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Abstract. The motivation for using demonic calculus for binary relations
stems from the behaviour of demonic turing machines, when modelled re-
lationally. Relational composition (;) models sequential runs of two pro-
grams and demonic refinement (�) arises from the partial order given
by modeling demonic choice (�) of programs (see below for the formal
relational definitions). We prove that the class R(�, ; ) of abstract (≤, ◦)
structures isomorphic to a set of binary relations ordered by demonic
refinement with composition cannot be axiomatised by any finite set of
first-order (≤, ◦) formulas. We provide a fairly simple, infinite, recursive
axiomatisation that defines R(�, ; ). We prove that a finite representable
(≤, ◦) structure has a representation over a finite base. This appears to
be the first example of a signature for binary relations with composition
where the representation class is non-finitely axiomatisable, but where
the finite representation property holds for finite structures.
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1. Introduction and motivation

A simple way of representing a (≤, ◦) structure is to interpret the binary
relation ≤ as set inclusion ⊆, and the binary function ◦ as composition of
binary relations ;, defined for relations R,S as

R;S = {(x, y) : ∃z((x, z) ∈ R ∧ (z, y) ∈ S)}
The class R(⊆, ; ) of abstract (≤, ◦) structures isomorphic to sets of bi-

nary relations with inclusion and composition is defined exactly by the axioms
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Figure 1. Two representations, for ordered semigroups

of ordered semigroups [15], i.e. associativity, partial order, left and right mono-
tonicity. It is clear that these axioms are valid over R(⊆, ; ). Conversely, given
an ordered semigroup S = (S,≤, ◦) we may extend the structure to an or-
dered semigroup S ′ = (S′,≤, ◦) by adding a single new two-sided identity
element e where e �≤ s and s �≤ e for s ∈ S, and then defining a representation
θ : S → ℘(S ′ × S ′) by

(x, y) ∈ sθ ⇐⇒ y ≤ x ◦ s

illustrated in the first diagram of Figure 1. Note that the image of s ∈ S is
denoted sθ. The extra identity element is used to prove faithfulness of θ: if
s �≤ t ∈ S then (e, s) ∈ sθ but (e, s) �∈ tθ. A dual representation θ′ of S over
S ′, illustrated in the second part of Figure 1, is defined by

(x, y) ∈ sθ′ ⇐⇒ x ≤ s ◦ y.

Both inclusion and composition have demonic variants, written (�, ∗)
called demonic refinement and demonic composition defined by

R � S ⇐⇒ (dom(S) ⊆ dom(R) ∧ R�dom(S) ⊆ S)

R ∗ S = R;S ∩ {(x, y) : ∀z((x, z) ∈ R → z ∈ dom(S))}
where dom(S) = {x : ∃y(x, y) ∈ S} and R�dom(S) denotes the restriction of R
to pairs (x, y) where x ∈ dom(S). Closely related to the demonic refinement
relation is the demonic join operator �, defined by

R � S = (R ∪ S)�dom(R)∩dom(S)

In the set of all binary relations over a set X, R � S is the join (least upper
bound) of R,S with respect to �. Conversely, given the operator � we may
recover the relation � by defining R � S ⇐⇒ R � S = S. Note, however,
that an operator � that returns the greatest lower bound of two relations may
not be defined, it is not in general the case that two binary relations have
any common lower bound with respect to �, see Section 5. Roughly speaking,
these operations were motivated by relational modelling of the behaviour of a
Turing Machine, when the demon is in control whereas their analogous ‘angelic’
counterparts can be used to relationally model the behaviour of the same
machine when the angel makes the nondeterministic choices.

It is known [3] that R(�, ∗) is also axiomatised by the same three axioms
of ordered semigroups that axiomatise R(⊆, ; ). This suggests a wider duality
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between angelic and demonic operators and relations for algebras of binary
relations; such a duality deserves further investigation. Certainly, algebras of
binary relations with mixed signatures are not so nicely behaved. For example
over R(⊆, ∗), although ∗ remains associative, ⊆ is still a partial order and ∗ is
right monotonic with respect to ⊆, we find that left monotonicity fails, and it
was shown recently that R(⊆, ∗) is not finitely axiomatisable [9].

