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Abstract—Lung cancer is a leading cause of death world-
wide. Radiation therapy (RT) is one method to treat this
disease. A common side effect of RT for lung cancer is
radiation-induced lung damage (RILD) which leads to loss
of lung function. RILD often compounds pre-existing
smoking-related regional lung function impairment. It is
difficult to predict patient outcomes due to large variability
in individual response to RT. In this study, the capability of
image-based modelling of regional ventilation in lung cancer
patients to predict lung function post-RT was investigated.
Twenty-five patient-based models were created using CT
images to define the airway geometry, size and location of
tumour, and distribution of emphysema. Simulated ventila-
tion within the 20 Gy isodose volume showed a statistically
significant negative correlation with the change in forced
expiratory volume in 1 s 12-months post-RT (p = 0.001,
R = 2 0.61). Patients with higher simulated ventilation
within the 20 Gy isodose volume had a greater loss in lung
function post-RT and vice versa. This relationship was only
evident with the combined impact of tumour and emphy-
sema, with the location of the emphysema relative to the
dose-volume being important. Our results suggest that
model-based ventilation measures can be used in the predic-
tion of patient lung function post-RT.

Keywords—Radiation-induced lung damage, Ventilation,
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INTRODUCTION

Lung cancer is the most commonly diagnosed can-
cer and is the leading cause of cancer death world-
wide.5 Radiation therapy (RT) is an important
component of the cure or palliation of patients with
lung cancer. RT uses ionising radiation to destroy or
damage cancer cells, however normal lung tissue is also
damaged which can lead to radiation-induced lung
damage (RILD), including radiation pneumonitis and
radiation fibrosis. RILD is a dose-limiting factor in
chest RT and typically results in a loss in lung func-
tion. One study has shown mean reductions in forced
expired volume in 1 second (FEV1) and diffusion
capacity for carbon monoxide (DLCO) as high as 24.2%
and 20.1%, respectively, in patients 12-months post-
RT receiving concurrent chemoradiotherapy.25 In the
majority of lung cancer patients—about 90% of whom
have a history of smoking—RILD compounds pre-
existing smoking-related regional lung function
impairment.29 Because of the risk of decreasing func-
tion with RT in an already compromised lung, the RT
dose for lung cancer is often limited to subtherapeutic
doses or a patient may even be denied treatment based
on estimated risks of RILD. However, in some cases,
lung function is preserved or can even improve post-
RT.18 This could be due to the reduction or removal of
a tumour that was previously obstructing major air-
ways. Another hypothesis is that RT can reduce
hyperinflation of pathological tissue within the dose-
volume in patients with emphysema, hence improving
elastic recoil and function in the surrounding tissue.3 It
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is currently not possible to use clinical or image-based
measures to understand these contrasting mechanisms
or accurately identify the impact that RT will have on
a given patient’s lung function.

The complexity of predicting RT toxicity risk relates
to the large variation in individual response to RT,
with one study showing a 20-fold difference in
radiosensitivity.9 Previous modelling studies have typ-
ically applied statistical modelling techniques (uni-
variate or multivariate), machine learning, or
predictive modelling methods37 to establish patient-
based biomarkers to identify which patients are at
higher (or lower) risk for RILD. These studies have
included analysis of dosimetry parameters (for exam-
ple mean lung dose or V20, the volume of tissue irra-
diated with > 20 Gy),20 regional perfusion (Q) and/or
ventilation (V),2,12 pre-treatment computed tomogra-
phy (CT) characteristics,10 patient genetics,38 or
molecular biomarkers.20 None have been able to pre-
dict post-RT loss in lung function for patients on a
personalised level, because often only one of these
variables is considered but in reality, various aspects
are at play. There are no accurate models or metrics
that can currently predict patient outcomes post-RT,
therefore clinical decision-making for an individual is
currently a ‘best-guess’ based mainly on dosimetry
parameters, patient age and prognosis, and global pre-
treatment lung function (measured via standard pul-
monary function tests, PFTs). If more accurate pre-
dictions of lung damage and the resultant change in
lung function were possible, more patients could
potentially be treated with RT and/or the dose could
be increased with consequential therapeutic gain.13,33

Although most patients will present with heteroge-
neous lung function resulting from the tumour and any
comorbidities, current RT planning and decision
making do not account for this. A previous study has
shown that four-dimensional computer tomography
(4DCT)-derived regional ventilation within the irradi-
ated lung volume is predictive of patient lung function
after stereotactic ablative radiotherapy (SABR).2

However, obtaining 4DCT-based ventilation mea-
surements requires specialised post-processing soft-
ware and is time-consuming, of low quality, or in many
cases is not possible. In addition, imaging measure-
ments, like 4DCT, are unable to explain the mecha-
nisms behind such predictive biomarkers. Previously,
we have developed an in silico modelling platform
(consisting of several different models that can be
loosely coupled together) to create patient-based lung
models capable of simulating regional lung function,
for example.8,30,31 We hypothesised that by simulating
patient-based regional ventilation—including the im-
pact of the tumour and any coexisting emphysema,
combining the impact of the dose map, regional ven-

tilation pre-RT based on CT characteristics—we could
improve predictions of the impact of RT on lung
function and increase our understanding of the
important factors or mechanisms leading to variation
in patient outcomes. To test this hypothesis, 25 pa-
tient-based models were created using CT images pre-
RT. The patient-based tumour and any coexisting
emphysema were included in the model. Patient-based
in silico measures of ventilation (pre-RT) were com-
pared with spirometry measurements of patient’s lung
function pre- and post-RT.

