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Considering Context and Dynamics: A Classification of Transit-Oriented Development 

for New York City 

Abstract: Transit-Oriented Development (TOD) is a widely recognised planning strategy for 

encouraging the use of mass and active transport over other less sustainable modes. Typological 

approaches to TOD areas can be utilised to either retrospectively or prospectively assist urban 

planners with evidence-based information on the delivery or monitoring of TOD. However, existing 

studies aiming to create TOD typologies overwhelmingly concentrate input measures around three 

dimensions of: density, diversity and design; which might be argued as not effectively capturing a 

fuller picture of context. Moreover, such emphasis on static attributes overlooks the importance of 

human mobility patterns that are signatures of the dynamics of cities. 

This study proposes a framework to address this research gap by enhancing a conventional TOD 

typology through the addition of measures detailing the spatiotemporal dynamics of activity at transit 

stations; implemented for the selected case study area, New York City.  

Keywords: Transit-Oriented Development; TOD Typology; Self-Organising Map; Urban Dynamics; 

Public Transit 

1.0 Introduction 
 

Transport Oriented Development (TOD) is considered as a type of sustainable urban development 

focusing on encouraging transit ridership through providing high density and mixed-use development 

within walking distance (e.g. 400–800 m; or 5–10-min walk) of public transport facilities (Thomas et 

al., 2018). The main objective of TOD advocates delivering a favourable environment consisting of 

urban forms that are highly compact, of mixed-use, pedestrian- and cycling-friendly, and develop 

neighbourhoods with the vicinity of public transport hubs (i.e. transit stations). Such influences are 

commonly within a framework referred to as the ‘three-Ds’: namely, high density in development, 

diversity in land use and good urban design (Cervero and Kockelman, 1997). This development 

pattern has been widely recognised and accepted as a leading planning strategy by most planning 

agencies around the world, exemplified by extensive cases in North American and European cities 

(Lierop et al., 2017; Staricco and Brovarone, 2018), China (Xu et al., 2017), South Korea (Sung and 

Choi, 2017) and so forth.  

TOD principally aims to address common urban transportation challenges associated with automobile 

dependence, such as traffic congestion and parking difficulties, air quality and noise pollution, 

excessive greenhouse gas emission, public health and wellbeing-related issues (Rodrigue, 2017; 

Chavez-Baeza and Sheinbaum-Pardo, 2014; Ettema et al., 2016; Hickman and Banister, 2014; Hynes, 

2017; She et al., 2017). Although urban planners have adopted a series of actions aimed at reducing 

the dependence of private automobile use through encouraging more sustainable alternatives 

including public transit and active travels (i.e. walking and cycling) (Lee et al., 2013; Winters et al., 

2017), TOD presents a focus for more comprehensive planning solutions since it effectively integrates 

both urban land use and transport system planning (Lee et al., 2013; Taki et al., 2017; Papa et al., 

2018).  

Although TOD can be argued as consistent in its prescriptions for policy-making and planning, 

extensive studies have illustrated that for TOD to be successful, there is a necessity to be highly 

sensitive to local specificities. For the purposes of assisting urban planners in establishing new TOD 

or evaluating existing TOD, context-based TOD typologies have been implemented to differentiate 

various station catchment areas (Kamruzzaman et al., 2014; Higgins and Kanaroglou, 2016; Lyu et 

al., 2016; Papa et al., 2018). Existing studies have overwhelmingly differentiated TOD through 

measures related to the ‘three-Ds’ such as land use mix, residential and commercial density, and floor 

area ratio. However, other aspects of context, such as socioeconomic variables are neglected (Higgins 

and Kanaroglou, 2016). Moreover, such static attributes overlook the dynamic context of TODs, 
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namely, human's mobility, which as others have shown also plays a vital role in the evolution of urban 

morphologies and functional regions (Wang et al., 2017; Xia et al., 2018).  

It is within this context that we expand upon the existing literature to consider a more comprehensive 

definition of TOD through a broader range of multidimensional inputs, including their dynamic 

context. A new analytical framework is implemented here for the case study city of New York City, 

USA. The paper proceeds first to present a literature review of approaches used to build a TOD 

typology, followed by a Systematic Literature Review (SLR) designed to identify variables commonly 

considered as important drivers of differentiation between TOD contexts. General information about 

the case study area is presented in Section 3, followed by a discussion of the range of station 

catchment areas and a specification of data pre-processing of the 64 selected candidate variables. In 

Section 3.2, 472 subway stations are categorised into a four-category TOD typology through the 

implementation of a proposed methodology framework based on Self-Organising Map (SOM). The 

groups are named and described according to their salient characteristics. In Section 3.3, subway 

turnstile data are utilised to capture human mobility patterns, using the same framework to create 

Temporal Clusters featuring five featured travel patterns. In Section 3.4, the two produced clusters are 

integrated to explore the interaction between static and dynamic features of the TOD areas. Finally, 

the paper concludes with a discussion suggesting some future work and limitations to the approach. 

2.0 Literature Review  
There are multiple approaches to building a TOD typology, ranging from the qualitative ascription of 

idealised TOD contexts (Lyu et al., 2016; Higgins and Kanaroglou, 2016) to more quantitative 

frameworks utilising models of TOD catchments and associated measures drawn for within these 

areas (Higgins and Kanaroglou, 2016). TOD contexts within the urban environment have been 

characterised in the literature through various indicators/variables that are argued to have an effect on 

(or be a result of) the use of public transport. Given the variable definition of TOD extents, study 

objectives and locations, the specificity of criteria and indicators selected as influential to TOD 

characteristics vary between studies. 