Our main focus here is the representation class R(�, ; ), a second example
of a mixed signature, this time with angelic composition and demonic refine-
ment. The motivation for using � in conjunction with ; is based on the Refine-
ment Algebra described in [14], but adapted for relational reasoning. Consider
a Hoare triple (P,A,Q), where A is a nondeterministic program and P,Q are
pre and post conditions. We can model A as the binary relation over the base
of all configurations C consisting of all pairs (c1, c2) where program A can
terminate in configuration c2, starting from c1. A condition, such as P,Q,¬Q
etc., can be modelled as the set of all (c, c) such that c satisfies the condition,
so that programs and conditions are modelled as binary relations over C. We
can model the partial correctness of (P,A,Q) by P ;A = P ;A;Q which implies,
by associativity and monotonicity, P ;A; (¬Q) = P ;A;Q; (¬Q) = P ;A; 0 ⊆ 0
where 0 is the empty relation, the bottom element with respect to ⊆. One
reason why this fails to model total correctness is that programs without ter-
minating runs will also be modelled as 0. However, if we add a new point ⊥
to the base C, extend A to A′ by including (c,⊥) in A′ whenever c is in the
domain of A, and extend each condition P to P ′ by including (⊥,⊥) (so all
conditions hold at ⊥), as we mention in Section 5, we find the bottom element
with respect to � to be 0 = {(c,⊥) : c ∈ C} (note the bold font, to distinguish
it from the empty relation), and we can still model the partial correctness of
(P,A,Q) as P ′;A′ = P ′;A′;Q′, but this does not imply P ′;A′; (¬Q)′ � P ′;0
as monotonicity fails. In fact, if P ′;A′; (¬Q)′ � P ′;0 holds then from any
configuration c satisfying P the only configuration reachable by A′ where ¬Q
holds is ⊥ (hence partial correctness), and the domain of A′ (which is the same
as the domain of A) includes all configurations satisfying P , hence from any
configuration satisfying P there is a terminating run of A to a configuration
satisfying Q. Thus P ′;A′; (¬Q)′ � P ′;0 is equivalent to the total correctness
of (P,A,Q).

Over R(�, ; ) we find that both left and right monotonicity fail. A key
problem we address is to axiomatise this representation class. To find an ax-
iomatisation, of course we may use the axioms of associativity and partial
order, but what additional axioms should be included in order to fill the gap
created by the omission of the two monotonicity axioms? The main results
here are a recursively defined infinite set of axioms that defines R(�, ; ) and a
proof that no finite set of axioms can do it. Our proof that the recursive ax-
iomatisation is complete also shows that a finite representable (�, ; )-structure
has a representation over a finite base set.

Algebras of binary relations have been used extensively to model program
semantics [11,5], and the introduction of demonic choice (�) and demonic com-
position (∗) has extended this framework towards reasoning about the total
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correctness of non-deterministic Turing Machines [5,1]. The introduction of the
demonic refinement predicate led to further verification applications, for exam-
ple utilising Refinement Algebras [14,4]. Furthermore, relaxing the requirement
that composition is a total binary operator we obtain refined semigroupoids,
which have been of interest in relation-algebraic programming [10].

The fairly extensive literature on demonic relations and operators in-
cludes a variety of different notations. In the context of Kleene Algebra exten-
sions, such as Refinement Algebra, where the emphasis is on the behaviour of
tests, �,� are sometimes used in place of �,�.

2. Axiomatising R(�, ; )

We focus on the signature (�, ; ), in the abstract case the corresponding sym-
bols will be (≤, ◦). A binary relation over the base X is a subset of X × X.
A concrete (�, ; ) structure is a set of binary relations over some base, closed
under composition, with demonic refinement. An isomorphism from an ab-
stract (≤, ◦) structure to a concrete (�, ; ) structure is called a representation.
R(�, ; ) denotes the class of all (≤, ◦) structures isomorphic to concrete (�, ; )
structures.

The signature does not include the domain operation, nor does it include
‘angelic’ (ordinary) set inclusion. However, we will define with infinitary (≤, ◦)-
formulas, the predicates �, �s to signify the domain inclusion and inclusion of
the restriction to the domain of s respectively, see Lemma 2.2 below.