MATERIALS AND METHODS

Patient Data

Our study included 25 patients treated with con-
ventional chemoradiotherapy. These patients were a
subset of patients enrolled in the IDEAL-CRT (Iso-
toxic Dose-Escalated Radiation Therapy and Con-
current Chemotherapy) clinical trial, a phase 1/2
multicentre trialrun across eight centres in the United
Kingdom. IDEAL-CRT collected longitudinal data on
120 stage II/III non-small-cell lung cancer (NSCLC)
patients,18 before and after-RT (3, 6, 12 and 24 months
post). The study was run following the Declaration of
Helsinki and with the approval of all relevant ethical
bodies and regulatory authorities, and the use of a
subset of this data was approved by the University of
Auckland Human Participants Ethics Committee
(UAHPEC), reference 020572. The subset of 25
patients was selected based on the following criteria: (i)
baseline (pre-RT) and 12 month follow up patient data
was available, (ii) all dosimetry and RT dose infor-
mation was available, and (iii) patients were all treated
with 6-week fractionation. The data used here included
forced expiratory volume in one second (FEV1), forced
vital capacity (FVC) and diffusion capacity to carbon
monoxide (DLCO) in patients pre-treatment (baseline)
and 12-months post-treatment and CT scans (median
resolution: 0.82 9 0.82 9 2.5 mm, range across cen-
tres: 0.64 9 0.64 9 0.80 – 0.98 9 0.98 9 5.0 mm) at
baseline (deep inhalation breath-hold) for 25 lung
cancer patients. A summary of patient information for
the 25 subjects is shown in Table 1.

An overview of the methods used in this study is
presented in Fig. 1. In brief, we use patient volumetric
CT data to create personalised models, including rep-
resentation of the lung shape, lobes, central airways,
tumour volume, and distribution of emphysema. Fig-
ures 1a–1d illustrates the information acquired from
CT for one subject, including (a) definition of the left
(green) and right (blue) lungs and lobe fissures, (b)
tumour (blue) location, and (c) emphysematous tissue
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(red). The fissures were identified manually (Fig. 1e)
and airway trees were generated into the patient-based
lobe volumes. The tumour volume was mapped onto
the airway model and airways within the tumour vol-
ume were partially constricted (Fig. 1f). Thresholding
was used to identify regions with emphysema, and this
was mapped onto the patient-based airway model

(Fig. 1g). Regional ventilation was predicted after
including patient-based dysfunction (Fig. 1i) and the
3D dose map (Fig. 1h) was overlaid onto the model for
subsequent analysis.

CT-Based Measures: Segmentation and Emphysema
Quantification

Segmentation

The geometry of the left and right lungs and central
airways were automatically segmented using the open-
source software Pulmonary Toolkit (PTK), available
at https://github.com/tomdoel/pulmonarytoolkit/wiki/
Pulmonary-Toolkit). Airways were converted to a
centreline approximation (1D lines, plus radius defi-
nition) from the segmented airway lumens using a
skeletonisation procedure. The methods applied in this
software have been described previously in Burrowes
et al.7 Lobar fissures for both left and right lung were
segmented manually using in-house software. Patient-
specific tumour boundaries were manually segmented
for each subject to provide the gross tumour volume
(GTV) outline.

TABLE 1. Mean (6 standard deviation, SD) patient
demographics, tumour volume, and lung function

information.

Age, (years) 66.7 (± 9.6)

Sex: male/female 20/5

Height, (m) 1.7 (± 0.1)

Weight, (kg) 81.4 (± 16.2)

BMI 29.2 (± 5.0)

Tumour location, (central/peripheral) 23/2

Tumour volume, (cm3) 107.3 (range 14–317)

FEV1 (L) 2.1 (± 0.5)

FEV1 (% pred) 74.3 (± 23.6)

FEV1, forced expiratory volume in one second; % pred is %

predicted according to European Respiratory Society (ERS) 1993

and the Third National Health and Nutrition Examination Survey

(NHANES III) population standards14,28.

FIGURE 1. Illustration of the workflow for creating patient-based models. (a-d)Segmentation of patient CT scans provided: (a) left
and right lung volumes, (b) gross tumour volume (GTV), and (c) emphysematous tissue. The dose distribution (d) was overlaid on
the CT images. (e) Fissures were manually extracted, and (f) airway trees were grown into patient-based lobar volumes. The GTV
was mapped onto the model and airways within the GTV were partially constricted. (g) Emphysema and (h) dose (colour spectrum
indicates dose ranging from 0 Gy dark blue to 20 Gy light blue, and 65 Gy red) were mapped from CT onto the airway model. (i):
Side view of one patient-based (left lung) model indicating normalised ventilation solution (ventilation/mean ventilation in the
whole lung) including constriction due to patient’s tumour (colour indicates normalised ventilation ranging from 0 dark blue to 1.5
red).
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Emphysema Quantification

