisfies the following recursive relationship:

Hl = BlW
T
l+1Hl+1Wl+1Bl + Dl. (3.23)

aWhere ◦ stands for elementwise product, also called the Hadamard product.

The lemma provides a practical approach for computing all of the diagonal blocks
of the sample Hessian matrix. It starts by initially computing HL for the outputs of
the network. This depends on the exact choice of objective function L and has an
analytic expression for standard losses. Then the recursive rule from the lemma is
applied in a single backward pass through the network to compute the pre-activation
sample Hessian for every layer. Finally, according to Lemma 3.15 by performing a
Kronecker product of the computed matrices with Al,l the diagonal blocks of Hθ is
recovered. It is important to remember, however, that this procedure computes the
blocks of the Hessian for a single input x, and it must be repeated for every data
point if the goal is to calculate the full Hessian. A similar observation, but restricted
to the diagonal entries rather than the more general block-diagonal case, has been
previously presented in [120].

31

The Gauss-Newton matrix for Deep Learning models and its applications

3.4.2 The special case of piecewise linear activation functions

In recent years piecewise linear activation functions, such as the Rectified Linear
Unit φ(x) = max(x, 0), have gained significant popularity among practitioners [50].
Since the second derivative φ′′ of a piecewise linear function is zero everywhere
where it exists, the matrices Dl from Lemma 3.16 will be zero. Assuming that HL

is Positive Semi-Definite, that is vTHLv ≥ 0 ∀v, then via induction it follows that
the pre-activation sample Hessian matrices for every layer are PSD as well:

vTHlv = vTBlW
T
l+1Hl+1Wl+1Blv,

u = Wl+1Blv,

vTHlv = uTHl+1u,

uTHl+1u ≥ 0 ∀u =⇒ vTHlv ≥ 0 ∀v.

(3.24)

Furthermore, from the fact that all of the matrices Hl are PSD it also follows that
the diagonal blocks of Hθ are PSD as well:

vec (V)T Hl,lvec (V) = vec (V)T (Al,l ⊗Hl) vec (V)

= vec (V)T vec (HlVAl,l)

= trace
(
VTHlVâl−1â

T
l−1
)

= (Vâl−1)
THl (Vâl−1) ≥ 0.

(3.25)

which is summarised in the following lemma:

Lemma 3.17. For a Feed Forward Neural Network if the second derivative
of its activation functions φ is zero everywhere where it exists, and the Hes-
sian of the objective function with respect to the outputs of the network is
Positive Semi-Definite then all of the diagonal blocks of the Hessian matrix
corresponding to parameters of a single layer wl are Positive Semi-Definite.

A corollary of this results is that if all of the parameters of the network except
for wl are fixed, the objective function is locally convex with respect to wl wherever
it is twice differentiable. Note that this does not imply that the objective is convex
everywhere with respect to wl as the surface will contain ridges along which it is
not differentiable, corresponding to boundary points where the activation function
changes regimes. In light of this, consider the following lemma:

32

The Gauss-Newton matrix for Deep Learning models and its applications

0 10 20 30 40
0

20

40

4

6

8

10

12

14

16

(a)

0

10

20

30

400 10 20 30 40

4

6

8

10

12

(b)

0

10

20

30

40

0

10

20

30

40

7

7.5

8

8.5

(c)

Figure 3.1: Loss surface for piecewise linear activation functions. The network has
two layers, uses a ReLU activation function and the objective function is a squared
error loss. (a) The objective function E as we vary the first layer weight matrix
along two randomly chosen direction matrices U and V via W1(x, y) = xU + yV,
(x, y) ∈ R2. (b) The objective function as instead we vary the weights of the second
layer W2 (c) The objective function as we vary jointly the weights of the first and
second layer via W1 = xU, W2 = yV. The surfaces contain no smooth local
maxima. (Best viewed in colour.)

Lemma 3.18. Under the conditions from Lemma 3.17 the overall objective
function E(θ,D) has no differentiable strict local maxima with respect to the
parameters θ of the network.

Proof. For a point to be a strict and local maxima, it is required that all eigenvalues
of Hθ are negative whenever it exists. For a symmetric matrix the sum of eigenvalues
is equal to the trace of the matrix, so to prove the lemma it is sufficient to show that
trace (Hθ) ≥ 0. However, the trace is just the sum of the traces of the diagonal
blocks:

trace (Hθ) =
∑
l

trace

(
∂2L
∂wl

2

)
≥ 0.

Where the inequality comes from the result of Lemma 3.17 and the fact that the
sum of the eigenvalues of any Positive Semi-Definite matrix is non-negative.

Hence if there are any local maxima, it must lie on the non-differentiable bound-
ary points of the activation functions. A visual depiction of this fact is shown in
Figure 3.1 for a two layer neural network with squared error loss.

33

The Gauss-Newton matrix for Deep Learning models and its applications

3.5 The Generalised Gauss-Newton matrix

As described in Section 2.2.3, when the objective function is non-convex, Newton’s
method could lead to unbounded updates of the parameters. Trying to address this
limitation for the problem of solving non-linear least squares, whose loss function is

L =
1

2
||hθ(x)− y||22, (3.26)

the Gauss-Newton matrix was introduced with the following definition:

G =
∂h

∂θ

T∂h

∂θ
. (3.27)

There are two different modern views from which this curvature matrix can be
motivated [82]. One is to assume that the whole function hθ(x) is linearised locally
around the value of the parameters:

ĥθ(x) = hθ∗(x) + (θ − θ∗)
∂hθ(x)

∂θ
. (3.28)

By plugging ĥθ instead of hθ in the least squares objective it is easy to see that
in this case the Gauss-Newton matrix is the Hessian. An alternative perspective
is that considering the analytical expression of the Hessian matrix, it is possible to
select and discard those terms that are not guaranteed to be Positive Semi-Definite.
In the case of the least squares objective ∂2L

∂h2 = I and it follows that

∂2L
∂θ2

=
∂h

∂θ

T∂2L
∂h2

∂h

∂θ
+
∑
k

∂2hk
∂θ2

∂L
∂hk

=
∂h

∂θ

T∂h

∂θ
+
∑
k

∂2hk
∂θ2

(hk − yk).

(3.29)

Clearly, the second expression depends on the gradient of the loss with respect to
h and in general, it can have arbitrary values. Hence, to construct the Gauss-
Newton one discards this expression. Regardless of the chosen view, the quadratic
approximation constructed using this curvature matrix has the unique property that
it takes the minimal value of zero on an (n − 1)-dimensional manifold [18]. It has
been observed that this definition can be generalised to more than just non-linear
least squares [121]. The only requirement is that the loss function L is convex
with respect to hθ(x). In order to define the Gauss-Newton matrix even when this
condition is not satisfied, the following definition will be used:

34

The Gauss-Newton matrix for Deep Learning models and its applications

Definition 3.19. Given a function hθ(x) mapping x to z and a loss func-
tion L(z,y) for which there is an associated Positive Semi-Definite curvature
matrix G(z,y) with respect to z, then the Generalised Gauss-Newton matrix
(GGN) of the loss function L(hθ(x),y) with respect to the parameters θ is

G =
∂h

∂θ

T

G ∂h

∂θ
.

In the special case when L is convex with respect to z we can uniquely pick the
associated curvature matrix G to be the Hessian ∂2L

∂z2
.

The reader might be curious what is so special about the choice G = ∂2L
∂h2 that it is

worth mentioning explicitly in the definition. This in fact is the most natural choice
for the Gauss-Newton matrix with respect to the z. The motivation for this is, that
in the first place we would like to use the Hessian matrix, however it is not Positive
Semi-Definite. On the other hand, if θ are a local minimizer of L then indeed the
Hessian matrix is Positive Semi-Definite. Comparing the top line of Equation 3.29
and the definition of the Generalised Gauss-Newton, it is easy to see that if ∂L

∂h
= 0

and G = ∂2L
∂h2 then indeed it follows that G = ∂2L

∂θ2
. In order this hold for the full

curvature matrix, after taking expectation over the full dataset, this would require
the model to have perfectly fit all of the data, that is ∂L

∂h
= 0 for any inputs. This

can still be a motive for this choice, but it is a bit restrictive, as it implies significant
overfitting to the data. Instead, we will motivate the choice using the following
lemma:

Lemma 3.20. If the objective function L is a conditional negative log-
likelihood function, and there exist parameters θ∗ under which the model pre-
dictive distribution pθ(y|hθ(x)) coincides with the true data generating distri-
bution ptrue(y|x), and for the sample Generalised Gauss-Newton, as in Defi-
nition 3.19, it has been chosen G = ∂2L

∂h2 , then the following identity holds:

Eptrue(x,y) [G(θ∗)] = Eptrue(x,y)
[
∂2L
∂θ2

∣∣∣∣
θ∗

]
.

Proof. Examining Equation 3.29 and the definition of the Generalised Gauss-Newton
to prove the lemma it is sufficient to show that Eptrue(x,y)

[∑
k
∂2hk
∂θ2

∂L
∂hk

]
. Expanding

35

The Gauss-Newton matrix for Deep Learning models and its applications

this expression, and pushing one of the expectations inside the summation we get:

Eptrue(x,y)

[∑
k

∂2hk
∂θ2

∂L
∂hk

]
= Eptrue(x)

[∑
k

∂2hk
∂θ2

Eptrue(y|x)

[
∂L
∂hk

]]
.

However, from the lemma we have assumed that ptrue(y|x) = pθ(y|hθ(x)) at θ∗ and
that L = − log pθ(y|hθ(x)). Hence the inner expectation becomes:

Eptrue(y|x)

[
∂L
∂hk

]
= Epθ(y|hθ∗ (x)) [∇− log pθ(y|hθ∗(x))] = 0,

where we used the well known fact that the expectation of the gradient of the log-
likelihood is zero. This concludes the proof.

Hence the curvature matrix for the network output, which would be denoted as
GL, would always be chosen to be equal to HL = ∂2L

∂h2 .
Similarly to the Hessian, the Generalised Gauss-Newton matrix has a Khatri-Rao

structure:

Lemma 3.21. Using the notations from Lemma 3.15 the single sample Gener-
alised Gauss-Newton matrix for a Feed Forward Neural Network with respects
to its parameters θ is equal to

Gθ =
(
ããT

)
∗
(
∂hL

∂h̃

T

GL
∂hL

∂h̃

)
.

Proof. Calculating the k, l block of the GGN starting from the definition:

Gk,l =
∂hL
∂wk

T

GL
∂hL
∂wl

=
∂hk
∂wk

T∂hL
∂hk

T

GL
∂hL
∂hl

∂hl
∂wl

= (âT
k−1 ⊗ I)T

∂hL
∂hk

T

GL
∂hL
∂hl

(âT
l−1 ⊗ I)

=
(
âk−1â

T
l−1
)
⊗
(
∂hL
∂hk

T

GL
∂hL
∂hl

)
.

It can be observed that all of the expressions in the Generalised Gauss-Newton
matrix depend on terms of the form ∂hL

∂hl

TGL ∂hL∂hl
. In an analogous way to the pre-

activation Hessian, these terms will be called the pre-activation Gauss-Newton ma-
trices, and for each layer l will be denoted with Gl.

36

The Gauss-Newton matrix for Deep Learning models and its applications

Lemma 3.22. Using the notations and definitions from Lemma 3.16 the pre-
activation Gauss-Newton for every layer of a Feed Forward Neural Network
satisfy the following recursive relationship:

Gl = BlW
T
l+1Gl+1Wl+1Bl. (3.30)

Proof. Directly from the definition of Gl and Bl we can derive

Gl =
∂hL
∂hl

T

GL
∂hL
∂hl

=

(
∂hL
∂hl+1

∂hl+1

∂al

∂al
∂hl

)T

GL
(
∂hL
∂hl+1

∂hl+1

∂al

∂al
∂hl

)
= BlW

T
l+1

(
∂hL
∂hl+1

T

GL
∂hL
∂hl+1

)
Wl+1Bl = BlW

T
l+1Gl+1Wl+1Bl.

(3.31)

This result might look strikingly similar to the result from Lemma 3.16, the
only noticeable difference is the matrix Dl, which is a diagonal matrix containing
the elementwise second-order derivatives of the activation function φ. Hence, if φ
is a piecewise linear function, implying that Dl = 0, then two recursions become
identical. The following lemma formalises this:

Lemma 3.23. For a Feed Forward Neural Network if all of the activation
functions φ have zero second order derivatives whenever they are defined and
GL has been chosen to be equal to HL then for every layer the pre-activation
sample Gauss-Newton matrix and pre-activation sample Hessian matrix are
equal. Furthermore the difference between the sample Hessian and the sam-
ple Generalised Gauss-Newton matrix with respect to the parameters θ is the
Hessian First Order Component:

Hθ = Gθ + HFO.

A corollary of this result, since it is valid for any data point, is that the diagonal
blocks of the expected Hessian and Generalised Gauss-Newton over the whole data
set are also equal, sine the diagonal blocks of the Hessian First Order Component are
always zero. This demonstrates how closely the Generalised Gauss-Newton approxi-
mates the Hessian even in the case of complicated models like neural networks. Even
for non-linear activation functions, if they are behaving almost linearly, it would be
expected that this result holds approximately. Although these results apply only to

37

The Gauss-Newton matrix for Deep Learning models and its applications

the matrices for a single data point, they would play an important role in motivating
and developing their practical approximations in Chapter 4.

3.5.1 Relationship with the Fisher matrix

Somewhat similar results to the ones for the sample Generalised Gauss-Newton
matrix has been previously demonstrated for the sample Fisher matrix. In most
Supervised Learning problems, the two matrices are equal, and hence in those cases,
all of the results above apply to both. This section provides a short review of the
Fisher matrix and its relationship to the Generalised Gauss-Newton.

For general probability distribution pθ(x) the Fisher information matrix of the
parameters θ is defined as

F = Epθ(x)
[
∇θ log pθ(x)∇θ log pθ(x)T

]
. (3.32)

This can equivalently be expressed as the negative of the expectation of the Hessian
of the log-likelihood function [82]:

F = −Epθ(x)
[
∇2
θ log pθ(x)

]
. (3.33)

For clarity the proof of this equivalence is given below

∇θEpθ(x) [∇θ log pθ(x)] = Epθ(x)
[
∇θ log pθ(x)∇θ log pθ(x)T

]
+ Epθ(x)

[
∇2
θ log pθ(x)

]
,

Epθ(x) [∇θ log pθ(x)] = ∇θEpθ(x) [1] = ∇θ1 = 0,

=⇒ ∇θEpθ(x) [∇θ log pθ(x)] = 0,

=⇒ Epθ(x) [∇θ log pθ(x)∇θ log pθ(x)] = −Epθ(x)
[
∇2
θ log pθ(x)

]
.

(3.34)

By construction the Fisher matrix is Positive Semi-Definite— a property that is
desired for curvature matrices. Using it in a local quadratic approximation leads to
the update F−1∇θL which is known as Natural Gradient [2]. A different perspective
comes from Differential Geometry where the Fisher matrix plays the role of the
metric tensor for statistical manifolds — manifolds whose elements are probability
distributions. In the Supervised Learning setting, where the model estimates a
conditional distribution pθ(y|x) the sample Fisher is given by

Fθ = Epθ(y|x)
[
∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
, (3.35)

and the full Fisher Fθ is the expectation of the sample Fisher over the empirical
dataset distribution pd(x). Notably it does not depend on the true data distribution

38

The Gauss-Newton matrix for Deep Learning models and its applications

of the target variable y. For a Deep Learning model where the output distribution
is defined based on the outputs hL the Fisher matrix can be expressed as:

Fθ = Epθ(y|x)

[
∂hL
∂θ

T∂ log pθ(y|hL)

∂hL

T∂ log pθ(y|hL)

∂hL

∂hL
∂θ

]

=
∂hL
∂θ

T

Epθ(y|x)

[
∂ log pθ(y|hL)

∂hL

T∂ log pθ(y|hL)

∂hL

]
∂hL
∂θ

=
∂hL
∂θ

T

FL
∂hL
∂θ

,

(3.36)

where the term Fl is called the pre-activation Fisher matrix for layer l. By inspecting
this equation and Definition 3.19 it is clear that the Fisher matrix is equal to the
Generalised Gauss-Newton if GL = FL. Since in practice the unique choice GL = HL

is taken a sufficient condition is the objective function to be a negative log-likelihood
and its Hessian matrix is independent of y. Although this might appear restrictive,
if hL parametrises the natural parameters of an exponential family distribution this
independence holds [82]. To show this, consider:

log p(y|x) = log h(y) + T (y)Tη − logZ(η), (3.37)

where h is the base measure, T is the sufficient statistic, Z is the partition function
and η are the natural parameters. Differentiating the negative log-likelihood with
respect to the natural parameters twice:

−∇η log p(y|x) = ∇η logZ(η)− T (y),

−∇2
η log p(y|x) = ∇2

η logZ(η),
(3.38)

which is indeed independent of y. This result is very important as it demonstrates
that for most Supervised Learning problems, where the objective is the negative
log-likelihood or negative log-posterior, the Generalised Gauss-Newton matrix and
the Fisher matrix are equivalent. In this case, all of the results proven in this section
apply to the Fisher matrix as well, and this will be something that will link other
approaches previously developed in the literature with our own methods.