Let

a � b ⇔
∨

n<ω

a �n b

a �s b ⇔
∨

n<ω

a �s
n b

where

a �0 b ⇔ a ≥ b ∨ ∃c(a ≥ b ◦ c)

a �s
0 b ⇔ (a ≤ b ∧ s = b)

a �n+1 b ⇔
⎧
⎨

⎩

(a �a
n b) ∨

∃c (a �n c ∧ c �n b) ∨
∃d, f, f ′ (a = d ◦ f ∧ f �n f ′ ∧ b = d ◦ f ′))

⎫
⎬

⎭

a �s
n+1 b ⇔

⎧
⎨

⎩

(∃c (a �s
n c ∧ c �s

n b)) ∨
∃c, c′, d, d′ (a = c ◦ d ∧ c �s

n c′ ∧ d �d
n d′ ∧ b = c′ ◦ d′) ∨

∃s′(a �s′
n b ∧ s �n s′)

⎫
⎬

⎭

Lemma 2.1. (1) Reflexivity holds for both �, �s for any s
(2) a �n b ∧ b �n c → a �n+1 c, a �s

n b ∧ b �s
n c → a �s

n+1 c, so � and �s are
transitive, for each s ∈ S

(3) a �s
n b ◦ c, b �s

n b′, c �c
n c′ implies a �s

n+1 b′ ◦ c′,
(4) d �n a ◦ c, a ≤ a′, d �n a′, c �n c′ implies d �n+3 a′ ◦ c′,
(5) s �n s′, a �s′

n b implies a �s
n+1 b



Vol. 82 (2021) Finite representability of semigroups Page 5 of 14 28

Proof. (1), (2), (3), (5) follow directly from the definitions of �, �. For (4),
observe how from a ≤ a′ we have a �a′

0 a′ which, together with a ◦ c′ �0 a′,
give us a �a◦c′

1 a′. From this and c′ �c′
0 c′ we get a ◦ c′ �a◦c′

2 a′ ◦ c′ and thus
a ◦ c′ �3 a′ ◦ c′. We also have c �n c′ and hence a ◦ c �n+1 a ◦ c′. So, by the
transitive steps d �n a ◦ c �n+1 a ◦ c′ �3 a′ ◦ c′ we obtain d �n+3 a′ ◦ c′. �

Lemma 2.2. Let S ∈ R(�, ; ) and let θ be a representation of S. For all
a, b, s ∈ S

a � b ⇒ dom(aθ) ⊆ dom(bθ), and

a �s b ⇒ aθ�dom(sθ) ⊆ bθ.

Proof. We prove both claims by a single induction over n. In the base case, if
a �0 b then either aθ � bθ or aθ � bθ; cθ (for some c) hence dom(aθ) ⊆ dom(bθ).
And if a �s

0 b then s = b, a ≤ b, so aθ�dom(sθ) = aθ�dom(bθ) ⊆ bθ.
For the inductive step, suppose a �n+1 b, from the recursive defini-

tion, there are three alternatives. In the first case, a �a
n b then inductively

aθ = aθ�dom(aθ) ⊆ bθ so dom(aθ) ⊆ dom(bθ). In the second case, inductively
dom(aθ) ⊆ dom(cθ) ⊆ dom(bθ). In the third case, there are d, f, f ′ where
a = d ◦ f, f �n f ′ and b = d ◦ f ′. For any x ∈ dom(aθ), there is y such
that (x, y) ∈ aθ and there is z such that (x, z) ∈ dθ, (z, y) ∈ fθ. Induc-
tively, z ∈ dom(fθ) ⊆ dom((f ′)θ) so there is w such that (z, w) ∈ (f ′)θ, hence
(x,w) ∈ dθ; (f ′)θ = bθ, so x ∈ dom(bθ), proving dom(aθ) ⊆ dom(bθ).

