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Summary

Over the last decade, chimeric antigen receptor (CAR)-T cell

therapy has emerged as a promising treatment modality for

relapsed/refractory B-cell malignancies in both children and

adults. As an adoptive immune therapy, CAR-T cells have

the potential to overcome disease that is resistant to chemo-

and radiotherapy as well as represent a viable option for

those who have already reached toxicity ceilings with stan-

dard therapies. CD19-directed CAR-T cell products have

been licensed for use in paediatric B-cell acute lymphoblastic

leukaemia that is refractory, in relapse post-transplant or in

second or later relapse. Many challenges remain, rightly

resulting in a heavily-mined research field. These include

mitigating short-term immune-mediated toxicity, maintain-

ing durability of responses, broadening treatment accessibility

and extending its applicability to other malignant settings. In

this review, dedicated to marking 60 years since the estab-

lishment of the British Society for Haematology, we will

focus on the contribution of our community towards the

success of CD19-directed CAR-T cell therapy in children. We

will put current practice in CAR-T cell therapy into the con-

text of future challenges to be addressed in order for it to

fulfil its “game-changing” therapeutic potential.

Keywords: chimeric antigen receptor T cell, acute lym-

phoblastic leukaemia, paediatric, adoptive T-cell therapy.

The modern concept of T cell immunotherapy started with the

first bone marrow transplants and recognition of the graft-ver-

sus-leukaemia effect, which was established on the basis of sem-

inal observations made between 1979 and 1990. In the UK,

John Goldman and colleagues established a role for allogeneic

stem cell transplantation (SCT) in chronic myeloid leukaemia,

where they observed a higher rate of relapse in patients receiv-

ing T cell depleted bone marrow1 and later successfully

demonstrated that adoptive cell therapy with donor lympho-

cyte infusions (DLI) could be used for subsequent relapses.2–4

Further, transfer of a functional immune system into an

immunocompromised host resulted in eradication of

haematopoietic precursors and severe bone marrow aplasia as a

result of transfusion-associated graft-versus-host disease

(GVHD).5 Finally, patients with acute or chronic GVHD had a

lower rate of leukaemic relapse than those without this compli-

cation, and a higher incidence of relapse was noted in trans-

plants from a syngeneic twin.6,7 Further contributions to this

field have been achieved by recognising the value of virus-speci-

fic cytotoxic lymphocytes8–12 in treating viral infections follow-

ing SCT. Discovery of tumour infiltrating lymphocytes (TIL),

which could be expanded ex vivo and used to induce remission,

(e.g. in melanoma patients) reinforced the view that T cells can

mediate cancer cures, but these could not be not isolated from

all patients.13,14 Administration of antibodies mediating check-

point blockade can release the endogenous T cell repertoire

from inhibition, uncovering anti-tumour responses in a variety

of cancers in which the burden of neo-antigens is high15 and

eliminating the need to isolate T cells from individuals. Fur-

thermore, since the specificity of a T cell can be re-directed

solely through expression of a novel T-cell receptor (TCR), a

strategy of viral transduction of lymphocytes with high-affinity

TCRs specific for tumour-associated antigens was introduced.16

Emma Morris and Hans Stauss were among the first in the UK

and in Europe to undertake a clinical study of Wilms’ tumour

(WT1) TCR-transduced T cells,17 an approach which broadens

the applicability of the adoptive transfer of anti-tumour T cells.

However, TCR gene-engineering approaches are limited to

patients with particular human leucocyte antigen (HLA) back-

grounds. Therefore, to be relevant to a broader range of

patients, interest grew in generating synthetic receptors recog-

nising antigens in an unrestricted way.

