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Abstract: Shear-wave vibrator is a type of equipment usually employed for natural gas 

exploration, consisting of a vibrating machine which applies dynamic loads to the surrounding 

soils in order to ease the extraction of the gas. Detailed numerical simulations of these devices 

are scarce in the literature. Thus, in this paper, a nonlinear 3D finite element numerical 

simulation has been conducted to investigate the main features of the dynamic response of the 

vibrator. Nonlinear aspects such as baseplates-soil interaction, soil plasticity, and non-reflect 

boundary conditions, usually neglected in previous simulations, are considered in this model. 

The stress distribution, plastic deformation, shear wave propagation, ground force and energy 

characteristics of the vibrator-ground system are analyzed in detail. Based on the achieved 

results, an evaluation criterion is developed to quantify the performance of the shear-wave 

vibrator. Moreover, a parametric analysis has been conducted and the effects of some system 

parameters, such as excitation frequency, different soil properties and embedded depth, are 

analyzed and discussed in detail. The results can provide a reference for operating or optimizing 

the design of shear-wave vibrators.  
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1. Introduction  

A seismic vibrator is a device that is typically used to send out sweep signals. Seismic 

vibrators apply dynamic energy to the ground. Under working conditions, these vibrations are 

the principal source of energy in land exploration [1,2]. Depending on the types of the exciting 

seismic load, the vibrator can be categorized into compressional-wave (p-wave) or shear-wave 

(s-wave) vibrator [3,4]. In addition, due to serious environmental constraints, nowadays the 

demand for natural gas has increased because it is an environmental-friendly type of energy. 

Although p-wave vibrators can meet the requirements under normal usage for regular 
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exploration conditions, a practical implementation of the p-wave exploration technique for soft 

soil may often be problematic. Since shear-waves have shorter wavelength (resulting in higher 

vertical resolution and manage to image through gas clouds), they are more effective way for 

natural gas prospection, so the application of s-wave seismic vibrators in geotechnical 

investigation seems to be more convenient.   

The development of the s-wave seismic vibrator faces some difficulties. S-wave sources 

typically are limited to obtain sufficient detail in the resulting subsurface images, due to their 

usual frequency content. Meanwhile, the s-wave seismic vibrator can be much heavier than p-

wave devices to obtain the same source strength. In order to improve the accuracy and the 

effectiveness of a s-wave vibrator, it is important to study its response and the influence factors 

on its performance. Previous studies show that the dynamic properties of the vibrator-ground 

interaction system have great influence on the performance of the vibrator and the output signal 

[5-6]. Thus, it is necessary to find out an appropriate research method and analyze the dynamic 

response of the s-wave vibrator-ground system. 

Various research efforts have been made in the past to study the dynamic response of the 

p-wave vibrator-ground system and how the system parameters affect its response. The main 

research methods are field tests, theoretical modelling, and finite-element simulations. 

Regarding the field research, many tests have been devoted to the distortion of the outgoing 

wave compared with the excitation signal and have discussed the impacts of different operation 

conditions [7-11]. In addition, to find out an efficient control method, some researchers have 

considered the theoretical model of the vibrator-ground system, mostly relying on linear 

behavior considerations [12-14]. Due to this limitation, many practical issues arising from these 

field tests remain theoretically unexplained, and they have typically been attributed to the 

nonlinearity in the complex vibrator-ground system. In order to study the influence of the 

nonlinear contacts on the performance of the system, Lebedev [15] and Beresnev and Lebedev 

et al. [16] propose a model with nonlinear contact springs. Noorlandt and Drijkoningen [17] 

and Huang et al. [18] established nonlinear theoretical models that consider the effects of the 

surface topography at the interfaces between the vibrator and ground. In addition, to account 

for the dynamics of the coupling ground, some researchers introduced dynamic stiffness and 

dynamic damping into the theoretical model to simulate the performance of the vibrator at the 

elastic half-space surface [19]. With the appearance of the nonlinear factors introduced into the 

theoretical model, it is difficult to find out an analytical solution for the model, or even 

approximate one. Meanwhile, most of the existing theoretical models lack of any consideration 

on the flexural behavior of the vibrator baseplate which can also affect the overall performance 

of the system [20]. Thus, the finite element analysis comes into light as an efficient tool to 
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simulate the dynamics of the vibrator-ground system. As an example, Wei et al. and Huang et 

al. proposed a finite element model for a p-wave vibrator located on an elastic ground column 

[21-23]. By using this model, they studied the response of the vibrator with different excitation 

frequencies and soil properties. It is worth mentioning that in previous finite element analyses 

the influence of plasticity was fully neglected.  

Although some field tests of s-wave vibrators can be found in the literature [24-25], to our 

best knowledge, no comprehensive theoretical models or finite element analyses have been 

reported so far to investigate the dynamics of the s-wave vibrator-ground interaction system. 

Due to the multiple nonlinear factors in these systems, such as soil plasticity and baseplates-

soil interaction, it is difficult to develop a theoretical model taking into account all these factors. 

Moreover, the finite element method is widely used to model soil-structure interactions [26-30]. 

The soil-structure system, in which the interaction and soil plasticity have great influence, has 

similarities with the vibrator-ground system. Thus, finite element analysis seems to be an 

appropriate method to simulate the vibrator-ground system. 