Regions of emphysema manifest as lower density
units; emphysema is typically quantified by applying
an intensity threshold to a density mask from a max-
imum inspiratory CT scan. To create the density mask,
voxels containing large airways, vessels, and lung sur-
face were excluded automatically by the PTK software,
using intensity thresholding, allowing classification of
the parenchymal tissue density. The most commonly
used threshold for emphysema quantification is 2 950
HU, such that all voxels with a HU value less than
2 950 HU are considered to contain tissue that is
emphysematous.19 However, tissue density, or HU, is
highly dependent on imaged lung volume.21 Due to
intra-patient variability in the inhalation level in the
patient data, the emphysema threshold value was
scaled for each patient based on the inhalation level of
the subject. To do this, the standard equation relating
density (q, in g cm23) and HU (Eq. 1) was rearranged
and the assumption of constant mass at varying lung
volumes was applied. The inhalation level was repre-
sented by the ratio of the volume of air measured from
the CT scan using PTK (Vair) and the predicted total
lung capacity (VTLC). VTLC was calculated using the
ERS 1993 reference equation.28 Patient-based TLC
measurements were not available in this study. The
scaled emphysema threshold value (HU�) was calcu-
lated using Eq. 2.

q ¼ HU

1000
þ 1 ð1Þ

HU� ¼ �950

1000
þ 1

� �
VTLC=Vairð Þ � 1

� �
� 1000 ð2Þ

Any regions that were classified as emphysema from
the imaging, were incorporated into the modelling
framework using different local compliance to incor-
porate the impact of emphysema damage on ventila-
tion function (see ‘‘Ventilation Model’’ section).

Geometric Model

Airway Tree Generation

Patient-based conducting airways were generated
using a combination of imaging data (central airways
and lobe shape) and a computational algorithm that
produced additional conducting airways, to the level of
the acinus, into the lung volume. This algorithm pro-
duces a volume-filling branching network that is
morphometrically accurate and has been published
and applied previously.4,31 Further details can be
found in the Supplementary Material.

Patient-specific CT tissue density (extracted from
CT using Eq. 1) was mapped onto each model acinus
and was used to determine the coefficient of variation
of density across all model acini for each patient. The
voxel size of the CT scans was typically smaller than
the actual size of an acinar unit, therefore the mean
density of a 125 mm3 (5 mm 9 5 mm 9 5 mm) cube
from CT was used to represent the acinar unit density
for each acinus within each model.

Ventilation Model

An existing model of ventilation, developed by
Swan et al.,30 which simulates quiet breathing, was
applied in this study. A summary of the model com-
ponents is given here, with additional details in the
Supplementary Material. This model provides a pre-
diction of the time-average ventilation within each
airway and the acinar unit in the lung network. All
simulations were conducted in the upright posture to
align with the PFT measurements which are obtained
in the upright position. A sinusoidal, time-dependent,
pleural pressure (Ppl) gradient (5 s for both inspiration
and expiration, mean Ppl ranges from 2 5.0 cmH2O at

functional residual capacity (FRC) to 2 8.2 cmH2O at
end of inspiration before disease added, Ppl varies

based on patient-specific target volume and diseases)
was applied at each acinus and equations were solved
to predict flow at each time point during a breath. Ppl

was modified during the simulation to ensure that the
volume of inspiration was equal to the predicted tidal
volume for each subject. Baseline FRC and tidal vol-
umes for each patient model were estimated using
height, weight, gender, and age for a given patient.28

These estimations were then used as boundary condi-
tions for the simulation of ventilation (mean FRC
across all subjects was 2.43 ± 0.40 l, mean tidal vol-
ume 0.35 ± 0.07 l). Tidal volume was assumed to be
constant within each subject before and after the dis-
ease effects were applied due to a lack of data
describing whether this changes. The initial volume of
each acinus at FRC was scaled randomly based on the
coefficient of variation of measured density for each
patient (with tumour, emphysema, and vessels ex-
cluded), and a linear gradient (based on the ratio of
maximum and minimum density values to the mean
density value for each subject—derived from CT data)
was applied to change the acinus volume at FRC along
the gravitational axis (upright in this case). The model
of Swan et al.30 was modified to include: (1) the impact
of the tumour and (2) the impact of emphysema.
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Impact of the tumour

The presence of the tumour was incorporated into
the model in two ways: stiffening of terminal units and
airway constriction. Acinar units located within the
GTV were identified and assigned to have increased
stiffness meaning they had little to no expansion during
ventilation from FRC to tidal volume. To achieve this,
the strain energy density coefficient n was set to be
15000 Pa for all terminal units within the GTV, so that
the normal healthy tissue was six times more compliant
than the tissue within the tumour volume. The value of
n for tumour tissue was chosen based on the pressure-
volume curve for fibrotic lung tissue reported by Pride
et al.27

Tumours that develop in the lungs may fully or
partially occlude the surrounding airways. Over 50%
of advanced-stage lung cancer patients have narrowed
central airways, and terminal airways can be blocked
by the tumour as well.35 To incorporate this effect in
our ventilation model, patient-based tumour volumes
were mapped onto each model and any airways within
the GTV were constricted. Proximal airways (ra-
dius > 2 mm)22 were constricted to 50% of their
‘normal’ radius value and distal airways were con-
stricted to 30% of their initial, normal radius value to
represent an intermediate amount of occlusion.

Impact of Emphysema

For any acini that were classified as emphysema,
according to the scaled HU threshold for that subject
(Eq. 2), the CT-based tissue density was incorporated
into the boundary conditions of the model such that
emphysema tissue was hyperinflated and therefore had
reduced compliance. In this study, the isotropic stretch
ratio (this is the stretch from the undeformed reference
volume to FRC assuming isotropic stretch) k was set to
be a function of density in those regions determined to
be emphysema as follows:

k ¼ k1=3

q1=3
þ 1:15; ð3Þ

where q (g cm23) is the density measured from CT,

k ¼ 1 g cm�3. In this method, regions with emphysema
and decreased density have consequential increases in
the isotropic stretch ratio k which leads to a decrease in
compliance.