Now suppose a �s
n+1 b. There are three alternatives in the recursive def-

inition. In the first case, inductively aθ�dom(sθ) ⊆ cθ and cθ�dom(sθ) ⊆ bθ, so
aθ�dom(sθ) ⊆ bθ. In the second case, there are c, c′, d, d′ as in the definition. If
x ∈ dom(sθ) and (x, y) ∈ aθ then there is z such that (x, z) ∈ cθ, (z, y) ∈ dθ.
Inductively, (x, z) ∈ (c′)θ and (z, y) ∈ (d′)θ, hence (x, y) ∈ (c′ ◦ d′)θ = bθ. In
the third case, dom(sθ) ⊆ dom((s′)θ), so a�dom(sθ) ⊆ a�dom((s′)θ) ⊆ bθ. This
proves aθ�dom(sθ) ⊆ bθ, as required. �

Let

σn = ((b �n a ∧ a �b
n b) → a ≤ b)

σ = ((b � a ∧ a �b b) → a ≤ b)

For finite n, σn is a first-order formula, while σ is infinitary and is equivalent
to

∧
n<ω σn.

Lemma 2.3.

R(�, ; ) |= σ.

Proof. Let S ∈ R(�, ; ) and let θ be a representation. Assume the premise
of σ, S |= (b � a ∧ a �b b). By the previous Lemma, dom(bθ) ⊆ dom(aθ)
and aθ�dom(bθ) ⊆ bθ, i.e. aθ � bθ. Since θ represents ≤ as � we must have
S |= a ≤ b. Thus S |= σ. �

We now define an explicit construction of a representation to prove com-
pleteness. It will be loosely based on representation for ordered semigroups θ′
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Figure 2. Points (a, b) ∈ Xi, b ∈ Xf , a′ ∈ Xb

as described in Section 1 and visualised on the second part of Figure 1, but
where at each point we also record information about the domain of outgoing
labels. We begin by defining the base X.

Definition 2.4. Let S be a (≤, ◦)-structure. Consider the base set

X = Xi

•∪ Xf

•∪ Xb

where
•∪ denotes disjoint union and

Xi = {(a, b) : a, b ∈ S, a � b}
Xf = {b : b ∈ S}
Xb = {a′ : a ∈ S}.

We may use a prime symbol ′ for points in Xb in order to distinguish them
from points in Xf . For x = (a, b) ∈ Xi let λ(x) = b, δ(x) = a, for b ∈ Xf let
λ(b) = δ(b) = b, and for a′ ∈ Xb let λ(a′) be undefined and δ(a′) = a.

We refer to the points in Xi,Xf ,Xb as initial points, follow points and
branch points, respectively. For x ∈ X we may refer to δ(x) as the domain of x
and for x ∈ Xi ∪Xf , λ(x) is the label of x. Suppose S contains a left and right
identity e for ◦. In Definition 2.5 below, we will define a representation where
for x ∈ Xi ∪Xf , λ(x) will label the edge from x to the fixed point e ∈ Xf , and
for x ∈ X, δ(x) will be a tight lower �-bound for the label of any outgoing
edge from x. Note that the label of a follow point equals the domain of that
point, the label of a branch point is undefined. An example of an initial, follow
and a branch point is visualised in Figure 2.

Definition 2.5. For each a ∈ S define a binary relation aθ ⊆ X × X by letting
(x, y) ∈ aθ if and only if
(1) y �∈ Xi,
(2) x ∈ Xb ⇒ y ∈ Xb,
(3) δ(x) � a ◦ δ(y) and

(4) x ∈ Xi

•∪ Xf , y ∈ Xf ⇒ λ(x) �δ(x) a ◦ λ(y).
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Figure 3. (x, y) ∈ aθ with (i) x ∈ Xi

•∪ Xf and y ∈ Xf ,

(ii) x ∈ Xi

•∪ Xf and y ∈ Xb, and (iii) x ∈ Xb, y ∈ Xb. It
is required in each case that δ(x) � a ◦ δ(y), and in case (i)
additionally that λ(x) �δ(x) a ◦ λ(y). In (i) and (ii) if x ∈ Xf

then the δ(x) and λ(x) arrows coincide, see Defini-
tions 2.4, 2.5.

We visualise θ in Figure 3.

Lemma 2.6. Let S = (S,≤, ◦) be a structure where ◦ is associative, ≤ is a
partial order, S |= σ and suppose there is an identity e ∈ S. Let θ be from
Definition 2.5. Then a ≤ b ∈ S if and only if aθ � bθ.

