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Abstract  

Large anthropogenic 14C datasets are widely used to generate summed probability distributions (SPD) 

as a proxy for past human population levels. However, SPDs are a poor proxy when datasets are small, 

bearing little relationship to true population dynamics. Instead, more robust inferences can be 

achieved by directly modelling the population and assessing the model likelihood given the data. We 

introduce the R package ADMUR which uses a continuous piecewise linear (CPL) model of population 

change, calculates the model likelihood given a 14C dataset, estimates credible intervals using MCMC, 

applies a Goodness of Fit test, and uses the Schwarz Criterion to compare CPL models. We 

demonstrate the efficacy of this method using toy data, showing that spurious dynamics are avoided 

when sample sizes are small, and true population dynamics are recovered as sample sizes increase. 

Finally, we use an improved 14C dataset for the South American Arid Diagonal to compare CPL 

modelling to current simulation methods, and identify three Holocene phases when population 

trajectory estimates changed from rapid initial growth of 4.15% per generation to a decline of 0.05% 

per generation between 10,821 and 7,055 yr BP, then gently grew at 0.58% per generation until 2,500 

yr BP.  
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1. Introduction 

The varying frequencies of archaeological samples through time are commonly represented using a 

Summed Probability Distribution (SPD) of associated calibrated 14C dates, and such distributions of 

anthropogenic dates are widely used as a proxy to infer dynamics in human populations [1-8]. Prior to 

more recent simulation approaches (see below), the SPD curve was (and often continues to be) 

misinterpreted as a faithful representation of population dynamics despite its shape being influenced 

by other nuisance factors such as taphonomic loss, wiggles inherited from the calibration curve, and 

ascertainment biases. Curves from very small datasets are dominated by the sporadic nature of small 

sample sizes, and the inevitable gaps between individual calibrated dates cannot be interpreted as 

population hiatuses. [9-11]. In this paper we utilize an available extended radiocarbon database [12] 

for the South American Arid Diagonal (SAAD) and develop an improved method to extract 

demographic signatures from archaeological data by combining continuous piece wise linear models 

and formal model comparison. 
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(a) The archaeological hypothesis: Population troughs in the South American Arid Diagonal 

The SAAD is a major climatic and biogeographic NW-SE band extending from northwestern Peru to 

southeastern Argentina, encompassing most of the arid and semiarid ecosystems of South America 

[13, 14]. Whilst spatially and temporally variable, the mid-Holocene (8.2-4.2 kyr BP [15]) has been 

characterized as a period of enhanced aridity in these deserts [16, 17]. Volcanic eruptions have also 

been suggested to have affected human occupations at local and regional scales in parts of the SAAD 

[18]. Based on this palaeoecological framework, there has been a growing archaeological debate on 

the possible existence of gaps in the archaeological record in different regions which may signal a 

demographic discontinuity during the mid-Holocene [2, 19-24]. Previous analyses by some authors of 

this paper (RB and CM) used SPDs of radiocarbon dates to explore population dynamics and found 

evidence of synchronicity in fluctuations at different latitudes, allowing the formation of a hypothesis 

that there may have been two short population troughs in the SAAD driven by increasing aridification 

between 7.6-7.2 kyr BP and 6.8-6.4 kyr BP [2, 24]. Here we build on this previous work and apply a 

rigorous model comparison framework to test this hypothesis.  

2. Current inferential methods 

(a) Direct SPD interpretation 

As a thought experiment we can consider a curve comprising just a single (calibrated) date of an 

organic sample. The sample has a single (point) true date of death, and the curve tells us how 

believable each possible date is. Neither the sample’s existence nor the true date of its death waxes 

and wanes through time. Likewise, we cannot interpret the SPD of a small dataset across a narrow 

time period as representing the fluctuations of a population through time – instead it represents 

how believable each year is, as possible point estimates for sample 1 or sample 2 or sample 3, etc. It 

is this ‘or’ component (the summing) that restricts the interpretation of the curve – the SPD is not 

the single best explanation of the data, nor even a single explanation of the data, but rather a 

conflation of many possible explanations simultaneously, each of which is mired by the artefacts 

inherited from the calibration wiggles. 

We deliberately used the word explanation, since the SPD is merely a convolution of two datasets: the 

raw 14C/12C ratios with their errors; and the calibration curve with its error ribbon. Therefore, the SPD 

provides an excellent graphical representation of the data by compressing a large amount of 

information into a single plot, and its value in data representation should not be disparaged. However, 

the SPD is not a model and cannot be directly interpreted to draw reliable inferences about the 

population dynamics.  