Application of the Model

Can Simulated Ventilation be Used as a Predictor
of Lung Function Post-RT?

The patient-specific 3D RT dose map was overlaid
onto the model to enable calculation of the amount of

ventilation within the dose region. To enable this,
registration from the RT planning CT scan to the
baseline diagnostic CT image (from which the model
was created) was done for all subjects using the open-
source software package NiftyReg (sourceforge.net/
projects/niftyreg). NiftyReg uses the B-Spline Free-
Form Deformation algorithm.23 The registrations used
a multiresolution approach, local normalised correla-
tion coefficient (LNCC) as similarity measure (Gaus-
sian kernel standard deviation is 5), velocity field
integration to generate the deformation and bending
energy as the regularisation term.

The association between simulated ventilation
within different isodose volumes and the change in
lung function 12-months post-RT was investigated. All
acinar units receiving > 20 Gy and > 30 Gy were
identified in each patient-based model. The mean
ventilation in all acini within these isodose volumes,
divided by the mean ventilation for the whole lung was
calculated for each subject and is referred to as VR20

and VR30, respectively. T-test was performed to assess
if there was any statistically significant correlation
(p £ 0.05) between the change in lung function, using
FEV1 and DLCO, 12-months post-RT and VR20 and/or
VR30.

Simulation, Validation, and Sensitivity Analysis

Simulations were performed in the upright posture
before and after disease effects were added. Baseline
patient data and model-based simulated data were
correlated with the change in lung function post-RT to
see which variable(s) would provide the best predictor
of outcomes. The coefficient of variation (CoV) of
simulated ventilation within each patient-based model
was plotted as a function of measured FEV1 (% pre-
dicted). Simulated values were compared against the
same measures derived from 4D-CT imaging to con-
firm the consistency of the model with previously
measured outcomes.

To improve the explanation of our findings, a single
patient-based model was used to perform a sensitivity
analysis of the effect of adding emphysema into the
model. All patient-based variables were included and
conserved except for the emphysema which was arti-
ficially included in the model to test the impact of the
distribution of emphysema and the importance of its
proximity to the tumour. The patient-based model
used was derived for a 68-year-old male with a tumour
size of 123 cm3, FEV1: 1.96 L, FEV1 % predicted:
70.3%, DLCO: 20.1, DLCO % predicted: 82.0%, FVC:
2.36 L, FVC % predicted: 64.1%, V20: 23.1%, ad-
justed emphysema threshold: 0.069 g cm23. The pro-
portion of emphysema was incremented by setting the
density of every nth (n ¼ 100=%emphysema, for
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example when considering 10% emphysema every 10th
acinus was altered) acinar unit to be half of the
emphysema threshold, thereby inducing the emphy-
sema impact in the model. The distribution of
emphysema was controlled by selectively including the
emphysema either inside or outside of the V20. When
assessing the impact of emphysema inside V20, all
emphysema outside V20 was excluded and vice versa.
The impact of the proximity of the emphysema to the
tumour was studied by selectively excluding or
including emphysema in the V10 isodose volume. In
this way, we aimed to analyse the impact of the dis-
tribution of the emphysema in relation to the RT
treatment volume.

Statistical Analysis

Linear correlation analysis was performed to assess
whether relationships existed between any of the clin-
ical variables (at baseline, pre-RT treatment) or model
simulated variables (VR20, VR30, and CoV of ventila-
tion) and the change in lung function 12-months post-
RT (including FEV1, FEV1 % predicted, FVC, FVC
% predicted, DLCO, DLCO % predicted, and the ratio
of FEV1/FVC). Pearson correlation coefficients (R)
and uncorrected p-values are presented.

RESULTS

The mean normalised ventilation distribution was
similar across all subject models before disease effects
being added, however, there was some variation across
the subjects due to differences in the airway network
geometry, lung sizes, and the initial volume of acini
within the patient-based models. Figure 2 shows the
ventilation solution through a 2D cross-sectional slice
from a single patient-based lung model illustrating the
addition of the disease components. A colour spectrum
is used to demonstrate the ventilation values within
each model acinus. A gravitational gradient is evident
with increased ventilation in the gravitationally-de-
pendent (caudal) region. Figure 2a illustrates the effect
of (acinar) tissue stiffening in the GTV; the acinar
tissue within the tumour volume does not expand or
receive any airflow.

When constriction of airways within the GTV was
added to the model the volume of lung tissue impacted
was larger because ventilation to all acinar units distal
to the constricted airways within the GTV was im-
pacted by the airway constriction, Fig. 2b. Figure 2c
shows the ventilation distribution after the addition of
emphysema into the model alongside the tumour ef-
fects. Tissue regions that were classified as emphyse-
matous received lower ventilation than normal acinar

units. A histogram of the distribution of ventilation
across all acinar units in a single patient-based lung
model is shown in Fig. 2d; results are indicated for
each stage of the model from no disease to all disease
effects. Without disease, a normal ventilation his-
togram is evident, with a single ventilation peak
around 1.0 (normalised). The addition of the tumour
effects showed a modest impact on the ventilation
distribution with the largest change being observed
when emphysema was added alongside the tumour
effects. With all disease effects included, the propor-
tion of alveoli receiving no ventilation in this single
patient-based model increased to nearly 10% of the
total ventilation and the distribution became broader
with decreased ventilation in a noticeable proportion
of the acinar tissue. The peak of the distribution move
to larger flows due to healthier tissue regions receiving
increased flow to compensate for the dysfunctional
tissue.