Following the development of TOD-related research, the concepts of the original ‘three Ds’ model 

established by Cervero and Kockelman (1997) has been expanded. For instance, Ewing and Cervero 

(2010) added Destination accessibility, Distance to transit, and an additional non-environmental 

variable, i.e. Demographics, to the family of ‘D variables’, formulating the ‘five Ds’ concept. These 

concepts were utilised within a Systematic Literature Review (SLR) to identify those TOD related 

measures used in the recent literature. We utilised the Scopus1, Google Scholar2, and Web of Science3 

referencing databases and looked for references published between 2009 and 2018. These databases 

were queried for research in the broadest sense, including journal articles, official documents, 

guidelines, and so forth; which either created a TOD typology (or indexed TOD features) for major 

transit stations or focused on analysing the relationship between multidimensional variables around 

stations and ridership of public transit more generally. Scopus returned 15 studies, the Web of Science 

and Google Scholar respectively identified 11 and 6240 results. The studies were checked for 

diversity, both in terms of geographic context (i.e. the location of the case study) and type (e.g. 

journal article, governmental documents/policies); and secondly, the quality of the reviewed studies 

was considered in terms of the influence of the academic studies (measured by the times cited) and the 

authority of the governmental documents/policies.  

Through this process, 29 studies were identified, and from these, a set of common variables selected 

that are presented in Table 1. Although many align with the ‘five Ds’, most of the studies are not 

comprehensive in coverage of all domains of the ‘five Ds’. Moreover, some of the variables 

employed in these studies do not align with the ‘five Ds’, implying broader or context-specific 

considerations. The candidate variables could broadly be categorised into four domains, namely, Land 

                                                           
1 https://www.scopus.com/ 
2 https://scholar.google.co.uk/ 
3 https://wok.mimas.ac.uk/ 

https://www.scopus.com/
https://scholar.google.co.uk/
https://wok.mimas.ac.uk/
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Use and Built Environment, Location and Accessibility, Socioeconomic and Demographic, and 

Transit-related.  

Input to the Land Use and Built Environment, and Location and Accessibility domains were drawn 

from a range of sources including the Census and other public survey data, but also Points of Interest 

(POI) databases either as supplements or alternatives to conventional land-use measures (see Wang et 

al., 2016; Lyu et al., 2016; Wang et al., 2017). These studies advocated that POI data may capture 

finer-grained and more up to date information depicting the land use composition and urban facilities. 

Moreover, other variables, such as the type of dwelling, type of tenure, building height, building age, 

and average travel time/distance to workplace/transit station, also take a relatively large share of 

commonly-used variables in these two domains; which may be as a result of their reasonably common 

availability and broadly understood definitions. 

Within the Socioeconomic and Demographic domain, typical variables identified from the literature 

included the median household income, household vehicle ownership, educational attainment, and 

occupation type. As for demographic variables, the “seventh D”1 in D-variables (Ewing and Cervero, 

2010, 267), mainly including age composition and household size/type. 

Transit-related attributes had high salience in the studies identified; and indicators included measures 

such as daily/weekly ridership, frequency of metro services, or peak passenger load/frequency in the 

transit station. Although of utility, such measurements were typically limited in temporal resolution 

(i.e., weekly ridership) or were somewhat static (e.g., morning peak ridership volume), and therefore 

only had limited account for actual periodic variation in patterns of use. Given that spatiotemporal 

data related to transit have become more prevalent, some of the studies, such as Wang et al. (2016), 

Zhou et al. (2017), Wang et al. (2017) and Kim et al. (2018), utilised attributes from trip transaction 

data extracted from a smart card system to calibrate more real-time measures. In addition to transit 

flow data, human mobility was also inferred by Wang et al. (2017) through mobile application data 

from an online mapping system. 

Within the Location and Accessibility domain, travel distance/time from the transit nodes to the main 

working places are typically adopted by many of the reviewed studies. Moreover, proximity to 

activities is also a commonly used variable indicating the connectivity between transit nodes and the 

surrounding environment. Perceived attributes are also employed by some reviewed studies, such as 

cleanness and safety of the transit station. However, due to the difficulty of quantifying and data 

availability, most of the reviewed studies do not include these types of variables. 

                                                           
1 The “sixth D” in D-variables is considered as demand management (Ewing and Cervero, 2010, 267) 
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Domain TOD Indicators used in the reviewed studies 

Atkinson-

Palombo  

and 

Kuby 

(2011) 

Austin 

et al. 

(2010) 

Bhattacharjee 

 and Goetz  

(2016) 

Center for 

Transit-

Oriented 

Developme

nt 

(2013) 

Chen 

et al. 

(2009) 

Chorus 

 and 

Bertolini 

(2011) 

Dirgahayani  

and 

Choerunnisa  

(2018) 

Guo 

 et al. 

(2018) 

Higgins 

 and 

Kanaroglou  

(2016) 

Huang  

et al.  

(2018) 

Ivan 

et al. 