(b) Simulation methods to reject a null model 

Recognising the need for a more robust inferential framework, by 2013 methods were developed that 

moved away from mere data representation, and instead focused on directly modeling the 

population. An exponential (or any other hypothesised shape) null model could be proposed, and 

many thousands of simulated datasets could then be generated under this model and compared to 

the observed. The SPD was no longer the end product; instead it was used to generate a summary 

statistic. The summary statistics from each simulated SPD (and the observed SPD) could then be 

compared, a p-value calculated, and (if deemed significant) the hypothesised model could be rejected 

[25, 26]. This approach was successful in directly testing a single hypothesised population history and 

was widely adopted [12, 27-33] as the field moved towards a model-based inferential framework. 

(c) Other approaches to directly modelling the population 
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The inferential limits of the SPD and the importance of directly modelling population fluctuations has 

been approached with various underlying model structures. The Oxcal program offers Kernel Density 

Models [34], whilst the R package Bchron[35] employs Bayesian Gaussian mixture models. Both 

approaches can provide models of the underlying population by performing parameter searches and 

are based on sound model likelihood approaches. However, Gaussian based models (both mixture 

models and kernels) are by nature complex curves with constantly changing gradients. No doubt real 

population levels also fluctuate through time with complex and relentless change, but this leaves us 

with a model that can only be described graphically and cannot be easily summarised in terms of 

dating key demographic events. 

Furthermore, these methods do not address how reasonable the model structure is in the first place. 

There are two approaches to achieve this. Firstly, a goodness of fit test can establish if the observed 

data could have been reasonably produced by the model. This is essentially the approach taken by the 

simulation methods mentioned above where the p-value provides this goodness of fit, and allows the 

model to be rejected if it is a poor explanation of the data. Secondly, a model selection process can be 

used to ensure unjustifiably complex models are rejected in favour of the simplest plausible model 

with the greatest explanatory power.  

Goldberg et al.[36] and Fernández López de Pablo et al.[32] also modelled population dynamics 

directly. They both used a piecewise model comprising various phases of logistic and/or exponential 

growth. However, neither study used a continuous model (the phases did not join), nor were the 

authors able to calculate likelihoods. As a result, Goldberg et al. misappropriate the Schwarz criterion 

(BIC) for use with their ‘proxy likelihoods’ and contradict their own modelling results that indicate a 

stable population size during the mid-Holocene in favour of overinterpreting existing SPD simulation 

methods to infer oscillations of peaks and troughs. In the case of Fernández López de Pablo et al [32] 

and others [30], the modelling is even more problematic since they apply regression directly to the 

SPD. The graphical points on the SPD however, correspond to the number of calendar years in the 

study period and are not the independent samples that formed it, i.e. the 14C dates (or more 

conservatively, the smaller number of phases can be considered independent samples). This renders 

their standard regression outputs (likelihoods, AIC and BIC) meaningless. 

Nevertheless, Goldberg et al. innovated an important contribution in two key respects. Firstly, their 

piecewise model is defined by a small number of discrete phases or periods. This brings the advantage 

of directly modelling the timing and intensity of population events (the date at which the model 

changed from one phase to the other), and a simple description of the population behaviour in each 

phase. Secondly and most importantly, the authors raised the point that a model comparison is 

required. They test various models, both simpler (one phase), and more complex (up to six phases) in 

various permutations of logistic and exponential phases. We build on this approach and overcome 

their shortcomings. We construct a continuous piecewise model, calculate likelihoods, and use the BIC 

to select the most appropriate number of phases. Finally, we use a goodness of fit test to show the 

data is plausible under the best model. 

3. Continuous Piecewise Linear (CPL) Modelling 

The goal in population modelling is usually to identify specific demographic events. Typically, the 

objective is to estimate the date of some event that marks a change in the trajectory of the population 

levels, such as the start of a rapid decline or increase in population levels (perhaps from disease, 

migration or changes in carrying capacity) and provide a simple description of the population 

behaviour between these events, such as a growth rate. A CPL model lends itself well to these 
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objectives since its parameters are the coordinates of the hinge points, which are the relative 

population size (y) and timing (x) of these events.  

4. Model selection using the Schwarz Criterion 

We choose the number of linear phases (or number of hinge points joining these phases) 

systematically as part of a Model Selection process. Given a 14C dataset, we find the maximum 

likelihood (ML) continuous one-piece (or one-phase) linear model (1-CPL), then the ML 2-CPL, etc. 

