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ABSTRACT
We introduce a new method to mitigate numerical diffusion in adaptive mesh refinement (AMR) simulations of cosmological
galaxy formation, and study its impact on a simulated dwarf galaxy as part of the ‘EDGE’ project. The target galaxy has a
maximum circular velocity of 21 km s−1 but evolves in a region that is moving at up to 90 km s−1 relative to the hydrodynamic
grid. In the absence of any mitigation, diffusion softens the filaments feeding our galaxy. As a result, gas is unphysically held
in the circumgalactic medium around the galaxy for 320 Myr, delaying the onset of star formation until cooling and collapse
eventually triggers an initial starburst at z = 9. Using genetic modification, we produce ‘velocity-zeroed’ initial conditions in
which the grid-relative streaming is strongly suppressed; by design, the change does not significantly modify the large-scale
structure or dark matter accretion history. The resulting simulation recovers a more physical, gradual onset of star formation
starting at z = 17. While the final stellar masses are nearly consistent (4.8 × 106 M� and 4.4 × 106 M� for unmodified and
velocity-zeroed, respectively), the dynamical and morphological structure of the z = 0 dwarf galaxies are markedly different due
to the contrasting histories. Our approach to diffusion suppression is suitable for any AMR zoom cosmological galaxy formation
simulations, and is especially recommended for those of small galaxies at high redshift.
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1 IN T RO D U C T I O N

Numerical hydrodynamics plays a central role in understanding the
formation and evolution of galaxies, and their impact on the Universe
(e.g. Somerville & Davé 2015). However, numerical methods for
solving the hydrodynamical equations are required to trade accuracy
in different regimes. The two most established methods, smoothed
particle hydrodynamics (SPH) and adaptive mesh refinement (AMR)
have well-documented, complementary strengths and weaknesses
(Agertz et al. 2007; Springel 2010a; Teyssier 2015). While the
‘subgrid’ physics (i.e. differing approaches to incorporating unre-
solved astrophysical processes) dominates the uncertainty budget of
galaxy formation simulations (Scannapieco et al. 2012; Kim et al.
2016), errors in hydrodynamics can also cause systematic shifts
in galactic properties, so should be studied and suppressed to the
greatest possible degree.

One approach is to combine the best of SPH and AMR worlds
using a moving mesh (e.g. Springel 2010b; Weinberger, Springel
& Pakmor 2020) or other hybrid solver (Hopkins 2015). On the
other hand, the comparative immaturity of the resulting numerical
integrators means that their properties are still relatively unexplored.
Movement in the mesh is known to exacerbate numerical noise
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associated with the grid itself, which can then act as a source of
instabilities; the importance of this to physical solutions remains
unclear (McNally, Lyra & Passy 2012; Muñoz et al. 2014). There are
also strong practical and sociological reasons why groups choose to
work with codes into which they have invested significant effort and
where strengths and weaknesses are familiar.

In this paper, we will focus on the best-known weakness of AMR:
its results are dependent on the rate at which the fluid moves relative
to the grid, breaking Galilean invariance (e.g. Robertson et al. 2010).
The effect of grid-relative motions is to cause numerical diffusion;
such diffusion is in fact required to produce stable hydrodynamical
solutions, so is in equal part a strength and weakness of successful
schemes (Teyssier 2015). In some circumstances, the diffusion is
negligible but if the entire region being simulated moves rapidly
relative to the grid, diffusion may degrade the effective resolution to
be many times worse than the grid spacing would suggest.

In this work, we will study diffusion in AMR simulations of dwarf
galaxies, and discuss a new route to mitigating its effects that we ini-
tially designed for the EDGE1 project (Agertz et al. 2020). The EDGE
regime is particularly challenging: we target small galaxies (virial
velocities �20 km s−1), where the impact of numerical diffusion is
most significant compared with the gravitational potential. While the

1Engineering dwarfs at galaxy formation’s EDGE.
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mean velocity in the cosmological box is zero by construction, the
galaxies typically move at �80 km s−1 relative to the grid, an order
of magnitude higher than the internal velocity dispersions.

The rate of flow is only one factor in determining the extent
of numerical diffusion; it is also sensitive to the order of the
hydrodynamic solver, the cell size, and the time-step (e.g. Robertson
et al. 2010). Since AMR demonstrably converges in the limit of
infinitely small cells, the simplest route to minimising diffusion is to
use an aggressive refinement scheme (e.g. Few et al. 2016); however,
as we will see in this work, such an approach is computationally
expensive in general. While most refinement schemes are quasi-
Lagrangian, i.e. aiming to achieve roughly equal mass per grid cell,
using a super-Lagrangian scheme (e.g. Chabanier et al. 2020) is one
route to suppressing numerical diffusion in a more targeted (and
therefore computationally cheaper) region. A separate option is to
use higher-order slope estimation schemes; however, according to
Godunov’s theorem, only first-order linear schemes are monotonicity
preserving, meaning higher-order solutions are oscillatory and may
generate negative densities. Slope limiters, which smoothly reduce
the order of the solver in regions with steep gradients, can be used
to mitigate this problem at the expense of making the method more
diffusive. There are many different possible limiters, each trading
stability and diffusion in a different way (e.g. Toro 2009).

High-order slope estimation would be particularly challenging in
our galaxy formation simulations. We model stellar feedback by
directly modifying gas properties in cells surrounding young star
particles, often resulting in sharp discontinuities within the density,
velocity, and energy fields. We have chosen the MinMod slope limiter
(e.g. Toro 2009) which is the safest choice in terms of suppressing
instabilities, but consequently also the most diffusive. We find that,
if we adopt a less diffusive slope limiter, the solution becomes
unphysical; with the current implementation of feedback, we are
hence required to adopt the MinMod slope limiter in order to maintain
stability. In contrast, galaxy simulations accounting for strong stellar
feedback via source terms in the Riemann solver, e.g. using a non-
thermal pressure (Agertz et al. 2013; Kretschmer, Agertz & Teyssier
2020), have successfully been carried out using slope limiters such
as MonCen (Agertz & Kravtsov 2015). We leave a more systematic
investigation of this topic for future work, and instead focus here on
a completely new solution to the diffusion problem.

If neither the solver nor the cell size can easily be changed, the
final alternative is to ensure the rate of flow relative to the grid
is small. However, haloes with a naturally small net velocity are
exceptionally rare. For example, in the region used by the EDGE
project, 95 per cent of all haloes move at velocities greater than
40 km s−1 at the time of early star formation, z = 16. As we will see,
this is unavoidable in cosmological volumes, and already enough
to cause substantive numerical errors. Further, adding a spatially
uniform velocity offset to the initial conditions cannot usefully
reduce even a single halo’s net speed: the cosmological expansion
‘redshifts’ the momentum of particles. Any uniform velocity offset
that is not associated with a potential gradient therefore decays
proportionally to 1 + z; in contrast, the physical velocities grow
(during matter domination in the linear regime) as (1 + z)−1.
Therefore, uniform velocity offsets rapidly become insignificant
compared to the growing physical velocities.