Constructing chimeric antigen receptors

Chimeric antigen receptors offered such an appeal by com-

bining an antigen recognition domain usually derived from

an antibody (e.g. a single-chain variable fragment or scFv),

with a hinge/stalk region, a transmembrane domain tethering

the receptor to the cell membrane and connected
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intracellularly to the CD3f endodomain in a single linear

molecule (Fig 1). Antibodies can be more flexibly-derived18

against a range of cell surface antigens and are not restricted

to peptide recognition, but can be raised against lipid/carbo-

hydrate and other moieties. Such first generation CARs

recognise tumour cells and achieve target cell lysis.19 How-

ever, they fail to achieve full T-cell activation and, crucially,

lack robust cytokine production and proliferation that are

needed for T-cell expansion and persistence.20,21 Second gen-

eration CARs incorporate compound endodomains, includ-

ing domains from co-stimulatory molecules (such as CD28,

4-1BB and OX40), as well as signalling domains from

CD3f.22–24 Such CARs demonstrate improved cytokine secre-

tion and higher proliferative responses.25–28 Because of their

flexible and modular design, CARs can be engineered with a

range of domains derived from different signalling molecules

to modify T-cell effectiveness. Third generation CARs typi-

cally include a CD28 domain followed by additional co-stim-

ulatory endodomains (such as OX-40 or 4-1BB).29,30 CAR-T

cell potency can be further enhanced through inclusion of

additional transgenes, for example, encoding cytokines (e.g.

IL-12), additional co-stimulatory ligands or other secreted

mediators (e.g. scFvs to block co-inhibitory receptors).31,32

These are termed “armoured” fourth generation CAR-T cells

(Fig 1).

CD19 CAR-T cell therapy

CAR-T cells showed promising results against CD19-positive pri-

mary B-cell acute lymphoblastic leukaemia (ALL) and chronic

lymphocytic leukaemia (CLL) cells in vitro.33–35 This was fol-

lowed by promising in vivo models of CD19 CAR-T cell therapy

of human B-cell malignancies.34,36–38 However, immunodeficient

murine models were inadequate to investigate CAR-T cell persis-

tence, and the first clinical studies with first generation CD19

CAR-T cells used in refractory follicular lymphoma demon-

strated a lack of persistence.39 Subsequent studies using second

generation CAR-T cells suggested that this design results in more

sustained expansion/persistence of CAR-T cells, irrefutably

demonstrated when Savoldo et al. co-administered first and sec-

ond generation CAR-T cells and noted clear superiority in

expansion and proliferation of the latter population.37,40

The doubling time of aggressive ALL was felt to be too

rapid for CAR-T cell therapy to be successful, yet the first

two paediatric patients with refractory ALL treated on a

compassionate basis with second generation CD19 CAR-T

cells achieved complete remission (CR), one relapsing with

CD19-negative (CD19-) disease 2 months later.41 Subsequent

studies consolidated this information showing CR in 70–96%
of patients with advanced disease, with attainment of a

measurable residual disease (MRD) negative status in 60–
93% of patients after CAR-T cell treatment.42–45

Current practice

Following a successful single centre study at the University of

Pennsylvania,42 the multicentre ELIANA study demonstrated the

efficacy of tisagenlecleucel (Kymriah, Novartis), a CD19 CAR-T

cell product incorporating the FMC63 CD19 binder in a second

generation format with a 4-1BB costimulatory domain in paedi-

atric relapsed or refractory ALL.45 Overall survival and event-free

survival at 12 months were 81% and 50% respectively. This piv-

otal study led to licencing by the Food and Drug Administration

(FDA) in the United States and European Medicines Agency

(EMA) for treatment of children and young adults with relapsed

and refractory ALL. The main adverse events reported included

cytokine release syndrome (CRS), neurotoxicity, cytopenias and

B-cell aplasia leading to hypogammaglobulinaemia. Overall, CRS

was observed in 77% of patients, with severe (grade 3/4) CRS

noted in 46%. Neurotoxicity of any grade was observed in 40%

of patients. The median onset of CRS was at 3 days (range 1–51)
and median duration of CRS was 8 days (range 1–36). Neuro-
toxicity appeared at a median onset of 6 days (range 1–359) and
had a median duration of 6 days.46 This promising data, offering

hope of a cure for patients relapsing after stem cell transplant,

caught the attention of Sir Simon Stevens,47 who, following fast-

tracked NHS England (NHSE) approval, championed a UK

delivery framework for tisagenlecleucel (Fig 2).