The main goal of this study is to propose an accurate nonlinear, three-dimensional finite 

element model that to simulate the interaction between the s-wave vibrator and the ground. The 

dynamic response of a s-wave vibrator under harmonic excitation is analyzed by using the 

presented model. Meanwhile, a criterion is established to evaluate the performance of the 

vibrator for different system parameters. Thus, the effects of the excitation frequency, soil 

properties and embedded depth on the s-wave vibrator performance are discussed.  

 

2. Description and methodology 

 

2.1. Description of the s-wave vibrator 

The s-wave seismic vibrator usually generates seismic waves through the horizontal 

oscillation of the vibrator, as shown in Fig. 1. As the key component of the s-wave seismic 

source, the vibrator mainly consists of two parts: the top structure (including the box body, the 

reaction mass, and the piston) and the baseplates. Figure 1b) shows a sketch of the s-wave 

vibrator analyzed in the present research, where length, width and height are 2.37 × 1.58 × 1.12 

m, respectively. The analyzed s-wave vibrator is mounted on an BV-300 vibroseis, and the 

dimension details are offered by the Bureau of Geophysical Prospecting of China. Normally, 

the contact between the vibrator baseplates and ground is simply generated by the weight of the 

vehicle (hold-down load) in the static loading phase. The drive system is then used to pump the 

hydraulic oil into the chamber between the reaction mass and piston and to apply a time-varying 

pressure to the piston. The excitation force is transferred to the baseplates through the piston 
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and the box body and finally into the earth through the baseplates-soil interaction. The contact 

properties and deformation at the interface have great influence on the accuracy of the outgoing 

waves and the power of the vibrator which can determine the effectiveness of the s-wave 

vibrator. Thus, obtaining deformations and stresses in the contacts is the objective of this 

research, in order to assess the optimal effectiveness of this devices. Meanwhile, the shear stress 

wave generated by the vibrator represents the accuracy of the output signal which also needs to 

be studied. 

    

(a) 

 

(b) 

Figure 1. Schematic diagram of the s-wave seismic vibrator: (a) sketch of the s-wave 

vibrator; (b) the geometric model of the vibrator. 

 

2.2. Soil constitutive model 

In previous simulation models of p-wave vibrator-ground systems, the soil material was 

generally considered as completely elastic in past researches, as mentioned. The actual 

interaction between the s-wave vibrator and ground is more complicated than for p-wave 

vibrators, because the baseplates of the s-wave vibrators are introduced into the soil while the 

contact between the p-wave vibrator and ground can be simplified as a flat surface contact. The 

soil behavior can show nonlinear elastic-plastic properties and even a geometric nonlinearity 

caused by large strains. Thus, in this research, and as improvement respect previous models, 

the nonlinear soil behavior is considered to be governed by an elastic-perfectly plastic 

constitutive model according to the Drucker-Prager yield condition, which has been adopted in 

many finite element analyses of soil dynamics [31-33]. The yield function can be written as 
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1 2 0F I J k= + − =   (1) 

where F is the yield surface,  are k are soil dependent positive constant values, I1 is the first 

invariant of stress tensor, J2 is the second invariant of deviatoric stress tensor:  

 
1 1 2 3I   = + +   (2) 
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where 
1 , 

2  and 
3  are the principle stress of effective stress. When matching Drucker-

Prager criterion to Mohr-Coulomb criterion, the parameters  and k are 
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where c is the material cohesion,   is the angle of internal friction. Here, the positive and 

negative signs indicate the tensile and compressive conditions, respectively. 

 

2.3. Baseplates-soil interface 

Slippage and separation may occur in the interfaces between the baseplates and soil during 

the vibration process. Thus, the interface between baseplates and soil has a nonlinear behavior. 

In this research, it is defined by using master-slave kinematic contact algorithm. For the normal 

contact behavior, the surface transmits no contact pressure unless the nodes of the slave surface 

contact the master surface and no penetration is allowed at each contact location. Meanwhile, 

Coulomb friction model is employed to define the tangential motion, and the friction coefficient 

represents the friction characteristics between the contact interfaces [34]. The governing 

equation is: 

 
crit p =    (5) 

where 
crit  is the critical shear stress,   is the friction coefficient, and p is the normal stress 

in the contact. When the shear stress in the contact is less than the critical shear stress, the state 

of contact surfaces is bonding, i.e. without relative movement. 

 

2.4. Far-field boundary condition 

As previously justified, the analyzed problem is based on the transmission of seismic 

waves generated by the horizontal vibration of the vibrator through the soil mass. If the usual 

fixed boundary conditions are applied at the space domain limits, the seismic waves are 

reflected into the calculation domain and introduce artificial vibration, while this reflection does 

not happen in the real field. In order to allow the seismic waves to leave the calculation domain 

and simulate infinite space, to replicate field conditions, it is necessary to use absorbing 

boundaries. The classic standard viscous boundary condition, presented by Lysmer and 
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Kuhlemeyer [35], is able to perfectly absorb waves that propagate normally to the boundary by 

means of the application of a normal condition to a free artificial boundary, so that any reflected 

stresses are zero. This boundary condition is physically represented by a series of normal and 

tangential dashpots on the boundary which, for plane strain conditions, are described by 

 
( )

( ) p

u t
t V

t
 


=


  (6) 

 
( )

( ) s

v t
t V

t
 


=


   (7) 

where ( )t , ( )t respectively denote normal and shear stresses at the boundary, ( )u t  and 

( )v t  are the normal and tangential displacements, pV  is the compression wave velocity, 
sV  

represent the shear wave velocity of the medium, t is the time and   is the soil mass density. 