(2012) 

Land Use & Built Environment Average Block Size/ Length  *  *        

 Degree of Functional Mix      * *     

 
Housing Unit /Density 

           

 
Land Cover 

           

 
Mixed-ness of Land Use (Diversity/Entropy) *  *  *  * * * *  

 
Population /Residents Density * * * * * *  * * * * 

 
Job Density /Business Intensity * * *  *    * *  

 Floor Area Ratio (FAR)       *     

 Property/Land Values    *     * * * 

 Street Network/Intersection Density         * * * 

 Type of Dwelling/Tenure           * 

 Year Structure Built (Building Age)            

Transit-related Attributes of Transit Stations      *      

 
Frequency of Metro Services 

           

 
Interchange to Other Transit Modes 

       *   * 

 
Number of Directions Served (Bus/Subway) 

     *  *   * 

 
Number of Nearby Transit Hubs 

    * * * *   * 

 
Parking Facility/Infrastructure *          * 

 
Utilisation of Transit (Passenger Load/Ridership) 

    *   *  * * 

 Walkability/Pedestrian Networks/Cyclability    *   *  * *  

Location & Accessibility Accessibility to/ from Station  *     *  *   

 Average Travel Time (to Work/Transit Stations)  *       *   

 Distance to City Centre/CBD  *  * * *      

 Perceived Attributes (e.g. Safety, Attractiveness)    *   *     

 Proximity of Activities/Amenities at Station    *  * *  *   

Socioeconomic & Demographic Ethnic/Age Composition 
   * *    *   

 
Household Income * *   *    *   

 
Household Type/Size * *          

 
Occupation Type/Education Level *  *   *   *  * 

 
Transport Mode to Work 

 *       *   

 
Vehicles Ownership 

 *  *        

Case Study Area  
Phoenix 

US 

9 Cases 

US 

Denver 

US 

Allegheny 
County 

US 

New 
York 

City 
US 

Tokyo 

 Japan 

Jakarta & 
Bandung 

Indonesia 

Tokyo 

Japan 

Toronto region 

Canada 

Arnhem–

Nijmegen 
MA. 

 

Netherlands 

Ostrava 
Czech 

Republi
c 

Number of Transit Stations (Cases)  27 9 NA NA 468 99 NA 27 372 22 11 

Buffer Distance (metres)  800 800 800 NA NA 700  NA 1500 800 800  700 
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Jun  

et al.  

(2015) 

Kamruzzaman  

et al.  

(2014) 

Kim 

et al. 

 (2017) 

Kim  

et al. 

 (2018) 

Lee 

et al. 

 (2013) 

Lyu 

 et al. 

 (2016) 

Monajem  

and 

Nosratian 

(2015) 

Nasri  

and Zhang 

(2014) 

Papa  

et al.  

(2018) 

Pollack 

et al. 

(2014) 

Singh 

 et al. 

 (2017) 

Sohn 

(2013) 

Song 

and Deguchi 

(2013) 

 *    *  *      

 *    * *  *     

* * * *   *   *    

   *          

* * * * * *  *   * * * 

* * * *  * * * *  * * * 

*  * *  * * * * * * *  

  *          * 
        *   *  

*   *  * *    *   

* *        *   * 

*   *        *  

     *      *  

      *      * 
 *   *      * * * 
     *       * 

*   * *  * *    * * 
     *     *   

  * * *  *    * * * 
 *    * *   * * *  

    * *  *   *   

 *    *     *   

 *     * *    *  

          *   

     *   *  * *  

* * *          * 

* * *     *  *    

*  * *    *      

*  * *  * *    *   

       *  *    

 *      *  *    

Seoul MA. 
South 

Korea 

Brisbane 

Australia 

Seoul MA. 
South 

Korea 

Seoul MA. 
South 

Korea 

Seoul MA. 
South 

Korea 

Beijing 

China 

Tehran 

Iran 

Washington 

D.C. 

Baltimore 
MA. 

Naples 

Italy 

Boston 

US 

Arnhem–
Nijmegen MA. 

 Netherlands 

Seoul 

MA. 

South 
Korea 

Tokyo 

Japan 

442 1734 CCDs 479 479 284 268 5 5 62 345 21 479 152 

300,600,900  800  500  500  500  700  700 + 100  800 500  800 800  500  600, 1000  
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Table 1 Variables Checklists from the Systematic Literature Review 

Vale  

(2015) 

Wang  

et al.  

(2016) 

Wang  

et al.  

(2017) 

Zemp  

et al. 

(2011) 

Zhou  

et al. 

 (2017) 

     

*     
     
     
 * *  * 

*   *  
   *  
     
     
     
     
     

*   *  

*   *  

*   *  

*   *  

* *  *  

* *    

* * * * * 
   *  
 *  *  
 *  *  
 *    
   *  

*     
     
     
     

*     
     
     

Lisbon 

Portugal 

Beijing 

China 

Shanghai 

China 
Switzerland 

Wuhan 

China 

83 215 588 1700 96 

700  770 3800  500  700  500  
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3.0 Contextualising TOD: New York City 
 

The case study area selected for this study is the New York City (NYC), which is the most densely 

populated cities within the US with an estimated 8.56 million residents distributed over a land area 

about 777 km2 (US Census Bureau, 2017). The city is located at the southern tip of the state of New 

York on the US eastern seaboard, comprising five boroughs, namely, Brooklyn, Queens, Manhattan, 

Bronx, and Staten Island. The New York City Subway, first opened in 1904, is a rapid transit system 

that offers 24/7 service across four of the five boroughs of NYC (i.e. Manhattan, Queens, The Bronx, 

and Brooklyn), which is controlled by the Metropolitan Transportation Authority (MTA). The system 

spans 27 lines (665 miles of track) and 472 subway stations, facilitating a major transportation mode 

for residents and visitors to the city (MTA, 2016). According to the subway ridership statistics 

provided by MTA, in 2016, an average of 5.65 million passengers used the system daily on weekdays 

and about 5.75 million at the weekends, making it the largest rapid transit system in the US and the 

seventh busiest worldwide.  