Although the likelihood increases with the number of parameters (the greater freedom allows the 

model to fit more closely to the data), we calculate the Schwarz Criterion [37], otherwise commonly 

misnamed[38] the Bayesian Information Criterion (BIC), to naturally penalise for this increasing 

complexity. We favour this criterion over Akaike’s Information Criterion (AIC) [39] since the BIC 

provides a greater penalty for model complexity than does the AIC, ensuring conservative selection 

that avoids an overfit model. Indeed, we find the AIC typically favours an unjustifiably complex model, 

for example when using toy data where the ‘true model’ is known. Therefore, we select the model 

with the lowest BIC as the best model. Model complexity beyond this provides incrementally worse 

BIC values, and as a result the turning point in model complexity can be easily found, and superfluous 

computation for unnecessarily complex CPL models is thus avoided.  

Whilst a large database provides greater information content to justify a CPL model with many hinge 

points, it is worth considering the extreme case of fitting a CPL model to a tiny dataset. Fig 2 illustrates 

that the lack of information content naturally guards against overfitting, and a uniform distribution is 

always selected (a model with no demographic events and no population fluctuations) where sample 

sizes are low. This should make intuitive sense – in the light of such sparse we should not infer anything 

more complex than a constant population across the time range covered by that single date.  

Large 14C databases covering long time periods often exhibit a general long-term background increase 

through time, attributable to some combination of long-term population growth and some unknown 

rate of taphonomic loss of dateable material through time. Such a dataset may be better explained by 

a model of exponential growth (requiring just a single lambda parameter) than a CPL model. 

Therefore, for real datasets the model selection procedure should also consider other non-CPL models 

such as an exponential model.   

5. Calculating Likelihoods 

Theoretically a calibrated date should be a continuous probability density function (PDF), however in 

practice a date is represented as a discrete vector of probabilities corresponding to each calendar 

year, and is therefore a probability mass function (PMF). This discretisation (of both a proposed model 

probability distribution and a calibrated date probability distribution) provides the advantage that 

numerical methods can be used to calculate likelihoods. 

Hypothetically, if a calibrated date was available with such precision that it could be attributed with 

certainty to just a single calendar year, the model likelihood would trivially be the model’s probability 

mass (pm) at that date. Similarly, if the data comprised just two such point estimates (at calendar time 

points A and B), the model’s relative likelihood would trivially be the model probability at date A 

multiplied by the model probability at date B. 

However, a single calibrated 14C date is not a point estimate, but rather a complex multimodal 

probability distribution, representing the probability of each possible year being the true date. 

Therefore the probability of a single calibrated date given the model can be calculated as the model 

probability at year A, or the model probability at year B etc, for all possible years, weighted by how 
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probable the calibrated 14C date is at each of those years. This can be calculated using the scalar 

product between model probabilities and calibrated date probabilities, and gives the probability of a 

single calibrated date under the model. This is repeated for every calibrated date, and the overall 

product gives the relative likelihood of the model, given the whole dataset.  

This approach assumes each date is a fair and random sample, but where many dates are available 

from a single sitephase it is sensible to first bin dates into phases. This is an important step in modelling 

population dynamics to adjust for the data ascertainment bias of some archaeological finds having 

more dates by virtue of a larger research interest/budget. This is achieved by first generating an SPD 

for each phase and normalising. These phase-SPDs are then combined and normalised to create a final 

SPD. This procedure ensures phases with multiple dates are weighted to contribute the same overall 

probability mass as a phase with a single date. The probability of each phase SPD can then be 

calculated in exactly the same way as the probability of a single calibrated date.  

6. Avoiding edge effects 

It is common for a research question to be targeted at a specific time range that spans only part of the 

overall calibrated date range of the 14C dataset being used. This is of no consequence if merely 

generating an SPD, as regions outside the range of interest can be ignored or truncated. Indeed, 

simulation approaches benefit from considering a slightly wider range by pushing any potential edge 

effects outside the target range. In contrast, any modelling approach that calculates likelihoods will 

be influenced by the entire dataset provided, including dates that fall well outside the modelled date 

range. These external dates must be excluded, since they can have a substantial and mischievous 

influence on the parameter search. 