Fig 1. Structure of different generations of chimeric antigen receptors. scFV, single-chain variable fragment.
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Referral for NHSE-funded CAR-T cell therapy

National Health Service England (NHSE) established a

National CAR-T Clinical Panel for ALL (NCCP ALL) to con-

firm eligibility for and provide prompt access to tisagenle-

cleucel. Eligibility criteria are broadly similar to the ELIANA

study inclusion criteria.

Eligible patients are allocated to a Joint Accreditation

Committee-International Society for Cellular Therapy and

EBMT (JACIE)-accredited CAR-T cell therapy centre on the

basis of geographic distance, patient preference and local

capacity constraints. There are currently 10 centres across the

UK that deliver tisagenlecleucel to children and young adults.

Funding is provided from the Cancer Drug Fund, with ser-

vice delivery costs covered by a national tariff.

Tisagenlecleucel manufacture

After patient assessment in the CAR-T cell centre, and once

appropriate intervals from last therapy have been observed,

peripheral blood mononuclear cells (PBMCs) are collected by

leukapheresis and then transferred for manufacture. PBMCs

are cultured with T cell mitogenic stimulants and transduced

with lentiviral vector to express CARs (Fig 3). This process

usually takes between 4–6 weeks.

Bridging chemotherapy

In keeping with the relapsed/refractory nature of the cohort,

87% of patients in the ELIANA study were treated with bridging

chemotherapy following leucapheresis.45 The choice of bridging

chemotherapy depends on an assessment of prior toxicity and

disease response, the expected interval to admission for CAR-T

cell infusion and pre-existing disease burden. Patients with low

level disease may be sustained with maintenance-type regimes;

for patients with a higher disease burden, escalating vincristine

and methotrexate (as in Capizzi interim maintenance but with-

out asparaginase), a 3–4 drug induction, cyclophosphamide/cy-

tarabine or inotuzumab, may be considered.

The principles of bridging chemotherapy are to provide

disease control and limit disease burden at the point of

CAR-T cell therapy, whilst minimising toxicity. This repre-

sents a shift in treatment goals for relapsed/refractory disease

compared to prehaematopoietic stem cell transplantation and

in front-line therapy, where the reduction of MRD to prede-

fined levels is the goal. The advantage of reducing the disease

burden is to reduce the risk of severe CRS;48 however, this

needs to be balanced against provision of CD19 (on disease

or normal B cells), to facilitate CAR-T expansion and persis-

tence. Limited data in adult populations indicates that higher

intensity bridging therapy is associated with a higher risk of

infectious complications without benefit in CAR-T out-

comes.49 Furthermore, shorter persistence of CAR-T cells was

noted in patients who had less than 15% CD19+ bone mar-

row cells prior to infusion.44

There is some evidence that blinatumumab [a bispecific

T-cell engager (BiTE) directed towards CD19], should be

avoided as bridging therapy where possible, because of a reduc-

tion in CD19 expression levels, which was associated with

reduced response rates in a single centre retrospective study.50

Lymphodepletion

Lymphodepletion reduces competition for homeostatic

cytokines, such as IL-7 and IL-15, deletes regulatory T cells

and, potentially, other regulatory immune subsets as well as

Fig 2. Timeline showing major milestones in development and implementation of CAR-T-cell therapy into clinical practice. ALL, acute lym-

phoblastic leukaemia; CLL, chronic lymphocytic leukaemia; EMA, European Medicines Agency; FDA, Food and Drug Administration; NHL, non-

Hodgkin lymphoma; NICE, National Institute of Health and Clinical Excellence; TILs, tumour infiltrating lymphocytes.
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eliminating anti-CAR immune responses in a proportion of

patients. Shorter persistence of CAR-T cells was observed

when using single-agent cyclophosphamide compared to the

combination of cyclophosphamide and fludarabine.51 This

highlights the importance of lymphodepletion intensity,

although in some studies, lymphodepletion was optional in

the case of leucopaenia.45 The most common lymphodeple-

tion protocols for paediatric ALL indications include fludara-

bine and cyclophosphamide.