3.1: Defining Station Catchment Area and Data Pre-processing 
 

Fundamental to any TOD typology is a definition of the contextual area surrounding the transit 

stations. For this case study we selected an area of 800 m (approximately 0.5 miles) which mirrored 

the majority of studies conducted within the US (see Atkinson-Palombo and Kuby, 2011; Austin et 

al., 2010; Nasri and Zhang, 2014; Bhattacharjee and Goetz, 2016). Although most of these studies 

employed a Euclidean distance buffer (or circular buffer) to define the catchments of transit station 

areas, it can be argued that a network distance buffer is more suitable since it “more accurately 

representing the built environment as experienced by someone walking through it” (Oliver et al., 

2007, 8). Fig. 1 illustrates 50 m-trimmed street network-based catchment areas (800 m walking 

distance) of the NYC subway stations. A zoomed-in inset map, on the upper left corner, shows an 

example circular buffer and a network buffer at Metropolitan Avenue Station. It is clear that a circular 

buffer area is less effective representation given the surrounding street density and available paths to 

walk. Additionally, in some other locations within a circular buffer, the walking distance is longer 

than 800 m due to more facilitating urban structure, such as block size. A more systematic discussion 

comparing the influence of these two types of buffer are detailed in Oliver et al. (2007).  

Moreover, two inset maps located on the right side of Figure 1 highlight a stretch of census blocks1 

along with their defined station catchment areas. Each catchment contains census blocks, for example, 

the catchment area of Mets-Willets Point station is formed by seven census blocks; Lefferts Blvd 

station catchment intersects with 25 census blocks, which are converted into proportion based on their 

area of overlap. The proportion is subsequently used as a weight (wi) to calculate the weighted 

average value of selected variables. Eq. (1) illustrates how these weights were used to calculate values 

attributed to census block where they intersected with the catchment areas.  

𝑥̅ =
∑ (𝑥𝑖 ∗ 𝑤𝑖)𝑛

𝑖=1

∑ 𝑤𝑖̇
𝑛
𝑖=1

 

Eq. 1  𝑥̅ is the weighted mean; 𝑥𝑖 is an original value; 𝑤𝑖 is the weight (i.e. the proportion of the area occupied by a specific 

census block in station catchment area). 

For other variables at the finer spatial resolution, particularly spatial points extracted from the 

NYCOD and NYCP (e.g. street trees, bus stops), these were first aggregated to the station catchment 

areas where they were located and either a density or percentage value calculated. 

 

                                                           
1 Census blocks, the smallest geographic area for which the US Census Bureau collects and tabulates census data (US 

Census Bureau, 2011). 
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The selection of variables was primarily guided by findings from Section 2 alongside further 

consideration of the quality and availability of potential variables within the case study area. As such, 

variables selected for this study were categorised into the four previously identified domains: Land 

Use and Built Environment, Transit-related, Location and Accessibility, and Socioeconomic and 

Demographic. Variables representative of these domains were extracted from the following seven 

open data sources: American Community Survey (ACS)1, National Walkability Index (NWI)2, Smart 

Location Database (SLD)3, NYC Open Data (NYCOD)4, NYC Planning (NYCP)5, Metropolitan 

Transportation Authority (MTA)6. Table 2 presents the final 64 variables selected for this study 

alongside a brief description. After the selected variables were assembled for each of the subway 

station catchment, the Box-Cox transformation (Eq. (2); Box and Cox, 1964) was adopted to 

transform non-normal variables values to approximate a normal distribution. Furthermore, given that 

the assembled variables are measured on different scales, z-scores were implemented as a 

standardisation (Eq. (3)). This frequently used technique creates a transformed variable with a mean 

of zero and unit of standard deviation. 

𝑥𝑖

′
= {

𝑥𝑖
𝜆 − 1

𝜆
log 𝑥𝑖

       
,      𝑖𝑓 𝜆 ≠ 0;

,      𝑖𝑓 𝜆 = 0.
     

Eq. 2 where 𝑥𝑖
′ is the transformed value; 𝜆 ranging from -5 to 5, which can be estimated using the profile likelihood function 

to achieve ‘optimal value’  

                                                           
1 https://www.census.gov/programs-surveys/acs/ 
2 https://catalog.data.gov/dataset/walkability-index 
3 https://www.epa.gov/smartgrowth/smart-location-mapping 
4 https://opendata.cityofnewyork.us/ 
5 https://www1.nyc.gov/site/planning/data-maps/open-data.page 
6 http://web.mta.info/developers/turnstile.html 

Fig. 1 The New York City subway system and catchment areas (800m walking distance) with highlights of census blocks  

https://www.census.gov/programs-surveys/acs/
https://catalog.data.gov/dataset/walkability-index
https://www.epa.gov/smartgrowth/smart-location-mapping
https://opendata.cityofnewyork.us/
https://www1.nyc.gov/site/planning/data-maps/open-data.page
http://web.mta.info/developers/turnstile.html
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𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

Eq. 3 where 𝑧𝑖 is the standardised value , 𝑥𝑖is an original value, 𝜇 is the mean of 𝑥𝑖, and 𝜎  is the standard deviation from 

the mean. 