This influence can be attributed to the interesting behaviour of the tails of a Gaussian distribution, 

from which a calibrated date is derived. A calibrated date has a non-zero probability at all calendar 

dates, and as a consequence, a mostly external date still has a tiny tail within the model’s date 

boundaries. However, despite the absolute probability values of this tail being extremely small, 

surprisingly the relative value increases hugely towards the model boundary (approximately 

exponentially). As a result, given a dataset where all/most dates are external to the date range of 

interest, the most likely model shape will have massive upticks at the boundaries. Overall the 

likelihood of such a model will be extremely small, but it will be the best explanation given so much 

data is outside the date range.  

Similarly, modelling population dynamics across a range wider than the available dates would be 

making the incorrect assumption that the absence of evidence at these edges provides evidence of 

absence, and this will influence the shape of the fitted model. There may be rare occasions where this 

is reasonable, for example where humans are known to be absent from an island prior to (or after) 

some date, or where the archaeological sampling is so substantial that there is confidence that dates 

would have been recovered if there was a human presence.  

Therefore, it is important to ensure the date range of the data and model are appropriate for each 

other, and to exclude dates from the dataset that do not reasonably fall within the modelled range. 

We achieve this with our real datasets by only including a date if more than 50% of its probability falls 

within the modelled date range – i.e., it is more probable that its true date is internal than external.  

Similarly, we achieve this with our extremely small toy dataset (N=6) by constraining the modelled 

date range to exclude the negligible tails outside the calibrated dates.  

7. Search algorithm for parameters 



Page | 6 
 

The CPL model is a probability mass function (PMF) such that the probability outside the date range 

equals zero, and the total probability within the date range equals one. The exact shape of this PMF 

is defined by the (x, y) coordinates of the hinge points. Therefore, there are various constraints on 

parameters required to define such a curve. For example, if we consider a 2-CPL model only the middle 

hinge has a free x-coordinate parameter, since the start and end date are already specified by the date 

range. Of the three y-coordinates (left, middle, right hinges), only two are free parameters, since the 

total probability must equal 1. Therefore a 2-CPL model has 3 free parameters (one x-coordinate and 

two y-coordinates) and an n-phase CPL model has 2n-1 free parameters. 

We perform the search for the maximum likelihood (ML) parameters (given a 14C dataset and 

calibration curve) using the differential evolution optimization algorithm DEoptimR [40] A naïve 

approach to this search would propose a set of values for all parameters in an iteration simultaneously, 

and reject the set if it does not satisfy the above constraints. However, this approach would result in 

the rejection of many parameter sets. Instead, our objective function considers the parameters in 

order, such that the next parameter is searched for in a reduced parameter space, conditional on the 

previous parameters. We achieve this by adapting the ‘stick breaking’ Dirichlet Process to apply in two 

dimensions by sampling stick breaks on the x-axis using the Beta distribution and y-coordinates using 

the Gamma distribution. At each hinge, the length of the stick is constrained by calculating the total 

area so far between the first and previous hinge.  

8. Estimating Credible Intervals using Markov Chain Monte Carlo (MCMC) 

Having constructed a likelihood function that calculates the relative likelihood of any parameter 

combination, it can be used as the objective function in a parameter search to find the Maximum 

Likelihood parameter estimates. However, we also use the likelihood function in a MCMC framework 

to estimate credible intervals of our parameter estimates. We achieve this using the Metropolis-

Hastings algorithm [41] using a single chain of 100,000 iterations, discarding the first 2000 for burn-

in, and thinning to every 5th iteration. The resulting joint posterior distribution can then be graphically 

represented in several ways, such as directly plotting the joint parameter estimates on a 2D plot (Fig 

7), or histograms of the marginal distributions (Fig 6).  

9. Goodness of fit (GOF) test 

Once the best CPL model has been selected, its parameters found and the likelihood calculated, we 

generate 1000 simulated 14C datasets under this CPL model by ‘uncalibrating’ calendar dates randomly 

sampled under the model, taking care to ensure sample sizes exactly match the number of phases in 

the observed dataset. We then calculate the proportion of each calibrated simulated dataset outside 

the 95% CI, giving a distribution of summary statistics under our best CPL model. The p-value is then 

calculated as the proportion of these simulated summary statistics that are smaller or equal to the 

observed summary statistic. Conceptually this is similar to the method of calculating p-values under 

existing simulation methods for testing a null model[12, 25-33]. 