The ability of the model to represent ventilation in
lung cancer patients was validated by comparing
metrics from the simulated ventilation distribution
against FEV1 measurements for all subjects. A statis-
tically significant correlation between the coefficient of
variation (CoV) of simulated ventilation (V, using flow
rates in the acini only) and measured pre-treatment
FEV1 % predicted was found (R = 2 0.73,
p = 0.0005) as shown in Figure 3. This indicates that
FEV1 (% pred) decreases with increasing heterogeneity
(CoV) of simulated ventilation, indicating a lung with
less efficient function. Brennan et al. previously
showed a correlation R = 2 0.72 (p < 0.01) between
FEV1 and measured ventilation data (obtained from
4DCT) in patients with lung cancer.6 In the study by
Brennan et al., 4DCT data sets and spatial registration
were used to compute 4DCT-ventilation images using
a density change-based and a Jacobian-based model.
4DCT images were registered to provide a map of
estimated ventilation. In their cohort of 98 patients,
65% had stage II/III lung cancer, and 29% of the lung
cancer patients had pre-existing chronic obstructive
pulmonary disease (COPD). Our data is in good
agreement with the 4DCT measurements of ventila-
tion, providing evidence that our model realistically
represents regional ventilation in lung cancer patients.

Table 2 presents the Pearson correlation coefficients
(R) after performing linear regression statistical anal-
ysis. Variables that had a statistically significant cor-
relation (*p < 0.05, **p < 0.01) are indicated. The
strongest correlation was observed between VR20 and
the change in FEV1 post-RT with an R-value of2 0.61
(p = 0.001), this relationship is plotted in Fig. 4b. The
same statistical analysis was performed using the V30
isodose volume (including VR30) but no significant
correlations were found and results are not shown.
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The relationship between VR20 and the change in
FEV1 12-months post-RT is plotted in Fig. 4b. There
was a significant correlation between these variables
(R = 2 0.61, p = 0.001); this relationship was only
evident when both the tumour and emphysema disease
effects were included together. In particular, it was
observed that those patients who had an improvement
in lung function post-RT had lower VR20 in the sim-
ulations. In contrast, those who had large decreases in
lung function post-RT had a higher simulated VR20 (in
other words, there was more function in the model in
the V20 irradiated volume). Simulated VR20 when
including only the patient-specific tumours (Fig. 4a) or
simulations only including emphysema showed no
relationship with the change in lung function post-RT
treatment. There are four outliers observed in Fig. 4b,
these are the interesting cases that this type of analysis
provides the greatest benefit. Patients who have the
potential to gain lung function post-RT can possibly
be treated with slightly less caution (i.e. higher dose)
without fear for their lung function post-RT. And

those patients who have the greatest loss in lung
function are the ones we want to be able to identify and
work with more cautiously. These outliers are analysed
in further detail in Fig. 5 to see what made their out-
comes so disparate.

Figure 5 illustrates two representative patient
models: one patient who had an increase in FEV1 post-
RT (a) and one patient with a decrease in FEV1 post-
RT (b), these were two of the extreme cases observed in
Fig. 4b. These patients had a similar V20 volume ((a)
27% and (b) 23% of the patient’s total lung volume)
and similar tumour volumes ((a) 115 cm3 and (b)
123 cm3). Patient (a) had a lower simulated VR20 (0.60)
and patient (b) had a higher VR20 (0.99) with all disease
changes included (Fig. 5c). Part of these differences
was due to the anatomical location of the V20 volume
((a) ranges from 36 to 90% and (b) from 46 to 87% of
lung height along the gravitational axis), this resulted
in differences in VR20 even before disease changes were
added. Before disease changes, patient (a) had a lower
VR20 (0.8) compared to patient (b, 1.0), this is because

FIGURE 2. Changes in ventilation solution in a single patient-based model due to the impact of tumour and emphysema by
applying the following impacts: (a) increased acinar stiffness (meaning the lung tissue cannot inflate in the tumour region); (b)
increased acinar stiffness and airway constriction; (c) increased acinar stiffness, airway constrictions, and reduced acinar
compliance (this reduced compliance mimics the hyperinflated emphysema regions meaning they are harder to inflate). Figures (a)
to (c) show 2D cross-section of a coronal slice through the model with the colour spectrum indicating normalised flow values. (d)
Shows a histogram plot for the predicted ventilation in acinar units without disease effects and with increased acinar stiffness,
increased acinar stiffness and airway constrictions, and three effects combined (increased acinar stiffness, airway constrictions,
and reduced acinar compliance). This patient had a tumour volume = 173 cm3, baseline FEV1 % predicted = 75%.
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patient (a) had a larger proportion of the V20 volume
in the gravitationally-independent lung region ((a)
61% and (b) 46% of acini in V20 had flow lower than
mean flow of the whole lung without disease effects).
The other difference found was that patient (a) had a
large proportion of their emphysema (a volume
equivalent to 0.38% of total lung volume) inside V20
with a minimal amount of emphysema directly outside
V20 (0.001% was located between the 20 Gy to 10 Gy
isodose volumes). This distribution of emphysema
caused a decrease in VR20. Patient (b) had some
emphysema within V20 (0.62% of total lung volume in
the posterior segment of the upper lobe), however, they
had a larger amount of emphysema directly outside
V20 (a volume equivalent to 1.01% of their total lung
volume was located in between the 20 Gy and 10 Gy
isodose volume) which caused an increase in VR20 for
this patient.