Proof. Assume a �≤ b, so either ¬b � a or ¬a �b b, by σ. In the former case,
consider b′ ∈ Xb, and recall that δ(b′) = b. Then b′ ∈ dom(bθ) (since (b′, e′) ∈
bθ) but b′ �∈ dom(aθ) (since ¬b�a). Otherwise b � a and ¬a�bb, but then define
x = (b, a) ∈ Xi and observe that (x, e) is in aθ but not in bθ, yet x ∈ dom(bθ)
(since (x, e′) ∈ bθ). Either way, aθ �� bθ.

Now suppose a ≤ b. First we check that dom(bθ) ⊆ dom(aθ). If x ∈
dom(bθ) there is y ∈ X where (x, y) ∈ bθ. It follows that δ(x) � b � a, so
(x, e′) ∈ aθ and x ∈ dom(aθ). Secondly, if x ∈ dom(bθ) (so δ(x) � b) and
(x, y) ∈ aθ we know that (3)–(4) hold for a, in particular δ(x) � a ◦ δ(y). It
follows that δ(x) � b ◦ δ(y), by Lemma 2.1(4), as required by (3). Conditions
(1),(2) remain true for bθ. For (4) if x ∈ Xf then λ(x)�δ(x)a◦λ(y)�δ(x) b◦λ(y),
by Lemma 2.1(3). Hence (x, y) ∈ bθ, thus aθ � bθ. �

Lemma 2.7. Let S = (S,≤, ◦) be a structure where ◦ is associative, ≤ is a
partial order, S |= σ and let θ be from from Definition 2.5. For any a, b ∈ S,
we have (a ◦ b)θ = aθ; bθ.

Proof. First, let’s show that aθ; bθ ⊆ (a ◦ b)θ. Take any (x, y) ∈ aθ and (y, z) ∈
bθ. We have δ(x) � a ◦ δ(y) and δ(y) � b ◦ δ(z), so δ(x) � a ◦ b ◦ δ(z), by
Lemma 2.1(4). If x ∈ Xi ∪ Xf then y, z ∈ Xf , by (1), (2), so λ(y) = δ(y),
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Figure 4. Witness z for (x, y) ∈ (a ◦ b)θ where x ∈ Xi

•∪ Xf

and y ∈ Xf (left), x ∈ X, y ∈ Xb (right).

λ(x) �δ(x) a ◦ λ(y), λ(y) �λ(y) b ◦ λ(z), and then λ(x) �δ(x) a ◦ b ◦ λ(z), by
Lemma 2.1(3). Hence (x, z) ∈ (a ◦ b)θ.

Conversely, to show that (a ◦ b)θ ⊆ aθ; bθ, take any (x, y) ∈ (a ◦ b)θ. By
(1) y �∈ Xi. If y ∈ Xb let z = (b◦δ(y))′ ∈ Xb (Figure 4 right), otherwise y ∈ Xf

and we let z = (b ◦ λ(y)) ∈ Xf (Figure 4 left). In each case δ(z) = b ◦ δ(y), in
the latter case λ(z) = (b ◦ λ(y)), so (x, z) ∈ aθ, (z, y) ∈ bθ, as required. �

Theorem 2.8. R(�, ; ) is axiomatised by partial order, associativity and {σn :
n < ω}. Finite structures S ∈ R(�, ; ) are representable over a finite base X
with |X| ≤ (1 + |S|)2 + 2 · (1 + |S|).
Proof. Soundness of partial order, associativity is clear, soundness of σn is
from Lemma 2.3. For completeness, take any associative, partially ordered
(≤, ◦)-structure S |= {σn : n < ω}. We may define S ′ be adding a new identity
e to S unordered with other elements. By Lemmas 2.6 and 2.7 , the map θ
of Definition 2.5 is a (�, ; )-representation of S ′, hence it restricts to a (�, ; )-
representation of S. The representation θ has base contained in a disjoint
union of a copy of (S ′)2 and two copies of S ′ and thus contains at most
(1 + |S|)2 + 2 · (1 + |S|) elements. �

3. R(�, ; ) is not finitely axiomatisable

Definition 3.1. Let n < ω, N = 1 + 2n and let Sn be a (≤, ◦)-structure whose
underlying set Sn has 3 + 3N elements

Sn = {0, b, c} ∪ {ai, aib, aic : i < N}
where composition ◦ is defined by ai ◦ b = aib, ai ◦ c = aic (all i < N) and all
other compositions result in 0, and the refinement operation ≤ is defined as
the reflexive closure of

{(s, 0) : s ∈ Sn} ∪ {(ai+1b, ai), (ai, ai+1c), (aib, aic) : i < N}
where here and below the operator + denotes addition modulo N .