10 
 

Database Code Domain Variables Title Description 

ACS 

B01001 

Socioeconomic & Demographic Age: 0-4 % of Population Aged between 0 and 4 

Socioeconomic & Demographic Age: 5-14 % of Population Aged between 5 and 14 

Socioeconomic & Demographic Age: 15-19 % of Population Aged between 15 and 19 

Socioeconomic & Demographic Age: 20-24 % of Population Aged between 20 and 24 

Socioeconomic & Demographic Age: 25-44 % of Population Aged between 25 and 44 

Socioeconomic & Demographic Age: 45-64 % of Population Aged between 45 and 64 

Socioeconomic & Demographic Age: 65&above % of Population Aged 65 and above 

B08303 

Location & Accessibility TTtW: < 5 mins % of Workers whose Travel Time to Work is less than 5 minutes 

Location & Accessibility TTtW: 5-14 mins % of Workers whose Travel Time to Work is between 5 and 14 minutes 

Location & Accessibility TTtW: 15-29 mins % of Workers whose Travel Time to Work is between 15 and 29 minutes 

Location & Accessibility TTtW: 30-44 mins % of Workers whose Travel Time to Work is between 30 and 44 minutes 

Location & Accessibility TTtW: 45-59 mins % of Workers whose Travel Time to Work is between 45 and 59 minutes 

Location & Accessibility TTtW: > 60 mins % of Workers whose Travel Time to Work is longer than 60 minutes 

B11016 

Socioeconomic & Demographic HT: 1-person % of 1-Person Household 

Socioeconomic & Demographic HT: 2-person % of 2-Person Household 

Socioeconomic & Demographic HT: 3-person % of 3-Person Household 

Socioeconomic & Demographic HT: 4+-person % of 4 or more Person Household 

B15003 

Socioeconomic & Demographic EA: No school % of Population have no qualifications 

Socioeconomic & Demographic EA: Elementary school % of Population attained kindergarten to 5th grade 

Socioeconomic & Demographic EA: Middle school  % of Population attained 6th to 8th grade 

Socioeconomic & Demographic EA: High school % of Population attained 9th to 12th grade 

Socioeconomic & Demographic EA: College / Bachelor % of Population attained College or Bachelor's degree 

Socioeconomic & Demographic EA: Master / Doctorate  % of Population attained Master's or Doctorate Degree 

B19013 Socioeconomic & Demographic Median Income Household Median Income in the past 12 months 

B25003 
Land Use & Built Environment Tenure: Owner % of Housing Unit occupied by Owner 

Land Use & Built Environment Tenure: Renter % of Housing Unit occupied by Renter 

B25024 

Land Use & Built Environment US: Detached % of Housing Unit categorised as detached 

Land Use & Built Environment US: Attached % of Housing Unit categorised as attached 

Land Use & Built Environment US: Apartment % of Housing Unit categorised as apartment (from 2 to 50 units) 

B25034 

Land Use & Built Environment YB: 2010 / Later % of Building built in 2010 or later 

Land Use & Built Environment YB: 2000 - 2009 % of Building built in between 2000 and 2009 

Land Use & Built Environment YB: 1980 - 1999 % of Building built in between 1989 and 1999 

Land Use & Built Environment YB: 1960 - 1979 % of Building built in between 1960 and 1979 

Land Use & Built Environment YB: 1940 - 1959 % of Building built in between 1940 and 1959 

Land Use & Built Environment YB: 1939 / Earlier % of Building built in 1939 or earlier 
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B24010 

Socioeconomic & Demographic OT: M.B.S.A. % of Workers in Management, Business, Science, and Art Occupations 

Socioeconomic & Demographic OT: S. % of Workers in Service occupations 

Socioeconomic & Demographic OT: S.O. % of Workers in Sales and office occupations 

Socioeconomic & Demographic OT: N.C.M. % of Workers in Natural resources, construction, and maintenance occupations 

Socioeconomic & Demographic OT: P.T.M. % of Workers in Production, transportation, and material moving occupations 

B25044 

Socioeconomic & Demographic VA: No-vehicle % of Housing Units have no vehicle 

Socioeconomic & Demographic VA: 1-vehicle % of Housing Units have 1 vehicle 

Socioeconomic & Demographic VA: 2-vehicle % of Housing Units have 2 vehicles 

Socioeconomic & Demographic VA: 3+-vehicle % of Housing Units have 3 or more vehicles 

B01003 Land Use & Built Environment Population Density Population Density 

NWI D4a Location & Accessibility D4a Distance from the population-weighted centroid to the nearest transit stop (meters) 

SLD 

D1c Land Use & Built Environment D1c Job Density 

D2a_EpHHm Land Use & Built Environment D2a_EpHHm Employment and Household Entropy 

D3a Land Use & Built Environment D3a Road Network Density 

D4d Location & Accessibility D4d Aggregate frequency of transit service per square mile 

NYCOD 

CSCL Land Use & Built Environment Intersection Density Street Intersection Density Calculated from the Street Centreline 

STC Land Use & Built Environment Tree Density Street tree density 

Bicycle Land Use & Built Environment Bike Facilities Citi-Bike, Bicycle Routes and Parking Shelters density 

Bus Land Use & Built Environment Bus Facilities Bus Stops Density 

Parking Land Use & Built Environment Parking Facilities Parking meters/lots density 

POI Land Use & Built Environment POI Point of Interest Data: contains seven land-use types 

NYCP MapPLUTO Land Use & Built Environment Landuse Land Use: contains seven land-use types 

MTA Turnstile 
Transit-related Turnstile: Entry Entry Counts for all turnstile data by every 4 hours per day 

Transit-related Turnstile: Exit Exit Counts for all turnstile data by every 4 hours per day 

 

Table 2 Final variable selection and basic description
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3.2: Contextualising TOD 
After the assembly of the normalised and standardised input data; similarity in the context of subway 

stations was explored by the application of a Self-Organising Map (SOM). The Self-Organising Map 