 

3. Numerical modelling process 

The dynamic response of the vibrator-ground system is examined by using finite element 

tools. 3D model of the vibrator-ground system is established considering the baseplates-soil 

interaction, soil plasticity and absorbing boundaries. By doing so, the results obtained with 

these models are expected to be closer to the engineering practice than simpler approximations. 

The details of the finite element model and results are discussed in the following sections. The 

research to aid the design of a vibrator-ground system is represented in Fig. 2. 

 

Figure 2. The research process of the vibrator-ground model 

 

3.1. Mesh details 

Since the model is primarily concerned with the interaction between the baseplate and soil, 
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the dynamic pressure is applied on the piston directly (see Fig.1). Figure 3 represents the 

developed finite element model of the vibrator-ground system, which contains three distinct 

parts: (1) the top structure (including the box body and the piston), (2) the baseplates, (3) the 

ground column. The geometric model of the top structure is complex, and a large number of 

elements need to be generated to fully represent the geometry of the vibrator, which 

substantially increases the computational effort and calculation time. Thus, the top structure is 

represented as a discrete rigid body and a shell is extracted from it. The point mass and inertia 

properties are assigned by locating the rigid body reference node at the center of mass and by 

specifying the rigid body mass and rotary inertia at the reference node. The element type of the 

top structure is a 4-node bilinear rigid quadrilateral element, which dramatically reduces the 

size of the mesh. The baseplate and ground column are discretized by 8-node linear brick 

elements with reduced integration and hourglass control [33]. Since the geometry and load of 

the model is symmetric about the y - z plane, only one-half of the total region is considered. 

    

      (a)                                     (b) 

 

(c) 

Figure 3. The mesh model of the vibrator-ground system: (a) 3D view of the mesh model; (b) 

top view of the left half of the ground model; (c) section view of the ground model. 
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Primary tests show that a uniform mesh in the whole of the ground model generates a huge 

number of elements and accordingly increases the calculation time considerably. Therefore, the 

element size at the interfaces should have to be fine enough to maintain the convergence at the 

contacts, and the remaining region of the ground can be meshed with bigger size. The largest 

size of the elements should be limited to 1/5 – 1/4 of the smallest wavelength for 8-noded 

isoperimetric elements [36]. Analyses are performed with several trial meshes of the ground 

model with increasing refinement until the displacement at the interfaces does not significantly 

change with more refinement, as shown in Table. 1. The difference between Grid 1 and Grid 2 

is much bigger than that between Grid 3 and Grid 4. Thus, to save computational resources and 

balance computational economy and prediction accuracy, Grid 3 is chosen in this analysis. 

Therefore, the finite elements mesh consists of approximately 17938 4-node elements for the 

top structure and 336112 8-node elements for the other parts of the system. 

 

Table 1. Mesh independence test 

Grids Number of elements Displacement (m) Diff % 

Grid 1 254186 0.0002819 - 

Grid 2 279638 0.0003267 15.89 

Grid 3 309520 0.0003476 6.39 

Grid 4 327648 0.0003485 0.26 

 

 

3.2. Model dimensions 

To minimize the dimensions of the ground model and reduce the analysis time without 

affecting the model output, the diameter (d) and height (h) of the model are tested within ranges 

of 5 ~ 8 m and 2 ~ 5 m, respectively (Fig.3). To test the diameter, the height is fixed at 3 m, and 

for testing the height, the diameter is fixed at 6 m. The displacements of the same node at the 

interface of different model dimensions at two-time points are compared as shown in Fig. 4. It 

can be concluded that the diameter of the ground model has more influence on the calculation 

results than the height, and the final selected size of the soil model should be at least 7 m × 4 

m.  
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Figure 4. Effects of model dimensions on the displacements. 

 

3.3. The baseplates-soil details 

The baseplates are treated as a linear elastic material and, as previously mentioned, the 

soil is modelled using the well-established Drucker-Prager criterion. The plastic behavior of 

soil is mainly defined by cohesion, internal friction angle and dilation angle. The dilation angle 

determines the amount of volumetric plastic volumetric strain of the soil and is assumed 

constant during plastic yielding. If the dilation is equal to the friction, the soil is assumed to 

follow and associated flow rule, and otherwise it will be non-associative. The material 

parameters of vibrator and soil are shown in Table.1 [32]. As said before, the interaction 

between the baseplates and soil is defined by using the master-slave kinematic contact 

algorithm. The outward surfaces of the baseplates are selected as the master surface while the 

region containing soil nodes is chosen as the slave surface. The frictional coefficient between 

the soil and baseplate is 0.4 [37]. 

 

Table. 1. Material parameters of soil and vibrator 

 
Density 

(kg/m^3) 

Young’s modulus 

(MPa) 

Poisson’s 

ratio 

Cohesion 

(kPa) 

Friction angle 

(  ) 

Dilation angle 

(  ) 

Steal 7850 2.12×105 0.27 - - - 

Soil 1889 34.0 0.43 60.57 14.08 0 

 

3.4. Boundary conditions 

In the present study, the nodes at the bottom surface are restrained in all three directions . 