Our solution is to use the genetic modification approach (Roth,
Pontzen & Peiris 2016; Rey & Pontzen 2018; Stopyra et al. 2020)
to post hoc modify the initial conditions such that the velocity of a
chosen halo is minimized, while its environment, accretion history
and other properties are minimally affected. In fact, we have already
adopted this approach as a matter of course for published EDGE

results (Rey et al. 2019, 2020). In this paper, we examine the effects of
disabling the modification in one of our galaxies in order to compare
the AMR solution with and without rapid streaming.

In Section 2, we describe the simulation and modification tech-
niques. Section 3 presents the comparison between simulated galax-
ies with and without the velocity-zeroing in the initial conditions. We
summarize and provide recommendations for future investigations
in Section 4, taking into account the speeds at which galaxies stream
in typical cosmological simulations. Appendix A gives details of an
estimate for the scale of numerical diffusion in our simulations,
while Appendix B1 calculates the expected streaming speeds in
cosmological simulations as a function of box size.

2 G A L A X Y F O R M AT I O N SI M U L AT I O N S

Initial conditions are generated using the GENETIC code that permits
modifications to be made to a Gaussian random field realized at
increasing resolution in nested zoom boxes (Stopyra et al. 2020).
The parent box has 5123 particles across a box length of L = 50 Mpc
comoving and is generated to match the cosmological parameters
�M = 0.309; �� = 0.691; �b = 0.045; H0 = 67.77 km s−1 Mpc−1

(Planck Collaboration XVI 2014). Two zoom grids are opened with
side lengths 12.5 and 6.25 Mpc, respectively, with the deepest level
attaining a resolution equivalent to 32 7683 particles on the base grid.

The zooms are selected in two stages. First, we simulate the
uniform-resolution box with dark matter only, and visually identify a
void that we resimulate at the equivalent of 20483 resolution. We then
identify all dark matter haloes within the void at z = 0 using HOP
(Eisenstein & Hut 1998) and search for candidate dwarf galaxies with
no massive neighbours and a suitable virial mass 109 < M200c/M�
< 1010. Here, M200c is defined as the mass inside a spherical volume
encompassing 200 times the cosmic critical density and we will also
use the corresponding virial radius, r200c. We consider only isolated
objects, by which we mean those without an equally or more massive
counterpart within 10 virial radii at z = 0; for more details see Agertz
et al. (2020). In this work, we will focus on a single example with
M200c � 1.6 × 109 M�, which is the ‘Reference’ galaxy from Rey
et al. (2019).

We perform an initial dark-matter-only zoomed simulation of our
object. All simulations are performed using RAMSES (Teyssier 2002)
and analysed with the combination of PYNBODY (Pontzen et al. 2013)
and TANGOS (Pontzen & Tremmel 2018). At each output, we measure
the halo circular velocity vmax, defined as the maximum of vc where
v2

c = GM(< r)/r , and M(< r) is the mass enclosed in spheres r
around the halo centre. We also measure the mass-weighted mean
velocity of the Lagrangian region vregion, defined by all dark matter
particles that will fall into the halo by z = 0.

The top two panels of Fig. 1 show these quantities as a function of
time. The blue lines denote results from the original initial conditions;
we find that the region streams at 51 km s−1 at z = 16 (a time at which
we will find our hydrodynamical simulations start to form stars) and
grows to a peak of 90 km s−1 at z = 1, compared to a halo maximum
circular velocity of 21 km s−1. The halo’s potential well is therefore
shallow compared to the flow rate across the grid.

We now discuss how to suppress the streaming in the initial
conditions. A slice through the unmodified zoom initial conditions for
the chosen object is shown in Fig. 2. In the linear regime, the velocity
field is uniquely determined by the overdensity field (through the
continuity equation). Consequently, we may zero the mean velocity
in the target Lagrangian region through a suitable change to the
overdensity field. We follow the procedure described by Roth et al.
(2016), which is a variant of the Hoffman & Ribak (1991) algorithm.

MNRAS 501, 1755–1765 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/2/1755/6000256 by U
C

L, London user on 12 February 2021



Suppressing numerical diffusion 1757

Figure 1. Lagrangian region streaming velocities relative to the simulation
grid (top) contrasted with the maximum circular velocities (middle) for
dark-matter-only simulations of the EDGE galaxy studied in this work. The
horizontal dotted grey line on each panel shows 20 km s−1 for reference. The
mean circular velocity of 21 km s−1 is more than four times smaller than the
peak region streaming velocity of 90 km s−1 in the original run (dotted lines),
raising our initial concern that numerical diffusion may have a significant
effect on this object. Once our modification is activated, the region velocity is
zeroed in the linear initial conditions. This leaves only a higher-order residual
drift which averages 11 km s−1; it is even smaller at high redshift where
the effects of diffusion are most important. The accretion history (bottom)
remains unchanged – here we show, for both simulations, the virial mass
M200c as a function of time; we also mark the mergers with ratios at least
1:40 with crosses. The results from the two initial conditions are almost
indistinguishable, because the modification to the velocity is by construction
highly coherent across the scales from which the halo forms (Fig. 2).

Modifications made in this way change the field to the minimum
extent necessary to obtain the desired alteration, while retaining a
high likelihood within the cosmological Gaussian random ensemble.
For more information, see van de Weygaert & Bertschinger (1996) for
the relation between velocity and overdensity constraints; Roth et al.
(2016) and Rey & Pontzen (2018) for the principles of modification
and their close relationship to constraints; and Stopyra et al. (2020)
for the details of our multigrid algorithm that implements the required
modifications in practice.

The outcome of the operation is shown in the middle and right-
hand panels of Fig. 2. The middle panel shows the change in the
overdensity required to zero the linear velocity, exaggerated in colour
scale by a factor 10 relative to the field in the left-hand panel. The
right-hand panel shows the change in the x-component of the corre-
sponding velocity field. These show how the algorithm generates a
shift in the velocity by adding a very large-scale density gradient to
the box. We refer to simulations with the modified initial conditions as
‘velocity-zeroed’, and we verified that the velocity of the Lagrangian
region in the initial conditions is indeed precisely zero.