3.6 On the rank of the empirical matrix

So far, we have mainly focused on analysing the sample Generalised Gauss-Newton
matrix. However, our final goal is to use these result in order to estimate the
expected, or simply referred to as the Generalised Gauss-Newton, which has an

39

The Gauss-Newton matrix for Deep Learning models and its applications

expectation over the data distribution. In practice, only a finite data set is provided
for training, which can have an important implication for the conditioning of the
matrix. First note that the the curvature matrix GL is of size dim (hL)×dim (hL).
In any practical cases, however, a Deep Learning model would have thousands, if not
million of parameters, and hence dim (θ)� dim (hL). In this case, after examining
Definition 3.19 of the sample Generalised Gauss-Newton, it is clear that

rank (Gθ) ≤ rank (GL) ≤ dim (hL) . (3.39)

Since the full empirical Generalised Gauss-Newton is nothing more than the average
of the sample matrices over the whole data set, this implies that its rank is upper
bounded by Ndim (hL), where N is the number of data points. As modern Deep
Learning models commonly have millions of parameters, it follows that even the
full curvature matrix is usually severely under-determined. This phenomenon is
particularly pronounced for the binary classifiers, where the dimensionality of the
output of the network is one. This analogously applies to the Fisher matrix as well.

It is possible to draw a parallel between the curvature being zero and standard
techniques where the maximum likelihood problem is under-determined for small
datasets. This gives a further explanation of why the additional curvature term,
coming from the regulariser (e.g. the prior in the case of MAP) is essential. Also,
in optimisation it is often common to add a damping term, that is represented by
an extra scaled identity matrix, which for the above reasons is crucial in order to
make the Generalised Gauss-Newton well behaved.

40

Chapter 4

Tractable approximations of the
Generalized Gauss-Newton matrix

In the previous chapter it was demonstrated that the sample Generalised Gauss-
Newton matrix very closely resembles the Hessian. In the special case when the
activation functions are piecewise linear its diagonal blocks are equal to the diagonal
blocks of the Hessian. However, the special structure of the Generalised Gauss-
Newton is valid only for a single sample, while when training a neural network the
full matrix Gθ requires computation. In practical applications, where computation
time is of importance, it is desirable to have a curvature matrix which is easy to
compute, easy to invert, such that they can be used to precondition the gradient,
and require memory comparable to the standard computation of a neural network.
The first two section develop several approximations which achieve these criteria.
The next section describes in details a full optimisation algorithm that makes use of
the curvature approximations. The final sections present experimental results and
comparison of these methods to other common optimisers in the literature.

The approximation methods presented in this chapter were developed in col-
laboration with my supervisor Prof. David Barber at University College London.
The implementation of all of the curvature approximations in Theano and Lasagne
[112, 27] and the experiments presented in the last section of the chapter were per-
formed by me. The final write up of our publication and producing figures and other
materials was accomplished in collaboration additionally with my college Hippolyt
Ritter.

41

The Gauss-Newton matrix for Deep Learning models and its applications

4.1 Motivating the block diagonal approximation

A significant issue of ever using the full Generalised Gauss-Newton matrix is that it
is too large to store explicitly for even a moderate size network — its size is square
in the number of parameters. In an attempt to overcome this, rather than trying to
approximate the full matrix, the focus will be only on approximating its diagonal
blocks. This would allow inversion and curvature-vector products to be computed
independently for each layer. Although this discards any dependence across different
layers, it still preserves important information about curvature dependencies within
the same layer, as well as information about the scale of the objective. This approx-
imation has been previously used in the literature only in the context of the Fisher
matrix, and its motivation is purely computational [84, 44, 6]. Below, we present a
novel, to our knowledge, result which motivates the block diagonal approximation
by showing that in the case of linear networks, it is sufficient to know only the diago-
nal blocks of the Generalised Gauss-Newton if the goal is to precondition a gradient
vector. The full statement is formalised in the following lemma:

Lemma 4.1. Given Feed Forward Neural Network under the following as-
sumptions

• The network is linear, meaning the activation functions φ are identity.

• The network does not have any biases, hence W̃l = Wl.

• All layers have the same width and their weight matrices are invertible.

• The loss chosen curvature matrix GL is constant.

• The matrix Epd(x)
[
xxT

]
is invertible.

Denote with Gdiag the matrix constructed by taking only the diagonal blocks of
the full Generalised Gauss-Newton matrix Gθ. Given a vector V, which is a
gradient of some loss with respect to the network parameters:

V = Epd(x,y)
[
∂hL
∂θ

T

v(x,y, θ)

]
.

The the following equality holds

G
−1
θ V =

1

L
G
−1
diagV.

42

The Gauss-Newton matrix for Deep Learning models and its applications

Proof. For simplicity of the derivation let:

Σx = Epd(x,y)
[
xxT

]
,

Σy = Epd(x,y)
[
v(x,y, θ)xT

]
,

Ml =
l−1∏
1

Wl,

Nl =
L∏
l+1

Wl.

Since the network is linear and has no biases we can derive:

al =

(
l−1∏
1

Wl

)
x = Mlx,

Al,l = Epd(x,y)
[
MlxxTMT

l

]
= MlΣxM

T
l ,

∂hL
∂wl

=

(
L∏

i=l+1

Wi

)(
âT
l ⊗ I

)
= (Mlx)T ⊗Nl.

As a result the blocks of the Generalised Gauss-Newton can be expressed as:

Gl,k = Epd(x,y)
[
Al,k ⊗

(
∂hL
∂hl

T

GL
∂hL
∂hk

)]
= Epd(x,y)

[(
MlxxTMT

k

)
⊗
(
NT
l GLNk

)]
=
(
MlΣxM

T
k

)
⊗
(
NT
l GLNk

)
.

And the lth block of the block vector V:

Vl = Epd(x,y)
[
∂hL
∂wl

T

v(x,y, θ)

]
= E

[
vec

(
NT
l v(x,y, θ)xTMT

l

)]
= vec

(
NT
l ΣyM

T
l

)
.

Let U = G
−1
diagV. Combining the two previous results implies:

Ul = G
−1
l,l Vl = vec

((
NT
l GLNl

)−1
NT
l ΣyM

T
l

(
MlΣxM

T
l

)−T
)

= vec
(
N−1l G

−1
L ΣyΣ

−1
x M−1

l

)
.

Finally calculating the lth block of the product of G and U:

[GU]l =
∑
k

Gl,kUk =
∑
k

vec
((

NT
l GLNk

)
N−1k G

−1
L ΣyΣ

−1
x M−1

k

(
MlΣxM

T
k

)T)
=
∑
k

vec
(
NT
l ΣyM

T
l

)
=
∑
k

Vl = LVl.

The next step to a practical approximation is to consider how to approximate
every diagonal block Gl,l.

43

The Gauss-Newton matrix for Deep Learning models and its applications

4.2 Approximating the Diagonal Blocks of G

Recall that from Lemma 3.21 the diagonal blocks of the sample Generalised Gauss-
Newton matrix can be expressed as

Gl,l = Al,l ⊗ Gl. (4.1)

The diagonal blocks of the Generalised Gauss-Newton Gl,l are then given as the
expectation of the above equation over the data distribution pd(x,y). To compute
this, it would be required to carry out the computation for each single data point
and then add all of the results. Since the expectation of a Kronecker product
is not necessarily Kronecker factored, there is no compact representation for this
matrix, and it will be required to be stored it explicitly. If the dimensionality of the
inputs and outputs of a layer are both of order O(d) then such matrix would have
O(d4) elements. Even for d = 1000, which is not large by standard Deep Learning
architectures, the memory required to store that many elements in a 32bit floating
point precision is on the order of a few terabytes. As this is prohibitively large even
on modern hardware, instead of estimating the matrix exactly, an approximation
that is efficient both to store and compute is needed. The approach we propose is
to do a factorised expectation approximation, also used in [84]:

Gl,l ≈ Al,l ⊗ Gl. (4.2)

In addition, this approximation is also useful when inverting the curvature matrix
because of Property 3.8. Furthermore, under the conditions from Lemma 4.1 the
above equation is exact, since Gl does not depend on the data and the expectation
is taken only over Al,l.

The first factor Al,l is simply the uncentered covariance of the inputs to the layer:

Al,l =
1

N

∑
n

âlâ
T
l . (4.3)

By stacking all of the vectors ânl into a d×n matrix M this can be easily computed
via the single product MMT. Such a matrix is usually already computed on the
forward evaluation pass of the network.

For the second factor, however, there do not exist in general efficient ways of
computing it. In the next section, several strategies for dealing with this are pre-
sented.

44

The Gauss-Newton matrix for Deep Learning models and its applications

4.3 Practical calculations for Gl
Recall from Lemma 3.22 that the pre-activation sample Generalised Gauss-Newton
matrix follows the recursive relationship:

Gl = BlW
T
l Gl+1WlBl. (4.4)

However, for the curvature matrix of the objective, it is required to compute the
expected value — Epd(x,y) [Gl]. In principle, the recursion can be applied indepen-
dently for each single data point, but this would require storing the matrix Gl for
every data point. This is impractical in terms of computation time and could be
useful only in cases where time is not essential. In optimisation, however, compu-
tation time together with a decrease in the loss value are of the highest importance
to practitioners. As a result, below, we show several strategies for performing this
computation more efficiently.

4.3.1 Exact low rank calculation

Many problems in classification and regression deal with a relatively small number
of outputs. This implies that the rank of the output layer sample Gauss-Newton
matrix GL is low. From the recursive relationship from Lemma 3.22 it follows that
for any layer the pre-activation sample Gauss-Newton matrices have at most the
rank of GL. Given that each one is Positive Semi-Definite it can be represented as
the sum of its square root vectors:

Gl =
K∑
k=1

ckl c
kT
l . (4.5)

From Lemma 3.22 the following recursion is obtained:

ckl =
∂hL
∂hl

T

ckL = BlWT
l+1c

k
l+1. (4.6)

This is the same type of computation performed during back-propagation, but using
ckL instead of the gradient vector ∂L

∂hL
. Hence for a fixed index k computing the

vectors ckl for all layers has the cost of a single backward pass. Similar to Equation 4.3
the vectors ckl can be computed efficiently for a whole batch of data points, after
which they can be stacked into a matrix, and Gl can be computed via single matrix-
matrix multiplication. For this approach, it is needed to store an array of size N ×
d×K rather than N ×d×d in the naive case. For small K this is significantly more

45

The Gauss-Newton matrix for Deep Learning models and its applications

efficient, both in terms of memory and computation. This method was originally
named Kronecker Factored Low Rank (KFLR) [10] and is closely related to the
curvature propagation in [86].

4.3.2 Recursive Mean Propagation

In practical cases where the dimensions of the outputs of the network are very high,
for instance, autoencoders, using the exact computation from the previous section,
becomes a computational bottleneck. Instead of exact computation, we propose
to use the recursion from Lemma 3.22, but pass back only the expectation of the
matrix. This yields the nested expectation approximation below:

Ĝl ≈ Epd(x,y)
[
BlW

T
l+1Ĝl+1Wl+1Bl

]
. (4.7)

The recursion is initialised with the exact value of the last layer Gauss-Newton GL,
which can be easily computed. Hence, this approach is computationally feasible,
even for deep neural networks. Moreover, notice that under the assumptions of
Lemma 4.1 the matrices Gl do not depend on x and y and the computation is
exact, not just an approximation. This method has been named initially Kronecker
Factored Recursive Approximation (KFRA) [10].

4.3.3 Using The Fisher identity

In special cases where the Generalised Gauss-Newton matrix is equivalent to the
Fisher matrix, as described in Section 3.5.1, it is possible to use this fact in order
to approximate Gl. Specifically, note that the last layer Gauss-Newton satisfies the
Fisher identity:

GL = FL = Epθ(y|x)
[
∇hL log pθ(y|hL)∇hL log pθ(y|hL)T

]
. (4.8)

Instead of computing this exactly it can be approximated via Monte Carlo sampling:

GL =
1

K

∑
k

∇hL log pθ(yk|hL)∇hL log pθ(yk|hL)T,

yk ∼ pθ(y|hL).

(4.9)

Computationally this now is equivalent to KFLR, by setting the square root vectors
to ckL = 1√

K
∇hL log pθ(yk|hL). The main computational benefit, however, is that it

is possible to estimate Gl using a single sample for each data point, allowing this

46

The Gauss-Newton matrix for Deep Learning models and its applications

method to have an overhead of just a single backward pass. The main drawback is
that it can never be exact and potentially introduces additional noise in the curva-
ture matrix estimate. Using the block diagonal Kronecker factored approximation
together with the Fisher identity to obtain a stochastic approximation, in the con-
text of the Fisher matrix, is exactly equivalent to a method called KFAC and has
been developed independently in [84].

4.3.4 Using Random Projections

The previous section suggests an even more general approach for stochastically es-
timating Gl. Consider the following identity for any Positive Semi-Definite matrix
of rank K, assuming that Ep(v)

[
vvT

]
= I:

M = LLT = Ep(v)
[
LvvTLT

]
= Ep(v)

[
(Lv)(Lv)T

]
. (4.10)

Hence, by choosing any multivariate distribution p(v) such that its second moment
is the identity matrix, one can use Monte Carlo sampling to approximate GL via:

GL =
1

K

∑
k

(Lvk)(Lvk)
T,

vk ∼ p(v),

(4.11)

where L is the Cholesky factorisation of GL. The computational benefits and draw-
backs are analogous to those of the Fisher identity method and can similarly use
only a single sample to calculate the approximation, making it also computationally
viable.

4.4 The full optimization algorithm

So far, we have described how to approximate the Generalised Gauss-Newton matrix.
However, the full second-order optimisation algorithm that will be used contains
many additional details, which are described in this section. Most of the steps have
been previously used in the context of optimisation in [81].

Recall that we will assume that the objective can be written in the following
form:

E(θ,D) =
1

N

∑
n

Ln +
λ

2
||θ||22. (4.12)

47

The Gauss-Newton matrix for Deep Learning models and its applications

This implies that full curvature matrix is

C(θ,D) = Gθ + λI. (4.13)

Hence, the quadratic approximation can be expressed as

E(θt + δ,D) ≈ q(δ) = E(θt,D) + δT∇θtE(θt,D) +
1

2
δTC(θt,D)δ. (4.14)

Dropping the dependence on θt and D for clarity, the solution to this problem is
clearly

δ∗ = −C−1∇θtE . (4.15)

However, as already discussed, it is not feasible to store the curvature matrix and
hence its exact inversion is not possible. Hessian free methods attempt to do this
using a truncated Conjugate Gradient, but unfortunately, this is still too computa-
tionally heavy for a practical approach [81]. Instead, given one of the block-diagonal
approximations introduced in this chapter — KFAC, KFLR, KFRA — denoted as
G̃θ, the algorithm proposes a direction

δ̃ =
(
G̃θ + λI

)−1
∇θtE . (4.16)

This vector, however, is not the final update applied to the parameters θt. The
reason for this is that due to potential approximation error it could potentially be
suboptimal for q(δ). Instead, a line search is performed along the direction δ̃ for
selecting the optimal step size. Let the step size be α, then

q
(
αδ̃
)

= E + αδ̃T∇θtE +
α2

2
δ̃TCδ̃. (4.17)

Since this is a quadratic function in α, minimising it has an analytical solution

α∗ = − δ̃
T∇θtE
δ̃TC.δ̃

. (4.18)

Computing this value might seem a difficult task as the denominator term contains
product with the full curvature matrix. However, using automatic differentiation
and the R-operator [121] it is possible to calculate matrix-vector products of the
full Generalised Gauss-Newton efficiently and in extension with C [81, 84], and here
only one such product is required. The cost of this operation is on the order of one
forward and one backward pass through the network. After computing the optimal
step size, the algorithm finally applies the update:

θt+1 = θt + α∗δ̃. (4.19)

48

The Gauss-Newton matrix for Deep Learning models and its applications

4.4.1 The role of damping

The idea of using damping on the curvature matrix in second-order methods is not
novel. One of the first methods to use it is was the Levenberg-Marquardt algorithm
which applied it for the classical Gauss-Newton matrix for non-linear least squares.
It can improve the numerical stability of the inversion of the matrix and can also be
related to trust-region methods. The goal is to introduce an additional diagonal term
to the curvature matrix with a magnitude such that local quadratic approximation
q(δ) is accurately estimating the actual value of the function at the minimum of q.
Hence in practice, the curvature matrix used in q is actually

C = Gθ + (λ+ τ)I. (4.20)

The value of τ is initialised to some reasonably large quantity, such that it can pre-
vent any large initial steps. Thereafter it is adapted using the Levenberg-Marquardt
heuristic based on the reduction ratio ρ defined as

ρ =
E(θ + α∗δ̃)− E(θ)

q(α∗δ̃)− q(0)
. (4.21)

When ρ < 1 this means that the true function E has a lower value at θ + α∗δ̃ and
thus the quadratic approximation underestimates the curvature. In the opposite
case when ρ > 1 the current quadratic approximation overestimates the curvature.
The Levenberg-Marquardt method introduces the damping decay constant ωτ < 1

and at every iteration it does one of the following two options:

• If ρ > 0.75 then ρt+1 = ωτρt.

• If ρ < 0.75 then ρt+1 = ω−1τ ρt.

In the case of a Deep Learning model, however, this requires the evaluation of E(θ+

α∗δ̃) on the same minibatch. In order to not introduce a significant computational
overhead of one extra network evaluation, this adaptation is instead applied every
Tτ iterations. In all of our experiments we used ωτ = 0.95 and Tτ = 5.