To apply the absorbing boundary conditions, 3D solid continuum infinite elements are 

employed in this model in the lateral borders. It is noted that though they are called ‘infinite 

elements’, they actually refer to boundary conditions whereby the damping is introduced at the 

finite boundary, so as to minimize the reflected wave energy. To validate the effectiveness of 
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the absorbing boundary, the case of an infinite elastic soil column subjected to a vertical force 

in [38] is studied, which consists of the boundary generated by infinite elements. The material 

parameters of soil are 98 =   MPa, 0.001 =  . The numerical results (both absorbing 

boundary and fixed boundary) of the vertical displacement suffered by a point 1 m below the 

surface in the column are compared. Fig. 5 shows that the result obtained by using infinite 

elements agrees well with the exact analytical solution. It can be seen here how, in the case of 

fixed boundaries, there is reflection of waves which is represented by a cyclic vertical 

oscillation of the top of the soil column, while this is not observed in case of the absorbing 

boundary. This approach will be implemented in the model developed in this research and the 

infinite elements are applied on the lateral surface of the ground column. 

   

(a)                                   (b) 

Figure 5. Validation of the boundary conditions: (a) validation model; (b) comparison 

between the analytical solution and numerical results, with and without absorbing boundary. 

 

3.5. Analysis scheme and validation 

The finite element analyses are conducted in several calculation stages. In the first step, 

the in-situ stresses are initialized in the soil elements only by the application of gravity load. 

Although in the reality the relative density and stress in the soil column are affected by the 

installation process of the baseplate, herein it is assumed that these installation effects are of 

minor importance, and therefore a “wished-in-place” procedure as described was used in the 

simulation and the baseplate is considered to be in a stress-free state at the beginning of the 

analysis. 

In the following steps, the static analysis is applied to generate static pressure considering 

the hold-down load. The smooth amplitude curve is employed to improve the contact 
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convergence for this static step. After this, a time-varying cyclic load is added on the piston in 

the dynamic step. For the nonlinear dynamic analysis, the step-by-step Hilber-Hughes-Taylor 

time integration scheme is employed to calculate the transient response in the time domain. The 

excitation load of the vibrator is a theoretical prescribed frequency-modulated signal (sweep 

signal) ranging from 5 ~ 100 Hz. In this section, the frequency of the dynamic load is chosen 

as f = 50 Hz and the response of the vibrator at other frequencies will be discussed later in this 

paper. In the field condition, the excitation frequency varies with time, so the vibrator will not 

operate at one frequency for a long time.  

It is worth to mention here that the purpose of this study is to obtain the response of the 

vibrator rather than the progressive failure of soil. In previous finite element models for p-wave 

vibrators, 5 cycles of load were applied to obtain the steady-state response [21]. In the present 

study, to achieve as overview for comparison purposes and balance the computational effort, 

10 cycles are applied.  In general, a maximum increment versus period ratio 10t f   is a 

good rule of thumb for obtaining reliable results [39]. Thus, the time step is chosen equal to 

0.001 s and the total number of increments is 200. Figure 6 shows the load locations and 

amplitude curves of the finite element model. 

  

Figure 6. Load locations and the applied loading curves.  

The numerical model to simulate the response of the vibrator-ground system should be 

validated first to ensure the accuracy of the numerical results. To validate the analysis scheme, 

the velocity of the shear stress obtained by a finite element model of the vibrator-ground system 

with elastic soil is compared with the velocity calculated by theoretical solution, given by: 

 
sV G =   (8) 

where G is the shear modulus. 
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The theoretical solution of the shear wave velocity is 79. 33 m/s. The distance between the 

C3 point and C4 point is 3.6 m (in Fig. 3 (c)), and the time for the shear tress transferred from 

C3 to C4 is 0.0453 s, hence the numerical result of the velocity is 77.47 m/s. The difference 

between the numerical results and the theoretical solution is 2.34%. It approves the 

reasonability of the numerical simulation model. 

 

4. Simulation results and discussion 

 

4.1. Stress distribution and deformation at the interfaces 

According to the geometry of the vibrator, the location of the dynamic load, which is 

applied by the piston, is not aligned with the reaction force generated by the ground. This 

generates a moment and could eventually make the rotation of the vibrator around the x-axis 

(as depicted in Fig.3). The time history of the rotation is represented in Fig. 7. The rotation 

angle of the vibrator reaches the maximum value in the transient response phase, and then the 

vibrator enters to the steady-state response, in which the peak absolute value is 1.16×10-4 rad. 

Due to the cyclic rotation, the baseplates of the vibrator will be tilted up and down cyclically 

which can bring about the ununiform contact at the interfaces.  

To study the influence of the rotation on the stress distribution at the interfaces, the 

equivalent pressure stress distribution of the pits generated by the baseplates is also represented 

in Fig. 7. At the beginning of the dynamic load, the high-stress zone appears on the bottom of 

the pits and the stress is symmetrical on the right and left interfaces. When the rotation angle 

reaches the maximum value (the vibrator moving to the left), the right side of the vibrator is 

tilted up and the minimum stress appears on the interface of the right baseplate. And the stress 

on the interface of the right baseplate is not equal to that of the left baseplate. Similarly, when 

the rotation angle reaches the minimum value (the vibrator moving to the right), the lowest 

stress zone appears on the interface of the left baseplate. In the steady-state response phase, 

there is also a difference between the stress of the right interface and the left interface, but the 

difference decreases due to the decrease of the vibrator rotation. When the vibrator is in the 

equilibrium position, the difference reaches the minimum value, but the stress distribution is 

still not uniform due to the deformation at the interfaces. 

 



 

13 

 

 

Figure 7. Rotation curves of the vibrator and pressure stress distribution at the interface. 