We perform a new dark-matter-only simulation, now starting from
the updated initial conditions. Non-linear evolution implies that the
halo is not perfectly stationary relative to the grid at late times, but the
net motion is substantially suppressed. The typical streaming velocity
in the modified simulation is �10 km s−1 (peaking at 22 km s−1 by

z = 0); see the red line in the upper panel of Fig. 1. It remains smaller
than the circular velocity of the halo at all times, and is close to zero
at high redshift.

The velocity modifications are extremely coherent across the
Lagrangian patch of the target halo meaning that there is virtually
no change in the formation history of our halo or the surrounding
structures. The mass accretion histories in the original and velocity-
zeroed cases are shown in the lower panel of Fig. 1; they match
closely. We indicate all mergers more significant than 1:40 (using ×
symbols for mergers in the unmodified case, and + in the velocity-
zeroed case), and these also show good agreement in timing between
the two versions of the simulation. The left-hand panels of Fig. 3
illustrate the large-scale structure, showing the projected dark matter
density in the zoom region at z = 15.7; there is barely any change
between the two cases. This lack of any major effects at the level of the
dark matter simulation, coupled to the increased gas physics fidelity
that we will describe in Section 3, has led us to adopt velocity-zeroed
initial conditions as the default for other EDGE studies starting with
Rey et al. (2019).

In addition to the numerical effects of grid-relative streaming, there
is also a physical effect from streaming between baryons and dark
matter (Tseliakhovich & Hirata 2010). This streaming can suppress
the condensation of gas into small haloes at high redshift, which is
a significant consideration in the formation of the first stars (Bromm
2013) but concerns earlier times and smaller haloes than we consider
here. These physical relative velocities decay as the universe expands,
and even at the start of our simulation (z = 100) have an r.m.s.
of �3 km s−1, far smaller than the velocities relevant to numerical
diffusion; they have been neglected in this study.

We next perform three hydrodynamical simulations with velocity-
zeroed and three with unmodified initial conditions. The purpose
of repeating each three times is to ensure we can distinguish the
improvement from velocity-zeroing from stochastic effects that may
cause intrinsic variation between runs (Genel et al. 2019; Keller et al.
2019). The integration for both types of initial condition is performed
using a HLLC Riemann solver (Toro, Spruce & Speares 1994) and
the MinMod slope limiter to construct gas variables at cell interfaces.
AMR follows a quasi-Lagrangian strategy, with cells being split once
the number of dark matter particles exceeds 8. Refinement is only
permitted for zoom particles, and is disabled beyond RAMSES level
24, i.e. the smallest cell permitted is 224 times smaller than the
simulation length, corresponding to a cell size of 3 pc. Because the
code solves gravitational forces on the grid, this is also the smallest
softening length in the refined region.

Finally, we undertake further hydrodynamical simulations to test
for the effect of improved grid resolution that, as discussed in
the Introduction, is guaranteed to reduce the effects of numerical
diffusion. We performed two versions of such an enhanced-resolution
simulation; the first reduces the threshold for refinement to 2 (rather
than 8) dark matter particles, while the second maintains the same
number threshold but increases the mass resolution of the dark
matter particles themselves by a factor 8. The two approaches yield
almost identical results, and we present results only from the first.
The chief problem with forcing high resolution in either of these
ways is the computational cost, as shown in Table 1. We were only
able to continue the simulation to z = 6.6, at which point it had
consumed almost 120 000 core hours (on 160 cores). By contrast,
the unmodified runs were able to reach z = 0 within approximately
30 000 core hours. Velocity zeroing the initial conditions leads to a
modest speed improvement compared with using unmodified initial
conditions, possibly because the decreased velocities permit longer
time-steps.
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Figure 2. A slice through the overdensity field in our initial conditions at z = 99 (left-hand panel) and the genetic modification that we apply to make the
linear-theory velocity of the Lagrangian region zero (centre panel, colour scale exaggerated by a factor 10 relative to the left-hand panel). The x-component of
the resulting change in the linear velocity field is shown in the right-hand panel. This illustrates how, to effect a change in the velocity, GENETIC creates gradients
in the potential by marginally altering very long-wavelength modes in the overdensity. These have negligible effect on the local large-scale structure from which
the galaxy forms (see Fig. 3) because the Lagrangian region is tiny compared to the correlation length of the velocity. All panels show the location of our nested
zoom grids that are required to achieve an effective resolution of 32 7683.

All simulations implement radiative cooling, star formation, feed-
back, metal enrichment, and the cosmic UV background following
the ‘weak’ scheme of Agertz et al. (2020). In brief, star formation
obeys a Schmidt law, and is only allowed to proceed in cold gas
(T < 100 K) with densities exceeding 300 mp cm−3 where mp is the
proton mass. Feedback injects energy, momentum, mass, and heavy
elements into the interstellar medium from SNIa, SNII, and stellar
winds. The energy injection scheme includes a temperature ceiling
T < 108 K and velocity ceiling v < 103 km s−1; these limitations are
computationally efficient but unphysical and so our results should
not be directly compared to observations. The focus of this work
is comparisons between different simulations. In particular, we will
see that numerical diffusion is most pronounced in the intergalactic
medium surrounding our galaxies and therefore we would expect the
issues discussed in this paper to be insensitive to uncertainties in the
feedback prescription.

3 R ESULTS

Fig. 3 shows snapshots of (from left to right) the dark matter, AMR
structure, gas density in the large-scale structure, and a closer view
of gas densities in the galaxy, all at z = 15.7. The top panels show
the unmodified simulation, the middle panels show the effect of
forcing additional mesh refinement, and the bottom panels show
results from adopting velocity-zeroed initial conditions.2 While the
dark matter large-scale structure agrees well between all versions of
the simulation, the gas in filaments is softened to differing degrees.
Because the filament is poorly resolved when using the unmodified
initial conditions, gas struggles to cool within the galaxy’s shallow
potential well. As a result, while star formation has commenced
at z = 15.7 in the velocity-zeroed case, it is yet to do so in
the other simulations. Differences in the gas structure persist until
reionization heats the gas at z � 6, introducing thermal pressure into
the simulations and so smoothing the gas distribution on much larger
scales than the filaments illustrated here. We will first verify that
numerical diffusion accounts for the differences between simulations
(Section 3.1), before giving an overview of the impact on the galaxy
(Section 3.2).

2For the unmodified and velocity-zeroed cases, we show the first of the three
simulations that we performed to check for stochastic effects; we verified that
there is a close visual agreement between the re-runs.

3.1 Scale of numerical diffusion

In Appendix A, we outline a 1D advection test, supported by analytic
arguments, to show that the expected scale σ of diffusion on a fixed
grid with our adopted solver is given approximately by

σ ≈ 0.9L0.29�0.71, (1)

where L is the distance travelled by the fluid across the grid and � is
the size of a cell. The diffusion scale σ can be reduced by decreasing
one or both of L and �, in agreement with expectations. We do not
take into account refinement, cooling or self-gravity in this simple
estimate, and σ should therefore be taken only as a rough indicator
of the magnitude of numerical diffusion.