Figure 6 demonstrates the key results from the
emphysema sensitivity analysis and further unravels
the differences between patients, such as the two
illustrated in Fig. 5. Within the 25 patients analysed in
this study, the mean % emphysema in the whole lung
was found to be 2.1% (± 3.6%, range 0–13%) using
the standard clinical threshold of 2 950 HU and
increased slightly to a mean of 3.4% (± 4.3%, range

0–14.5%) using the volume adjusted emphysema
threshold. Inside the V20 volume the amount of
emphysema ranged from 0 to 8.5% for a threshold of
2 950 HU (mean 0.9 ± 1.9%) and from 0-8.6%
(mean 1.3 ± 2.1%) using the adjusted threshold. The
plots in Fig. 6 display the impact of the amount of
emphysema outside (Fig. 6a) or inside (Fig. 6b) of the
V20 isodose volume, spanning across and extending on
from the range found in the patient cohort. Results
showed that VR20 increased with increasing emphy-
sema present outside V20, this increase was greater in
the presence of the tumour. This was because with
damaged tissue outside of the V20, the ventilation was
redistributed into the V20 dose volume. This made the
tissue more important functionally and was associated
with a greater reduction in patient measured FEV1

post-RT. If emphysema was excluded from the V10
isodose volume and only included in lung regions
outside of this, there was only a minimal increase in
VR20 (up to 5% increase when including up to 37.5%
emphysema). This suggests that the proximity of the
emphysema to the tumour is important in this effect.

The opposite was observed when emphysema was
increased within the V20 volume (Fig. 6b). In this case,
the ventilation was diverted outside of the V20 volume
resulting in a lower model simulated VR20. This was

FIGURE 3. The relationship between FEV1 % predicted and the coefficient of variation (CoV) of simulated ventilation in the
patient-based lung models for all 25 lung cancer patients (Pearson correlation coefficient, R = 2 0.73, p = 0.00005). The simulated
data were compared with clinical data from a study using 4DCT to estimate ventilation in 98 lung cancer patients by Brennan et al.6
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again more pronounced in the presence of the tumour.
Patients with lower VR20 had less loss in lung function
post-RT most likely because this tissue was already not
well functioning and the removal of it did not reduce
the patient’s lung capacity as much; in some cases, lung
function was improved after treatment.

DISCUSSION

In this study, we presented a new approach to
simulate ventilation in lung cancer patients pre-RT.
Patient-based airway models were created for 25 sub-
jects using CT scans before RT treatment acquired

FIGURE 4. Correlation between VR20 (mean ventilation in the tissue receiving > 20 Gy divided by mean total lung ventilation) and
the patient measurement of the percent change in FEV1 (L) 12-months post-RT. (a) Simulated VR20 with no disease and with only the
tumour added to the model. (b) Simulated VR20 with all disease effects (tumour + emphysema) added into the simulation. The slope
of the line in (b) is 2 80.12 (95% CI 44.5) and the intercept is 50.6 (CI 34.3).
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from a UK-based clinical trial. The ventilation distri-
bution was simulated by incorporating patient-specific
tumour (size and location) and emphysema distribu-
tions. The model predicted VR20 (ventilation within the

V20 isodose volume) was found to correlate signifi-
cantly with the change in FEV1 12-months post-RT. It,
therefore, has the potential to be used as an in silico
predictive biomarker for lung toxicity. This relation-

FIGURE 5. Demonstration of two patient-based models, despite a very similar V20 in each case (27 and 23% of the total lung,
respectively) one patient had an increase in FEV1 and the other a decrease. (a, b) Display a side view of the ipsilateral lung with the
sum of the normalised flow (predicted in the models) projected on the plane indicating the ventilation within the 20 Gy dose region
(a: VR20 5 0.60 and b: VR20 5 0.99, these two subjects are outliers observed in Fig. 4b); the black lines (drawn around the upper
lung) indicates the isodose area. The patient with decreased FEV1 had higher ventilation (VR20) in the irradiated region. (c) The
boxplot shows the distribution of normalised flow in the 20 Gy isodose volume from each model.
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ship was only evident when both the tumour and
emphysema effects were included in the model. Simu-
lations showed that the location of the emphysema, in
relation to the RT treatment volume (in particular,
V20), was important. Patients with more emphysema
within the V20 volume had a reduced simulated VR20

and had conserved or improvement in lung function
post-RT. The reverse was seen in patients with
emphysema outside V20 (increased VR20 and greater
losses in FEV1 post-RT). The modelling framework
presented here enables a new approach to understand
the disease and treatment-related pulmonary function
change in RT lung cancer patients. Our goal is to
better understand the factors behind the clinical vari-
ability in post-RT pulmonary function. This has the
potentially important clinical impact to guide RT
planning and decision-making in the future. In this
study, we focus on late toxicity as it is a permanent
side-effect of RT that stabilises around 12-months,
while radiation pneumonitis is a transient process.1,34

Another key finding in this study was an emphasis
on the complexity of this system. Several factors con-
tribute to the simulated VR20, including the tumour
size and location and emphysema amount and loca-
tion. The tumour location was important due to the
gravitational differences in lung function and accord-
ing to the location with respect to airways (i.e. the size
of the airways and the number of downstream airways
that were impacted by the tumour). The emphysema
location was important in relation to how it altered the
ventilation distribution, especially concerning ventila-
tion within the dose-volume (V20 in this case).