Complications of CAR-T cell therapy

Cytokine release syndrome

Cytokine release syndrome is a well-recognised complication

with the presence of fever in the mildest cases, but proceed-

ing to hypotension, hypoxia, respiratory failure, renal failure,

capillary leak and coagulopathy52 when severe. There have

been several iterations of CRS definition, including different

grading systems. The American Society for Transplantation

and Cellular Therapy provided consensus guidelines in 2018

defining the severity of CRS based on clinical parameters,

(i.e., fevers, hypoxia and hypotension). This consensus has

been increasingly accepted in the UK and worldwide.53 The

severity of CRS is associated with higher tumour burden,48

but a clear association with an anti-tumour effect has not

been confirmed.42,43,54–56

Treatment of CRS depends on its severity and is based on

supportive care along with judicious administration of the

IL-6 blocking antibody tocilizumab. In the ELIANA study,

grade 1 and 2 CRS were reported in 30% of patients, and

grade 3 and 4 CRS in 46%.

Rarely, patients with severe CRS do not respond to tocili-

zumab and require corticosteroids.48,53,57 However, the use

of corticosteroids might dampen T cell function and prolifer-

ation.56,58

Neurotoxicity

The pathophysiology of neurotoxicity is not fully under-

stood, but is likely to involve impairment of the blood-

brain barrier following activation of endothelial cells and

the monocytes/macrophage system.59,60 Neurotoxicity from

CAR-T cell therapy, termed immune effector cell-associated

neurotoxicity syndrome (ICANS) can manifest as delirium,

encephalopathy, aphasia, lethargy, difficulty concentrating,

agitation, tremor, seizures and, rarely, cerebral oedema.

The neurotoxicity grading system was revised in 2018, when

four grades were defined based on the presence of encephalopa-

thy, depressed level of consciousness, seizures, motor weakness

and signs of increased intracranial pressure.53 However, diagnos-

ing ICANS continues to be a challenge in younger children or

those lacking sufficient cognitive ability to be evaluated with

existing encephalopathy assessment tools.53,61

Fig 3. Tisagenlecleucel CAR-T-cell manufacturing process. Peripheral blood mononuclear cells (PBMCs) are collected using leukapheresis and

cryopreserved. T cells are thawed and activated using anti-CD3 and anti-CD28 antibodies on the surface of magnetic beads. Stimulated T cells

are transduced with a lentiviral vector to express CARs and expanded in a bioreactor for a number of days before the product is cryopreserved,

and infused once the product has been assessed to meet a number of regulated quality measures (release criteria).
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The severity of neurotoxicity is specific to the CAR-T cell

product used. CARs containing CD28 co-stimulatory domain

have a higher incidence of neurotoxicity in paediatric and

adult populations.62,63 In the ELIANA study, neurotoxicity

was noted in 40% of patients, with grade 3 neurotoxicity

noted in 13% (there was no grade 4 neurotoxicity).