Observe that ◦ is associative and ≤ is a partial order.
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Lemma 3.2. For n ≥ 2, Sn is not representable, but Sn |= σk for k < n.

Proof. Since s ≤ 0 we have 0 �0 s. Also, for i < N , since ai+1 ◦ b ≤ ai

we have ai �0 ai+1b �0 ai+1, ai �0 ai+1, so ai �k ai+2k for k ≥ 1, using
Lemma 2.1((2)). Hence {ai, aib : i < N} is a clique of �n, but for k < n we do
not have ai+1 �k ai nor do we have ai+1c �k aib.

For �, we have
• t�s

0u iff t ≤ u and s = u, i.e. s�s
0s, s�000 (all s), ai+1b�ai

0 ai, ai�
ai+1c
0 ai+1c

and aib �aic
0 aic (all i < N), but �0 holds in no other cases.

• Since ai+1b ◦ c = 0 and ai+1b �ai
0 ai, it follows by Lemma 2.1((3)) that

0�ai
1 aic, similarly, 0�ai

1 aib. Also by Lemma 2.1((3)), since ai �
ai+1c
0 ai+1c

and ai+1c ◦ b = 0 we get aib �
ai+1c
1 0, similarly aic �

ai+1c
1 0. And from

ai �ai
0 ai and c �c

0 c we get aic �ai
1 aic, similarly aib �ai

1 aib. The only non-
zero products are ai ◦ b and ai ◦ c, so the only remaining case of �1 we
obtain from Lemma 2.1((3)) is 0 �s

1 0, which follows since s �s
0 s, for all

s ∈ Sn and 0�00 0. By Lemma 2.1((5)), from ai+1b�ai
0 ai we get ai+1b�s

1 ai

for s �0 ai. This concludes the exhaustive enumeration of elements in �1,
not covered by �0.

• If a �s
1 b and s′ �1 s we get a �s′

2 b, in particular 0 �aic
2 aic.

• Since aib �
ai+1c
1 0 �

ai+1c
2 ai+1c, it follows by Lemma 2.1((2)) that

aib �
ai+1c
3 ai+1c.

• The remaining cases of � can be enumerated as follows. We have 0 �s

ai+1c, 0 �s ai+1b, aic �s aic for s � a0, by Lemma 2.1((4)). Addi-
tionally, since ai+1b �s ai, we get 0 �s ai, by Lemma 2.1((2)). Also by
Lemma 2.1((2)), for any s ∈ Sn since s �0 0 and 0 �0 aib, 0 �0 aic, 0 �0 ai,
we have s �0 aib, s �0 aic, s �0 ai, and if a ∈ {aib, aic : i < N}, and
b ∈ {ai, aib, aic : i < N} we have a �ai+1c b.
This covers all triples (a, s, b) where a �s b. It follows that Sn �|= σn+1 for

n ≥ 2, since ai+1c �1 ai+1 �n aib, aib �
ai+1c
3 ai+1c but Sn �|= aib ≤ ai+1c. By

Theorem 2.8, Sn is not representable. The only cases where a �b b and a �≤ b
are aib�ai+1c ai+1c, but for k < n we do not have ai+1c �k aib, hence Sn |= σk.
�
Theorem 3.3. R(�, ; ) cannot be defined by finitely many axioms.

Proof. Each structure Sn �∈ R(�, ; ). For any k < ω almost all Sn satisfy σk

(in fact, all Sn where n > k) and they are all associative and partially ordered,
hence any non-principal ultraproduct S = ΠUSn is associative, partially or-
dered and satisfies all σks, so by Theorem 2.8, S ∈ R(�, ; ). By �Loś’ theorem,
R(�, ; ) has no finite axiomatisation. �

4. Finite axiomatisability and representability

For any relation algebra signature Σ, the representation class R(Σ) may be
finitely axiomatisable or not, and it may be that finite representable structures
have finite representations or not. All four combinations of these two properties
are possible.