 

To study the behavior at the interfaces, the displacement curves of the reference points 

(according to Fig. 3(b)) at pits of the left baseplate are shown in Fig. 8. The displacements for 

the reference points in the vertical direction (y) in the soil face of the contact, due to the rotation 

of the vibrator, are represented in the figure. The vertical displacements at the lateral points, A1 

and C3, are smaller than the other reference locations, and the maximum values appear on the 

points at the bottom of the interfaces (A2, B2, and C2). All the displacement curves of these 

points offset in the vertical direction and the average values increase with the loading time. The 

average of the displacement curves represents that the pits on the ground become deeper due to 

the dynamic load, as shown in the plot of contours. Fig. 9(b) shows the horizontal displacement 

(z-direction) of the reference points. The maximum values of the horizontal displacement 

appear on the points A1 and C3, and the differences of the displacement of the other points are 

very small. It is also seen that the displacement curves of A1 and C3 average values in the 

horizontal direction, and the mean values increase with the loading time. Thus, the area between 

the curves of A1 and A2 as well as the curves of C1 and C3 increases, which means the size of 

pit A and pit C increases, as shown in the plot of contours. The size of the middle pit B basically 

maintains unchanged. According to Fig. 8, the deformation of the interfaces between the 

vibrator and ground are ununiform in both vertical and horizontal direction, which is due to the 

uneven contact and affects the stress distribution. 
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(a) 

 

(b) 

Figure 8. Displacement of the reference points in different direction at the interface: (a) 

vertical direction - y; (b) horizontal direction - z. 

 

The average values of the displacement curves of the reference points come from the 

plastic deformation of the ground. The contours of the equivalent plastic strain of the ground 

are shown in Fig. 9. At the beginning of the dynamic loading phase, the high plastic strain 

appears on the ends of the pits, and then it extends to the whole contact interfaces when the 

loading cycles increase. It can be seen that the values of equivalent plastic strain increase with 

the dynamic loading cycles, as well as the size of the pits. The maximum value of the equivalent 

plastic strain appears on the inner sides of the pits.  
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Figure 9. Contours of equivalent plastic strain (deformation scale factor = 10). 

 

4.2. Propagation of the seismic wave 

In order to figure out the propagation of the seismic wave generated by the s-wave vibrator, 

the plots of the contours of the shear stress of the ground, varying with time in one loading 

cycle, are shown in Fig. 10. The high and low shear stress zones appear on both sides of the 

interface respectively. The high and low stresses are transmitted to the deeper earth alternatively. 

In the x-y plane, the propagation of the 3D outgoing wave can be observed. It can also be seen 

how the seismic wave is absorbed when it arrives at the boundary, which proves the 

effectiveness of the absorbing boundary. 

 

Figure 10. Shear stress of the ground varies with time. 

 

Figure 11 shows the time-history curves and amplitude-frequency curves of the shear 

stress at the reference elements (according to Fig. 3(c)). The initial stress generated by the 

weight of soil is set to zero to define the datum level for static and dynamic loading phase. Due 

to the plastic deformation of the pits, the peak of the shear stress curves at point C3 of which 

the depth is 0 m is a little flat. The amplitude of the shear stress decreases with the increase of 

the depth of points. It is also seen that both subharmonics and higher harmonics exist in the 
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excitation signal, and the higher harmonics dissipates in the propagation process. When the 

depth is equal to 2.6 m, the higher harmonics have little influence on the shear stress.  

 

  

Figure 11. Shear stress at the reference points: (a) time-history curves; (b) amplitude-

frequency curves. 

 

4.3. Ground force and energy transfer 

The ground force emitted by the vibrator is one of the most important performance indexes, 

as a larger ground force provides a deeper exploration depth. In the present study, the ground 

force is assigned as the horizontal reaction force between the vibrator and ground, as shown in 

Fig. 12. The amplitude of the ground force in the horizontal direction of the s-wave vibrator is 

about 35000 N. According to the distribution of the contact pressure at the interfaces, the 

minimum value of the contact pressure is zero, which means that there is a loss of contact at 

some area of the interfaces. The area of contact loss appears at the end of the pits. When the 

vibrator is at the peak point (T1), the low-pressure zone appears on the interface of the left 

baseplate and the minimum value is 2.68×102 Pa. When the vibrator reaches pint T3, the low-

pressure zone transmits to the right interface. The deformation of the interfaces also has effects 

on the ununiform contact distribution even when the vibrator is at the equilibrium position (T2).  
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  Figure 12. Ground force of the vibrator and distribution ofcontact pressure. 

 

One of the advantages of the seismic vibrator is that it can control the excited seismic 

energy and accumulate energy through increasing the vibration time. Figure 13 shows the 

characteristics of the energy transferred by the vibrator-ground system in the dynamic loading 

phase. To investigate the that, the initial energy generated by the static load is set as zero. It is 

seen that the external work increases with the loading time. Meanwhile, the energy dissipation 

due to the plastic deformation and friction also increases with time, but the energy dissipated 

by friction is much less than that dissipated by plasticity. The effective transferred energy is the 

real energy of the ground obtained from the vibrator, and the larger the effective energy the 

deeper the exploration depth. In Fig. 15(a), the effective transferred energy decreases slightly 

and then increases with the loading time. It means the ground will release some strain energy 

at the beginning of the dynamic loading phase and then obtain energy from the vibrator. Figure 

13 shows that most of the external work is dissipated by the plastic deformation and the 

effective transferred energy is quite small. The ratio of the effective transferred energy in the 

external work increases dramatically then decreases for a period, and finally remains stable. 