None the less, we use equation (1) to create a basic cross-check
by estimating the scale of numerical diffusion in the intergalactic
medium at z = 15.7, when star formation is about to begin in
the velocity-zeroed run. The total comoving distance travelled by
the protogalactic region between z = 99 and z = 15.7 can be
directly measured from our outputs to be L = 286 and 5 kpc in the
unmodified and velocity-zeroed runs, respectively. We can also study
the refinement maps (Fig. 3, second panels from left) to establish
the cell size in the intergalactic medium filaments. From top to
bottom, for the unmodified, high-resolution and velocity-zeroed runs,
respectively, we obtain � = 0.77, 0.17, and 0.38 kpc comoving. With
these values, we evaluate from equation (1) σ IGM = 3.9, 1.3, and
0.7 kpc comoving (230, 80, and 40 pc physical), respectively.

The right-hand panels of Fig. 3 show scale bars with these
estimated diffusion scales. The minimum scale of structure in the
intergalactic medium appears in each case to agree with these ap-
proximate smoothing lengths, from which we conclude the numerical
diffusion effects are indeed a dominating factor in determining the
intergalactic medium densities. We verified that, once reionization
heats the intergalactic medium, the thermal pressure erases these
differences.

In the case of the velocity-zeroed simulation, part of the reduction
in diffusion scale comes from mesh refinement (i.e. its � is smaller
than that of the original unmodified run). Without including this
refinement, the diffusion scale would instead be 70 pc physical,
which is still a major improvement on the unmodified simulation
(230 pc). The modest initial reduction in diffusion allows for gravity
to produce densities that are sufficient to trigger cooling and, in turn,
refinement. Inside the galaxy, this virtuous cycle continues, leading
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Suppressing numerical diffusion 1759

Figure 3. The effective resolution of a simulation depends on numerical diffusion, which is a function both of simulation cell size and net motion relative to
the grid. Here, we compare, at z = 15.7, the effect on our simulations of starting from the original initial conditions (upper panels) with our standard refinement
criterion; forcing an extra level of refinement (middle panels); and instead changing the velocity structure to perform the simulation near the galaxy’s rest frame
(bottom panels). The left-hand panels show the dark matter distribution that is nearly unaffected. This reflects the large-scale coherence of the modifications
made to the velocity fields (right-hand panel of Fig. 2). The second set of panels from the left show the gas cell sizes, showing that the velocity-zeroed simulation
has a similar refinement map to the unmodified simulation, while by construction the high-resolution simulation has much smaller cells throughout the region
depicted (and so is more computationally expensive; see Table 1). The third set of panels shows the gas distribution, which is softened in the unmodified case
due to numerical diffusion from advection. Increasing the refinement or suppressing the velocities both reduce the extent of numerical diffusion. The right-hand
panels show a zoom-in to the region in which the galaxy is forming, with the virial radius r200c indicated by a dotted circle. The scale bars show the estimated
numerical diffusion scales in the intergalactic medium near the galaxy, σ IGM, which we obtain with equation (1).

Table 1. Required number of computational core hours for our hydrody-
namic simulations to reach different redshifts. From top to bottom, we
report, respectively, for the median of three simulations with unmodified
initial conditions; for the simulation with forced refinement (giving higher
resolution throughout the intergalactic medium); and for the median of three
simulations at the original resolution but with velocity zeroing in the initial
conditions. The running total is given at z = 15.7 (as star formation is due to
commence), at z = 6.6 (during the tail end of reionization) and at z = 0. The
high-resolution run was too slow to continue beyond z = 6.6.

z = 15.7 z = 6.6 z = 0

Unmodified 161 7098 32 236
Unmodified, high resolution 581 119 598 –
Velocity zeroed, original resolution 130 5381 28 708

to an even smaller diffusion scale. The central cooling time of the
velocity-zeroed simulation is 10 Myr, compared to 300 Myr for the
unmodified run and 200 Myr for the high-resolution case. Provided
the cooling time-scale becomes short compared to the age of the
Universe (250 Myr at z = 15.7), diffusion is no longer a barrier to
star formation.

We can conclude that our velocity-zeroing approach has sup-
pressed numerical errors to the point where they no longer hold
up high-redshift star formation. We will now confirm this directly by
measuring the star formation rates in the simulations.

3.2 Effects of numerical diffusion

We now contrast the properties of our dwarf galaxy simulations in
the unmodified and velocity-zeroed cases. We will quote quantitative
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1760 A. Pontzen et al.

Figure 4. From top to bottom, the total mass of stars in the galaxy, the
star formation rate, and the gas mass interior to the virial radius r200c as
a function of time for unmodified (blue) and velocity-zeroed (red) initial
conditions. The dotted lines show reruns to check for stochastic effects,
while the dashed green line shows results from the high-resolution simulation
(which terminates at z = 6.6). The most physical outcome is obtained using
velocity-zeroed initial conditions, with which star formation starts gradually
at z � 16. The unmodified simulations, which have rapid streaming relative
to the grid, delay star formation by 320 and 240 Myr (for standard and high
resolution, respectively) due to numerical diffusion. They then undergo a
compensating burst so that the final stellar mass is comparable between all
cases.

values based on the two means: of the three hydrodynamical
simulations with the unmodified initial conditions, and of the three
with velocity-zeroed initial conditions. This also allows us to quote
uncertainties, given by the half-width of the full spread of results
from the respective runs.

We have already established that numerical diffusion due to grid-
relative streaming prevents dense gas from accumulating at early
times. Fig. 4 illustrates the effect of this on the properties of our
dwarf galaxies; from top to bottom it shows the total stellar mass,
the star formation rate, and the mass of gas inside the virial radius
as a function of time up to t = 3.1 Gyr (z = 2.1). No star formation
activity takes place after this time, although the simulations run to
z = 0.

The original initial conditions (blue lines) give rise to a galaxy
that starts forming stars in an intense initial burst at z = 9, forming
1.1 ± 0.1 × 105 M� in less than 80 Myr (the time between individual
outputs). By contrast, when zeroing the initial velocity (red), star
formation ramps up gradually between z = 17 and z = 9, which
is the expected behaviour prior to reionization, since gravitational
collapse should deliver a constant stream of gas to the centre of the
proto-galaxy. The high-resolution simulation (the green-dashed line)
has a star formation history that is intermediate between these two, as
expected given the extent of numerical diffusion (Fig. 3). Overall, the
onset of star formation is delayed by 320 and 240 Myr, respectively

in the unmodified and high-resolution cases, but the stellar mass
rapidly catches up due to the strong initial bursts.