Similarly, to the parameter τ , another damping parameter ζ is introduced. Its
primary purpose, however, is to regularise the approximate Gauss-Newton matrix
that is used for computing δ̃, such that it approximates as best as possible the full
Generalised Gauss-Newton. The main reason for having two parameters is because
we have two levels of approximations, and each parameter independently affects
them:

E(θ + δ)
τ
≈ q(δ; Gθ)

ζ
≈ q(δ; G̃θ). (4.22)

49

The Gauss-Newton matrix for Deep Learning models and its applications

The parameter ζ is updated greedily using a decay constant ωζ < 1. Every Tζ

iterations the algorithm computes three updates δ∗ for three different values of ζ -
{ωζ , ζ, ω−1ζ ζ}. From these three updates, the one that minimises q(α∗δ̃) is selected,
and ζ is updated accordingly. Similarly to τ in all experiments we set ωζ = 0.95 and
Tζ = 20.

4.4.2 Inverting the approximate curvature matrix

The approximate curvature matrix used in the algorithm is

C̃ = G̃θ + (λ+ ζ)I. (4.23)

The approximation that is used for G̃θ in all methods considered is firstly block
diagonal, and then each block is a Kronecker product. From the properties of the
Kronecker product presented in the previous chapter, it is known that the inverse
is just the Kronecker product of the inverses of the factors:

(A⊗B)−1 = A−1⊗B−1. (4.24)

However, because of the diagonal term added, no such identity holds. The exact
calculation for computing the inverse of a Kronecker product plus scaled identity
requires to compute the eigenvalue decomposition of both matrices A and B [82].
Since the main goal is to find a fast to compute approximation we propose the
following approximation:

(A⊗B + λI)−1 ≈
(
A + ω

√
λI
)−1
⊗
(
B + ω−1

√
λI
)−1

. (4.25)

In order to choose the value of ω we can bound the norm of the residual:

R(ω) = A⊗B + λI−
(
A + ω

√
λI
)
⊗
(
B + ω−1

√
λI
)

= ω−1
√
λA⊗ I + ω

√
λI⊗B,

||R(ω)|| ≤
√
λ
(
ω−1||A⊗ I||+ ω||I⊗B||

)
.

(4.26)

Minimising the right hand side with respect to ω gives the solution

ω∗ =

√
||A⊗ I||
||I⊗B||

. (4.27)

The choice of the norm is arbitrary, but for comparative purposes with previous
work on KFAC, in all of our experiments, we use the trace norm. An alternative
perspective on this approximation is that it is a particular form of damping, tailored
explicitly to Kronecker factored matrices. The full algorithm, specifically for the
KFRA approximation, is presented below:

50

The Gauss-Newton matrix for Deep Learning models and its applications

Algorithm 1 Algorithm for KFRA updates excluding updates for τ and ζ
Input: minibatch X, weight matrices W1:L and biases b1:L, activation functions
φ1:L, true outputs Y , parameters η and γ
- Forward Pass -
a0 = X

for l = 1 to L do
hl = Wlal−1 + bl

al = φl(hl)

end for
- Derivative and Hessian of the objective -
dL = ∂E

∂hL

∣∣∣
hL

G̃L = Epd(x,y) [HL]
∣∣∣
hL

- Backward pass -
for l = L to 1 do
- Update for Wl -
gl = 1

N
dlâ

T
l−1 + λŴl

Ãl = 1
N

âl−1â
T
l−1

ω =

√
trace(Ãl)dim G̃l
trace(G̃l)dim Ãl

k =
√
λ+ ζ

δ̃l = (Ãl + ωk)−1gl(G̃l + ω−1k)−1

if l > 1 then
- Propagate gradient and approximate pre-activation Gauss-Newton -
Bl−1 = φ′(hl−1)

dl−1 = WT
l dl �Bl−1

G̃l−1 = (WT
l G̃lWl)�

(
1
N
Al−1A

T
l−1
)

end if
end for
v = ∂hL

∂θ
δ̃ (using the R-op from [121])

δ̃TGδ̃ = vTHLv

δ̃TCδ̃ = δ̃TGδ̃ + (λ+ τ)||δ̃||22
α∗ = − δ̃T∇E

δ̃TCδ̃

for l = 1 to L do
Ŵl = Ŵl + α∗δl

end for

51

The Gauss-Newton matrix for Deep Learning models and its applications

4.5 Experiments

In order to evaluate the optimisation algorithm using the approximate Generalised
Gauss-Newton matrix, we performed several experiments and analysed their results.
In the first series of experiments, we trained a deep autoencoder on three standard
grey-scale image datasets. In addition, we consider a small toy problem to classify
hand-written digits as odd or even using a mixture classifier. The main goal of this
experiment is to evaluate a model where the Gauss-Newton is not equivalent to the
Fisher as the modelling distribution is not in the exponential family. The datasets
being used are:

MNIST consists of 60, 000 28× 28 images of hand-written digits [69]. As common
practice, only the first 50, 000 images are used for training, as the other 10, 000

are usually used for validation or testing.

CURVES contains 20, 000 training images of size 28×28 pixels of simulated hand-
drawn curves, created by choosing three random points in the 28 × 28 pixel
plane. For more details on this dataset, the reader is referred to the supple-
mentary material of the original publication [54].

FACES is an augmented version of the Olivetti faces dataset with 10 different
images of 40 people [119]. For comparative purposes with previous work,
we create a training set of 103, 500 images by choosing 414 random pairs of
rotation angles (−90 to 90 degrees) and scaling factors (1.4 to 1.8) for each of
the 250 images for the first 25 people and then subsampling to 25× 25 pixels
as in [54].

All of the experiments were executed on a computer workstation with a Titan Xp
GPU and an Intel Xeon CPU E5-2620 v4 @ 2.10GHz.

The performance of second-order methods compared against first-order methods
was tested as well as the quality of the different approximations to the Generalised
Gauss-Newton discussed earlier in the chapter. The main goal of an optimiser is
to minimise the training loss; hence we do not try to compare any generalisation
of the resulting models. To this end, in all experiments, we report only the train-
ing error. The second-order algorithm is following Section 4.4, where in addition
to the proposed method KFRA, we also compare against KFAC [84], which always
approximates the Fisher matrix as discussed in Section 4.3.3. For any stochastic
approximation methods such as KFAC, only a single Monte Carlo sample is taken.

52

The Gauss-Newton matrix for Deep Learning models and its applications

We emphasise that throughout all experiments, we used the default damping pa-
rameter settings, with no tweaking required to obtain acceptable performance. One
can compare this hyperparameter to the exponential decay parameters β1 and β2 in
Adam, which are typically left at their recommended default values.

Additionally, as a form of momentum for the curvature estimation, we compared
the use of an exponential moving average with a factor of 0.9 on the curvature
matrices Gl and Al,l to only estimating them from the current minibatch. We did not
find any benefit in using momentum on the updates themselves; on the contrary, this
made the optimisation unstable and required clipping the updates. We, therefore,
do not include momentum on the updates in our results.

All of the autoencoder architectures are inspired by previous work in [54]. The
layer sizes are D-1000-500-250-30-250-500-1000-D, where D is the dimensionality of
the input. All models have been initialised identically across different optimisers
using standard practices for sampling the weights [40]. The grey-scale values are
interpreted as the mean parameter of a Bernoulli distribution, and the loss is the
binary cross-entropy on CURVES and MNIST, and square error on FACES.

4.5.1 Comparison to First-Order Methods

We investigated the performance of both KFRA and KFAC compared to popu-
lar first-order methods. Four of the most prevalent gradient-based optimisers were
considered — Stochastic Gradient Descent with and without Momentum, Nesterov
Accelerated Gradient and ADAM [61]. A common practice when using first-order
methods is to decrease the learning rate throughout the training procedure. With
the goal to perform a fair comparison, we included an extra parameter T — the
decay period — to each of the methods, halving the learning rate every T iterations.
To find the best first-order method, we ran a grid search over these two hyperpa-
rameters, by varying the learning rate from 2−6 to 2−13 at every power of 2 and
chose the decay period value from {100%, 50%, 25%, 12.5%, 6.25%}.

Each first-order method was run for 40, 000 parameter updates for MNIST and
CURVES and 160, 000 updates for FACES. This resulted in a total of 35 experiments
and 1.4/5.6 million updates for each dataset per method. In contrast, the second-
order methods did not require adjustment of any hyperparameters and were run
for only 5, 000/20, 000 updates, as they converged much faster. All of the methods
were implemented using Theano and Lasagne [112, 27]. For the first-order methods,
we found ADAM to outperform the others across the board, and we consequently

53

The Gauss-Newton matrix for Deep Learning models and its applications

compared the second-order methods against ADAM only.

54

The Gauss-Newton matrix for Deep Learning models and its applications

(a
)

C
U

RV
E

S
(b

)
FA

C
E

S
(c

)
M

N
IS

T

F
ig
ur
e
4.
1:

C
om

pa
ri
so
n
of

th
e
ob

je
ct
iv
e
fu
nc
ti
on

be
in
g
op

ti
m
is
ed

by
K
F
R
A
,
K
FA

C
an

d
A
D
A
M

on
C
U
RV

E
S,

FA
C
E
S
an

d
M
N
IS
T
.
G
P
U

be
nc
hm

ar
ks

ar
e
in

th
e
fir
st

ro
w
,
pr
og

re
ss

pe
r
up

da
te

in
th
e
se
co
nd

.
T
he

da
sh
ed

lin
e
in
di
ca
te
s
th
e
us
e
of

m
om

en
tu
m

on
th
e
cu
rv
at
ur
e
m
at
ri
x
fo
r
th
e
se
co
nd

-o
rd
er

m
et
ho

ds
.
E
rr
or
s
ar
e
av
er
ag

ed
us
in
g
a
sl
id
in
g
w
in
do

w
of

te
n.

55

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 4.1 shows the performance of the different optimisers on all three datasets.
We present progress both per parameter update, to demonstrate that the second-
order optimisers effectively use the available curvature information, and per GPU
wall clock time, as this is relevant when training a network in practice. For ADAM,
we display the performance using the default learning rate 10−3 as well as the top-
performing combination of learning rate and decay period. To illustrate the sensi-
tivity of ADAM to these hyperparameter settings in these challenging tasks, and
how much can, therefore, be gained by parameter tuning, we also plot the average
performance resulting from using the top 10 and top 20 settings.

Even after significantly tuning the ADAM learning rate and decay period, the
second-order optimisers outperformed ADAM out-of-the-box across all datasets. In
particular, on the challenging FACES dataset, the optimisation was not only much
faster when using second-order methods, but also more stable. On this dataset,
ADAM appears to be highly sensitive to the learning rate and diverged when run-
ning with the default learning rate of 10−3. In contrast to ADAM, the second-order
optimisers did not get trapped in plateaus in which the error does not change sig-
nificantly.

In comparison to KFAC, KFRA showed a noticeable speed-up in the optimisation
both per-iteration and when measuring the wall clock time. To investigate the
potential advantages of KFRA over KFAC and whether it stems from the quality of
its updates, in the next section, we compared the alignment of the updates of each
method with the exact Gauss-Newton update.

4.5.2 Alignment of the Approximate Updates

To gain insight into the quality of the approximations that are made in the second-
order methods under consideration, we compare how well the KFAC and KFRA
parameter updates δ̃ are aligned with updates obtained from using the exact block
diagonal Gauss-Newton and the full Gauss-Newton matrix. Additionally, we check
how using the approximate inversion of the Kronecker factored curvature matrices
discussed in Section 4.4.2 impacts the alignment.

In order to find the updates for the full Gauss-Newton method we use the Con-
jugate Gradient and the R-operator to solve the linear system

(
Gθ + λI

)
δ = ∇θL

as in [81]. For the block diagonal Gauss-Newton method, we use the same strategy,
but the method is applied independently for each separate layer of the network. We
compared the different approaches for batch sizes of 250, 500 and 1000. Since the

56

The Gauss-Newton matrix for Deep Learning models and its applications

results did not differ significantly, we, therefore, show results only for a batch size
of 1000.

Figure 4.2 shows the cosine similarity between the update vectors δ̃l for each
of the eight layers of the autoencoder model. As expected, the further the layer is
from the output, the lower the similarity is as more information is lost due to the
approximation error. We can also observe that in general KFRA produces better
alignments than KFAC, however, in the case of the CURVES dataset, the approx-
imate inverse seems to be significantly affecting this and making the updates the
worst of the four variants. Additionally, one can notice that layers four and five,
which are around the bottleneck of the network always have relatively high cosine
similarity. We conjecture that the similarity could be affected by the dimensionality
of the layers that the blocks are approximating. Figure 4.3 shows the cosine similar-
ity between the full update vectors δ̃ for each approximation, including when using
the exact block diagonal Generalised Gauss-Newton matrix. Surprisingly, on the
MNIST dataset, the exact block diagonal matrix has significantly lower similarity
than expected, and it gets worse over the training of the model. This could indicate
that sometimes the approximations can condition better problems. Note that also
it does not include the extra ζ parameter, which is non-zero and potentially plays a
role in this. Comparing KFRA to KFAC, we see similar trends to the per layer cosine
similarities, with KFRA outperforming KFAC on average. Notably, on both MNIST
and FACES the approximate inversions seem to perform better. This could be due
to better numerical stability of the operations, or just that the factorised diagonal
damping improves the updates. In general it is difficult to analyse and understand
curvature approximations in high dimensions and both figures confirm this. The
main purpose of these was more to illustrate how nuanced such analysis can be and
show that under different conditions different approximations "look" better. Never-
theless, in practice there is only one important metric - whatever the downstream
task is (for instance optimisation) and we can not assert with great certainty that
being closer in cosine similarity would always translate to better performance.

57

The Gauss-Newton matrix for Deep Learning models and its applications

(a) CURVES

(b) MNIST

(c) FACES

Figure 4.2: Alignment of the diagonal approximate updates. Each plot shows the
cosine similarity between the updates generated from Kronecker factored approxi-
mations KFAC and KFRA, and the update generated when using the exact Gauss-
Newton block for each of the eight layers of the network, ordered from left to right
and top to bottom, through out the optimisation. The x axis denotes the itera-
tion number. The algorithms denoted by ∗ exactly invert the Kronecker product of
the factors plus λI using eigenvalue decomposition, while the other variants use the
approximate scheme described in Section 4.4.2.

58

The Gauss-Newton matrix for Deep Learning models and its applications

(a) CURVES

(b) MNIST

(c) FACES

Figure 4.3: Alignment of the full approximate updates. Each plot shows the cosine
similarity between the full update generated from the approximations KFAC and
KFRA, the block diagonal Gauss-Newton, and the update generated when using the
exact Generalised Gauss-Newton matrix. The x axis denotes the iteration number.
The algorithms denoted by ∗ exactly invert the Kronecker product of the factors plus
λI using eigenvalue decomposition, while the other variants use the approximate
scheme described in Section 4.4.2.

59

The Gauss-Newton matrix for Deep Learning models and its applications

4.5.3 Non-Exponential Family Model

All of the experiments conducted so far are of Supervised Learning problems with
log-likelihoods and exponential family predictive distributions, hence the Fisher and
the Generalised Gauss-Newton matrix are equivalent. In order to experiment with a
problem where the two are not equivalent we design a toy experiment with a Super-
vised Learning problem, where the predictive distribution is not in the exponential
family. The problem is to do binary classification, but rather than using a Bernoulli
distribution, instead mixture of two classifiers is chosen:

p(y|hL) = σ(hL1)σ(hL2)y(1− σ(hL2))1−y + (1− σ(hL1))σ(hL3)y(1− σ(hL3))1−y.

(4.28)

where σ(x) = 1
1+e−x

. We use the same architecture as for the encoding layers of the
autoencoders — D-1000-500-250-30-3, where D is the size of the input. The dataset
on which we test is MNIST, where the labels y represented whether the image is an
even or an odd digit. Our choice was motivated by recent interest in neural network
mixture models [29, 140, 99, 123]. Training was run for 40, 000 updates for ADAM
with a grid search as in Section 4.5.1, and for 5, 000 updates for the second-order
methods. The resulting training curves are shown in Figure 4.4.

For the CPU, both per iteration and wall clock time the second-order methods
were faster than ADAM; on the GPU, however, ADAM was faster per wall clock
time. The value of the objective function at the final parameter values was higher
for second-order methods than for ADAM. However, it is important to keep in
mind that all methods achieved a nearly perfect cross-entropy loss of around 10−8.
When so close to the minimum, we expect the gradients and curvature to be very
small and potentially dominated by noise introduced from the mini-batch sampling.
Additionally, since the second-order methods invert the curvature, they are more
prone to accumulating numerical errors than first-order methods, which may explain
this behaviour close to a minimum.

Interestingly, KFAC performed almost identically to KFLR, despite the fact that
KFLR computes the exact pre-activation Gauss-Newton matrix. This suggests that
in the low-dimensional output setting, the benefits from using the exact low-rank
calculation are diminished by the noise and the rather coarse factorised Kronecker
approximation.

60

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 4.4: Fisher vs Gauss-Newton for non-exponential family models. KFAC
corresponds to the Fisher matrix, while both KFRA and KFLR are using the Gauss-
Newton matrix. The plots shows the optimisation performance on the MNIST
binary mixture-classification model.

61

Chapter 5

Uncertainty estimation for Deep
Learning models

In the previous chapters, we introduced some theoretical background on the struc-
ture of the Generalised Gauss-Newton matrix and demonstrated a scalable approx-
imation that can successfully be used in an optimisation algorithm. Experimentally
the algorithm achieved comparable results to state-of-the-art optimisers used to
train Deep Learning models. In this chapter is presented the application of our
scalable approximation to the curvature matrix for uncertainty estimation of neural
network parameters. In practice, Deep Learning models are usually trained using
MAP estimation, which provides no notion of such uncertainty as the result is a
single parameter value. Some recent attempts to approximating the posterior dis-
tribution of neural network parameters are based on optimising a variational lower
bound, treating the network parameters as latent variables:

log p(D) = log

∫
p(D|θ)p(θ) = log

∫
q(θ)

q(θ)
p(D|θ)p(θ)

= logEq(θ)
[
p(D|θ)p(θ)

q(θ)

]
≥ Eq(θ)

[
log

p(D|θ)p(θ)
q(θ)

]
= Eq(θ) [log p(D|θ)]−DKL(q(θ)||p(θ)).