The minimum value of the transferred ratio is 8.94%. Thus, although increasing the loading 

time can increase the effective transferred energy, the transferred ratio is small and barely 

change, which demonstrates that the selected number of cycles for this analysis represents the 

steady solution and can be used for comparison purposes. 
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        Figure 13. Energy characteristics of the vibrator-ground system: (a) energy of the 

ground; (b) energy transfer ratio. 

 

4.4. Evaluation criterion of the vibrator performance 

An evaluation criterion can be developed from the above analysis to evaluate the 

performance of the s-wave vibrator for different system parameters. The plastic deformation 

and shear stress within the soil domain are used to evaluate the accuracy of the vibrator. 

Meanwhile, the output force and the energy characteristics are employed to quantify the power 

of the vibrator. 

 

5. Parametric analysis of the system 

A series of finite-element analyses are carried out to study the influence of the system 

parameters on the dynamic response of the vibrator-ground system. Several factors are 

considered in this parametric study namely, (i) the excitation frequency (ii) the soil properties 

(iii) the embedded depth of the baseplates. The results obtained from this investigation with 

reference to various parameters are presented next. The parameters for the parametric studies 

are shown in Table. 2. 

Table. 2 The system parameters for different cases 

 Excitation frequency (Hz) Soil properties Embedded depth (mm) 

Case I 5 ~ 100  Clay 69 

Case II 50 Soil，Clay，Elastic 69 

Case III 50 Clay 33 ~ 99 

 

 

 

5.1. Case I: effects of excitation frequency 

Due to the sweep excitation for the vibrator, it is necessary to study the vibrator 

0.00 0.04 0.08 0.12 0.16 0.20

0

500

1000

1500

E
n

er
g

y
 (

J)

Time (s)

 External work

 Energy dissipated by plasticity

 Energy dissipated by friction

 Effective transferred energy

0.00 0.04 0.08 0.12 0.16 0.20
0

5

10

15

20

25

R
at

io
 (

%
)

Time (s)



 

19 

 

performance under different frequencies. The normal range of the excitation frequency for s-

wave vibrators is 5 ~ 100 Hz, and therefore the following frequencies are chosen to study the 

influence of this parameter: 5 Hz, 10 Hz, 30 Hz, 50 Hz, 75 Hz, and 100 Hz. 

In order to fully understand the effect of the different input frequencies, it is first necessary 

to determine the natural frequency of this system. Modal analysis is an efficient way to 

determine the natural frequency and the mode shape of a system, but is based on the fact that 

the vibration response of a linear time-invariant dynamic system can be expressed as the linear 

combination of a set of the natural modes of vibration, and it cannot take into account nonlinear 

factors, as the plastic behavior of the soil or the frictional nature of the soil-baseplates interface. 

Thus, in the present study, the natural frequency of the system in the horizontal direction is 

carried out by using a full dynamic, free vibration analysis, as shown in Fig. 14. We applied a 

horizontal displacement on the vibrator and removed it suddenly. After some free oscillations, 

the vibrator will stay at the equilibrium position. Fig. 14(b) shows that the cycle of the free 

vibration is about 0.08 s, so the natural frequency is 12.5 Hz. 

   

(a)                                      (b) 

Figure 14. Free vibration analysis: (a) simulation model; (b) load and response curves. 

 

The equivalent plastic strain of the ground at the end of the 10 cycles of dynamic loading 

phase, for the different frequencies, is shown in Fig. 15. It is seen that the plastic deformation 

and the size of the pits increase with the excitation frequency lower than 10 Hz, and then 

decrease with the increase of the frequency. Generally, the vibrator uses a linear increasing 

sweep signal, the baseplates can generate larger plastic deformation in the low-frequency phase 

and result in bigger pits. However, due to the decrease of the displacement with the excitation 

frequency, the possibility of the loss of contact will increase which can reduce the accuracy of 

the high-frequency output signal. 
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Figure 15. The equivalent plastic strain for different frequency. 

 

Figure 16 shows the shear stress in the soil side of the interface of the reference point (A1) 

for different excitation frequencies. It can be seen that the shear stress at the surface reference 

point decreases with the increase of the excitation frequency, however, there is also a more 

serious distortion of the signal in the low-frequency phase. When the excitation frequency is 5 

Hz, there is no trough in the stress curve and the reason is that A1 is at the interface between 

the baseplates and ground, and there is loss of contact when the vibrator moves to the opposite 

direction. For the shear stress curves of 5 Hz and 10 Hz, it is also seen that there is a decline in 

the peak of the stress curves in the last three loading cycles. Due to the plastic deformation, the 

size of the pits increases, and the loss of contact can be observed even when the vibrator moves 

to the surface of C3. The distribution of the contact pressure at the interface near C3 at the last 

four peak point for 5 Hz is shown in Fig. 16, and it is inferred that the contact pressure of C3 

decreases in the last four loading cycles which brings about the decrease of the peak. For 30 

Hz, the peak and trough of the shear stress are insufficient, thus there is also a contact loss at 

the interfaces. With the increase of the excitation frequency, the distortion of the curves 

decreases which means the loss of contact disappears at higher frequency and the contact at the 

interfaces become more uniform.  According to the above analysis, a lower excitation 

frequency is beneficial for generating bigger shear waves, but the harmonic distortions are more 

serious. Thus, it is necessary to optimize the structures of the s-wave vibrator to improve the 

accuracy of the generated waves in lower frequency or increase the amplitudes of the generated 

waves in higher frequency. 
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Figure 16. Comparison of the shear stress for different frequency at point C3. 

 

Figure 17 shows the ground forces of the vibrator for different excitation frequencies. 