To the authors’ knowledge, this is the first study
that has incorporated airway obstruction, tissue com-
pliance changes, and emphysema effects to estimate
changes in ventilation in lung cancer patients. Simu-
lations were performed to understand the impact of
each of these changes in the patient-based models. The
impact of the tumour in relation to the stiffening of
acinar tissue within the GTV had a relatively small
impact. This effect altered the ventilation within the
tumour volume only, with very little impact on flows in
other areas of the lungs. As the tumour became larger
(range from ~ 10 to ~ 325 cm3) there was an increas-
ing reduction of ventilation to the ipsilateral lung, up
to a maximum of ~ 4%. This flow was redistributed
into the contralateral lung due to the assumption of a
constant tidal volume within each subject before and
after the disease effects were applied. The assumption
of a constant tidal volume was made due to an absence
of data available describing changes in tidal volume as
a function of emphysema and/or a tumour. The model
predicted distribution of ventilation is not very sensi-
tive to changes in tidal volume. In addition, the key
ventilation value from our modelling is the VR20,
which is a normalised flow value (ventilation in V20 /
mean ventilation in the whole lung), therefore we do
not expect any errors in this assumption to impact on
our findings. While there was a clear relationship
between tumour size and the reduction of flow, there
was also a large amount of variation due to other
variables in the models. One variable related to this
was the different tumour locations; for example, a
patient with a tumour located in the upper lobe had a
lower decrease in ventilation due to the tumour. This is

FIGURE 6. The impact of emphysema location on simulated VR20 in a single patient-based model with and without the tumour
included. (a) % change in VR20 (where the change in VR20 is referenced to VR20 with 0% emphysema) is plotted as a function of the %
emphysema outside V20. (b) % change in VR20 is plotted as a function of the % emphysema inside V20.
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because those regions are gravitationally independent
and have lower regional ventilation compared to the
gravitationally dependent lower lobes. The impact of
constricted airways on ventilation distribution was
found to be more pronounced compared to the change
of tissue compliance. The number of downstream air-
ways affected by the constriction determined how
disrupted the ventilation became. For example, central
tumours impacted on larger airways with a large
number of downstream acini and caused a larger
reduction in ventilation in the ipsilateral lung. Inclu-
sion of the emphysema effects into the model had the
largest impact, one reason being the more dispersed
nature of the emphysema throughout the lung. Re-
gions with emphysema received lower ventilation, this
agrees with previous modelling7 and image-based
measurements.40 To compensate for the reduction in
ventilation in regions with emphysema, ventilation
increased in healthy tissue regions.

The simulated VR20 correlates well with both the
change in FEV1 percent predicted and the change in
FEV1, but not as strongly with the change in DLCO.
This is because our model can only evaluate the flow
distribution for subjects, but DLCO is a measurement of
the efficiency of gas exchange across the alveolar-cap-
illary membrane. A significant correlation may be
found between the ventilation-perfusion ratio within
V20 and the change in DLCO using both ventilation
and perfusion models in the future.

Efforts to investigate the association between base-
line density measurements from CT scans and the
changes in density post-RT, and further to predict
RILD has been performed in previous studies.10 Those
studies focused on the change in lung density post-RT
but did not correlate those findings with lung function.
Other studies have been conducted to correlate re-
gional dysfunction and lung function using the mea-
surements from functional imaging (ventilation/
perfusion). Fan et al.12 used single-photon emission
computed tomography (SPECT) perfusion data to
predict the lung function post-RT (FEV1 and DLCO)
and found that regional perfusion was a significant (p-
value: 0.005 to 0.080) predictor for the changes in lung
function post-RT, but the correlation was weak (R2:
0.18 to 0.30). Vinogradskiy et al. 36 acquired ventila-
tion images calculated using 4DCT data for 96 lung
cancer patients and predicted the toxicity post-RT
using the ventilation in V20. However, the reported
results were not significant at a 0.05 confidence level.
Later, Binkley et al.2 investigated the association
between regional ventilation measured from 4DCT
scans and lung function post-RT. The correlation
between regional ventilation within the 20 Gy isodose
volume was found to be significant (< 0.05) with
FEV1 post-RT. These previous studies showed weaker

correlations between the measured variable and post-
RT lung function compared to our simulation study
with the same significance level.

Our model represents the impact of both the tumour
(tissue stiffening and airway constrictions) and tissue
density (emphysema) separately on the ventilation
distribution without acquiring functional image data.
Unlike the 4DCT ventilation image approach, this
model can be used to differentiate the low ventilation
regions caused by emphysema and occlusion of tumour
which could potentially provide more precise guidance
for functional avoidance RT planning. For example,
the low functional area of emphysema cannot be
recovered after RT meaning it could be targeted with a
higher dose, while the low ventilation regions caused
by airway obstruction, from the tumour, are recover-
able and should be avoided during the planning. The
results of our model could be used as a tool to tailor
the RT plan, such as extend the radiation field to low
ventilation regions caused by emphysema and reduce
the dose to the relatively high ventilation regions to
improve the quality of life for lung cancer patient post-
RT.15 This type of RT planning has been termed
functional lung avoidance RT and is discussed more
below.