After z = 9, all simulations continue to form stars for a significant
period. Even though reionization imposes an intergalactic medium
thermal floor (>104 K), our prescription for self-shielding means
that residual cool gas can be retained inside the galaxy and continues
forming stars. Note also that our reionization completes relatively
late, at around z = 6, corresponding to the expected thermal history
in a void (see Rey et al. 2020). There is considerable scatter in
the final time at which residual star formation ceases, truncating
at z = 4.0 ± 0.2 for the velocity-zeroed runs but as late as z =
3.0 when adopting the original initial conditions. The origin of the
very late star formation is a dense knot of gas that is self-shielding
and resistant to disruption by feedback. As discussed in Section 2,
the feedback implemented in these simulations is somewhat weaker
than the ‘fiducial’ recipe adopted elsewhere in our suite (Agertz et al.
2020), but the effect of rapid bulk flow appears to make the feedback
weaker still, perhaps because high-temperature pockets of gas diffuse
instead of expanding. We verified that such dense, persistent star-
forming knots are not seen in any of our galaxies, irrespective of
feedback details, once velocity-zeroed initial conditions are adopted.

The final stellar mass is 4.8 ± 0.6 × 106 M� and 4.4 ± 0.3 ×
106 M� in the unmodified and velocity-zeroed cases, respectively,
showing that the early differences in star formation rate do not
significantly affect the final stellar mass. This can be understood
by considering the overall supply of gas to the virial radius of the
halo, which is near-independent of the initial conditions (see bottom
panel of Fig. 4). The key effect of diffusion is to keep the gas at lower
densities for longer, hence delaying star formation without changing
the overall supply of fuel in the circumgalactic medium.

Despite the close agreement in stellar mass, the final distribution
of stars is markedly different in the two cases. The top panel of
Fig. 5 shows the spherically averaged stellar density between 20 and
2 kpc. The minimum softening scale of 3 pc implies that the profiles
are well resolved throughout this range; to increase precision we
average the density over three time-steps, and plot the r.m.s. error
bands assuming uncorrelated Poisson noise. The 3D stellar half-
light radius (in the V band) is 300 ± 20 pc with the original initial
conditions and 220 ± 20 pc when velocity-zeroed; in other words,
the final galaxy is more compact when it is allowed to form at rest
with respect to the grid. Notwithstanding this, in two out of three runs
with the unmodified initial conditions we find a dense central stellar
knot that has been formed during the extended tail in star formation
discussed above. The knot is prominent in the stellar density profiles
but does not impact significantly on the half-light radius because the
total mass in this feature, in the two simulations where it is present,
is only 4 × 105 M� (less than a tenth of the total stellar mass).

The difference between the half-light radii from different initial
conditions is driven by the ability of stellar feedback to redistribute
collisionless orbits (for a review see Pontzen & Governato 2014).
At z = 6, the half-light radii are 108 ± 40 pc and 115 ± 20 pc for
the original and velocity-zeroed initial conditions respectively: they
are in agreement. The tail of star formation after this time injects
supernova energy which, through gravitational potential fluctuations,
expands the orbits of stars and dark matter. The expansion is thus
much more pronounced in the galaxy forming from the unmodified
initial conditions. The lower panel of Fig. 5 shows that an even
stronger discrepancy between unmodified and velocity-zeroed simu-
lations is observed for the dark matter density, with a significant core
extending around 200 pc in the former case. The velocity-zeroed run,
by contrast, retains a density profile almost as steep as that of the
dark-matter-only run (the black-dashed line).
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Figure 5. The stellar (top) and dark matter (bottom) spherically averaged
density profiles at z = 0. The colour scheme follows that of Fig. 4, with an
added black dashed line to show the density profile in the dark-matter-only
simulation. The shaded regions show r.m.s. uncertainty due to Poisson noise
on the profiles. Star formation bursts in the unmodified runs (blue) lead to
expansion of orbits, and so a dark matter core and a more diffuse stellar
distribution. In the velocity-zeroed runs (red), the dark matter cusp survives
and the stellar distribution is more concentrated. Additionally, in two out of
three runs with the unmodified initial conditions a dense central star cluster
forms, constituting around 10 per cent of the total stellar mass.

We next quantify the burstiness in the star formation, to help
understand why the two initial conditions give rise to such different
dynamical properties. Fluctuations in the gravitational potential
sourced by bursty feedback can pump energy into collisionless orbits,
provided changes occur over periods comparable to or shorter than
the dynamical time tdyn (Pontzen & Governato 2012). Fluctuations
on longer time-scales act adiabatically and thus cannot cause cumu-
lative, long-term changes to stellar or dark matter distributions. To
distinguish these regimes, we require time resolution substantially
better than tdyn ≡ (Gρ)−1/2 � 21 Myr in our dwarf at 100 pc. Storing
a sufficient number of snapshots (each measuring 9 GB) given that
star formation extends over >1 Gyr is out of reach for our study.
Instead, we reconstruct the star formation history from the birth time
of each star particle, using this as a proxy for the gas density and
potential fluctuations.

To compare the level of burstiness, we Fourier transform the star
formation history then produce a binned estimate of its modulus
squared. This produces a power spectrum PSFR(ω) as a function of
ω, the wavenumber in units of Myr−1. We use 15 bins spaced equally
in log10ω between −2.6 and 0.5. The result is plotted in Fig. 6,
along with 1σ uncertainty bars estimated from the variance within
each bin, assuming Gaussian statistics. To reduce these errors and
produce a cleaner measurement, we average the power spectra from
the three runs for each initial condition type. Larger power indicates
greater star formation variability on the corresponding time-scales
�t = 2π /ω.

The results in Fig. 6 show that the variability around the dynamical
time-scale ωdyn = 2π /tdyn is larger in the unmodified initial conditions

Figure 6. The power spectrum of the star formation rate, which gives a
measure of time variability. The unmodified initial conditions (blue line) give
rise to a burstier star formation rate, as quantified by the increased power
compared to the velocity-zeroed simulation (red line). The dash–dotted line
shows the star formation history of the unmodified initial conditions where
the initial dramatic burst is excluded, showing that the enhanced burstiness is
present throughout the star formation history. The error bars show the r.m.s.
uncertainty in the power spectrum estimates. Fluctuations near the dynamical
time ωdyn, shown with a vertical grey line, are those which contribute to
flattening dark matter cores and expanding stellar orbits.