10. Demonstration of methods with toy data 

(a) Testing CPL model for a typical sample size 

To demonstrate our approach, we first generate a true (toy) population curve, which comprises a 3-

CPL model PDF between 5.5kyr and 7.5kyr BP We then randomly sample N=1500 dates under this true 

(toy) population curve, ‘uncalibrate’ these dates, apply an arbitrary 14C error of 25 years, then 

calibrate. We then conduct a parameter search for the best fitting 1-CPL, 2-CPL, 3-CPL, 4-CPL and 5-

CPL models. The BIC is calculated using: ln(n) k – 2 ln(L), where k is the number of parameters (k = 2p 

– 1, where p is the number of phases), n is the number of 14C dates and L is the maximum likelihood 
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[37]. Table 1 gives the results of this model comparison and shows that the model fits closer to the 

data as its complexity increases. However, the BIC shows that the model is overfitted beyond a 3-CPL 

model. Therefore, the model selection process successfully recovered the 3-CPL model from which 

the data was generated. 

 

Model Parameters Maximum log likelihood BIC 

uniform 0 -9976.29 19952.58 

1-CPL 1 -9862.86 19732.9 

2-CPL 3 -9833.87 19689.26 

3-CPL 5 -9792.05 19619.97 

4-CPL 7 -9790.87 19631.97 

5-CPL 9 -9790.40 19645.38 
Table 1: The 3-CPL model is selected as the best, since it has the lowest BIC (bold). As the number of parameters in the model 

increases, the likelihood of the model given the data increases. However, the BIC shows that this improvement is only 

justified up to the 3-CPL model, after which the more complex models are overfit to the data. 

We then assess the accuracy of the parameter estimates by generating 5 more random datasets under 

our true (toy) population curve and apply a parameter search to each dataset. Fig 1 illustrates the best 

3-CPL model for each dataset, which are all qualitatively similar to the true population curve. Each is 

the most likely model given the differences between their respective datasets, which are represented 

with SPDs.  

 

Fig 1: 3-CPL models best fitted to 5 randomly sampled datasets of N=1500 14C dates. Summed Probability Distributions (SPD) 

of each calibrated dataset illustrate the variation from generating random samples. This variation between random datasets 

is the underlying cause of the small differences between the hinge-point dates in each maximum likelihood model. 

(b) Testing CPL model with small sample size. 

We continue with the same true (toy) population curve and test the behaviour of both the model 

selection and parameter estimation with smaller sample sizes. As before, N dates are randomly 

sampled under the population curve, ‘uncalibrated’, assigned an error and calibrated. Fig 2 shows that 

for N=329 and N= 454 the 3-CPL model is successfully selected, and its shape is similar to the true 

population. For N=154 the lack of information content favours a 1-CPL model which successfully avoids 

overfitting, and for N=47 and smaller, the even simpler uniform model is selected. For N=6 the 

modelled date range is reduced to only encompass the range of the data (see section ‘avoiding edge 

effects’). These results successfully demonstrate that this approach provides robust inferences of the 
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underlying population dynamics, avoids the misinterpretation inherent in small datasets, and 

approaches the true population dynamics as sample sizes increase. 

 

Fig 2: Model selection naturally guards against overfitting with small sample sizes since the lack of information content 

favours simple models. In contrast, the Summed Probability Distributions (SPD) suggest interesting population dynamics that 

in fact are merely the artefacts of small sample sizes and calibration wiggles. 

Upper: the best model (red) selected using BIC between a uniform distribution and five increasingly complex n-CPL models.  

Lower: SPD (blue) generated from calibrated 14C dates randomly sampled from the same true (toy) population curve (black), 

and best CPL model PDF (red) constructed from Maximum Likelihood parameters. Note, the slight bend in black and red lines 

are merely a consequence of the non-linear y-axis used.  

11. R package ADMUR 

To enable full transparency of our methods and aid other researchers in applying and further 

developing these methods, we provide an accompanying package in R[42] called ADMUR: Ancient 

Demography Modelling Using Radiocarbon https://CRAN.R-project.org/package=ADMUR. and refer 

users to the vignette ‘guide’ which provides details of installation and use. All analysis and plots in this 

paper can be exactly replicated using the vignette ‘replicating-timpson-rstb.2020’. 