Modelling provides the advantage of superposing
the effects of disease. Several modelling assumptions
were made in the current study. First, we assumed a
reduced compliance of all acini within the GTV. Lung
cancer cells are uncontrolled abnormal cells that can-
not retain the same function as normal healthy tissue.24

Thus, we believe the assumption that the tumour itself
behaves as a non-functional consolidated tissue with
higher regional tissue density is valid. Second, airways
in the region of the tumour were constricted (between
30 and 50%) during the simulation to represent the
occlusion. The constriction values used were based on
the assumption that a tumour was unlikely to com-
pletely occlude the airways around it. Central airways
were constricted to 50% and distal airways to 30% of
their original diameters to represent mild to moderate
airway obstruction.11 Constant constriction values
were used due to a lack of information able to be
acquired from CT scans.

Another assumption made related to the detection
and representation of emphysema. After originally
applying a constant standard threshold of -950 HU to
identify regions of emphysema, it was evident by
looking at the CT scans that many regions with
emphysema visible to the naked eye were not being
‘allocated’ using this threshold. The emphysema
threshold applied in the model was adjusted using the
standard Hounsfield-density equation (Equations 1
and 2) under the assumption of constant lung tissue
mass at varying lung volumes. This enabled us to scale
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the threshold value used to identify emphysema to this
cohort of patients for which we observed substantial
variation in lung volume during CT acquisition. After
altering the threshold value as a function of air volume
during imaging we saw that emphysema detection was
improved. When including emphysema into the model,
we applied the same tissue stiffness for normal and
emphysematous tissue but different stretch ratios at
FRC (thereby including the impact of emphysema via
hyperinflation, as presented previously by Burrowes
et al.).7 This meant that the healthy tissue was more
compliant than the emphysematous tissue. Emphy-
sema regions present increased local tissue compliance
and decreased elastic recoil in reality. So, while this
may not be the only mechanism operating in reality,
our results showed reduced flow in tissue with
emphysema and provided evidence that the model was
working as expected. This modelling approach has
been applied in two previous studies.7,17 A study by
Kim et al.17 simulated the ventilation in chronic
obstructive pulmonary disease (COPD) patients and
compared simulated ventilation with measured venti-
lation using12,9Xe MRI and V-SPECT scans, finding
good correlations between model and measurements.

Current RT planning constrains the dose to limit
severe RILD to 5–10% of the patient population.9

Thus, there is potential to treat more patients with RT
and/or increase the dose without serious side effects for
many patients with consequential therapeutic gain.13,33

Knowledge of regional baseline lung function pre-RT
could be beneficial for treatment planning as well as
improving the prediction of patient outcomes post-RT.
One such method is functional lung avoidance RT.
This has been proposed as a method of reducing tox-
icity in patients receiving RT for lung cancer by pref-
erentially sparring well-ventilated regions of the lung.15

For this approach to be viable, regional functional
information is required, most often obtained using
SPECT, hyperpolarised gas MRI, or 4D-CT registra-
tion methods.16 The theory is that regions of existing
dysfunction can be preferentially irradiated thereby
minimising the loss in lung function. Our computa-
tional modelling provides another tool to obtain
knowledge of regional lung function before RT treat-
ment. An added advantage of our model is that it can
test the impact of different treatment options—such as
escalating dose or the dose region—on post-treatment
lung function and the ability to quantify potential
function that could be recoverable (i.e. functional
reduction due to tumour) and function that is not
recoverable (emphysema tissue damage). These aspects
are outside of the scope of the current work but will
form part of our future applications of these models.

The work presented here is an exploratory, proof of
concept study. In future work, we aim to include

additional patient-based models into our study and
further explore multivariate correlations within the
patient data. These types of complicated models cur-
rently take around 2–3 h to create per patient,
including the image processing and model creation/
simulation, and require expert users. The longer-term
goal is to be able to extract some combination of
predictive measures using baseline clinical data (not
necessarily needing to build a full computer model for
each or any patients) that will improve on the current
clinical decision making with respect to the application
of thoracic RT. Alongside providing a new potential
method for predicting patient lung function post-RT,
this work allows us to understand the underlying bio-
physical mechanisms (i.e. different aspects of tumour
and emphysema effects) contributing to patient out-
comes which is very difficult to do clinically. The power
of this type of modelling is that we can tightly control
and methodically vary the numerous factors impacting
on patient’s lung function pre- and post-RT treatment.
There is still a lot that needs to be improved on and
understood in this field. One aspect missing from this
work and other work in the field, is the lack of inclu-
sion of a patient’s underlying biology. It may be that,
due to underlying genetics, baseline health, environ-
ment, diet, individual microbiology and immune sys-
tem characteristics, patients may inherently respond
differently to tissue damage (from RT in this case).
These factors may account for substantial variation in
outcomes, but this is unknown.

In summary, our study demonstrated a novel com-
putational modelling approach incorporating tissue
compliance, emphysema and airway constriction to
predict the ventilation distribution in lung cancer
patients. Patient-based models were created using CT
imaging data from 25 patients with lung cancer. The
largest impact on ventilation was the impact of
emphysema which affected the acinar compliance.
Increasing model-based ventilation heterogeneity
showed a statistically significant correlation with pa-
tient values of FEV1 % predicted at baseline. The
model predicted ventilation in the V20 dose-volume
correlates with the change in FEV1 12-months post-
RT; patients with lower ventilation within V20 tended
to have an improved FEV1 post-RT. These correla-
tions compare well with previous clinical studies pro-
viding some validation that our model is realistically
predicting ventilation for these lung cancer patients.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:https://doi.or
g/10.1007/s10439-020-02697-5) contains supplemen-
tary material, which is available to authorized users.
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