(blue line) compared to the more physical solution with velocity-
zeroing (red line). It is therefore plausible that differences in the
burstiness directly give rise to the difference in dark matter and
stellar profiles between unmodified and velocity-zeroed cases. Even
if we exclude the initial large burst in the unmodified case (blue
dash–dotted line), this remains true – star formation proceeds in
an excessively bursty mode at all times. The likely cause is that,
following a supernova explosion, numerical diffusion holds up the
re-condensation of gas to star-forming densities. Just as with the
initial burst, the delay causes gas to accumulate in the circumgalactic
medium so that once condensation gets underway there is an
unphysically catastrophic collapse and a new starburst. This cycle
of alternating numerical diffusion and physical collapse ultimately
gives rise to a galaxy with significantly altered dynamics.

The actual burstiness of star formation in such dwarf galaxies
at high redshift will be very hard to determine observationally, and
within simulations is subject to a wide range of subgrid and numerical
uncertainties. Therefore, our results should not be taken to indicate
that dark matter cores in dwarf spheroidal galaxies are necessarily
unobtainable within �CDM (although energy conservation sets a
size limit to such cores; e.g. Peñarrubia et al. 2012; Read, Agertz
& Collins 2016). The results serve only to illustrate that numerical
diffusion should be suppressed to the maximum extent possible when
studying the cusp–core question.

4 D I SCUSSI ON AND C ONCLUSI ONS

We have studied how numerical diffusion coupled to streaming
relative to a static mesh can unphysically soften gas filaments in
the early Universe. The numerical diffusion scale can be orders of
magnitude larger than the cell size of the simulation. In the context of
the EDGE project to study faint dwarf galaxies, we have solved the
problem using genetic modification to zero the streaming velocities
of the target region in the initial conditions. Genetic modification is
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an ideal tool for this manipulation, since it maintains the galaxy’s
accretion history and nearby large-scale structure (Fig. 3). While non-
linear structure formation still generates a net grid-relative motion, it
is suppressed by an order of magnitude and shifted to lower redshift
(Fig. 1).

Published EDGE results already use these ‘velocity-zeroed’ initial
conditions (Fig. 2); in this paper we compared hydrodynamical
simulations performed with and without the modification. We found
that, without the corrective velocity-zeroing, numerical diffusion
delays the onset of star formation by 320 Myr. Once star formation
finally does initiate in the unmodified case, a dramatic burst brings
the total mass of stars into close agreement across all simulations;
none the less, the overall properties of the final dwarf galaxy are
substantially affected. In particular, the altered star formation history
(Fig. 4) leads to stronger potential fluctuations and hence an expanded
stellar half-light radius and reduced central dark matter density
(Fig. 5).

The extent to which any given mesh-based simulation suffers
from these kind of effects will depend on the cooling and feedback
physics, the refinement criteria, the hydrodynamic solver and slope
limiter, the accretion history of the galaxy, and the nature of the
observables under consideration. Advection errors are likely to be
most problematic prior to reionization, when there is little physical
pressure smoothing in the intergalactic medium; and in the smallest
objects, where the gravitational potential is insufficient to compress
the gas in the presence of the numerical damping. These conditions
bring to mind recent AMR-based simulations of reionization by
young galaxies (Xu et al. 2016; Trebitsch et al. 2017; Katz et al.
2018; Rosdahl et al. 2018; Trebitsch et al. 2020). Further investigation
will be required to determine whether star formation efficiency and
escape fractions in those works may have been affected by the effects
of diffusion. Trebitsch et al. (2017), for example, have already noted
that the time at which their first stars form, especially in their lowest
mass halo, is dependent on resolution. This may be a reflection
of the numerical diffusion’s dependence on cell size �, as seen in
equation (1), in agreement with our high-resolution test simulation
(e.g. Fig. 4).

Large peculiar velocities are common in cosmological simulations.
Typical velocities also increase with box size because they can
be sourced by very long-wavelength modes. The magnitude of the
problem and its dependence on box size is illustrated in Fig. 7, in
which we plot the r.m.s. streaming velocities σ v as a function of box
size L at z = 16 (the time at which stars start to form in the EDGE
simulations), along with estimated 95 per cent box-to-box variability
due to sample variance. The linear theory calculations to obtain this
result are given in Appendix B1. For example, the r.m.s. velocity for
our box size (50 Mpc � 33.9 Mpc/h) is 79 km s−1, meaning that the
halo examined in this work (if unmodified, streaming at 51 km s−1)
actually suffers from diffusion somewhat less than a typical halo.
As the box size increases and more long-wavelength modes start
contributing, σ v reaches 125 km s−1 for L = 100 Mpc/h; flattens to
around 171 km s−1 for L = 500 Mpc/h; and saturates at 180 km s−1

by L = 3 Gpc/h. The box-to-box variations around this average are
relatively small.

There are two consequences to this size dependence. As well
as the obvious conclusion that larger AMR simulations may suffer
proportionately more from diffusion effects, it also shows indirectly
that velocities are always generated by some of the largest modes in
the box; this is demonstrated more explicitly by defining and com-
puting a velocity correlation length in Appendix B2. The practical
conclusion is that velocity-zeroing should be achievable for objects of
a wide range of masses, without affecting the merger history or local

Figure 7. The expected linear r.m.s. velocity σv relative to the grid within a
single simulation box as a function of its comoving size L, evaluated at z =
16 (the time at which stars start to form in our EDGE simulations). Typical
streaming velocities increase with the simulation volume, reaching a limit
of 180 km s−1 for a hypothetical simulation with 3 Gpc box size. Therefore,
effects of grid-relative free-streaming are expected to be exacerbated in large
cosmological volumes. (Individual boxes will not have precisely this r.m.s.
velocity, due to sample variance; the 95 per cent confidence interval from the
estimated box-to-box scatter is shown as a grey band.)

environment, just as we have seen for small galaxies in this paper.
Provided the box size is very much larger than the Lagrangian region
of the halo, we expect the modifications will remain strongly coherent
across the entire patch, meaning that the dark matter accretion
history and environment around the target object will be essentially
unchanged. On the other hand, the main limitation of velocity-zeroing
is that it is only achievable for zoom simulations; we cannot suppress
the streaming throughout the simulation domain without invoking an
unphysical modification to the power spectrum (to remove all long-
wavelength modes).