(SOM), also known as Kohonen Map, is a single layer feedforward artificial neuron network, which is 

trained by unsupervised, competitive learning as a tool for “visualisation and analysis of high 

dimensional data” (Bação and Lobo, 2010, 4). The SOM translates high-dimensional inputs into a 

low-dimensional space, also referred to feature map that is configured by the number of pre-defined 

neurons arranged on a regular lattice (e.g. a rectangular or hexagonal topology), through ‘fitting’ a 

grid of nodes to the data over a fixed number of iterations. The resulting map allows a graphical 

presentation of the data that can be easily interpreted by map-readers, which can be further classified 

by the machine learning techniques designed for low dimensionality (Bara et al., 2018; Spielman and 

Folch, 2015; Natita et al., 2016). Numerous studies have highlighted the utility of SOM for visualising 

complex, nonlinear statistical relationships within high-dimensional data (Yin, 2008; Bação and Lobo, 

2010; Das et al., 2016; Miljković, 2017). The method is suitable for this application given the 

multiplex of measures assembled. Moreover, even after the application of Box-Cox transformation, 

some variables remained not normally distributed, which may have caused some problems if we 

directly adopted conventional feature extraction methods such as principal components analysis 

(PCA), since the underlying assumptions of these techniques are not satisfied (Das et al., 2016). 

Accordingly, Demartines and Blayo (1992) note that the SOM is not very sensitive to the normal 

distribution when the input data contain high dimensionality. 

Several studies have highlighted the potential applications of SOM in terms of building typology for 

urban contexts (Jain et al., 2018; Schäfer et al., 2018; Spielman and Thill, 2008; Arribas-Bel and 

Schmidt, 2013), and specifically within the context of TOD: Sohn (2013) presented an application of 

SOM for Seoul, South Korea, metro station areas. 

Several parameters need to be specified in advance when fitting a SOM, including the number of 

neurons (M), the range of the learning rate and its decline pattern (α), the shape/type of the neuron, 

and the type neighbourhood function (Spielman and Folch, 2015). The first step before training the 

SOM is to define an appropriate number of neurons that are used to configure the network. A small 

feature map (i.e. the number of observations far exceeds the number of neurons) results in a 

generalisation, whereas a large map allows a specific location in geographic space (subway stations, 

in this study) to be projected to a particular location in the corresponding attribute space, representing 

specific properties (Spielman and Thill, 2008). A useful ‘rule of thumb’ (Eq. (4)) suggested by Tian et 

al. (2014), is employed here to determine the number of neurons. Since the 472 stations configure the 

observations (N), 108 (M) neurons, projected on a 12 by 9 grid, are accordingly generated to structure 

the SOM. For the remaining parameters, these were set following an objective of maximising SOM 

quality through minimisation of the average quantisation error (QE) statistic. We tested the value of 

QE generated by using various combinations of different SOM parameters following Natita et al. 

(2016). The results of these experiments are shown in Table 3, with the combination of a rectangular 

topology, the bubble neighbourhood function and a linear decline in learning rate (ranging from 1.0 to 

0.01) resulting in the smallest average QE (3.41). Thus, this combination of parameters is eventually 

adopted to train the SOM network for creating spatial clusters. 
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Table 3 Result of SOM parameter settings for building TOD typology 

Test Topology/Shape 
Learning 

Rate Type 

Neighbourhood 

Type 

Average 

QE 

Learning 

Rate range 

1 Hexagon Linear Bubble 3.51 1.0-0.01 

2 Hexagon Inverse Bubble 3.59 1.0-0.01 

3 Hexagon Linear Gaussian 4.21 1.0-0.01 

4 Hexagon Inverse Gaussian 4.79 1.0-0.01 

5 Rectangle Linear Bubble 3.41 1.0-0.01 

6 Rectangle Inverse Bubble 3.69 1.0-0.01 

7 Rectangle Linear Gaussian 4.18 1.0-0.01 

8 Rectangle Inverse Gaussian 4.75 1.0-0.01 

 

𝑀 ≈ 5√𝑁 

Equation 4 Where M is the number of neurons, which is an integer close to the result of the right-hand side of the equation 

and N is the number of observations. 

To reduce the complexity of the computed SOM feature maps further, a hybrid hierarchical k-means 

(H-K-means) algorithm was applied to aggregate the neurons into groups sharing similar attributes 

(Chen et al., 2005; Kassambara, 2017). The procedure of this algorithm can be summarised into three 

steps: firstly, agglomerative hierarchical clustering is applied to the input data and generated tree (i.e. 

dendrogram), which is cut into k number of clusters; secondly, the cluster centroids (i.e. the mean 

value) are computed for each group; and finally, these cluster centroids are utilised as the initial 

centres for the k-means algorithm (Kassambara, 2017). To select an appropriate number of clusters, a 

clustergram was created that demonstrates a weighted mean of the first component of a PCA for each 

cluster centre across a range of tested k values, where the width of each line represents the number of 

observations (i.e. neurons in SOM). The detailed rationale of this technique has been discussed 

elsewhere (see Schonlau, 2002); but generally, the logic is to find the point where the centroids of the 

clusters are as dissimilar as possible (well-spaced). According to the clustergram shown in Fig. 2, it is 

easily observed that when the number of clusters reaches four, the difference between cluster 

centroids (red dots) is maximised (after k = 4, these centroids are getting close to each other; when k = 

5, two cluster centroids are nearly overlapped, indicating relatively bad clustering results). 
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The result from clustering the 108 neurons is shown in a 2-dimensional plane (Fig. 3) and is mapped 

in Fig. 4 portraying the geographic distribution of TOD typologies for NYC. The geographic 

distribution follows a broadly concentric circle-shape, radiating away from the central area of 

Manhattan.  