(5.1)

In practice the form of the approximate distribution q(θ) is very simple. The ap-
proaches proposed in [43, 8, 63] as well as the expectation propagation based meth-
ods of [52] and [39] assume independence between all individual weights. Since
optimising the lower bound is equivalent to optimising the reverse KL divergence

62

The Gauss-Newton matrix for Deep Learning models and its applications

DKL(q(θ)||p(θ|D)), a procedure that is known to be mode seeking, it often leads to
significantly underestimating the uncertainty over the parameters.

The most common practice up to date for getting uncertainty estimates is prob-
ably Dropout [126, 34]. The method was initially introduced as randomly dropping
units in the network along with their connection to prevent overfitting. This was
achieved by sampling a binary mask ml for every layer and multiplying the pre-
activations in the network with the mask 1:

hl = hl ◦ml. (5.2)

Usually, each binary value of ml is sampled from a Bernoulli distribution with a
probability p across the whole network. Since the masks can be "moved" to be part
of the weight matrix, [35] reinterpret this procedure as an approximate variational
procedure, where the distribution q is a mixture of all possible combination of masks.
This, however, was shown not to be mathematically rigorous as the approximate
distribution is degenerate and the KL divergence does not exist [57]. Nevertheless,
this method has been widely used in the literature, achieving great success and being
developed further [74, 34, 63, 33].

A somewhat orthogonal direction to previous methods is the usage of model
ensembles [67, 102]. Each ensemble member is typically obtained by training the
same network from a different parameter initialisation. The main reason why these
are more of a complementary rather than a competing approach is that in the same
spirit one can create an ensemble of Dropout networks, Laplace approximations or
any other method that is applicable to a single model. Hence in this work, we will
not be evaluating any of the methods via ensembles.

The approach that we develop in this chapter for uncertainty estimation is based
on the work of [79]. Using the scalable approximation to the Generalised Gauss-
Newton matrix from earlier chapters, we construct and approximate Laplace distri-
bution. We validate the usefulness of the distribution by comparing its uncertainty
estimates to Dropout on out of distribution data empirically. Thereafter, the Laplace
approximation is applied to the problem of online learning, where we demonstrate
that it outperforms other methods in the literature.

The theoretical development of using the curvature approximations from pre-
vious chapters, was done in collaboration with my supervisor Prof. David Barber
and my college Hippolyt Ritter at University College London. Me and my college

1Where ◦ stands for elementwise product, also called the Hadamard product.

63

The Gauss-Newton matrix for Deep Learning models and its applications

were responsible for implementing the code required to run the sampling procedures
required for the Laplace approximation. The implementation and execution of the
experiments was done by Hippolyt Ritter. Similarly, in the work on online learning,
the experimental work was done by him, while me and Prof. David Barber par-
ticipated in developing the theoretical framework. All three of us contributed for
writing up and presenting our published work in [113, 114].

5.1 A scalable Laplace approximation

The Laplace method was originally developed for approximating integrals of func-
tions of the following form:

f(x) = eg(x). (5.3)

Assume that the exponent g(x) is a smooth function, which has a relatively high
peak around its maximum value. In order to approximate the integral of f Laplace
suggested to approximate f using a Gaussian density function which has known
analytical expressions for its integrals [68]. To do so he proposed to Taylor expand
the exponent function around its maximum value:

g(x) ≈ g(x∗) + (x− x∗)
T∇x∗g(x) +

1

2
(x− x∗)

T∇2
x∗g(x)(x− x∗), (5.4)

where x∗ is the argument for which g attains its maximal value. This is equivalent
to the quadratic approximation used for for constructing second-order optimisers
applied to g(x). Since by assumption x∗ is a strict maximiser of g, the second-order
term ∇2

x∗g(x) is guaranteed to be Negative Semi-Definite. Additionally, this also
implies that T∇x∗g(x) = 0 and hence the first-order term vanishes. Examining the
logarithm of the Gaussian probability density function in terms of its dependencies
on x:

logN (µ,Σ) = const− 1

2
(x− µ)TΣ−1(x− µ), (5.5)

if we set Σ = −
(
∇2

x∗g(x)
)−1 and µ = x∗ the two expressions have the same func-

tional form. This Gaussian approximation is exactly what the Laplace method does.
This method is particularly well suited when trying to approximate a distribu-

tion, since by definition any distribution with full support can be written in this
form. Consider the problem of estimating the posterior distribution of a parametric
model using the Bayesian framework:

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (5.6)

64

The Gauss-Newton matrix for Deep Learning models and its applications

In complicated models, such as neural networks, the posterior is intractable. Stan-
dard training under MAP estimation provides a value θ∗ that is a local maximiser of
the posterior distribution. Assuming as before that the prior is an isotropic Gaussian
with precision λ would imply that the Hessian of the log-posterior is nothing more
than −Hθ − λ

N
I. As discussed in Section 3.5 the Hessian of neural network is not

guaranteed to be Positive Semi-Definite, and hence this expression can not be used
as the covariance matrix of a Gaussian distribution, unless it is a strict maximum.
However, any practical training algorithms achieve a maximum of the log-posterior
only approximately due to the fact that they rely on stochastic gradients. As a re-
sult, instead of using the Hessian it is possible to use the Generalised Gauss-Newton
or the Fisher matrix for a practical Gaussian approximation. 2 Using the notations
from Section 4.4 for the curvature matrix C = Gθ + λI and representing with C∗

the matrix evaluated at the parameter value θ∗ the approximate posterior is

p(θ|D) ≈ N (θ∗,
1

N
C∗−1). (5.7)

For many applications the goal is to improve predictions on new data, which con-
stitutes calculating the predictive distribution:

p(y|x,D) =

∫
θ

p(y|x,D, θ)p(θ) =

∫
θ

pθ(y|x)p(θ|D). (5.8)

Using the Gaussian approximation from the Laplace method for p(θ|D), which will
be denoted as q(θ|D), the above integral can be approximated via Monte Carlo:

p(y|x,D) ≈
∫
θ

pθ(y|x)q(θ|D) ≈ 1

K

∑
k

pθk(y|x) θk ∼ q(θ|D). (5.9)

5.1.1 Practical approximations

Unfortunately, as discussed in the Chapter 4, it is not feasible to compute or invert
the full Generalised Gauss-Newton matrix for a Deep Learning model. As a result
the following two approximations will be investigated. The first one aims to approx-
imate only the diagonal of the curvature matrix. The benefits of this approach is
that it has a very low memory cost and is easy to invert. Due to the equivalence of
the Generalised Gauss-Newton and Fisher in order to compute this approximation,
in practice we use the Fisher identity from Section 3.5.1:

diag (F) = diag
(
Epθ(x)

[
∇θ log pθ(x)∇θ log pθ(x)T

])
= Epθ(x)

[
∇θ log pθ(x)2

]
,

(5.10)

2In this setting the two matrices are equivalent.

65

The Gauss-Newton matrix for Deep Learning models and its applications

where the square operation is taken elementwise. This diagonal approximation to
the curvature has been used successfully for pruning the weights [71] and, more
recently, for transfer learning in [64]. This corresponds to modelling each layer
weights as the following independent Gaussian distributions:

wl ∼ N
(
w∗l , Ndiag

(
G
∗
l,l + λI

)−1)
. (5.11)

The second approach we propose is to use the block diagonal approximations devel-
oped earlier, in which each block is further approximated via Kronecker product:

Gl,l ≈ Al,l⊗Gl. (5.12)

Using this representation as a covariance of a Gaussian distribution corresponds to
a Matrix-Normal distribution [45]:

wl ∼MN
(
w∗l ,A

∗−1
l,l ,Gl

∗−1
)
. (5.13)

However, this approximates only G and in practice there is also a diagonal identity
term coming from the prior distribution p(θ). Since adding an identity to a Kro-
necker product destroys this structure, we use the tactic from Section 4.4.2 to come
up with the final layer-wise approximation:

wl ∼MN
(
w∗l ,
(√

NA∗l,l +
√
λI
)−1

,
(√

NG∗l +
√
λI
)−1)

. (5.14)

This approximate posterior is reminiscent of [78] and [127], who optimise the pa-
rameters of a matrix normal distribution as their weights. However, that work is
optimising a variational lower bound, which usually leads to much worse performing
models.

Although N is the dataset size and λ corresponds to the precision of the Gaus-
sian prior, they can instead be treated as hyperparameters, in order to improve even
further the approximation. Their values can be selected by looking at the perfor-
mance of the approximate predictive distribution on a validation set. This does not
require any retraining of the model and adds a computational overhead only once
when computing the posterior after training. Setting N to a larger value than the
size of the dataset can be interpreted as including duplicates of the data points as
pseudo-observations. Manipulating λ from its initial value could modify the un-
certainty about each layer’s parameters. This has a regularising effect both on the
block diagonal approximation to the true Laplace, which may be overestimating the

66

The Gauss-Newton matrix for Deep Learning models and its applications

variance in certain directions due to ignoring the covariances between the layers, as
well as the Laplace approximation itself, which may be placing probability mass in
low probability areas of the true posterior.

In contrast to optimisation methods, computing the curvature matrix has to be
done only once after training is complete. This means that it is not time-critical
and hence it is possible to use methods like KFLR or running KFRA with a batch
size of one to compute the exact value of Gl and Gl,l in turn. This is technically not
possible with methods relying on the Fisher identity like KFAC, which always uses a
stochastic approximation, however with enough samples, their errors would become
sufficiently small. On the other hand, for very large datasets, such as ImageNet,
and huge models, it could still be impractically slow to perform the exact compu-
tation. Additionally, it is also common in many image classification tasks to use
data augmentation, like random cropping or reflections of images, in order to boost
the effective dataset size. This practice can increase the number of possible inputs
several order of magnitude, and in these cases, it would be required to use an ap-
proximation. Hence, in our practical implementation, we make use of the minibatch
approximations, since we also use data augmentation in several of our experiments
in Section 5.2, in order to demonstrate the wider applicability of the method.

5.2 Experiments on uncertainty estimation

Since the Laplace approximation is a method for predicting in a Bayesian manner
and not for training, we focus on comparing to uncertainty estimates obtained from
Dropout [35]. The trained networks will be identical, but the prediction methods will
differ. In addition, a diagonal Laplace approximation is included in the comparisons
to highlight the benefit of modelling the covariances between the weights. The
datasets being used are:

Toy 1D is a small synthetic dataset similar to [52]. To generate it 20 uniformly
distributed points from the interval [−4, 4] are sampled and for each one a
regression value y is sampled from N (x3, 32).

Binarised MNIST is a modified version of the MNIST dataset described in Sec-
tion 4.5. Each pixel of the inputs provided to the models is sampled randomly
from a Bernoulli distribution according to the pixel intensity of the grey-scale
image, which makes the effective dataset size significantly larger than the orig-
inal grey-scale dataset.

67

The Gauss-Newton matrix for Deep Learning models and its applications

notMNIST contains 28×28 grey-scale images of the letters ‘A’ to ‘J’ from various
computer fonts, i.e. not digits [13]. The main goal of this dataset is mimic as
close as possible the MNIST dataset, but have other ten object classes.

CIFAR100 consists of 60, 000 32 × 32 colour images in 100 classes with exactly
600 images per class. [65]. As common practice, only the first 50, 000 images
are used for training, as the other 10, 000 are usually used for validation or
testing.

All experiments are implemented using Theano and Lasagne [112, 27].

5.2.1 Toy Regression Dataset

As an initial experiment, we investigate the uncertainty obtained from the Laplace
approximations on the Toy 1D dataset. In contrast to previous work on toy data
[52], we use a two-layer network with seven units per layer rather than one layer
with 100 units. The main reason for this is because the inputs and the outputs are
one-dimensional, hence for a single layer network, the weights become vectors and
the matrix normal reduces to just a multivariate Gaussian. Furthermore, we are
interested in investigating how sensitive is the Laplace approximation to the ratio
of the number of data points to the number of parameters and how hyperparameter
tuning affects it.

For comparative purposes, except the diagonal and Kronecker factored Laplace
approximations, we also compute the full Laplace. For the diagonal and full Laplace
approximations, we use the Fisher identity and draw one sample per data point.
When the values N and λ in Equation 5.14 are treated as hyperparameters, we will
refer to the method as being "regularised". In these cases, their values are set using
a grid search over the likelihood of 20 validation points, sampled separately from
the same distribution as the training dataset. In an attempt to approximate the full
posterior distribution, we run Hamiltonian Monte Carlo (HMC) and obtain 50, 000

samples of parameters as in [94]. This and the full Laplace approximation are very
computationally intensive methods and are feasible only for such a small dataset
and model.

The predictive distributions from all of the methods described on the toy dataset
are depicted in Figure 5.1. All of the Laplace approximations are increasingly un-
certain away from the data, as the true posterior estimated using HMC samples.
Without the regularisation, we can see that all of them significantly overestimate

68

The Gauss-Newton matrix for Deep Learning models and its applications

(a) KF Laplace (b) Diagonal Laplace (c) Full Laplace

(d) KF Laplace [R] (e) Diagonal Laplace [R] (f) Full Laplace [R]

(g) HMC

Figure 5.1: Toy regression uncertainty. Black dots are data points, the black line
shows the noiseless function. The red line shows the deterministic prediction of the
network, the blue line the mean output. Each shade of blue visualises one additional
standard deviation. The [R] indicates that the method has been regularised by
treating N and λ as hyperparameters as discussed in the text. Best viewed in
colour.

69

The Gauss-Newton matrix for Deep Learning models and its applications

the uncertainty in the vicinity of the training data. This is significantly mitigated by
using the hyperparameter search discussed earlier for modifying N and λ. With the
best hyperparameter setting, all approximations give an overall good fit to the HMC
predictive posterior. Recall from our discussion earlier in Section 3.6 that the Gener-
alised Gauss-Newton of a neural network is usually significantly underdetermined as
the number of data points is much smaller than the number of parameters — in our
case we have 20 data points to estimate a 78×78 precision matrix. This potentially
explains why the full Laplace approximation overestimates the uncertainty signifi-
cantly more and has a much worse predictive mean. As a result, it requires much
stronger regularisation parameters N and λ compared to the other two methods.
Similarly, the diagonal approximation’s hyperparameters are larger than those of the
Kronecker factored distribution. Consistently with the experiments presented next,
we find the diagonal Laplace approximation to place more mass in low probability
areas of the posterior than the Kronecker factored approximation, resulting in higher
variance on the regression problem. This indicates that restricting the structure of
the covariance is not only a computational necessity for most architectures but also
mitigates some of the issues of the full Laplace approximation.

5.2.2 Out-of-Distribution Uncertainty

For a more realistic test, similar to previous work, we assess the uncertainty of
the predictions when classifying data from a different distribution than the training
data [77]. The dataset on which we train the models is the Binarised MNIST.
After the model being trained, and any posterior distribution parameters have been
estimated, we test the network predictive distribution when applied to images from
the notMNIST. An ideal classifier would make uniform predictions over its classes.

The neural network used in this experiment consists of two layers of 1024 hidden
units and ReLU activation functions. During training, the precision of the Gaussian
prior is set to 10−2. In addition to the diagonal and Kronecker factored Laplace
approximation, we train a model using Dropout for which we set the dropout prob-
ability to 0.5 on each of the hidden layers [126]. As an additional baseline similar
to [8, 43], we compare to training an approximate diagonal Gaussian, optimised
by maximising the standard variational lower bound via the reparametrisation trick
[62]. The hyperparameters of the Laplace approximations are set based on the cross-
entropy loss on the validation set of MNIST. All algorithms use a learning rate of
10−2 and momentum of 0.9 during training for 250 epochs. For estimating the cur-

70

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.2: Predictive entropy of different posterior approximation when test on out-
of-distribution data. The training data is a dynamically binarised MNIST dataset
and the test data is the notMNIST dataset.

vature matrices, we use 1, 000 binary inputs sampled for each image in the dataset
in the same way as they are provided during training. To summarise, we compare
the uncertainty obtained by predicting the digit class of the notMNIST images using

1. a deterministic forward pass through the Dropout trained network,

2. by sampling different Dropout masks and averaging the predictions, and by
sampling different weight matrices from

3. the Kronecker factored approximate Laplace distribution

4. the diagonal approximate Laplace distribution

5. the fully factorised Gaussian (FFG) trained using a variational lower bound.

Each method uses 100 Monte Carlo samples from their approximate posterior dis-
tributions.