Because 10 Hz is closer to the natural frequency, the output force of the vibrator for 10 Hz is 

larger than for the other frequencies. In general, the vibrator can generate larger outputs in low-

frequency according to Fig. 17. However, the distortion of the curves is also more serious in 

low-frequency phase due to the larger plastic deformation, as previously discussed. The 

dimensionless frequency is given as = e nf f , where 
ef  is the excitation frequency and 

nf  

denotes the natural frequency. Fig. 17(b) shows the variation ground force with the 

dimensionless frequency. As expected, the peak amplitude occurs at around 1 = , for which 

the excitation frequency is equal to the natural frequency. As the excitation frequency increases 

or decreases from the natural frequency, the amplitude decreases.  

The energy characteristics of the system for different frequencies are represented in Fig. 

18 When 10ef  Hz, the external work decreases with the increase of the excitation frequency. 

At the beginning, the external work for 10 Hz is smaller than that for 5 Hz but it exceeds that 

for 5 Hz at last five loading cycles. Thus, the vibrator needs larger pump displacement in the 

low-frequency case to satisfy the demand of external energy. There is also a decrease in the 

effective transferred energy with the increase of frequency except for 100 Hz. It is seen that the 

effective transferred energy at 100 Hz basically equals to that at 75 Hz. Thus, the low-frequency 

excitation is better for the propagation of the outgoing waves deeper in the soil domain, which 

can improve the exploration effectiveness. However, due to the increase of the plasticity 

dissipation, the ratio of the effective transferred energy in the external work decreases 

significantly with the decrease of the frequency. The average values of the transfer ratio for 5 

Hz, 10 Hz, 30 Hz, 50 Hz, 75 Hz and 100 Hz are 1.23%, 1.78%, 6.90%, 9.69%, 11.79%, and 

11.91%, respectively, which demonstrates that the most efficient frequencies are 75 Hz and 100 

Hz. 
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(a) 

 

(b) 

Figure 17. The ground force of the virator for different frequency: (a) time-histoty curves; (b) 

 -amplitude curves (
e nf f = ).   

 

 

  (a)                      (b)                      (c) 

Figure 18. The energy characteristics for different frequency: (a) the total energy of ground; 

(b) the effective transferred energy; (c) the transferred ratio. 

 

5.2. Case II: effects of soil properties  

The seismic vibrator needs to operate in multiple conditions to meet exploration 

requirements in different regions. Thus, different soil material in these operation regions can 

affect the performance of the vibrator. In order to study the influence of the soil materials, the 

dynamic response of the vibrator-ground system in sand is investigate herein. The following 

parameters are used for sand: Young’s modulus of 20 MPa, Poisson’s ratio of 0.3, friction angle 
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of 30°, and dilation angle of 5° [40]. Moreover, an elastic model is also developed to analyze 

the influence of soil plasticity, and the material parameters are Young’s modulus of 34 MPa, 

Poisson’s ratio of 0.43. 

Figure 19 compares the equivalent plastic strain of the ground for different soil materials 

at the end of the dynamic loading phase. The maximum value of the equivalent strain for sand 

is 6.487, which is larger than that for clay. It is also seen that the plastic deformation area of 

ground increases for sand, as well as the size of the pits. The time-history of the shear stress 

and amplitude-frequency curves at the reference points of the system in clay, sand and elastic 

soil are shown in Fig. 11, Fig. 20 and Fig. 21, respectively. The amplitudes of the shear stress 

at the surface point A1 are 10037.51 Pa for clay, 5392.42 Pa for sand, and 16369.08 Pa for 

elastic soil. At the bottom point of the ground model, the amplitudes of the shear stress are 

1974.26 Pa for clay, 1546.25 Pa for sand, and 2536.20 Pa for elastic soil. Moreover, the 

distortion of the signal in sand is more serious than the other soils, and the higher harmonics 

still can affect the shear stress curve in the deeper soil. Thus, the operation of vibrator in sand 

will reduce the strength of the outgoing signal and increase the harmonic distortion.  

 

 

Figure 19. Comparison of the plastic deformation for different soils. 

 

  

Figure 20. Shear stress at the reference points in sand: (a) time-history curves; (b) amplitude-

frequency curves. 
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Figure 21. Shear stress at the reference points of system in elastic soil: (a) time-history 

curves; (b) frequency-amplitude curves. 

 

To evaluate the power of the s-wave vibratorin different soils, the ground force applied by 

the vibrator is shown in Fig. 22. The ground force of the plastic soil model decreases compared 

with that of the vibrator in elastic soil. Therefore, it is inferred that the soil plasticity can reduce 

the powerof the vibrator. The ground force of the vibrator in sand is smaller than it in clay, so 

the operation condition of sand has negative effects on the vibrator output which can reduce the 

exploration effectiveness. The plots of the distribution of contact pressure at the same time 

points (T1, T2, T3) for elastic soil and sandy soil are also shown. The contact pressure at the 

interfaces of the elastic model is more uniform even when the vibrator is at peak point or trough 

point. And the maximum value appears on the corners of the pits on the elastic ground. For the 

system in sand, the contact at the peak point or trough point is uneven, but the minimum value 

is larger than zero. Thus, there is no loss of contact at the interfaces for the system in sand, 

contrarily as observed in the system in clay. But the area of low-pressure zone at the interface 

in sand is larger than that in clay.  