The GENETIC code (Stopyra et al. 2020) allows the user to perform
the velocity-zeroing straight forwardly. Similarly, any initial condi-
tions generator that implements Hoffman–Ribak velocity constraints
(e.g. Hahn & Abel 2011) can perform a similar manipulation,
although we caution that at present we are not aware of codes
(other than GENETIC) that correctly propagate constraints across
different zoom levels. Given the simplicity of the operation, and the
significance of its corrections, there is a strong case for incorporating
the technique as standard for AMR zoom simulations.
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A P P E N D I X A : EX P E C TAT I O N S FO R
N U M E R I C A L D I F F U S I O N

In order to confirm that differences in our simulations are accounted
for by numerical diffusion, in Section 3 we estimated the expected
smoothing using equation (1). In this Appendix, we provide the
derivation of that relationship. We study an idealized 1D advection
problem, where an initial density distribution ρ(x, t = 0) moves at
a constant speed v relative to the grid. We will first provide some
analytic insights, and then describe a numerical test that leads to the
desired estimate.

The diffusion–advection equation takes the form

∂ρ

∂t
+ v

∂ρ

∂x
= νnum

∂2ρ

∂x2
. (A1)

The term on the right-hand side is generated by inaccuracies in the
first-order gradient estimates, and νnum may be obtained by replacing
derivatives in the ideal advection problem with Taylor expansions of
the discrete numerical gradient estimates (e.g. Toro 2009). Provided
that the time-step is sufficiently small compared with the Courant–
Friedrichs–Lewy (CFL) time, the numerical diffusion coefficient for
the first-order upwind scheme reduces to νnum � 2|v|�. By Fourier
transforming equation (A1) in space, one obtains the solution

ρ̃(k, t) = ρ̃(k, 0) e−ikvt e−2k2|v|t�, (A2)

where ρ̃(k, t) is the Fourier transform of ρ(x, t). The first exponential
in equation (A2) represents the physical advection, while the second
represents a Gaussian filter, suppressing high-k modes due to the
effect of numerical diffusion. Note that |v|t = L, the total distance
travelled across the grid at time t. When the inverse Fourier transform
is applied to equation (A2), one obtains the displaced original density
distribution convolved with a Gaussian of width

σ1st ≈ L1/2�1/2. (A3)

However, our configuration of RAMSES for the EDGE suite does
not use a purely first-order scheme; rather it uses a hybrid between
first-order and second-order slope estimation known as the MinMod
scheme. In regions of the intergalactic medium that are relatively
smooth, the scheme should come close to the performance of a pure
second-order solver. In such a case, Taylor expansion of the numerical
derivatives reveals the errors are third order

∂ρ

∂t
+ v

∂ρ

∂x
= αnum

∂3ρ

∂x3
. (A4)

where αnum =β|v|�2, with a scheme-dependent numerical pre-factor
β. We have again assumed that the time-step is much smaller than
the CFL time. Instead of a pure Gaussian spread, the Fourier-space
solution now involves a dispersion:

ρ̃(k, t) = ρ̃(k, 0) e−ikvt eiβk3vt�2
. (A5)

This is poorly behaved as k becomes large, giving rise to oscillatory
downstream instabilities for pure second-order schemes. In practice,
as stated above, second-order schemes are regularized using a slope
limiter that cannot be represented in a linear analysis. All one can
say from equation (A5) is that there is a critical wavenumber kcrit at
which errors must become significant, β�2k3

crit|v|t ≈ 1. From this,
we estimate the scaling of the diffusion in second-order schemes:

σ2nd ∝ k−1
crit ∝ L1/3�2/3. (A6)

The steeper scaling with cell size � compared to the first-order
case (A3) implies that the effective numerical diffusion can be
suppressed more efficiently with increasing resolution.
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To test whether this argument holds, we used RAMSES to perform
1D simulations; the purpose is to estimate the width of numerical
diffusion as an improvement on equation (A6). Specifically, we
initialize a periodic box with 28 cells at uniform density and
temperature. We then introduce by hand a 50 per cent enhancement
in density to a single cell at the centre of the box. The perturbation
is chosen to be in pressure equilibrium with its surroundings and
moreover we do not include any gravity or cooling in our simulation,
so that the problem remains one of scale-free advection. To measure
the diffusion width as a function of time we impart a uniform velocity
v to the entire grid so that we directly test the accuracy of the
advection. We ensure our time-steps are much smaller than the CFL
time.

For each snapshot, we fit a Gaussian with width σ ; the fit remains
qualitatively good even at late times, although analysis in Fourier
space shows that the high-k behaviour departs from an exact Gaussian
(as expected given the higher order solver). The width σ is fit
extremely well by the relation

σ ≈ 0.9L0.29�0.71, (A7)

which is very close to the expected trend, equation (A6).
Our tests were run with the HLLC solver and MinMod slope

limiter, to match the choices in the EDGE cosmological suite. We
caution, however, that the estimated diffusion scales do not take into
account the intrinsic effect of mesh adaptation, nor the related fact
that the structure being advected forms from initial small fluctuations
rather than being passively advected. None the less, these scales do
permit a helpful qualitative interpretation of the difference between
unmodified and velocity-zeroed simulations. In Section 3, we showed
that equation (A7) gives consistent estimates with the scales on which
smoothing is seen in our simulations.

APPENDIX B: C ALCULATING STATISTICAL
PROP ERTIES OF THE V ELOCITY FIELD IN
C O S M O L O G I C A L I N I T I A L C O N D I T I O N S

B1 Typical grid-relative velocities as a function of box size

In concluding the paper, we drew attention to the steep rise in r.m.s.
velocity σ v as a function of computational box size (Fig. 7). This
Appendix provides a derivation of that trend.

To compute the typical velocity with which galaxies will be
streaming relative to the grid, we assume that large-scale cosmic
flows are dominated by the linear field, at least at the high redshifts
of interest. We assume that the real-space overdensity field δ(x, z)
(at a given comoving position x and redshift z) is linked to the
Fourier-space overdensities δ(k, z) with the convention

δ(x, z) = 1

(2π )3

∫
d3k eik·xδ(k, z). (B1)

We can then define the power spectrum of density fluctuations P(k,
z) via

〈δ(k, z)δ(k′, z)〉 = (2π )3δD(k + k′)P (k, z), (B2)

where δD denotes the Dirac delta function, and k = |k|. The one-
point r.m.s. density fluctuations σ δ are given by

σ 2
δ = 〈|δ(x)|2〉 = 1

2π2

∫
k2P (k, z) dk. (B3)

Typically, values of σ are only quoted after a filter has been applied
to the field to smooth small-scale fluctuations. However, for velocity
(as opposed to density) fluctuations, the small-scale fluctuations are

a subdominant contribution as we shall see, and no smoothing will
be required to obtain a converged result.