The uncertainty of each method is measured by the entropy of the predictive
distribution. For this specific data, it has a minimum value of 0 when a single class
is predicted with certainty and a maximum of about 2.3 for uniform predictions. For

71

The Gauss-Newton matrix for Deep Learning models and its applications

Prediction Method Accuracy

FFG 98.88%
Deterministic 98.86%
MC Dropout 98.85%
Diagonal Laplace 98.85%
KF Laplace 98.80%

Table 5.1: Test accuracy of the Feed Forward Neural Network trained on MNIST

each data point in notMNIST we calculate the entropy and then compute an empir-
ical cumulative distribution over this range. Figure 5.2 shows the inverse empirical
cumulative distribution for each approach (this is one minus the cumulative distri-
bution value). If a method does not have any predictions with entropy value below c,
the curve in the image would be equal to 1 for any value on the x axis below c. Con-
sistent with the results in [35] for Dropout, averaging the probabilities of multiple
passes through the network yields predictions with higher uncertainty than a deter-
ministic pass that approximates the geometric average [126]. However, there still
are some images that are predicted to be a digit with certainty. Our Kronecker fac-
tored Laplace approximation makes hardly any predictions with absolute certainty
and assigns high uncertainty to most of the letters as desired. The diagonal Laplace
approximation required stronger regularisation towards predicting deterministically,
yet it performs similarly to Dropout. The variational factorised Gaussian posterior
has low uncertainty as expected. Just predicting with high uncertainty, although
desired, can be achieved trivially by just always outputting a uniform distribution
and is not sufficient for a model to be useful. To measure whether the approximate
posterior distributions also have captured the original training data in Table 5.1,
we show their predictive accuracy on the test set of MNIST. In all cases, neither
MC Dropout nor the Laplace approximation significantly changes the classification
accuracy of the network in comparison to a deterministic forward pass.

5.2.3 Adversarial Examples

To further test the robustness of our prediction method close to the data distribu-
tion, we perform an adversarial attack on the Deep Learning model. It has been
experimentally demonstrated that neural networks are prone to being fooled by
gradient-based changes to their inputs [129]. However, Bayesian models may be

72

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.3: Uncertainty in untargeted adversarial attacks. The left plot shows the
predictive entropy, while the right plot shows the predictive accuracy of different
methods as a function of the step size of the attack. The adversarial image is
generated using the Fast Gradient method.

more robust to such attacks since they implicitly form an infinitely large ensemble
by integrating over the model parameters and empirical support of this claim has
been demonstrated in [74]. For our experiments, we use the fully connected net
trained on MNIST from the previous section and compare the sensitivity of the
different prediction methods for two kinds of adversarial attacks.

First, we test for untargeted adversarial attacks using the untargeted Fast Gradi-
ent Sign method [42]. To construct an adversarial example, it computes the gradient
of the class predicted with maximal probability from method m with respect to the
input x, takes only the sign of each element and moves the input in the opposite
direction with a varying step size η:

xadv = x− ηsign(∇x max
y

log p(m)(y|x)). (5.15)

This step size is rescaled by the difference between the maximal and minimal value
per dimension in the dataset. It is to be expected that this method generates
examples away from the data manifold, as there is no clear subset of the data that
the results correspond to, e.g. there are no "not ones".

Figure 5.3 shows the average predictive uncertainty and the accuracy of the orig-
inal class on the MNIST test set as the step size η increases. The Kronecker factored
method achieves significantly higher uncertainty than any other prediction method
as the images move away from the data. Both Laplace approximations maintain

73

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.4: Uncertainty in targeted adversarial attacks. The left plot shows the
predictive entropy, while the right plot shows the predictive accuracy of different
methods as a function of the step size of the attack. The adversarial image is
generated with the goal of making models to predict the class digit 0 from MNIST.

higher accuracy than the Monte Carlo Dropout on their original predictions. The
FFG method seems to have the worst performance. It does not seem to capture
well any uncertainty as well its accuracy drops pretty quickly away from the original
example. Interestingly, the deterministic forward pass appears to be most robust in
terms of accuracy. However, it has much smaller uncertainty on the predictions it
makes and will confidently predict a false class for most images.

Additionally, we perform a targeted attack that attempts to force the network
to predict a specific class, in our case 0 following [74]. Hence, for each method, we
exclude all data points in the test set that are already predicted as 0. The updates
are of similar form to the untargeted attack, however they increase the probability
of the pre-specified class y rather than decreasing the current maximum:

xt+1
y = xty + ηsign(∇x log p(m)(y|x(t)

y), (5.16)

and initialising with x
(0)
y = x. We use a step size of η=10−2 for the targeted

attack. The uncertainty and accuracy on the original and target class are shown in
Figure 5.4. Here, the Kronecker factored Laplace approximation has slightly smaller
uncertainty at its peak in comparison to the other methods; however, it appears to
be much more robust as the number steps increases. It only misclassifies a little
over 50% of the images after about 20 steps, whereas for the other methods this is
the case after roughly 10 steps and reaches 100% accuracy on the target class after

74

The Gauss-Newton matrix for Deep Learning models and its applications

almost 50 updates, whereas the other methods are fooled on all images after about
25 steps.

In conjunction with the experiment on notMNIST, it appears that the Laplace
approximation achieves higher uncertainty than Dropout away from the data, as
in the untargeted attack. In the targeted attack, it exhibits smaller uncertainty
than Dropout, yet it is more robust to having its prediction changed. The diagonal
Laplace approximation again performs similarly to Dropout.

5.2.4 Uncertainty on Misclassifications

To highlight the scalability of our method, we apply it to a state-of-the-art convo-
lutional network architecture. Recently, deep residual networks have been the most
successful ones among those [49, 51]. As demonstrated in the literature, Kronecker
factored curvature methods are applicable to convolutional layers by interpreting
them as matrix-matrix multiplications [44].

We compare our uncertainty estimates on wide residual networks [137], a recent
variation that achieved competitive performance on CIFAR100 while, in contrast to
most other residual architectures, including Dropout at specific points. While this
does not correspond to using Dropout in the Bayesian sense, it allows us to at least
compare our method to the uncertainty estimates obtained from Dropout.

Our wide residual network has 3 block repetitions and a width factor of 8 with
and without Dropout using the hyperparameters taken from [137]. The network
parameters are trained on a cross-entropy loss using Nesterov momentum with an
initial learning rate of 0.1 and momentum of 0.9 for 200 epochs with a minibatch size
of 128. We decay the learning rate every 50 epochs by a factor of 0.2, which is slightly
different to the schedule used in the original wide residual network experiments
(they decay after 60, 120 and 160 epochs). As the original authors, we use L2-
regularisation with a factor of 5×10−4. We make one small modification to the
architecture: instead of downsampling with 1×1 convolutions with stride 2, we
use 2×2 convolutions. This is due to Theano not supporting the transformation
of images into the patches extracted by a convolution for 1×1 convolutions with
stride greater than 1, which we require for our curvature backpropagation through
convolutions.

We apply a standard Laplace approximation to the batch normalisation pa-
rameters — a Kronecker factorisation is not needed since the parameters are one-
dimensional. When calculating the curvature factors, we use the moving averages

75

The Gauss-Newton matrix for Deep Learning models and its applications

Accuracy
Prediction Method Dropout Deterministic

Deterministic 79.12% 79.18%
MC Dropout 79.20% -
KF Laplace 79.10% 79.36%

Table 5.2: Accuracy on the final 5, 000 CIFAR100 test images for a wide residual
network trained with and without Dropout.

for the per-layer means and standard deviations obtained after training, in order to
maintain independence between the data points in a minibatch. We are not aware of
any interpretation of Dropout as performing Bayesian inference on the parameters
of batch normalisation at the time of writing.

The accuracy of predictions from different methods is displayed in Table 5.2.
All models achieve comparable results as expected. For calculating the curvature
factors, we draw 5, 000 samples per image using the same data augmentation as
during training, effectively increasing the dataset size to 2.5×108. We use the first
5, 000 images as a validation set to tune the hyperparameters of our Laplace ap-
proximation and the final 5, 000 ones for evaluating the predictive uncertainty on
all methods. The diagonal approximation had to be regularised to the extent of
becoming deterministic, so we omit it from the results.

Figure 5.5 depicts the predictive uncertainty of different approximations on the
test set. We distinguish between the uncertainty on correct and incorrect classifica-
tions, as the mistakes of a system used in practice may be less severe if the network
can at least indicate that it is uncertain. Thus, high uncertainty on misclassifica-
tions and low uncertainty on correct ones would be desirable, such that a system
could return control to a human expert when it can not make a confident decision.
In general, the network tends to be more uncertain on its misclassifications than
its correct ones regardless of whether it was trained with or without Dropout and
of the method used for prediction. Both Dropout and the Laplace approximation
similarly increase the uncertainty in the predictions irrespectively of the correctness
of the classification. Yet, our experiments show that the Kronecker factored Laplace
approximation can be scaled to modern convolutional networks and maintain good
classification accuracy while having similar uncertainty about the predictions as
Dropout.

We had to use much stronger regularisation for the Laplace approximation on the

76

The Gauss-Newton matrix for Deep Learning models and its applications

(a) Dropout Wide Resnet (b) Deterministic Wide Resnet

Figure 5.5: Both plots show the inverse cumulative density function of the predic-
tive entropy from Wide Residual Networks trained with and without Dropout on
CIFAR100. The left figure demonstrates the result for a network with Dropout,
while the right one for a deterministic network. Dashed lines indicate the entropy
for missclassified images and straight for correctly classified.

wide residual network, possibly because the block-diagonal approximation becomes
more inaccurate on deep networks and the number of parameters is much higher
relative to the number of data. It would be interesting to see how the Laplace
approximations behave on a much larger dataset like ImageNet for similarly sized
networks, where we have a better ratio of data to parameters and curvature di-
rections. However, even on a relatively small dataset like CIFAR we did not have
to regularise the Laplace approximation to the degree of the posterior becoming
deterministic.

5.3 Online learning

Creating an agent that performs well across multiple tasks and continuously in-
corporates new knowledge has been a longstanding goal of research on artificial
intelligence. A stepping stone in this direction is to have a model that has the
capabilities to train on a sequence of tasks and successfully learn all of them. In
practice, however, many machine learning algorithms in this setting suffer from what
has been termed "catastrophic forgetting" [31, 88, 110] — as they go through more
tasks in the sequence they stop performing well on earlier ones. This has recently
has received more attention in the context of Deep Learning [41, 64]. Unfortunately,
the naive approach of setting the initial parameters for a new task with the optimal
ones from the previous tasks does not work [41]. As stochastic gradient descent

77

The Gauss-Newton matrix for Deep Learning models and its applications

does not necessarily remain sufficiently close to the original values, as new tasks are
observed, performance on earlier ones degrades further.

Bayesian learning provides an elegant solution to this problem. In this section,
we combine the framework of Bayesian online learning [101] with the Kronecker
factored Laplace approximation developed in Section 5.1 to continuously update a
posterior distribution over the weights of the model. The experiments in the next
section demonstrate the effectiveness of this approach with significant gains over
previously published methods, particularly on a long sequence of tasks.

5.3.1 Bayesian online learning for neural networks

The goal under consideration is to optimise the parameters θ of a single neural
network to perform well across multiple tasks D1,D2, . . . ,DT . In the case that we
are interested, under a probabilistic framework, this corresponds to finding the MAP
estimate of the full posterior distribution:

θ∗ = arg max
θ

p(θ|D1,D2, . . . ,DT). (5.17)

In the context of online learning, it is further assumed that tasks arrive sequentially,
and it is possible to train on only one of them at a time. To address this, we
will use the Bayesian online learning framework [101]. Applying Bayes’ rule to the
full posterior distribution in Equation 5.17 following sequential relationship can be
derived:

p(θ|D1:t+1) =
p(Dt+1|θ)p(θ|D1:t)

p(Dt+1|D1:t)
. (5.18)

This clearly reveals a principled way to online learning. Given the posterior dis-
tribution from all of the previous tasks p(θ|D1:t) one has to multiply it with the
likelihood of the new task and renormalise accordingly. This can be alternatively be
formulated as carrying over the posterior from previous tasks as a prior distribution
over the parameters and learning the new task. As it has been discussed earlier, in
Deep Learning models the posterior distribution is intractable, and hence this pro-
cedure can not be computed exactly. Assumed Density Filtering [87] formulates a
parametric approximate posterior q with parameters ψt which is iteratively updated
in two steps:

Update step The approximate posterior qt from the previous tasks is used instead
of the true posterior p(θ|D1:t) in Equation 5.18 to find a new posterior given the most

78

The Gauss-Newton matrix for Deep Learning models and its applications

recent data:
p(θ|Dt+1, ψt) =

p(Dt+1|θ)q(θ|ψt)
p(Dt+1|ψt)

. (5.19)

Projection step The projection step finds the distribution within the parametric
class of the approximation that most closely resembles the posterior computed in
the update step:

q(θ|ψt+1) ≈ p(θ|Dt+1, ψt). (5.20)

One criteria for accomplishing this is to find the parameters ψt+1 by minimising
the KL divergence between the two distributions [101]. This, however, is mostly
appropriate for models where both distributions are available in closed form. Since
the posterior distribution is generally not tractable for models such as neural net-
works, the Laplace approximation from the previous section will be used instead. To
incorporate this the two iterative steps of Assumed Density Filtering are modified
using a Gaussian approximate posterior q(θ) parameterised by a mean vector µt and
precision matrix Λt, collectively denoted as ψt = {µt,Λt}:

Update step In the projection step, the normaliser of the posterior in Equa-
tion 5.18 will never be needed; hence this term will be ignored for any practical
purposes. The Gaussian approximate distribution q obtain from the previous step
is equivalent to adding a quadratic penalty in the log domain, centred around its
mean:

log p(θ|Dt+1, ψt) = log p(Dt+1|θ) + log q(θ|ψt) + const

= log p(Dt+1|θ)−
1

2
(θ − µt)TΛt(θ − µt) + const.

(5.21)

Projection step In this step, we approximate the posterior using the Laplace
approximation from Section 5.1. Firstly the mean of the approximate distribution
is set to be equal to the mode of the new posterior:

µt+1 = arg max
θ

log p(Dt+1|θ) + log q(θ|ψt). (5.22)

The precision matrix of the new distribution is then computed as the Generalised
Gauss-Newton matrix of the likelihood, evaluated at the mode µt+1, plus the pre-
cision of the previous approximate q(θ|ψt). This leads to the following recursive
update:

Λt+1 = Gt+1(µt+1) + Λt. (5.23)

79

The Gauss-Newton matrix for Deep Learning models and its applications

The recursion is initialised with the Generalised Gauss-Newton of the log prior.
Typically this is an isotropic Gaussian, in which case the curvature matrix is just
a scaled identity. A similar recursive Laplace approximation for online learning has
been recently discussed, however with limited experimental results and in the context
of using a diagonal approximation to the Hessian [58]. It is worth emphasising, that
sums of Kronecker products do not in general factorise, i.e. A⊗B + C⊗D 6=
(A + C)⊗(B + D) so it is not possible to simply add all factors together. In
our implementation, an approximate curvature matrix is kept in memory for every
task, similar to how EWC keeps the MAP parameters for each task [64]. This
approximation will be termed "Online Laplace". If constant scaling in the number of
tasks is required, one can make a further approximation by adding up the Kronecker
factors separately. This is comparable to the independence assumption between the
factors within the same task, and in general, will make the approximation less
accurate.

A desirable property of the Laplace approximation is that the approximate pos-
terior becomes peaked around its current mode as more data is observed. This
becomes particularly clear if one considers the precision matrix as the product of
the number of data points and the average precision. By becoming increasingly
peaked, the approximate posterior will naturally allow the parameters to change
less for later tasks, retaining the information about previous ones. At the same
time, even though the Laplace method is a local approximation, it should leave
sufficient flexibility for the parameters to adapt to new tasks, as the curvature of
neural networks has been observed to be flat in many directions [118].

For comparative purposes we will also compare to fitting the true posterior with
a new Gaussian on every new task, where the Generalised Gauss-Newton matrix of
all tasks is computed at the most recent MAP estimate:

Λt+1 = Gprior +
t+1∑
i=1

Gi(µt+1). (5.24)

Technically, this is not a valid Laplace approximation, as the parameter µt+1 is not
necessarily a mode of the true posterior, but only a mode of the filtering distribution,
which uses q(θ, ψt). Moreover, since this requires computing the Generalised Gauss-
Newton on all datasets, this procedure violates the sequential learning setting as it
requires access to previous tasks’ data and requires significantly more computation.
However, the main goal of doing this is to gain insights into how much curvature
information our iterative method looses, compared to the "oracle" which can com-

80

The Gauss-Newton matrix for Deep Learning models and its applications

pute the curvature matrices on all of the data. In general, this is always expected
to perform better, but the hope is that the drop in performance is not significant.
This approximation will be termed "Non-Online Laplace".

Regularising the approximate posterior

A similar online method developed in [64] suggests using a multiplier λ on the
quadratic penalty in Equation 5.21. This provides a way of trading off between
retaining information from previous tasks and having sufficient flexibility in learning
new ones. As modifying the objective function directly will propagate through the
recursive relationship for the precision matrix, we propose to place the multiplier
on the new task’s Generalised Gauss-Newton matrix when updating the curvature
matrix. This corresponds to modifying Equation 5.23 to:

Λt+1 = λGt+1(µt+1) + Λt. (5.25)

Notably, since the multiplier has a direct effect on the magnitude of the approximate
posterior, used as a prior in the next task, it will affect all future MAP estimates
µ. The optimal value of λ can potentially inform us about the quality of our Gaus-
sian approximation. If it strongly deviates from its "natural" value of 1 this would
indicate a poor approximation to the posterior and most likely either over or under-
estimates the uncertainty about the parameters. A toy example of this is visualised
in Figure 5.6 where both the likelihood and the prior are Gaussian. Values less than
1 shift the joint maximum towards that of the likelihood, i.e. the new task, while
values greater than 1 it moves towards the prior, i.e. previous tasks. In principle, it
is possible to use a different value of λt for every new observed task. This, however,
would make the number of hyperparameters to grow linearly in the number of tasks,
which would make tuning very costly. For this reason and to keep its interpretation
as a way of measuring the goodness of our approximation, its value is kept the same
across all tasks.