 

 

Fig. 2 Clustergram for selecting number of clusters differentiating TOD Typologies. 

Fig. 3 TOD Typologies by SOM nodes (presented on a 12*9 grid). 
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To ascertain the most salient characteristics of the clusters, index scores (i.e. x/x̄ *100) were 

calculated for the input variables and displayed within each cluster in Fig. 5. These scores indicate the 

(over-) underrepresentation of a target characteristic compared to the regional average value (i.e. a 

score of 100). An index score 50 would hence equate to a rate that is half the average, and 200 would 

be double. Utilising both the map and scores, descriptive profiles were generated.  

Cluster 1: Commercial Core 

This cluster is characterised by commercial areas with a highly educated (Master's or Doctorate) 

population, aged between 25 and 44, including many of those who are employed in well-paid 

management, business, science and arts occupations. Residents of such areas are more likely to live in 

apartments (built after the 1980s) consisting of one- or two-person households. These areas are 

characterised by an extremely high job density, high level of traffic permeability, and plenty of public 

services, commercial and mixed-use properties, accompanied with a mature infrastructure for cycling 

and a high level of accessibility of public transit.  

Cluster 2: Blue-Collar Domicile 
Residents of this typology have an age distribution closer to the regional mean, who have increased 

prevalence to live with family in rented apartments that are situated in areas with high population 

density, forming a typical three-person household size. Many more of these residents are likely to 

have occupations within the areas of service and production, transportation, and material moving 

sectors. Additionally, the annual median income earned by residents of these areas is much lower. The 

physical environment is characterised by detached properties and apartment constructed in the 1940s 

and typically linked with adequate parking infrastructures.  

Cluster 3: Young Family Residential 
These areas are characterised by residential occupants with (pre-)school-age children. Many residents 

live in the detached property located in boroughs outside Manhattan. Given the distance of travel to 

work (more than 60 min), the car dependency of these areas is higher than the regional average, also 

demonstrated by the high household vehicle availability.  

Fig. 4 Geographic Distribution of TOD Typologies 
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Cluster 4: Older Family Residential 
Populations living within this cluster can be broadly characterised by college-educated middle-age 

residents (aged between 45 and 64) who are likely to own a detached property built between the 1940s 

to 1970s and located on the periphery of NYC. Many residents live in relatively large households with 

dependent children (aged from 5 to 19). Residents of this group show high use of private automobiles 

for commuting, manifested by high levels of vehicle availability (two or more cars) at more than four 

times the regional average. 

  

Fig. 5 Index Scores by four TOD Typologies. 
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3.3 Classifying Temporal TOD Dynamics  
The space–time dynamics of TOD localities were considered through subway turnstile data supplied 

by the MTA. This dataset provides a variety of information on subway station entries and exits, 

organised into four-hourly daily time bands (i.e. six intervals a day); with the period 2015 to 2016 

selected. The turnstile data was aggregated by days of the week, and for each station (a station 

contains several turnstiles) created 30 variables (six-time bands, five working days) for entry counts 

and a further 30 variables for exits. To provide further insight into those stations sharing similar 

patterns of transit use, the analytical framework applied earlier to station contextual data was 

replicated for the subway turnstile ingress and egress. This included the data pre-processing (e.g. 

normalisation and standardisation), alongside SOM construction and clustering. A clustergram was 

again used to select an appropriate number of clusters (see Fig. 6), with k = 5 selected. These 

‘Temporal Clusters’ are mapped in Fig. 7.  

 

 Fig. 6 Clustergram for selecting number of clusters differentiating Temporal Clusters.  
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To ascertain the most salient characteristics of the clusters, a further set of index scores were created 

for the temporal clusters, using the method previously described in Section 3.2. A series of heatmaps 

show these scores in Fig. 8 for the five Temporal Clusters. Utilising both the map and scores, 

descriptive profiles were generated from these insights.  

Cluster 1: Typical work-oriented 
Stations within this cluster are mainly located in the Lower and Midtown areas of Manhattan, 

downtown areas of Brooklyn and Long Island City. They feature a typical ‘double-humped’ (morning 

and evening) subway travel pattern associated with workplace-oriented usage. In the morning peak, 

low inbound passenger flow is identified accompanying with a high outbound flow; while during the 

evening peak, stations have high inbound flow and a low outbound flow. The role of these stations 

switches during workdays: from a ‘major destination’ in the morning to ‘major origin’ in the evening.  

Cluster 2: Home-work mixed 
Stations classified by this cluster are mainly located outside Manhattan, featuring a mixed subway 

travel pattern. During the morning peak and even earlier, stations exhibit a high volume of inbound 

passenger flows and a high volume of outbound flows.  

Cluster 3: Entertainment and work 

Stations within this cluster are predominantly located in either Downtown or Midtown Manhattan, 

occupying more than half of subway stations in Manhattan. These stations meet a low inbound and 

high outbound passenger flow during the morning but reverse this pattern during the evening. 

Moreover, there is additionally a large volume of inbound flows during the midnight-to-late-at-night 

period, which may e a result of these destination being the popular place of departure from evening 

events. 