The treatment of neurotoxicity depends on the severity of

symptoms. In the majority of cases, symptoms resolve over a

matter of weeks with supportive care alone. Grade 2 neurotoxi-

city in the context of CRS should be treated with IL-6 axis

blockade with tocilizumab. However, grade 3/4 neurotoxicity

unresponsive to tocilizumab or occurring in the absence of

CRS, should be treated with corticosteroids.45,59,64,65

B cell aplasia

Targeting CD19 with CAR-T cells causes on-target off-tu-

mour depletion of normal B cells such that B cell aplasia is a

useful marker of CAR-T cell persistence. Resultant hypogam-

maglobulinaemia is more likely to develop in children than

adults, probably due to lack of a mature (CD19-) plasma cell

pool.66 However, this is easily managed with regular

immunoglobulin replacement.45,64 Current paediatric practice

is to replace immunoglobulin with a threshold of 5 g/l. How-

ever, prospective data on immunoglobulin replacement after

CAR-T cell therapy is lacking.64,70

Cytopaenias

Cytopaenias are a well-recognised adverse effect that may

persist for several weeks after CAR-T cell therapy. While the

exact pathophysiology of cytopaenia is not fully known, it

seems important contributing factors are cytokines released

during CRS, lymphodepleting regimen, prior chemotherapy

or SCT and macrophage activation.57,67,68

In the ELIANA study, grade 3 or 4 neutropaenia had not

resolved by day 28 in 53% of patients. Similarly, grade 3 or 4

thrombocytopaenia was observed in 41% of patients, beyond

day 28. Prolonged neutropaenia may be supported with mye-

loid growth factors, but they are not recommended in the first

3 weeks following tisagenlecleucel or until CRS has resolved.46

Cytopaenias and subsequent infections have been related to

the severity of CRS.69,70 Approximately 20–40% of patients will

develop infection within first month following CAR-T cell ther-

apy.64 The increased incidence of infection in children and

young adults seems to decrease after the first 4 months.71

Severity and incidence of late infections after CAR-T cell ther-

apy are not well described, but most seem to be mild with a

predominance of viral respiratory illnesses.69,72

The future of CAR-T cell therapy and the
contribution of UK-based haematologists

There remain significant challenges to overcome within

CD19 CAR-T cell therapy for B-cell malignancies, even

though this therapy is now established as a game changer for

those with relapsed/refractory ALL. The initial scientific pro-

gress was fuelled mainly by US research groups in partner-

ship with pharmaceutical companies, for example, Novartis

and Kite, leading to FDA approval. However, the credentials

of the UK CAR-T cell research community, discussed below,

supported a rapid implementation of a broad range of clini-

cal studies, with the University College London (UCL) port-

folio being one of the most advanced and diverse in Europe,

as measured by one of the highest patent registrations out-

side of the US.73 It is committed to delivering next-genera-

tion CAR-T products serving the areas of unmet clinical

need.

This expertise was developed through transatlantic collab-

orations and mentorship of UK-based haematologists,

including Dr Martin Pule and Prof Persis Amrolia, by Prof

Malcolm Brenner, formerly of the Royal Free and Great

Ormond Street Hospitals, but who subsequently established a

T cell engineering laboratory in Baylor College of Medicine,

Houston, Texas. Since their return to the UK, Dr Pule and

Prof Amrolia have implemented one of the first studies of

CAR-T cell therapy in Europe (the CD19 TPALL study), and

have groups actively researching CAR-T cell therapies for a

range of indications as well as developing next-generation

CD19 CAR-T cell therapies. Dr Pule founded Autolus Ltd

with a broad portfolio of CAR-T cell studies, including for

ALL, B-cell non-Hodgkin lymphoma (NHL), myeloma and T

cell malignancies. Other CAR-T researchers at UCL include

Prof Karl Peggs, Dr Claire Roddie, Prof Waseem Qasim

(an immunologist), Prof John Anderson and Dr Karin Straathof

(both oncologists) who have translated universal CD19

targeting T cells and GD2 CAR-T cell therapy in neuroblas-

toma respectively. Graduates of the Sadelain laboratory at

Memorial Sloane Kettering Cancer Centre, such as Prof John

Maher (an oncologist) and Dr Reuben Benjamin, have estab-

lished track records in preclinical and clinical studies of

CAR-T cells to treat solid organ and haematological malig-

nancies respectively. Prof Katy Rezvani originally trained at

the Hammersmith Hospital, and studied under Prof John

Barrett at the National Institutes of Health, before establish-

ing a laboratory at the MD Anderson Cancer Centre in Tex-

as, where she has developed a ground-breaking alternative

source of CAR effector cells. CD19 CAR natural killer (NK)