Computational complexity

Excluding the cost of finding the MAP estimate µt for every task, our method
further requires computing the two Kronecker factors of the approximate Laplace
distribution. Computing the factors can be done efficiently via minibatch sampling
and requires the same calculation as a forward and a backward pass through the
network plus two additional matrix-matrix products per layer. Thus the overhead

81

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.6: Effect of the value of λ on the MAP estimate. The prior distribution
contour lines are marked with straight lines, while the likelihood with dashed lines.
The MAP estimate for different values λ is marked by ×.

is roughly equivalent to an extra training epoch. Additionally, since we are using
the Kronecker factored Gaussian as a prior, there is some additional cost during
training in calculating its gradient with respect to the parameters. For every layer,
this corresponds to two matrix-matrix products. Hence, if we assume that each layer
has a weight matrix of size d×d for L layers, the additional computation is O(Ld3).

5.3.2 Alternative methods

So far we have described the Bayesian approach for solving online learning, together
with a practical proposal for approximating it. However, there are other methods
in the literature that have been developed for this, which will be used in the next
section for comparison. The first method that will be presented is Elastic Weight
Consolidation (EWC) [64]. Originally this approach was also motivated by the work
of [79] for constructing an iterative Laplace approximation, as described already in
this chapter. However, instead of forming an approximate posterior that is Gaussian
around the last discovered optimal parameters, EWC builds an approximate poste-
rior that is a mixture of Gaussians, around the parameters that were found optimal
at the end of each previous task. In the notation of Equation 5.21 the objective that

82

The Gauss-Newton matrix for Deep Learning models and its applications

is being maximised when finding the next mean parameter µt+1 is

log p(Dt+1|θ)−
t∑
i=1

1

2
(θ − µi)TFi(µi)(θ − µi). (5.26)

When dealing dealing with more than two tasks, this is inconsistent with the Bayesian
online learning framework and leads to over counting data — specifically more weight
would be given to earlier tasks [58]. In addition, the authors make only a diagonal
approximation to the Fisher matrix. Although this method is not compatible with
the Bayesian framework, note that it is still possible to apply EWC with a richer
curvature approximation, such as the Kronecker factored one that we have proposed.

The second method that will be presented is Synaptic Intelligence [141]. The
method is similar in spirit to EWC, in the sense that on every new task it introduces
a quadratic penalty to all of the previous tasks final parameters:

log p(Dt+1|θ)−
t∑
i=1

1

2
(θ − µi)TΩi(µi)(θ − µi). (5.27)

However, rather than using the Fisher, or any other curvature approximation, the
authors propose to weight each component of the quadratic losses, by regularisation
value that depends on two quantities — the "importance" ω of that parameter for
the given task, and the amount of change it exhibit during training on that task:

ωt =
K∑
k=0

∇θLk(θkt) ◦ 4θkt ,

dt = θKt − θ0t ,

[Ω]i,j = λδij
[ωt]i

[dt]
2
i + ε

.

(5.28)

The index k is over the number of optimization steps that are performed during
training on task t and ε is a small constant added for avoiding any numerical issues.
The parameter λ is a hyper-parameter that similar to the Laplace approximation
trades-off the weight of previous tasks to that of the current one. The main, argu-
ment for squaring dt in the denominator is to make it scale the same as that of ωt.
This approach seems to have little theoretical justification and is much more based
on a human heuristic of determining which parameters are important. In addition,
the formulation by construction makes Ω (what can be thought of as the precision
of a Gaussian approximation) diagonal and it is not possible to apply this method
with any non-diagonal matrix.

83

The Gauss-Newton matrix for Deep Learning models and its applications

5.4 Experiments on online learning

In the following series of experiments our online Laplace approximation is compared
to Elastic Weight Consolidation (EWC) and Synaptic Intelligence (SI) (see Sec-
tion 5.3.2). In addition, a diagonal Laplace approximation is also evaluated in order
to demonstrate the benefits of using richer curvature estimates. The "Non-Online
Laplace" Laplace from the previous section is included as well, with the goal to mea-
sure the loss of curvature information due to the online setting of the problem. In
order to investigate whether the updates from EWC are indeed worse compared to
the Bayesian online learning framework, as originally raised in [58], EWC is also run
with a Kronecker factored approximation. This would be termed "EWC Laplace",
which corresponds to the original method when it is diagonal. As a reminder, the
standard Laplace approximation from Section 5.3.1 is denoted as "Online Laplace",
the one which allowed to look at all previous data as "Non-Online Laplace". The
dataset being used in the experiments are:

MNIST the same as described earlier in Section 4.5.

notMNIST the same as described earlier in Section 5.2.

Fashion MNIST consists of 60, 000 training and 10, 000 test examples [133]. Each
image is a 28×28 grayscale image, associated with a label from 10 classes. Its
main intention is to mimic the image format of MNIST, but contains a collec-
tion of totally different objects, in this case several fashion item categories.

Permuted MNIST consists of 50 independent tasks, each one being represented
as correctly classifying the MNIST dataset images under a fixed permutation
of the image pixels. This makes the individual data distributions mostly in-
dependent of each other, testing the ability of each method to fully utilise the
model’s capacity.

Disjoint MNIST splits the original MNIST dataset in to two tasks, one containing
the digits 0 to 4 and one containing the digits 5 to 9. Both tasks are intended to
be trained as a ten-way classifier, with the goal of investigating the capabilities
of models to retain information when trained on two fully disjoint set of objects.

CIFAR10 is a similar dataset to CIFAR100, described in Section 5.2, but with 10

more coarser object classes.

84

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.7: Online learning on permuted MNIST. The plot shows the mean test
accuracy on a sequence of 50 permuted MNIST tasks. The dotted black line shows
the performance of a single network trained on all observed data up to task k and
can be considered as the best possible performance.

SVHN consists of over 600, 000 examples of 32 × 32 colour images of street view
house numbers [96]. Each image represents a single digit from ‘0’ to ‘9’ , hence
there are 10 labels analogously to MNIST.

All experiments are implemented using Theano and Lasagne [112, 27].

5.4.1 Online learning on Permuted MNIST

The first experiment we conduct compares all different methods on the Permuted
MNIST dataset. The model that is being trained is a Feed Forward Neural Network
with two hidden layers of 100 units and a Rectifier Linear Unit activation functions.
The network is chosen to be smaller than in previous work with the goal to make
each task more challenging. In practice, we found that the performance of different
methods was mildly dependent on the choice of the optimiser in use. Therefore, we
optimize all techniques with Adam [61] for 20 epochs per dataset and a learning

85

The Gauss-Newton matrix for Deep Learning models and its applications

(a) Kronecker factored

(b) Diagonal

Figure 5.8: Effect of λ for different approximations. Each plot shows the mean,
minimum and maximum classification accuracy across the tasks observed so far, as
well as the accuracy on the first and most recent task.

rate of 10−3 as in [141], SGD with Momentum [104] with an initial learning rate of
10−2 and 0.95 momentum, and Nesterov’s Accelerated Gradient [95] with an initial
learning rate of 0.1, which we divide by 10 every 5 epochs, and 0.9 momentum.
For the momentum-based methods, we train for at least 10 epochs and early-stop
once the validation error does not improve for 5 epochs. Furthermore, we decay
the initial learning rate with a factor of 1

1+kt
for the momentum-based optimisers,

where t is the index of the task and k a decay constant. We set k using a coarse grid
search for each value of the hyperparameter λ in order to prevent the objective from
diverging towards the end of training, in particular with the Kronecker factored cur-
vature approximation. For the Laplace approximation based methods, we consider
λ ∈ {1, 3, 10, 30, 100}; for SI we try c ∈ {0.01, 0.03, 0.1, 0.3, 1}. We ultimately pick
the combination of optimiser, hyperparameter and decay rate that gives the best
validation error across all tasks at the end of training. For the Laplace-based meth-
ods, we found momentum-based optimisers to lead to better performance, whereas
Adam gave better results for SI.

86

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.7 shows the mean test accuracy as new tasks are observed for the op-
timal hyperparameters of each method. We find our "Online Laplace" approxima-
tion to maintain higher test accuracy throughout training than placing a quadratic
penalty around the MAP parameters of every task, in particular when using a sim-
ple diagonal approximation to the Generalised Gauss-Newton. However, the main
difference between the methods lies in using a Kronecker factored approximation of
the curvature over a diagonal one. Using this approximation, we achieve over 90%

average test accuracy across 50 tasks, almost matching the performance of a net-
work trained jointly on all observed data. The "Non-Online Laplace" method which
recalculates the curvature for each task instead of retaining previous estimates does
not significantly improve performance.

We also investigate the effects of different values of the hyperparameter λ on
the performance of the "Online Laplace" approximation. The main goal of this
experiment is to visualise and understand better the effective trade-off between re-
membering previous tasks and being able to learn new ones. The comparison is
performed for the Kronecker factored as well as the diagonal approximations for
completeness. Figure 5.8 shows different statistics of the accuracy on the test set for
three different values of the hyperparameter. The exact values have been selected
as the smallest, the largest and the one that achieves the best performance on the
validation set. The performance on the first and the most recent task is of particular
interest as they measure most accurately the trade-off between memorisation and
flexibility. For all displayed values of the hyperparameter, the Kronecker factored
approximation has significantly higher test accuracy than the diagonal approxima-
tion on both the most recent and the first task, as well as on average. For the natural
choice of λ = 1 the network performance on the first task decays substantially. Us-
ing λ = 3 the Kronecker factored Laplace approximation the network has a much
smaller gap between the performance on the first and more recent task, which is
not possible with the diagonal approximation. Finally, when λ = 100 the order of
different performance curves reverses, and the network almost fully memorises the
first task.

In conclusion, the results show that the Kronecker factored curvature approxi-
mation brings significant benefits across all methods. In addition, we validate that
the principled Bayesian framework updates achieve better performance than the
one suggested in [64]. Finally, even with a better curvature approximation the
Laplace approximation seems to overestimate the uncertainty in the parameters,

87

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.9: Online learning on Disjoint MNIST. The plot shows the test accuracy
of each method for different values of the hyperparameter λ for the Laplace approx-
imations and c for Synaptic Intelligence.

which makes the optimal choice of the hyperparameter λ deviate from its natural
value of 1. Instead for this particular sequence of tasks, the optimal value, based on
optimising validation set performance, turns out to be λ = 3.

5.4.2 Online learning on Disjoint MNIST

The second experiment we compare our Kronecker factored approximation, its diag-
onal variant and Synaptic Intelligence on the more realistic Disjoint MNIST dataset.
Previous work has found this problem to be challenging for EWC, as during the first

88

The Gauss-Newton matrix for Deep Learning models and its applications

half of training the network is encouraged to set the bias terms for the second set of
labels to highly negative values [72]. This setup makes it difficult to balance out the
biases for the two sets of classes when training on the second task without overcom-
pensating by making the biases for the first set of classes to highly negative values.
Previous work reports just over 50% test accuracy for EWC, which corresponds to
either completely forgetting the first task or being unable to learn the second one,
as each task individually can be solved with around 99% accuracy [72]. Since there
only two tasks, all of the three variations of the three methods "Online Laplace",
"Non-Online Laplace" and "EWC Laplace" are identical. Consequently, we focus
only on comparing the different curvature approximations — Kronecker factored
and diagonal.

The neural network model is identical to the network from the previous sec-
tion. However, we found that in this problem, both the Laplace approximation and
Synaptic Intelligence required significantly higher values of their corresponding reg-
ularisation hyperparameter. For the Laplace method, we tested values of λ ∈ {1,
3, 10, . . ., 3×105, 106}, and for Synaptic Intelligence values of c ∈ {0.1, 0.3, 1, . . . ,
3×104, 105}. The training was done using Nesterov Accelerated Gradient with a
learning rate of 0.1 and momentum of 0.9 using a minibatch size of 250. The learn-
ing rate was decayed by a factor of 10 every 1000 parameter updates. The initial
learning rate for the second task is further decayed depending on the corresponding
hyperparameter value to prevent the objective from diverging. We experimented
with various decay factors but found the simple rule of using λ

10
for the Kronecker

factored approximation and λ
1000

for the diagonal approximation to work well. Each
run was repeated ten times, and the results are averaged across ten independent
runs.

Figure 5.9 shows the test accuracy for different values of the hyperparameters of
each method. The results have been averaged over ten independent runs. We did
not manage to match the performance of the method as reported in [72] and found
the Laplace approximation to work significantly better. The Kronecker factored
approximation gives a small improvement over the diagonal one and requires weaker
regularisation, which further suggests that it better fits the posterior distribution.
Both of the Laplace methods outperform Synaptic Intelligence for the optimal value
of their corresponding hyperparameter.

89

The Gauss-Newton matrix for Deep Learning models and its applications

Test Error (%)
Method MNIST nMNIST fMNIST SVHN C10 Avg.
SI 87.27 79.12 84.61 77.44 57.61 77.21
EWC Laplace(D) 97.83 94.73 89.13 79.80 53.29 82.96
EWC Laplace(KF) 97.85 94.92 89.31 85.75 58.78 85.32
Online Laplace(D) 96.48 93.41 88.09 81.79 53.80 82.71
Online Laplace(KF) 97.17 94.78 90.36 85.59 59.11 85.40
Non-Online Laplace(D) 96.56 92.33 89.27 78.00 56.57 82.55
Non-Online Laplace(KF) 97.90 94.88 90.08 85.24 58.63 85.35

Table 5.3: Final test accuracy for sequential vision tasks. The bracket (D) indicates
a diagonal approximation, while (KF) a Kronecker factored.

5.4.3 Online learning on multiple datasets

The final experiments test our method on a suite of related vision datasets. The
goal of this online learning problem is to train a classifier on the following sequence
of datasets — MNIST, notMNIST, Fashion MNIST, SVHN and CIFAR10. All five
datasets contain around 50, 000 training images from 10 different classes, however
each of the 10 classes are distinct. Any dataset whose images are smaller that 32×32

are zero padded, and any grey-scale images have their intensities replicated over the
three colour channels, such that all datasets have the same image format.

The neural network used for training is a LeNet-like architecture with two con-
volutional layers [69]. The first layer has a bank of 20 5×5 convolutional filters while
the second layer has 50 convolutional filters with the same spatial size. After each
convolution a 2×2 max-pooling with stride of 2 is applied. Thereafter, the network
has a fully connected hidden layer with 500 before the final layer. As the meaning of
the classes in each dataset is different, we keep the weights of the final layer separate
for each task. The activation function of all layers is a Rectifier Linear unit. For
the convolutional layers we use the extension of the Kronecker factored curvature
approximations to convolutions from [44]. The network is optimised in the same was
as in Section 5.4.1. For measuring the optimal possible classification performance
we train five baseline networks, with the same architecture, each trained separately
on each task.

Figure 5.10 shows the test accuracy of the "Online Laplace" approximation,
both diagonal and Kronecker factored, compared to Synaptic Intelligence on every

90

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.10: Online learning experiments using "Online Laplace". The plot shows
the test accuracy of a convolutional network on every dataset as training progress
sequentially through the five datasets MNIST, notMNIST, Fashion MNIST, SVHN
and CIFAR10. The dotted black lines indicates the performance of the baseline
networks with the same architecture trained on each task separately.

dataset as they progress sequentially through the five tasks. Similarly Figure 5.11
and Figure 5.12 show the "Non-Online Laplace" and "EWC Laplace" results re-
spectively. In addition to help the reader the final test accuracy on each task are
shown in Table 5.3 for all methods. Overall, the "Online Laplace" approximation
in conjunction with a Kronecker factored approximation of the curvature achieves
the highest test accuracy across all five tasks. However, the difference between the
three Laplace-based methods is small in comparison to the improvement stemming
from the better approximation to the Generalised Gauss-Newton matrix. Using a
diagonal approximation for the Laplace approximation, the network mostly remem-
bers the first three tasks, but has difficulties learning the fifth one. SI, in contrast,
shows decaying performance on the initial tasks, but learns the fifth task almost as
well as our method with a Kronecker factored approximation. However, using the
Kronecker factored approximation, the network achieves good performance relative
to the individual networks across all five tasks. In particular, it remembers the
easier early tasks almost perfectly while being sufficiently flexible to learn the more
difficult later tasks better than the diagonal methods, which suffer from forgetting.
In conclusion, these experiments suggest that in larger models, the main difference
is driven by the more richer curvature approximation, rather then the exact method
applied.

91

The Gauss-Newton matrix for Deep Learning models and its applications

Figure 5.11: Online learning experiments using "Non-Online Laplace". The plot
shows the test accuracy of a convolutional network on every dataset as training
progress sequentially through the five datasets MNIST, notMNIST, Fashion MNIST,
SVHN and CIFAR10. The dotted black lines indicates the performance of the
baseline networks with the same architecture trained on each task separately.

Figure 5.12: Online learning experiments using "EWC Laplace". The plot shows
the test accuracy of a convolutional network on every dataset as training progress
sequentially through the five datasets MNIST, notMNIST, Fashion MNIST, SVHN
and CIFAR10. The dotted black lines indicates the performance of the baseline
networks with the same architecture trained on each task separately.

92

Chapter 6

Conclusion and future research
directions

This work presents an insightful theoretical analysis of the structure of the Gener-
alised Gauss-Newton matrix for Feed Forward Neural Networks. Using the results
from the analysis as a motivating basis, an efficient block-diagonal approximation
is proposed. The resulting curvature approximation achieves competitive perfor-
mance against state-of-the-art first-order methods when applied to optimisation.
Unlike standard optimisers, which require significant hyperparameter tunining, our
approach provides good performance with the default hyperparameter values. After
that, using the curvature approximation, we propose to construct a Laplace ap-
proximation to the posterior distribution over the weights of a trained model. Ex-
perimentally we demonstrate that the resulting method leads to better uncertainty
estimates on out-of-distribution data and is more robust to simple adversarial at-
tacks on state-of-the-art convolutional network architecture. Finally, we adapt the
Laplace approximation into a Bayesian online learning framework, where we recur-
sively approximate the posterior after every task with a Gaussian. The algorithm
substantially outperforms related methods on the task of overcoming catastrophic
forgetting.