Cluster 4: Off-Peak Average 
Stations of this group are distributed reasonably randomly across New York. This cluster also consists 

of stations exhibiting moderate levels of passenger flow, which are very close to the average. More 

Fig. 7 Geographic Distribution of Temporal Clusters 
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generally, these are less popular stations and experience fewer passengers during commuting peak 

periods. 

Cluster 5: Typical Home-Oriented 
Although a fraction of stations from this group can be identified in the northern part of Central Park, 

most stations are located outside Manhattan (especially in the periphery of NYC). These stations also 

experience the ‘double-humped’ travel pattern, however, high inbound and low outbound passenger 

flow during the morning peak, with the reverse during the evening. 

  

Fig. 8 Inbound and outbound index value of five Temporal Clusters (presented in a ‘weekly travel profile’ manner). In order 

to achieve better visualisation result, all values less than 100 (less than the mean value) are presented by white. 
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3.4 Integrating Context and Space-Time Dynamics 
 

An overarching purpose of this work has been to extend an existing framework for the creation of 

TOD typologies to examine both context and dynamics. As such, in this section, we explore the 

intersection of our two created classifications. Fig. 9 presents an alluvial diagram showing the 

proportion of subway stations categorised at the intersection of these two classifications for the NYC 

extent. There is reasonable consistency between these two classifications with some emerging 

differences.  

As might be expected, stations with their context classified as ‘Commercial Core’ predominantly 

correspond to ‘Typical Work-Oriented’ and ‘Entertainment & Work’ temporal clusters, manifesting 

typical workplace-oriented function of these TOD areas. Similar temporal patterns can be observed in 

those stations categorised as ‘Blue-Collar Domicile’ which splits between ‘Typical Home-Oriented’ 

and ‘Home-Work Mixed’ which might be expected given more residential-oriented usage. 

TOD areas categorised as ‘Young Family Residential’ unsurprisingly predominantly correspond with 

the temporal cluster ‘Typical Home-Oriented’ and ‘Home-Work Mixed’. Stations are both major 

origins and destinations during peak times, which may be a result of proximity to local employment 

centres or schools. Given that many of the residences of this cluster are students, the high volume of 

(early-) morning peak flows may partially be explained by educational establishment opening times. 

Within TOD stations classified as ‘Older Family Residential’, there is correspondence to the temporal 

clusters ‘Home-Work Mixed’ and ‘Off-Peak Average’. There are likely demographic drivers of these 

patterns alongside a higher rate of private vehicle ownership as a result of their more suburban 

locations.  

 

  

Fig 9. Alluvial Diagram: Percentage strata by Cross-tabulating TOD typologies and Temporal Clusters 
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4.0 Conclusion 
 

Transit-Oriented Development (TOD) is a widely recognised planning method for tackling transport-

related challenges. Typological approaches to TOD can be utilised either retrospectively or 

prospectively to assist urban planners with evidence-based information on the delivery or monitoring 

of TOD. However, most existing studies creating TOD typologies have overwhelmingly relied upon 

inputs selected alongside the ‘three Ds’ or the ‘five Ds’ principles, which might be argued as not 

capturing effectively multidimensional aspects of context alongside dynamics of such areas through 

human mobility. This study proposed and implemented an analytical framework to address this 

research gap by enhancing a conventional TOD typology with a wider array of contextual data, while 

also considering the spatiotemporal dynamics of activity at transit stations. 

Our presented contextual TOD typology was implemented with candidate data inputs gather through 

systematically reviewing 29 recent studies related to TOD typology. The ‘five-Ds’ principles were 

enriched through various measures that were broadly categorised across four domains: Land Use and 

Built Environment, Transit-related, Location and Accessibility, and Socioeconomic and 

Demographic. Four salient TOD clusters were generated for the case study city of NYC, by applying 

a methodology framework formed by the combination of Self-Organising Map (SOM) and 

hierarchical k-means clustering (H-K-means) to the multidimensional input data. These clusters were 

further named, described and mapped. 

The spatiotemporal dynamics of activity at transit stations was considered through subway turnstile 

data from the MTA. Through the second application of the proposed framework to the temporal 

dataset, 472 subway stations were classified into five unique clusters respectively representing 

different types of travel activity. 

The contextual TOD typology was then enhanced through linkage with the classification of aggregate 

space-time dynamics to illustrate the interaction between context and use. Through cross-validation 

there was much consistency unveiled, for example, the work-oriented stations are mainly 

corresponding to the stations located in major employment centres. 

One of the main limitations of this study relates to the temporal resolution of the subway turnstile 

data. The 4-h temporal interval adopted by MTA to aggregate the passenger flows is limited in 

granularity and may mask valuable details should more disaggregate data be made available. In other 

contexts, researches such as Liu and Cheng (2018) and El Mahrsi et al. (2014) have utilised smart 

card data to conduct the travel pattern analysis, which brings finer resolution for both boarding and 

alighting information. However, such data or similar products were not publicly available from MTA. 

Secondly, due to data limitations of this contextual area, this study did not consider multimodal 

journeys which may also offer insight as the ability to interchange to other transit modes has been 

spotlighted by many of the reviewed studies (Chorus and Bertolini, 2011; Zemp et al., 2011; 

Dirgahayani and Choerunnisa, 2018). Although the present study employed variables, such as bus 

stop density, parking facilities, and bike facilities, to attempt to represent the intermodal connectivity, 

these variables were relatively ‘static’ compared to the data that could infer mode swapping. None-

the-less, despite such caveats, this paper has demonstrated a new and powerful technique that 

implements an innovative methodology to extend a TOD typology to represent both context and 

dynamics; and will likely be a useful framework for application within other urban contexts.. 
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