cells were utilised in a study treating patients with CLL and

NHL derived from cord blood donors, and were tested for

universal application since they lack an endogenous TCR,

and therefore do not mediate GVHD.74

Broadly, the greatest challenge is in widening the accessi-

bility of this approach to other cancer settings, including

treating solid organ malignancies. But even within therapy of

B-ALL, CAR-T cell therapies need to be refined. Relapse and

loss of CAR-T cell persistence remain the biggest obstacles,

such that at least 50% of patients will need to go on to have

further therapy,64 often involving stem cell therapy. The lat-

ter represents a significant burden of toxicity in often heavily
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pre-treated patients, as well as a resource burden for health-

care services. However, in some studies, particularly in the

setting of a non-persisting CAR-T product, has been associ-

ated with improved outcomes compared to patients receiving

CAR-T cell therapy without an adjunctive transplant.44,75,76

Disease relapse is contributed to by either antigenic escape

(usually in the context of persisting CAR-T cells) or loss of

CAR-T cell persistence, in which case relapses often continue

to express CD19. The relative proportions of CD19+ and

CD19� relapses vary depending on the CAR-T cell product

being studied, with a greater rate of CD19� relapse in

patients treated with more persistent CARs.

Antigenic escape

Seven to 25% of all patients treated with CD19-targeting

CAR-T cells relapse with CD19� disease.77 Therefore, anti-

genic escape represents an important challenge in the further

development of CAR-T cell therapy, not least because such

relapses are not amenable to therapy with blinatumomab, a

bispecific antibody with efficacy in bridging relapsed patients

to stem cell transplant.78

Targeting of multiple rather than single antigens with

CAR-T cells may theoretically overcome stochastic mecha-

nisms of antigen negative escape because of the low likeli-

hood that two such events would happen at the same time.

There are different strategies in a dual targeting approach

for B cell malignancies. Schultz et al. used a bivalent CAR

approach targeting CD19/CD22 in a joint paediatric and

adult study. In their interim data analysis, 92% of these

patients achieved CR at day 28, with only one patient experi-

encing severe CRS and ICANS. Three patients relapsed with

CD19 positive disease due to short product persistence.79

Co-administration of separate CD19 and CD22-targeting

CAR-T cells is another strategy. In a Chinese study, CR was

achieved in 96% of patients. However, again, there was lim-

ited persistence of CAR-T cells with nearly 50% of patients

relapsing with CD19+/CD22+ disease.80 Gardner et al. studied

co-administration of three separate populations – single

CD19 and CD22 CAR-T cells along with a bispecific CD19/

CD22 CAR-T cells. Patients achieved 87% MRD negative CR

rates, but observed short persistence of CD22 CARs81 as a

result of which the majority of relapses were with CD22-ex-

pressing disease.

In a preliminary report regarding the UK AMELIA study,

one of the first clinical studies using a bicistronic CD19/

CD22 CAR vector ensuring that all CAR-T cells expressed

both CARs, seven out of seven patients (100%), receiving an

intermediate or higher cell dose (>3 9 106/kg), achieved

molecular remission. Three relapses were reported, including

one with CD19 negative/CD22 low expression at 1 year after

treatment. No severe (grade 3 or 4) CRS was observed.65

This approach proved to have a favourable toxicity profile,

with equivalent response rates, though shorter CAR-T persis-

tence than in the ELIANA study (median 180 days), and

CD19� relapses were still seen, despite the dual targeting

strategy.