28 Page 10 of 14 R. Hirsch, J. Šemrl Algebra Univers.

Theorem 4.1. The representation class R(Σ) is finitely axiomatisable, and fi-
nite structures in R(Σ) have finite representations, according to the following
incomplete table.

fin. ax. not fin. ax.
fin. rep (⊆,D,R, �, ; ) (�, ; )

(⊆, ; ), (�, ∗)

not fin. rep. (∩, ; ) (∩,∪, ; ) ⊆ Σ
(⊆, \, ; ) ⊆ Σ

where Σ′ ⊆ Σ signifies the language characterised by Σ being an expansion of
the language characterised by Σ′.

Proof. Finite axiomatisability of R(⊆,D,R, �, ; ) is proved in [2] and the finite
representation property for this signature is proved in [8]. Both R(⊆, ; ) and
R(�, ∗) are defined by the axioms of ordered semigroups and have the finite
representation property [15,9].

The finite representation property is proved for R(�, ; ) in Theorem 2.8,
non-finite axiomatisability is proved in Theorem 3.3. The failure of the finite
representation property for signatures containing (∩, ; ) is proved in [13], finite
axiomatisability of R(∩, ; ) is proved in Proposition 4.2 below.

For the final quadrant of the diagram, if the representation problem for
finite structures in R(Σ) is undecidable, we know that there can be no finite
axiomatisation, and since the set of formulas valid over R(Σ) is recursively
enumerable the finite representation property cannot hold. The representation
problem for finite structures is proved undecidable for signatures containing
(∩,∪, ; ) in [7] and for signatures containing (⊆,−, ; ), where negation is in-
terpretted as complementation relative to a universal relation X × X, in [12].
We extend that result to prove failure of the finite representation property
for representations where − denotes complementation relative to an arbitrary
maximal binary relation in Proposition 4.3, below. �

Proposition 4.2. R(∩, ; ) is finitely axiomatisable.

Proof. A (∩, ; )-representable (·, ◦)-structure clearly satisfies the semilattice
laws, associativity and monotonicity. Conversely, in a representation game
played over an associative, monotonic semilattice S, ∃ plays a sequence of
networks — graphs N whose edges are labelled by upward closed subsets of S,
such that N(x, y);N(y, z) ⊆ N(x, z) for all x, y, z ∈ N . [See Definition 7.7 of
[6] for more details of a representation game for the full signature of relation
algebra, and Chapter 9 for representation games in a more general setting.]
In the initial round suppose ∀ picks a �= b. By antisymmetry either a �≤ b or
b �≤ a, without loss assume the former. ∃ plays a network N0 with two nodes
labelled N(x, y) = a↑, all other edges have empty labels, note that b �∈ N(x, y).
In a subsequent round let N be the current network and suppose ∀ picks nodes
x, y ∈ N and a, b ∈ S such that a ◦ b ∈ N(x, y), see Figure 5. ∃ adds a sin-
gle new node z and lets N ′(w, z) = N(w, x); a↑, N ′(z, w) = b↑;N(y, w) for
all w ∈ N to define N ′. Edges within N are not refined. If u,w ∈ N then
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Figure 5. Node Addition in a Representation Game for (·, ◦)

N ′(u, z);N ′(z, w) = N(u, x); a↑; b↑;N(y, w) ⊆ N(u, x);N(x, y);N(y, w), since
a; b ∈ N(x, y), using associativity, left and right monotonicity. It is easily seen
that N ′ is a consistent network, a legal response to ∀’s move not refining the
initial edge. It follows that S ∈ R(∩, ; ) �

Let S be a (≤,−, ◦)-structure. A (⊆, \, ; )-representation of S over base
X is a map θ : S → ℘(X × X) such that for all a, b ∈ S,

• a ≤ b → aθ ⊆ bθ,
• (x, y) ∈ aθ → (x, y) ∈ Δ(bθ, (−b)θ) (the symmetric difference of bθ and

(−b)θ),
• (x, y) ∈ (a ◦ b)θ ↔ ∃z((x, z) ∈ aθ ∧ (z, y) ∈ bθ).

According to this definition, − is represented as \, the complementation in the
union of all the represented binary relations.