Most of the modern architectures and their initialisation have been optimised to
perform well under training specifically using first-order optimisation. Nevertheless,
as shown in [85], a second-order method is capable of training models to be success-
ful in tasks, that first-order methods struggle to succeed. A natural question arises
— is it possible that the community has not discovered useful models, just because
they are trainable only with a better optimiser? The work presented here together

93

The Gauss-Newton matrix for Deep Learning models and its applications

with previously published results on scalable curvature approximations for neural
networks [84, 44, 6, 83] make a step towards answering these questions. Addition-
ally, the optimisation method used in Chapter 4 does not need any hyperparameter
tunning, a benefit similar to LBFGS. One drawback is that in practice, the Gauss-
Newton matrix for the output of the network has to be computed explicitly. For
standard losses, as demonstrated, this is not an issue, but as more interesting models
are presented in the literature, this could be problematic for wider adoption. Below
are listed several avenues for future research on the topic of curvature approxima-
tions for Deep Learning models:

Scalable approximations for more layers This work presented only an ap-
proximation to the diagonal blocks of the Generalised Gauss-Newton matrix for fully
connected layers. However, in practice, there are many different parametric layers,
such as convolutional layers and self-attention layers. Also, for recurrent models,
due to the repeated applications of the same weights, this further complicates the
curvature approximations [83]. Recent work extends the KFAC approximation to
convolutions and can be applied to the Gauss-Newton, but for the method to be more
widely applicable all layers used in the literature should have such approximations
[44].

More flexible block approximations Although the Kronecker factored approx-
imations perform significantly better than diagonal, there is no reason not construct
even richer approximations. The original Kronecker factor method can be modified
by correcting its eigenvalues to be fully independent [37]. It could also be possible
to construct a combination of rank-1 plus a Kronecker factored matrix, such that it
captures better the Gauss-Newton of each block. This can have further implications
in providing more insights to the curvature of the loss surfaces of Deep Learning
models.

Automatic batch size scheduler One of the major advantages of first-order
optimisers is their simplicity and in the straightforward way that they deal with
stochastic gradients. Although our method worked well with reasonably sized batch
sizes, in very small batch sizes the benefit of the curvature diminishes as its estimates
will become too stochastic as well. In light of this, one of the hyperparameters of
the method is what batch size to use? Too large and the method will become too
computationally expensive to be practical, too small, and it might lose any benefits

94

The Gauss-Newton matrix for Deep Learning models and its applications

of estimating the curvature. Figuring out what is the optimal batch size in an online
fashion, such that it adapts to the objective at the current parameters, would make
the method truly hyperparameter free. This would potentially give a good incentive
to the community for its wider adoption.

Further research into applications beyond function minimisation The the-
sis presented two avenues where the curvature approximations provided significant
benefits compared to previous methods. There are many other applications, where
further research is required to understand better how these approximations can be
used adequately. For instance, in competitive games, which include the dynamics of
GANs, are an instance of min-max optimisation. In the literature so far, there have
only been analysed methods that use first-order steps for both players [89, 53, 93,
7]. Second-order could potentially be useful in these models, but this would require
more than just a straightforward plugging in of their updates. Another interesting
direction is to try to apply these curvature matrix approximations for Reinforce-
ment Learning. This can be done either for better policy improvements or using the
Laplace approximations for better exploration. In addition, meta-learning methods
like MAML could make use of better optimisation steps as well [30].

95

Bibliography

[1] Akkaya, I. et al. “Solving Rubik’s Cube with a Robot Hand”. In: ArXiv
(2019) (cit. on p. 6).

[2] Amari, S.-i. “Natural Gradient Works Efficiently in Learning”. In: Neural
Computation 10.2 (1998), pp. 251–276 (cit. on pp. 2, 38).

[3] Anthony, T., Tian, Z., and Barber, D. “Thinking Fast and Slow with Deep
Learning and Tree Search”. In: Advances in Neural Information Processing
Systems 30. 2017, pp. 5360–5370 (cit. on p. 6).

[4] Armijo, L. “Minimization of functions having Lipschitz continuous first
partial derivatives”. In: Pacific Journal of mathematics 16.1 (1966), pp. 1–3
(cit. on p. 17).

[5] Atanov, A., Ashukha, A., Molchanov, D., Neklyudov, K., and Vetrov, D.
“Uncertainty Estimation via Stochastic Batch Normalization”. In:
International Symposium on Neural Networks. 2019, pp. 261–269 (cit. on
p. 18).

[6] Ba, J., Grosse, R., and Martens, J. “Distributed Second-Order Optimization
using Kronecker-Factored Approximations”. In: 5th International
Conference on Learning Representations. 2017 (cit. on pp. 42, 94).

[7] Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., and
Graepel, T. “The Mechanics of n-Player Differentiable Games”. In:
Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden, 2018, pp. 354–363 (cit. on p. 95).

[8] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. “Weight
Uncertainty in Neural Network”. In: Proceedings of the 32nd International
Conference on Machine Learning. Vol. 37. Proceedings of Machine Learning
Research. Lille, France, 2015, pp. 1613–1622 (cit. on pp. 62, 70).

96

The Gauss-Newton matrix for Deep Learning models and its applications

[9] Botev, A., Lever, G., and Barber, D. “Nesterov’s accelerated gradient and
momentum as approximations to regularised update descent”. In: 2017
International Joint Conference on Neural Networks (IJCNN). 2017,
pp. 1899–1903 (cit. on p. 4).

[10] Botev, A., Ritter, H., and Barber, D. “Practical Gauss-Newton
Optimisation for Deep Learning”. In: Proceedings of the 34th International
Conference on Machine Learning. Vol. 70. Proceedings of Machine Learning
Research. International Convention Centre, Sydney, Australia, 2017,
pp. 557–565 (cit. on pp. 4, 20, 46).

[11] Botev, A., Zheng, B., and Barber, D. “Complementary Sum Sampling for
Likelihood Approximation in Large Scale Classification”. In: Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics.
Vol. 54. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA, 2017, pp. 1030–1038 (cit. on p. 4).

[12] Boyd, S. and Vandenberghe, L. Convex Optimization. 2004 (cit. on p. 17).

[13] Bulatov, Y. notMNIST dataset.
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.
2011 (cit. on p. 68).

[14] Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y. “A Stochastic
Quasi-Newton Method for Large-Scale Optimization”. In: SIAM Journal on
Optimization 26.2 (2016), pp. 1008–1031 (cit. on p. 17).

[15] Cauchy, A. “Méthode générale pour la résolution des systemes d’équations
simultanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–538
(cit. on p. 14).

[16] Chapelle, O. and Li, L. “An Empirical Evaluation of Thompson Sampling”.
In: Advances in Neural Information Processing Systems 24. 2011,
pp. 2249–2257 (cit. on p. 19).

[17] Chen, H., Liu, X., Yin, D., and Tang, J. “A Survey on Dialogue Systems:
Recent Advances and New Frontiers”. In: SIGKDD Explor. Newsl. 19.2
(Nov. 2017), pp. 25–35 (cit. on p. 6).

[18] Chen, P. “Hessian Matrix vs. Gauss—Newton Hessian Matrix”. In: SIAM
Journal on Numerical Analysis 49.4 (2011), pp. 1417–1435 (cit. on p. 34).

97

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

The Gauss-Newton matrix for Deep Learning models and its applications

[19] Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. “On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches”.
In: Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8), 2014. 2014 (cit. on p. 12).

[20] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y.
“The Loss Surfaces of Multilayer Networks”. In: ed. by G. Lebanon and
S. V. N. Vishwanathan. Vol. 38. Proceedings of Machine Learning Research.
San Diego, California, USA: PMLR, May 2015, pp. 192–204 (cit. on p. 1).

[21] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. “Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs)”. In: 4th
International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016
(cit. on p. 8).

[22] Cramér, H. “A contribution to the theory of statistical estimation”. In:
Scandinavian Actuarial Journal 1946.1 (1946), pp. 85–94 (cit. on p. 2).

[23] Csáji, B. C. et al. “Approximation with Artificial Neural Networks”. In:
Faculty of Sciences, Etvs Lornd University, Hungary 24.48 (2001), p. 7
(cit. on pp. 8, 9).

[24] Daniels, H. “The Asymptotic Efficiency of a Maximum Likelihood
Estimator”. In: Fourth Berkeley Symposium on Mathematical Statistics and
Probability. Vol. 1. 1961, pp. 151–163 (cit. on p. 12).

[25] Deng, L. and Platt, J. “Ensemble Deep Learning for Speech Recognition”.
In: Fifteenth Annual Conference of the International Speech Communication
Association. Sept. 2014 (cit. on p. 19).

[26] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: CoRR
abs/1810.04805 (2018). arXiv: 1810.04805 (cit. on pp. 6, 12).

[27] Dieleman, S. et al. Lasagne: First release. 2015 (cit. on pp. 41, 53, 68, 85).

[28] Dietterich, T. G. “Ensemble Methods in Machine Learning”. In:
International Workshop on Multiple Classifier Systems. 2000, pp. 1–15
(cit. on p. 19).

98

https://arxiv.org/abs/1810.04805

The Gauss-Newton matrix for Deep Learning models and its applications

[29] Eigen, D., Ranzato, M., and Sutskever, I. “Learning Factored
Representations in a Deep Mixture of Experts”. In: arXiv preprint
arXiv:1312.4314 (2013) (cit. on p. 60).

[30] Finn, C., Abbeel, P., and Levine, S. “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks”. In: Proceedings of the 34th
International Conference on Machine Learning. Vol. 70. Proceedings of
Machine Learning Research. International Convention Centre, Sydney,
Australia, 2017, pp. 1126–1135 (cit. on p. 95).

[31] French, R. M. “Catastrophic forgetting in connectionist networks”. In:
Trends in Cognitive Sciences 3 (1999), pp. 128–135 (cit. on p. 77).

[32] Fukushima, K. “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position”. In:
Biological Cybernetics 36.4 (Apr. 1980), pp. 193–202 (cit. on p. 10).

[33] Gal, Y. and Ghahramani, Z. “A Theoretically Grounded Application of
Dropout in Recurrent Neural Networks”. In: Advances in Neural
Information Processing Systems 29. 2016, pp. 1019–1027 (cit. on p. 63).

[34] Gal, Y. and Ghahramani, Z. “Bayesian Convolutional Neural Networks with
Bernoulli Approximate Variational Inference”. In: arXiv:1506.02158 (2015)
(cit. on p. 63).

[35] Gal, Y. and Ghahramani, Z. “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”. In: Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48. ICML’16. New York, NY, USA, 2016, pp. 1050–1059
(cit. on pp. 18, 63, 67, 72).

[36] Gal, Y., Islam, R., and Ghahramani, Z. “Deep Bayesian Active Learning
with Image Data”. In: vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia, 2017, pp. 1183–1192
(cit. on p. 19).

[37] George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vincent, P. “Fast
Approximate Natural Gradient Descent in a Kronecker-Factored
Eigenbasis”. In: Proceedings of the 32nd International Conference on Neural
Information Processing Systems. NIPS’18. Montréal, Canada, 2018,
pp. 9573–9583 (cit. on p. 94).

99

The Gauss-Newton matrix for Deep Learning models and its applications

[38] Ghorbani, B., Krishnan, S., and Xiao, Y. “An Investigation into Neural Net
Optimization via Hessian Eigenvalue Density”. In: ed. by K. Chaudhuri and
R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long
Beach, California, USA: PMLR, June 2019, pp. 2232–2241 (cit. on p. 1).

[39] Ghosh, S., Fave, F. M. D., and Yedidia, J. “Assumed Density Filtering
Methods for Learning Bayesian Neural Networks”. In: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix,
Arizona, 2016, pp. 1589–1595 (cit. on p. 62).

[40] Glorot, X. and Bengio, Y. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia,
Italy, 2010, pp. 249–256 (cit. on p. 53).

[41] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. “An
Empirical Investigation of Catastrophic Forgetting in Gradient-Based
Neural Networks”. In: arXiv e-prints, arXiv:1312.6211 (2013),
arXiv:1312.6211. arXiv: 1312.6211 [stat.ML] (cit. on p. 77).

[42] Goodfellow, I. J., Shlens, J., and Szegedy, C. “Explaining and Harnessing
Adversarial Examples”. In: CoRR abs/1412.6572 (2015) (cit. on p. 73).

[43] Graves, A. “Practical Variational Inference for Neural Networks”. In:
Advances in Neural Information Processing Systems 24. 2011,
pp. 2348–2356 (cit. on pp. 62, 70).

[44] Grosse, R. and Martens, J. “A Kronecker-Factored Approximate Fisher
Matrix for Convolution Layers”. In: Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48.
ICML’16. New York, NY, USA, 2016, pp. 573–582 (cit. on pp. 42, 75, 90,
94).

[45] Gupta, A. and Nagar, D. Matrix Variate Distributions. Monographs and
Surveys in Pure and Applied Mathematics. 1999 (cit. on p. 66).

[46] Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and
Seung, H. S. “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit”. In: Nature 405.6789 (2000), pp. 947–951
(cit. on p. 8).

100

https://arxiv.org/abs/1312.6211

The Gauss-Newton matrix for Deep Learning models and its applications

[47] Hannun, A. et al. “Deep Speech: Scaling up end-to-end speech recognition”.
In: CoRR abs/1412.5567 (2014). arXiv: 1412.5567 (cit. on p. 6).

[48] He, K., Zhang, X., Ren, S., and Sun, J. “Deep Residual Learning for Image
Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770–778 (cit. on p. 1).

[49] He, K., Zhang, X., Ren, S., and Sun, J. “Deep Residual Learning for Image
Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770–778 (cit. on pp. 10, 75).

[50] He, K., Zhang, X., Ren, S., and Sun, J. “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”. In:
Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV). ICCV ’15. USA, 2015, pp. 1026–1034 (cit. on pp. 1, 32).

[51] He, K., Zhang, X., Ren, S., and Sun, J. “Identity Mappings in Deep
Residual Networks”. In: 14th European Conference on Computer Vision.
Vol. 9908. 2016, pp. 630–645 (cit. on p. 75).

[52] Hernández-Lobato, J. M. and Adams, R. P. “Probabilistic Backpropagation
for Scalable Learning of Bayesian Neural Networks”. In: Proceedings of the
32nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15. Lille, France, 2015, pp. 1861–1869 (cit. on
pp. 62, 67, 68).

[53] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S.
“GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium”. In: Advances in Neural Information Processing Systems
30. 2017, pp. 6626–6637 (cit. on p. 95).

[54] Hinton, G. E. and Salakhutdinov, R. R. “Reducing the Dimensionality of
Data with Neural Networks”. In: Science 313.5786 (2006), pp. 504–507
(cit. on pp. 52, 53).

[55] Hochreiter, S. and Schmidhuber, J. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780 (cit. on p. 12).

[56] Houthooft, R. et al. “VIME: Variational Information Maximizing
Exploration”. In: Advances in Neural Information Processing Systems 29.
2016, pp. 1109–1117 (cit. on p. 19).

101

https://arxiv.org/abs/1412.5567

The Gauss-Newton matrix for Deep Learning models and its applications

[57] Hron, J., Matthews, A. G. d. G., and Ghahramani, Z. “Variational
Gaussian dropout is not Bayesian”. In: ArXiv (2017) (cit. on pp. 19, 63).

[58] Huszár, F. “Note on the quadratic penalties in elastic weight consolidation”.
In: Proceedings of the National Academy of Sciences 115.11 (2018),
E2496–E2497 (cit. on pp. 80, 83, 84).

[59] Huzurbazar, V. “The likelihood equation, consistency and the maxima of
the likelihood function”. In: Annals of Eugenics 14.1 (1947), pp. 185–200
(cit. on p. 12).

[60] Kaufmann, E., Korda, N., and Munos, R. “Thompson Sampling: An
Asymptotically Optimal Finite-Time Analysis”. In: International Conference
on Algorithmic Learning Theory. 2012, pp. 199–213 (cit. on p. 19).

[61] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic Optimization”.
In: arXiv e-prints, arXiv:1412.6980 (2014), arXiv:1412.6980. arXiv:
1412.6980 (cit. on pp. 1, 15, 53, 85).

[62] Kingma, D. P. and Welling, M. “Auto-Encoding Variational Bayes”. In: 2nd
International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014
(cit. on pp. 18, 70).

[63] Kingma, D. P., Salimans, T., and Welling, M. “Variational Dropout and the
Local Reparameterization Trick”. In: Advances in Neural Information
Processing Systems 28. 2015, pp. 2575–2583 (cit. on pp. 62, 63).

[64] Kirkpatrick, J. et al. “Overcoming catastrophic forgetting in neural
networks”. In: Proceedings of the National Academy of Sciences 114.13
(2017), pp. 3521–3526 (cit. on pp. 66, 77, 80–82, 87).

[65] Krizhevsky, A. “Learning Multiple Layers of Features from Tiny Images”.
In: University of Toronto (2009) (cit. on p. 68).

[66] Krizhevsky, A., Sutskever, I., and Hinton, G. E. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. 2012, pp. 1097–1105 (cit. on pp. 6, 10).

[67] Lakshminarayanan, B., Pritzel, A., and Blundell, C. “Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in
Neural Information Processing Systems 30. 2017, pp. 6402–6413 (cit. on
pp. 19, 63).