The shorter CAR-T persistence noted with all these studies

compared to tisagenlecleucel, possibly relates to steric hin-

drance of CD22: CD22 CAR interactions with poorer resul-

tant T-cell activation, which will need addressing in future

CAR designs.

Increasing CAR-T cell persistence

Relapse also results from a loss of CAR-T cell persistence. Pre-

clinical studies have shown that generating CAR-T cells with a

less differentiated status improves outcomes.82,83 Around the

globe, various groups have investigated different strategies to

achieve this, for example, pre-selecting central memory T cells

(TCM) or stem cell-like memory T cell (TSCM) popula-

tions51,75,84,85 for CAR transduction, or manufacturing CAR-T

cells in the presence of mediators that preserve early differentia-

tion states.86 CAR-T cells can be further engineered with addi-

tional co-stimulatory ligands to improve CAR-T cell efficacy,

expansion and persistence, for example, 4-1BBL.31,32

Strategies to enhance CAR-T cell signalling/potency and

overcome co-inhibitory signalling may, paradoxically, impair

CAR-T cell fitness by enhancing T cell exhaustion. CARs

generally employ antibody-derived binding domains binding

antigens at an affinity range far higher than that of native

TCRs, further, selection of particular transmembrane and co-

stimulatory domains can lead to T cell exhaustion.87,88 Thus,

more recently, engineering strategies decreasing CAR sig-

nalling intensity have shown promise, for example, reducing

the immunoreceptor tyrosine-based activation motif (ITAM)

number in the CAR signalling domain89 or altering the pro-

moter used to reduce CAR expression. We translated a novel

CD19 binder with a lower affinity for CD19. This CAR was

demonstrated to achieve comparable anti-tumour efficacy

compared to Kymriah, whilst showing improved expansion

(the maximal CAR-T cell concentration achieved was three

times higher than that seen with tisagenlecleucel) and persis-

tence, despite treating patients with very low bone marrow

disease burden. The median duration of CAR-T persistence

was 215 days (range 14–728 days) in 14 evaluable patients.

One year overall survival and event-free survival was compa-

rable to the ELIANA study at 63% and 46% respectively.90

The toxicity profile was very favourable, with no incidence of

severe CRS, even when treating patients in frank relapse, and

this was confirmed with the use of the same CAR construct

in a population of adult patients with advanced ALL,91 ulti-

mately leading to the launch of a licensing study for this

product.92

Accessibility

Prior to regulatory approval by the FDA, EMA and the UK

National Institute for Health and Clinical Excellence (NICE),

patients could only access CAR-T cell therapy on clinical
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studies. In the UK, thanks to the pioneering work of haema-

tologists such as Prof Persis Amrolia, Dr Martin Pule, and

Prof Paul Veys, along with other UCL investigators, children

with relapsed/refractory B-ALL have been able to access a

range of open clinical studies at UCL’s Institute of Child

Health and Great Ormond Street Hospital since 2014. The

UK has championed the approach of centralised funding

through the NHS for licensed CAR-T cell products and

ensured that CAR-T cell therapy is available to everyone eli-

gible.93 However, there remain many barriers to CAR-T cell

therapy even for patients with licensed indications.

A major contributor to global inequity of access to CAR-T

cell therapy is its price, which certainly precludes wide access

in a developing world setting. The significant costs result

from production on a per-patient basis in centralised manu-

facturing facilities delivering products at clinical grade and

meeting strict quality criteria.94 There are also the high costs

of key reagents such as lentiviral transfer vectors. There have

been advances in the CAR-T cell manufacturing process,

including non-viral transduction and use of semi-automated

platforms, such as developed by Dr Claire Roddie and Prof

Mark Lowdell at UCL, which provide de-centralised/point of

care production,95,96 however, these advances have not yet

progressed to a licensed product.