Proposition 4.3. For any Relation Algebra (RA) reduct (⊆, \, ; ) ⊆ Σ, the rep-
resentation class R(Σ) fails to have the finite representation property for finite
representable structures.

Proof. The point algebra P is a relation algebra whose boolean part has three
atoms e, l, g (so 8 elements, 0, e, l, g,−e,−l,−g, 1), where e is the identity, the
converse of l is g, composition for atoms is given by

◦ e l g
e e l g
l l l 1
g g 1 g

and the operators extend to arbitrary elements by additivity. A represen-
tation of P over Q may be obtained by representing e, l, g as the identity
{(q, q) : q ∈ Q}, less than {(q, q′) : q < q′} and greater than, respectively. It
follows that the reduct of P to (≤,−, ◦) is (⊆, \, ; )-representable. We claim it
has no finite (⊆, \, ; )-representation.

Let θ be any (⊆, \, ; )-representation of P over the base X.

Claim 1. If (x, y) ∈ gθ then x �= y. To prove the claim, suppose for contra-
diction that there is a point x ∈ X with (x, x) ∈ gθ. As g ≤ −e, (x, x) ∈
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Figure 6. Induction showing a new node is needed for rep-
resentation of P

gθ ⊆ (−e)θ. And since g = g ◦ e, there exists a y s.t. (x, y) ∈ gθ, (y, x) ∈ eθ.
Since e ◦ g = g, we also have (y, x) ∈ gθ. But e ≤ −g, so (y, x) ∈ (−g)θ. Since
(y, x) ∈ gθ we have reached a contradiction and proved claim 1.

Claim 2. For n ≥ 0 there will exist an x ∈ X and a set of distinct points
y0, . . . , yn ∈ X such that for all i ≤ n we have (x, yi) ∈ (−g)θ and for all
i < j ≤ n we have (yj , yi) ∈ gθ. See Figure 6. Claim 2 is proved by induction
over n. For the base case, n = 0, since (−g) �≤ 0 there are x, y0 where (x, y0) ∈
(−g)θ. Assume the hypothesis for some n ≥ 0. Since (x, yn) ∈ (−g)θ and
(−g) ≤ 1 = (−g) ◦ g, there must be yn+1 ∈ X where (x, yn+1) ∈ (−g)θ and
(yn+1, yn) ∈ gθ. Since (yn, yi) ∈ gθ it follows that (yn+1, yi) ∈ (g ◦g)θ = gθ, for
i ≤ n. By the previous claim, yn+1 is distinct from yi, for i ≤ n, as required.
This proves Claim 2.

Since X contains a set of n distinct points, for all n < ω, it follows that
X must be infinite. �

5. Demonic lattice and semilattice

We have seen in the introduction that demonic join � is the join operation for
demonic refinement �. A demonic meet �, acting as a least upper bound of
its two arguments, may not in general be defined, as there are binary relations
having no common lower bound at all. If a point x is in the domain of two
binary relations R,S, but not in the domain of R ∩ S, then any lower bound
of R,S would be below the intersection R ∩ S, hence x would be outside its
domain, yet in order to be a lower bound its domain should contain both the
domain of R and the domain of S, a contradiction. This problem could solved
be adding a single new point ⊥ to the base X of the representation θ and letting
θ′(R) = θ(R) ∪ {(x,⊥) : x ∈ dom(R)} to obtain an alternative representation
of the refinement algebra, with �-least element {(x,⊥) : x ∈ X ∪ {⊥}}. Over
such a representation, a greatest lower bound may be defined by

R � S = {(x, y) : (x, y) ∈ R, x �∈ dom(S)}
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∪ (R ∩ S)

∪ {(x, y) : (x, y) ∈ S, x �∈ dom(R)}
Hence, every representable (�, ; )-structure embeds into a representable (�,
�, ; )-structure forming a distributive lattice with composition. We expect that
additional properties are required to ensure that such a representation exists.

Problem 5.1. Is the class of representable semigroups with demonic semilat-
tice R(�, ; ) finitely axiomatisable and are the finite structures in R(�, ; ) rep-
resentable over finite bases?

Problem 5.2. Find axioms for the class of all (�,�, ; )-structures of binary
relations with demonic join and meet under composition.
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