Figure 23 compares the energy characteristics of the system in clay and sand. The external 

work of the system in sand increases, but there is no significant increase in the effective 

transferred energy. Therefore, the transfer ratio for the system in sand is smaller than that of the 

system in clay. It means that the vibrator in sand needs more energy from the hydraulic system 

but the energy dissipation also increases which can reduce the exploration depth. Therefore, we 

can conclude that the s-wave vibrators are expected to work better in clayey soils than in sands. 
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Figure 22. The ground force of the vibrator and the contact pressure distribution at the 

interface for different soils. 

 

 

 (a)                       (b)                      (c)  

Figure 23. The transferred energy for different soil material: (a) total energy; (b) effective 

trandferred energy; (c) the transfer ratio.  

 

5.3. Case III: effects of embedded depth 

The embedded depth of the baseplates also has influence on the performance of the 

vibrator and its output signal. To study the influence, a series of finite element models are 

carried out varying embedded depth of 33 mm, 69 mm, and 99 mm in soil, as shown in Fig. 24. 
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  (a)                       (b)                      (c) 

Figure 24. Finite element models of different embedded depth: (a) 33 mm; (b) 69 mm; (c) 99 

mm. 

  

 Figure 25 shows the equivalent plastic strain of the ground at the end of the dynamic 

loading phase varying with the embedded depth. The maximum value of the equivalent plastic 

strain for 33 mm, 69 mm, and 99 mm are 4.02, 1.76×10-1, and 0.066×10-2, and it is inferred that 

the plastic deformation decreases with the increase of the embedded depth. There is also a 

decrease in the change of the size of the pits, so the loss of contact is less likely to happen for 

larger embedded depth. The comparison of the shear stress at the surface reference point for 

different embedded depth is shown in Fig. 26. The amplitudes of the shear stress increase with 

the embedded depth and serious distortion can be observed in the shear stress curves for smaller 

embedded depth. A bigger amplitude of the shear stress generated by the vibrato at the ground 

surface is beneficial for the transmission of the shear waves to the deeper earth. Thus, we can 

conclude that smaller embedded depth can reduce the application of the outgoing waves and 

the efficiency of the exploration. 

 

 

Figure 25. The equivalent plastic strain for different embedded depth. 

 

 

Figure 26. Comparison of shear stress for different embedded depth.  
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27. It is seen that the amplitude of the ground force increases with the embedment, thus 

increasing the depth is a way to increase the vibrator output. Figure 28 shows the energy 

characteristics of the vibrator-ground system for different depths. The external work decreases 

with the increase of the embedded depth, so the vibrator needs more hydraulic power for lower 

embedment. On the contrary, the effective energy transferred to the ground increases with the 

embedded depth. The transferred ratio of the system also increases with the embedded depths, 

and the average values of the transfer ratio for 33 mm, 69 mm, and 99 mm are 0.68%, 9.69%, 

and 38.15%, respectively. According to the above analysis, smaller embedded depth will reduce 

the power of the vibrator and increase the energy consumption, which has negative influence 

on the exploration effectiveness. 

 

Figure 27. The ground force of the vibrator for different embedded depths. 

 

 

(a)                    (b)                     (c) 

Figure 28. The energy characteristics for different embedded depths: (a) external work; (b) 

effective transferred energy; (c) transfer ratio. 

 

Overall, according to the parametric analysis, it is inferred that the excitation frequency, 

the soil properties and embedded depths all have great influence on the performance of the 

vibrator. The low-frequency excitation can increase the excitation depth but generate large 

plastic deformation and bring about the increase of the size of the pits between the baseplates 

and ground. The operation in sand can decrease the ground force of the vibrator and reduce the 
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signal accuracy, as well as the small embedded depth. Thus, improving the stiffness of sand by 

using a pre-compressional method and increase the embedded depth by optimizing the 

baseplates structure and installation method can be an efficient way to improve the output and 

efficiency of the s-wave vibrator. 

 

Conclusion 

In this paper, a 3D finite element analysis of the s-wave vibrator-ground system, 

considering a frictional interface between soil and baseplates and absorbing boundary 

conditions, is presented and discussed. A parametric analysis, to understand the influence of the 

frequency of the cyclic load, the type of soil and the depth of embedment, is performed, and 

optimal operational conditions are derived and justified, based on the stress distribution and 

displacements at the interfaces, the plastic deformation, the seismic wave propagation, the 

ground force, and the energy characteristics. The main derived conclusions are listed next: 

(1) The results show that the rotation of the vibrator causes an asymmetrical stress 

distribution at the interfaces of the right and left baseplate. The displacement curves and the 

plastic deformation show that the size of the pits on the ground increases with the loading time 

which might bring about a contact loss at the interfaces. Both the sub harmonics and higher 

harmonics in the responses are observed in the generated seismic wave. According to the system 

energy characteristics, it is seen that the energy dissipation due to the plasticity takes the 

majority of the external work which makes the effective transfer ratio is low.   

 (2) An evaluation criterion is presented to evaluate the performance of the vibrator. The 

effects of the system parameters, such as excitation frequency, soil material and embedded 

depth on the performance of the vibrator are discussed, showing that: the vibrator can generate 

larger ground force and more effective transferred energy in the low-frequency phase, but the 

plastic deformation of the ground also increases which will bring about a lower transfer ratio. 

The comparison of the different soils show that the soil plasticity can reduce the vibrator power 

and increase the signal distortion. And the vibrator operating in sand has the smallest output as 

well as the accuracy of outgoing waves. Moreover, increasing embedded depth can increase the 

power of the vibrator and the decrease the harmonic distortion effectively. 
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