102

https://arxiv.org/abs/1412.6980

The Gauss-Newton matrix for Deep Learning models and its applications

[68] Laplace, P. S. de. “Memoir on the Probability of the Causes of Events”. In:
1986 (cit. on p. 64).

[69] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324 (cit. on pp. 52, 90).

[70] LeCun, Y., Bengio, Y., and Hinton, G. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444 (cit. on p. 6).

[71] LeCun, Y., Denker, J. S., and Solla, S. A. “Optimal Brain Damage”. In:
Advances in Neural Information Processing Systems 2. 1990, pp. 598–605
(cit. on p. 66).

[72] Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. “Overcoming
Catastrophic Forgetting by Incremental Moment Matching”. In: Advances
in Neural Information Processing Systems 30. 2017, pp. 4652–4662 (cit. on
p. 89).

[73] Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., and Batra, D. “Why
M Heads are Better than One: Training a Diverse Ensemble of Deep
Networks”. In: CoRR abs/1511.06314 (2015). arXiv: 1511.06314 (cit. on
p. 19).

[74] Li, Y. and Gal, Y. “Dropout Inference in Bayesian Neural Networks with
Alpha-Divergences”. In: Proceedings of the 34th International Conference on
Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia, 2017,
pp. 2052–2061 (cit. on pp. 63, 73, 74).

[75] Liu, C., Zhu, J., and Song, Y. “Stochastic Gradient Geodesic MCMC
Methods”. In: Advances in Neural Information Processing Systems. Ed. by
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc., 2016, pp. 3009–3017 (cit. on p. 2).

[76] Loizou, N. and Richtárik, P. “Momentum and Stochastic Momentum for
Stochastic Gradient, Newton, Proximal Point and Subspace Descent
Methods”. In: ArXiv (2017) (cit. on p. 15).

[77] Louizos, C. and Welling, M. “Multiplicative Normalizing Flows for
Variational Bayesian Neural Networks”. In: Proceedings of the 34th
International Conference on Machine Learning - Volume 70. ICML’17.
Sydney, NSW, Australia, 2017, pp. 2218–2227 (cit. on p. 70).

103

https://arxiv.org/abs/1511.06314

The Gauss-Newton matrix for Deep Learning models and its applications

[78] Louizos, C. and Welling, M. “Structured and Efficient Variational Deep
Learning with Matrix Gaussian Posteriors”. In: Proceedings of The 33rd
International Conference on Machine Learning. Vol. 48. Proceedings of
Machine Learning Research. New York, New York, USA, 2016,
pp. 1708–1716 (cit. on p. 66).

[79] MacKay, D. J. C. “A Practical Bayesian Framework for Backpropagation
Networks”. In: Neural Comput. 4.3 (1992), pp. 448–472 (cit. on pp. 2, 63,
82).

[80] Mandt, S., Hoffman, M. D., and Blei, D. M. “A Variational Analysis of
Stochastic Gradient Algorithms”. In: Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48.
ICML’16. New York, NY, USA, 2016, pp. 354–363 (cit. on p. 14).

[81] Martens, J. “Deep Learning via Hessian-Free Optimization”. In: Proceedings
of the 27th International Conference on International Conference on
Machine Learning. ICML’10. Haifa, Israel, 2010, pp. 735–742 (cit. on
pp. 17, 47, 48, 56).

[82] Martens, J. “New perspectives on the Natural Gradient method”. In: CoRR
abs/1412.1193 (2014) (cit. on pp. 34, 38, 39, 50).

[83] Martens, J., Ba, J., and Johnson, M. “Kronecker-factored Curvature
Approximations for Recurrent Neural Networks”. In: International
Conference on Learning Representations. 2018 (cit. on p. 94).

[84] Martens, J. and Grosse, R. “Optimizing Neural Networks with
Kronecker-Factored Approximate Curvature”. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning
- Volume 37. ICML’15. Lille, France, 2015, pp. 2408–2417 (cit. on pp. 42,
44, 47, 48, 52, 94).

[85] Martens, J. and Sutskever, I. “Learning Recurrent Neural Networks with
Hessian-Free Optimization”. In: Proceedings of the 28th International
Conference on International Conference on Machine Learning. ICML’11.
Bellevue, Washington, USA, 2011, pp. 1033–1040 (cit. on p. 93).

[86] Martens, J., Sutskever, I., and Swersky, K. “Estimating the Hessian by
Back-Propagating Curvature”. In: Proceedings of the 29th International
Coference on International Conference on Machine Learning. ICML’12.
2012, pp. 963–970 (cit. on p. 46).

104

The Gauss-Newton matrix for Deep Learning models and its applications

[87] Maybeck, P. “Stochastic Models, Estimation and Control”. In: 1982.
Chap. 12.7 (cit. on pp. 3, 78).

[88] McCloskey, M. and Cohen, N. J. “Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem”. In: Psychology
of Learning and Motivation - Advances in Research and Theory 24 (1989),
pp. 109–165 (cit. on p. 77).

[89] Mescheder, L., Nowozin, S., and Geiger, A. “The Numerics of GANs”. In:
Advances in Neural Information Processing Systems 30. 2017,
pp. 1825–1835 (cit. on p. 95).

[90] Mnih, V. et al. “Human-level control through deep reinforcement learning”.
In: Nature 518 (2015), pp. 529–533 (cit. on p. 6).

[91] Moritz, P., Nishihara, R., and Jordan, M. “A Linearly-Convergent
Stochastic L-BFGS Algorithm”. In: Artificial Intelligence and Statistics.
2016, pp. 249–258 (cit. on p. 17).

[92] Moulines, E. and Bach, F. R. “Non-Asymptotic Analysis of Stochastic
Approximation Algorithms for Machine Learning”. In: Advances in Neural
Information Processing Systems 24. 2011, pp. 451–459 (cit. on p. 14).

[93] Nagarajan, V. and Kolter, J. Z. “Gradient descent GAN optimization is
locally stable”. In: Advances in Neural Information Processing Systems 30.
2017, pp. 5585–5595 (cit. on p. 95).

[94] Neal, R. M. “Bayesian Learning via Stochastic Dynamics”. In: Advances in
Neural Information Processing Systems 5. 1993, pp. 475–482 (cit. on p. 68).

[95] Nesterov, Y. “A Method of Solving a Convex Programming Problem with
Convergence Rate O (1/k2)”. In: Soviet Mathematics Doklady 27 (1983),
pp. 372–376 (cit. on pp. 15, 86).

[96] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A.
“Reading Digits in Natural Images with Unsupervised Feature Learning”.
In: NIPS (2011) (cit. on p. 85).

[97] Nocedal, J. “Updating Quasi-Newton Matrices with Limited Storage”. In:
Mathematics of Computation 35.151 (1980), pp. 773–782 (cit. on p. 17).

105

The Gauss-Newton matrix for Deep Learning models and its applications

[98] Oord, A. van den, Kalchbrenner, N., Espeholt, L., k. kavukcuoglu koray,
Vinyals, O., and Graves, A. “Conditional Image Generation with PixelCNN
Decoders”. In: Advances in Neural Information Processing Systems 29.
2016, pp. 4790–4798 (cit. on p. 6).

[99] Oord, A. van den and Schrauwen, B. “Factoring Variations in Natural
Images with Deep Gaussian Mixture Models”. In: Advances in Neural
Information Processing Systems 27. 2014, pp. 3518–3526 (cit. on p. 60).

[100] Oord, A. v. d. et al. “WaveNet: A Generative Model for Raw Audio”. In:
CoRR abs/1609.03499 (2016). arXiv: 1609.03499 (cit. on p. 6).

[101] Opper, M. “A Bayesian Approach to On-Line Learning”. In: On-Line
Learning in Neural Networks. USA, 1999, pp. 363–378 (cit. on pp. 78, 79).

[102] Pearce, T., Leibfried, F., and Brintrup, A. “Uncertainty in Neural
Networks: Approximately Bayesian Ensembling”. In: Proceedings of the
Twenty Third International Conference on Artificial Intelligence and
Statistics. Vol. 108. Proceedings of Machine Learning Research. Online,
2020, pp. 234–244 (cit. on p. 63).

[103] “Perceptrons Cambridge”. In: MA: MIT Press. zbMATH (1969) (cit. on
p. 8).

[104] Polyak, B. “Some methods of speeding up the convergence of iteration
methods”. In: Ussr Computational Mathematics and Mathematical Physics
4 (1964), pp. 1–17 (cit. on pp. 1, 15, 86).

[105] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.
“Language Models are Unsupervised Multitask Learners”. In: (2019) (cit. on
pp. 6, 12).

[106] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. “SQuAD: 100, 000+
Questions for Machine Comprehension of Text”. In: CoRR abs/1606.05250
(2016). arXiv: 1606.05250 (cit. on p. 6).

[107] Ramachandran, P., Zoph, B., and Le, Q. V. “Searching for Activation
Functions”. In: CoRR abs/1710.05941 (2017). arXiv: 1710.05941 (cit. on
p. 8).

[108] Ramezani-Kebrya, A., Khisti, A., and Liang, B. “On the Stability and
Convergence of Stochastic Gradient Descent with Momentum”. In: CoRR
abs/1809.04564 (2018). arXiv: 1809.04564 (cit. on p. 15).

106

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1809.04564

The Gauss-Newton matrix for Deep Learning models and its applications

[109] Rao, C. R. Information and accuracy attainable in the estimation of
statistical parameters. 1945 (cit. on p. 2).

[110] Ratcliff, R. “Connectionist Models of Recognition Memory: Constraints
Imposed by Learning and Forgetting Functions”. In: Psychological Review
97 (1990), pp. 285–308 (cit. on p. 77).

[111] Reddi, S. J., Kale, S., and Kumar, S. “On the Convergence of Adam and
Beyond”. In: International Conference on Learning Representations. 2018
(cit. on p. 16).

[112] Al-Rfou, R. et al. “Theano: A Python framework for fast computation of
mathematical expressions”. In: arXiv e-prints abs/1605.02688 (2016)
(cit. on pp. 41, 53, 68, 85).

[113] Ritter, H., Botev, A., and Barber, D. “A Scalable Laplace Approximation
for Neural Networks”. In: International Conference on Learning
Representations. 2018 (cit. on pp. 4, 64).

[114] Ritter, H., Botev, A., and Barber, D. “Online Structured Laplace
Approximations for Overcoming Catastrophic Forgetting”. In: Proceedings
of the 32nd International Conference on Neural Information Processing
Systems. NIPS’18. 2018, pp. 3742–3752 (cit. on pp. 4, 64).

[115] Robbins, H. and Monro, S. “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22 (1951), pp. 400–407 (cit. on p. 14).

[116] Ronneberger, O., Fischer, P., and Brox, T. “U-Net: Convolutional Networks
for Biomedical Image Segmentation”. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. 2015, pp. 234–241 (cit. on
p. 11).

[117] Rosenblatt, F. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 7).

[118] Sagun, L., Evci, U., Ugur Guney, V., Dauphin, Y., and Bottou, L.
“Empirical Analysis of the Hessian of Over-Parametrized Neural Networks”.
In: arXiv e-prints, arXiv:1706.04454 (2017), arXiv:1706.04454. arXiv:
1706.04454 [cs.LG] (cit. on p. 80).

107

https://arxiv.org/abs/1706.04454

The Gauss-Newton matrix for Deep Learning models and its applications

[119] Samaria, F. S. and Harter, A. C. “Parameterisation of a Stochastic Model
for Human Face Identification”. In: Proceedings of the Second IEEE
Workshop on Applications of Computer Vision. 1994, pp. 138–142 (cit. on
p. 52).

[120] Schaul, T., Zhang, S., and LeCun, Y. “No More Pesky Learning Rates”. In:
Proceedings of the 30th International Conference on Machine Learning.
Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia,
USA, 2013, pp. 343–351 (cit. on p. 31).

[121] Schraudolph, N. N. “Fast Curvature Matrix-Vector Products for
Second-Order Gradient Descent”. In: Neural Computation 14.7 (2002),
pp. 1723–1738 (cit. on pp. 34, 48, 51).

[122] Settles, B. Active learning literature survey. Tech. rep. University of
Wisconsin-Madison Department of Computer Sciences, 2009 (cit. on p. 19).

[123] Shazeer, N. et al. “Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer”. In: CoRR abs/1701.06538
(2017). arXiv: 1701.06538 (cit. on p. 60).

[124] Silver, D. et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play”. In: Science 362.6419 (2018),
pp. 1140–1144 (cit. on p. 6).

[125] Simonyan, K. and Zisserman, A. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. 2015 (cit. on p. 6).

[126] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958 (cit. on pp. 18, 63, 70, 72).

[127] Sun, S., Chen, C., and Carin, L. “Learning Structured Weight Uncertainty
in Bayesian Neural Networks”. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Vol. 54. Proceedings of
Machine Learning Research. Fort Lauderdale, FL, USA, 2017,
pp. 1283–1292 (cit. on p. 66).

108

https://arxiv.org/abs/1701.06538

The Gauss-Newton matrix for Deep Learning models and its applications

[128] Szegedy, C. et al. “Going Deeper with Convolutions”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1–9 (cit. on p. 6).

[129] Szegedy, C. et al. “Intriguing properties of Neural Networks”. In: CoRR
abs/1312.6199 (2014) (cit. on p. 72).

[130] Vaswani, A. et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems 30. 2017, pp. 5998–6008 (cit. on p. 12).

[131] Wang, X., Ma, S., Goldfarb, D., and Liu, W. “Stochastic Quasi-Newton
Methods for Nonconvex Stochastic Optimization”. In: SIAM Journal on
Optimization 27.2 (2017), pp. 927–956 (cit. on p. 17).

[132] Wolfe, P. “Convergence conditions for ascent methods. II: Some
corrections”. In: SIAM review 13.2 (1971), pp. 185–188 (cit. on p. 17).

[133] Xiao, H., Rasul, K., and Vollgraf, R. “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: arXiv
preprint arXiv:1708.07747 (2017) (cit. on p. 84).

[134] Yan, X., Yang, J., Sohn, K., and Lee, H. “Attribute2Image: Conditional
Image Generation from Visual Attributes”. In: Computer Vision – ECCV
2016. 2016, pp. 776–791 (cit. on p. 6).

[135] Yang, T., Lin, Q., and Li, Z. “Unified convergence analysis of stochastic
momentum methods for convex and non-convex optimization”. In: arXiv
preprint arXiv:1604.03257 (2016) (cit. on p. 15).

[136] Yu, L., Hermann, K. M., Blunsom, P., and Pulman, S. “Deep Learning for
Answer Sentence Selection”. In: CoRR abs/1412.1632 (2014). arXiv:
1412.1632 (cit. on p. 6).

[137] Zagoruyko, S. and Komodakis, N. “Wide Residual Networks”. In:
Proceedings of the British Machine Vision Conference (BMVC). 2016,
pp. 87.1–87.12 (cit. on p. 75).

[138] Zeiler, M. D. “ADADELTA: An Adaptive Learning Rate Method”. In:
CoRR abs/1212.5701 (2012). arXiv: 1212.5701 (cit. on p. 15).

[139] Zeiler, M. D. and Fergus, R. “Visualizing and Understanding Convolutional
Networks”. In: Computer Vision – ECCV 2014. Cham, 2014, 818–833"
(cit. on p. 6).

109

https://arxiv.org/abs/1412.1632
https://arxiv.org/abs/1212.5701

The Gauss-Newton matrix for Deep Learning models and its applications

[140] Zen, H. and Senior, A. “Deep Mixture Density Networks for Acoustic
Modeling in Statistical Parametric Speech Synthesis”. In: 2014,
pp. 3844–3848 (cit. on p. 60).

[141] Zenke, F., Poole, B., and Ganguli, S. “Continual Learning through Synaptic
Intelligence”. In: Proceedings of the 34th International Conference on
Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia, 2017,
pp. 3987–3995 (cit. on pp. 83, 86).

110

	Why is the curvature of neural networks important
	Structure of the Thesis

	Background
	Deep Learning
	Feed Forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Modelling distributions

	Optimization
	First-Order Optimisers
	Adaptive First-Order Optimizers
	Second-Order Optimizers

	Model Uncertainty and its applications

	Curvature Matrices of Feed Forward Neural Networks
	Modelling formulation and assumptions
	The Kronecker product and related properties
	Properties
	The vectorization operator

	Neural network notations
	The structure of the sample Hessian matrix
	The Block Diagonal Hessian Recursion
	The special case of piecewise linear activation functions

	The Generalised Gauss-Newton matrix
	Relationship with the Fisher matrix

	On the rank of the empirical matrix

	Tractable approximations of the Generalized Gauss-Newton matrix
	Motivating the block diagonal approximation
	Approximating the Diagonal Blocks of Gauss-Newton
	Practical calculations for pre-activation Gauss-Newton
	Exact low rank calculation
	Recursive Mean Propagation
	Using The Fisher identity
	Using Random Projections

	The full optimization algorithm
	The role of damping
	Inverting the approximate curvature matrix

	Experiments
	Comparison to First-Order Methods
	Alignment of the Approximate Updates
	Non-Exponential Family Model

	Uncertainty estimation for Deep Learning models
	A scalable Laplace approximation
	Practical approximations

	Experiments on uncertainty estimation
	Toy Regression Dataset
	Out-of-Distribution Uncertainty
	Adversarial Examples
	Uncertainty on Misclassifications

	Online learning
	Bayesian online learning for neural networks
	Alternative methods

	Experiments on online learning
	Online learning on Permuted MNIST
	Online learning on Disjoint MNIST
	Online learning on multiple datasets

	Conclusion and future research directions