We wish to find the equivalent expression to (B3) but for r.m.s.
fluctuations in velocity. As we will consider box sizes of several
Gpc, relativistic gauge freedom must be considered. While numerical
simulations by construction compute density fields in synchronous
gauge, their velocity fields reside in conformal Newtonian gauge
(e.g. Chisari & Zaldarriaga 2011). During matter domination, when
potentials are constant, the physical velocities and overdensities are
then related by

vi(k, z) = −iH (z)ki

(1 + z)k2
δ(k, z), (B4)

where vi(k, z) is the Fourier transform of the velocity field compo-
nents for wavenumber k, δ(k, z) is the corresponding overdensity,
z is the redshift for which we are computing the fields, and H(z) is
the Hubble parameter. Consequently, the expected variance on the
velocity within a cube of comoving size L is given by

〈σ 2
v 〉 = 〈|v(x)|2〉 = H (z)2

2π2(1 + z)2

∫ ∞

2π/L

P (k, z) dk. (B5)

In the physical Universe, the limits of the integral are between k = 0
and k = ∞ but in the numerical Universe there are cut-offs at both
ends, provided by the particle spacing (high k) and box size (low
k); well-resolved simulations have sufficient resolution to ignore the
former, but the latter must be given by 2π /L. The missing factor k2

compared to the density case (B3) means that the velocity variance
integral (B5) is typically dominated by low-k modes. Therefore,
in our estimate we ignore any high-k cut-off or filtering scale and
integrate from kmin = 2π /L where L is the box size. We evaluate
P(k) for our adopted �CDM cosmology (see Section 2) using CAMB
(Lewis, Challinor & Lasenby 2000). This gives rise to the function
σ v(L), which is plotted in Fig. 7.

The steep rise in σ v as a function of L up to several hundred Mpc/h
comoving implies that flows will be sourced by the fundamental or
near-fundamental modes in cosmological simulations. In turn, this
suggests that there may be a significant box-to-box variability in σ v

since the sampling of such modes is sparse, exacerbating sample
variance. To quantify the scatter, we must drop the assumption of the
continuum limit and instead write

δ(x) =
∑

k

eik·xδk, (B6)

where the sum is over all modes between the fundamental and
Nyquist frequencies. We do not consider the effect of the Nyquist
cut-off here, since for practical simulation geometries it has little
effect on the magnitude of velocity fluctuations, for the reasons given
immediately below equation (B5). The discrete δk obey Gaussian
statistics with

〈δk(z)δk′ (z)∗〉 = 1

L3
δkk′P (k, z). (B7)

where the Kronecker delta δkk′ = 1 if k = k′ and 0 otherwise; and
the wavenumber k is defined by k ≡ |k|. Starting from equation (B6)
and applying Wick’s theorem alongside equation (B7), one may now
show that

〈|δ(x)4|〉 − 〈|δ(x)2|〉2 = 2
∑

k

P (k, z)2

L6
. (B8)

When dealing with the velocity magnitude instead of the overdensity
we pick up four factors of the conversion ratio (B4) and so, returning
to the continuum approximation, we can quantify the expected box-
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to-box scatter in σ v as

〈(σ 2
v )2〉 − 〈σ 2

v 〉2 = H (z)4

π2L3(1 + z)4

∫ ∞

2π/L

dk k−2P (k, z)2. (B9)

This final expression retains two dependences on L. The dependence
in the integration limits can be traced to the cut-off in power above
the box scale; the pre-factor L−3, on the other hand, can be traced
to the density of sampling in Fourier space as a function of box
size. To turn the expression into the confidence interval shown in
Fig. 7, we assume that the distribution in σ v is Gaussian, with
second and fourth moments as expressed in equations (B5) and (B9).
This does not describe the precise distribution of velocities, which
is in fact a generalized chi-squared distribution in σ 2

v . None the
less, we verified by comparison to 1000 realizations of the velocity
field with a box size of L = 60 Mpc/h that the Gaussian limit
constitutes a good approximation, with the main difference being
that the true distribution has a slight skew towards a high σ v

tail.

B2 Velocity correlation length as a function of box size

Fig. 2 shows that, in our specific case, the modification is coherent
over a region far larger than the Lagrangian patch of our simulated
galaxy. This in turn ensures that its halo accretion history and
environment are unchanged by the velocity-zeroing operation. In
the conclusions (Section 4), we claimed that such coherence can
be arranged even for larger haloes, by sufficiently increasing the
simulation box size L. We now provide evidence for that claim,
by calculating the distance over which the initial velocity field is
correlated.

Consider the velocity cross-correlation between two points sepa-
rated by a distance r, which we define by ξv(r) ≡ 〈v(0) · v(r)〉; by
statistical homogeneity we take the first point to be the origin, and by
statistical isotropy the displacement r can be chosen to lie along any
direction. Following the same arguments leading to equation (B5),
we obtain

ξv(r) = H (z)2

2π2(1 + z)2

∫ ∞

2π/L

P (k, z)
sin kr

kr
dk. (B10)

The correlation function ξv correctly boils down to equation (B5) in
the limit r → 0. As r → ∞, ξv(r) oscillates and dies away to zero.

We now define the velocity correlation length rv (in comoving
units) to be the value of r at which the correlation has declined by a
factor of 4, i.e. ξv(rv) ≡ ξv(0)/4. The factor 4 is somewhat arbitrary;
adopting another value rescales the quantitative values for rv , but
does not lead to qualitatively different conclusions. Note that rv is
independent of redshift in the linear approximation.

Figure B1. Representative comoving distance rv over which the velocity
remains correlated, as a function of simulation comoving box size L. For
small box sizes, rv scales proportionally to L because the velocity power is
dominated by waves near the fundamental mode. (The dotted line shows a
linear scaling for comparison.) For L > 100 Mpc/h, the correlation length
begins to flatten until it reaches its cosmological value rv � 63 Mpc/h.

We evaluate rv(L) numerically using the �CDM cosmological
power spectrum P(k) as above, and plot the result in Fig. B1. For
L < 100 Mpc/h, rv increases linearly with L because the velocities
are strongly dominated by the near-fundamental modes. The velocity
modifications are coherent over a significant fraction of the box,
which is consistent with the visual impression given by Fig. 2. At
larger L, as the overall r.m.s. velocity begins to saturate (Fig. 7), the
correlation length grows more slowly. For very large boxes (L =
3 Gpc/h) patches as large as rv � 63 Mpc/h are well correlated in
velocity. There is no benefit in further increasing L since rv is now
fully determined by the cosmological model rather than the finite
numerical domain.

Given the large values of rv attainable, we conclude that for
zoom galaxy formation simulations, it should be possible to make
velocity modifications without altering the accretion history and local
large-scale structure in any significant way. For example, a galaxy
of mass 1012 M�/h collapses from a region of comoving radius
�1.4 Mpc/h; for a cluster of mass 1014 M�/h, the corresponding
value is �6.5 Mpc/h, still a factor 10 lower than the limiting value
of rv .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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