Apart from limited healthcare resources, access to CAR-T

cell therapy may be prevented because of factors such as

patient lymphopenia precluding autologous harvest, manufac-

turing failure, rapid disease progression and patient co-mor-

bidity. As a result, a significant number of patients screened

for eligibility failed to be infused on studies such as ELIANA

(32 of 107 screened) and CARPALL (three of 17 patients

screened).45,90 Such patients would benefit from access to an

off-the-shelf, universal CAR product without the inherent 5–
8 weeks delay of autologous manufacture and associated

bridging therapy. Global research efforts have yielded a num-

ber of avenues for delivery of universally-applicable CAR

products, including providing CAR transduced effector

immune cells without a propensity for yielding immune

responses against an allogeneic recipient (e.g. NK cells)74 with-

out the need for gene-engineering to achieve universal applica-

tion. At UCL, Pule et al. developed a concept of transcription

activator-like effector nuclease (TALEN) TCR gene-disrupted

T cells, rendered also resistant to alemtuzumab through con-

comitant CD52 disruption, in collaboration with the biophar-

maceutical company Cellectis. As such, these CAR-T cells

lacking an endogenous TCR would not be capable of mediat-

ing anti-host responses and would not in turn be deleted from

the host through application of alemtuzumab as a condition-

ing agent. After promising pre-clinical work and good manu-

facturing practice procedures, a successful pilot study in two

infants with refractory ALL at Great Ormond Street Hospital

led to a multicentre worldwide clinical study.97 There is a

potential for genotoxicity with transcription activator-like

effector nucleases (TALEN)-mediated gene disruption, which

has led to consideration of safer, next-generation gene-editing

platforms, such as base-editing98 as well as innovative protein

engineering approaches.99

Novel targets, novel constructs and beyond

There are ongoing clinical trials assessing the impact of

CD19 CAR-T cell therapy in paediatric patients with

relapsed/refractory B cell NHL.100,101 However, there is an

even larger unmet clinical need for finding treatment options

for non-B cell haematological malignancies. Relapsed/refrac-

tory T-cell ALL and lymphoblastic lymphoma represent one

such challenge, where finding an appropriate target antigen is

debated.102 Finding novel targets is a challenge, especially if

there is a lack of tumour-specific antigens, resulting in the

potential for off-tumour, on-target toxicities, if single anti-

gens are targeted or CAR-T cell exhaustion if targeted anti-

gens are widely expressed. Even in the setting of optimal

targets, the immunosuppressive tumour microenvironment

can render highly potent CAR-T cells ineffective, and in these

situations, CAR-T cell therapy may need to be delivered

alongside multiplexed, immune-modulatory therapies, or be

“armoured” to withstand adverse immune-regulation.

Similar obstacles are faced finding optimal CAR-T cell con-

structs for targeting acute myeloid leukaemia (AML). AML, a

phenotypically diverse disease, represents a bigger challenge as

AML blasts share common antigens with normal myeloid cells

and haematopoietic stem cells (HSCs). Strategies to mitigate

off-tumour on-target effects include multi-targeting CARs

employing sophisticated gating strategies to selectively recog-

nise AML blasts or by editing HSCs to prevent expression of

CAR-targeted antigens.103,104 Finding an optimal CAR-T ther-

apy to treat AML, and improve outcomes of this disorder for

both children and adults with this disease, is a key goal of ours,

working alongside mentors and colleagues including Dr Martin

Pule and Prof Persis Amrolia, as well as of other UK investiga-

tors. For example, Prof Waseem Qasim is soon to launch a clin-

ical study of off-the-shelf universal CAR-T cells targeting a

range of AML antigens (the CARAML study).

Standing on the shoulders of giants in the UK in the fields

of adoptive therapy and stem cell transplantation, we hope

that in the next 60 years of British haematology, we will be

closer to the dream of every stem cell transplant physician:

delivering high-precision adoptive cancer therapies with min-

imal side-effects.105–107
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