12. Modelling population dynamics in the South American Arid Diagonal (SAAD) 

(a) Data overview 

https://cran.r-project.org/package=ADMUR
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Fig 3: Site location of radiocarbon dates in South American Arid Diagonal (SAAD). All sites are within the contiguous SAAD, 

the boundary of which is defined using four of the Koppen-Geiger climate classification zones using Table 1 form Peel et al 

[43]: BWh = Arid hot desert, mean annual precipitation (MAP) < 5x Pthreshold, mean annual temperature (MAT) >=18°C; BWk 

= Arid cold desert, MAP < 5x Pthreshold, MAT <18°C; BSh = Arid steppe hot, MAP >= 5x Pthreshold, MAT >=18°C; BSk = Arid steppe 

cold MAP >= 5x Pthreshold, MAT <18°C. 

For this analysis we used a subset of the radiocarbon database compiled by Riris and Arroyo-Kalin [12] 

incorporating sites that fall within the geographically contiguous ‘Arid’ climatic categories of the SAAD 

as described in the World Köppen climate classification [44]. This provides a more relevant dataset to 

directly test previous hypotheses of demographic fluctuations in arid ecosystems [2, 20-24] by not 

averaging widely diverse ecological settings (e.g. [12, 36]). 

(b) SPD simulation method testing exponential model 

We generate an SPD from the dataset and test for significance using methods described in Shennan 

et al [25]. Individual dates from a single site within 200 years of each other were first binned into site-

phases, calibrated using SHCal20[45], and summed and normalized to unity, to account for site-

specific ascertainment bias. These distributions in each of the 708 phases were then summed and 

normalized to unity. Fluctuations in this observed SPD were tested for significance by generating 

20,000 random datasets, each sampling 708 dates from a fitted exponential distribution. Dates were 

‘uncalibrated’, assigned a random error, and calibrated. P-values were calculated using a summary 

statistic of each SPD calculated as the proportion the 95% CI.  
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Fig 4. SPD simulation approach illustrating the null hypothesis of steady exponential growth can be rejected 

The highly significant p-value of 0.002 is the result of only 35 of the 20,000 simulated SPDs having 

more periods outside the 95% CI than the observed SPD. However, there are important interpretive 

limits to be respected. This p-value permits us to confidently reject the hypothesis that these data can 

be explained by an exponential model, but this does not offer us an alternative plausible population 

model. Whilst we can interpret the sections outside the CI (highlighted red in Fig 4) as possible periods 

where the population may have been unusually high or low relative to the null exponential, we cannot 

misappropriate this p-value to confidently validate these interpretations as genuine population 

dynamics, for two reasons. Firstly, due to random fluctuations we can expect approximately 5% of 

each simulated SPD to sit outside the CI, so there is no way to identify which local sections are 

attributable to this random behaviour. Secondly, we still have the fundamental problem that the SPD 

is not a model of the population dynamics – it is merely a representation of the data being used as a 

proxy for the population dynamics. Nevertheless, we can successfully reject the simple exponential 

model, which permits us to explore alternative population models to better explain the data. 

(c) CPL modelling 

We apply our CPL modelling methods to the same SAAD dataset. As before, the data are binned into 

796 discrete site-phase bins, and this is reduced to 708 bins after the exclusion of dates mostly outside 

the date range (see section: ‘Avoiding edge effects’). We then apply four procedures. Firstly, model 

selection using the BIC establishes the 3-CPL model as best (Fig 5 left). Secondly, the Maximum 

Likelihood parameters of this model are found using the parameter search. Thirdly, the joint posteriors 

are estimated using MCMC. Fourthly, we apply the GOF test to this model, giving a p-value of 0.235, 

which establishes the dataset as a typical outcome of the model. 
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Fig 5. Left: Model comparison between an exponential model and n-CPL models of varying complexity using the BIC 

establishes the 3-CPL model as best; Right: red line shows the shape of the best 3-CPL model estimated using the Maximum 

Likelihood parameters; blue polygon shows the calibrated dataset as an SPD. 

 

 

Fig 6. Grey: Marginal Posterior Distributions of the parameters defining the 4 hinge points, estimated using MCMC. The dates 

of Hinges A and D are not free parameters since they are fixed at 14 kyr BP and 2.5 kyr BP respectively. Red: Maximum 

Likelihood parameters estimated separately using the search algorithm. 
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Fig 7. Credible Intervals of the 3-CPL model.  

Left: Model PDFs using the joint parameters of 1000 samples from the joint posterior parameter distribution (black) and 

maximum likelihood parameters (red), hinge points marked A to D.  

Right: the 50%, 75% and 95% Credible Intervals (grey) of all model PDFs (grey), and parameter values (red), sampled from 

the joint posterior parameter distribution.  

Linear 
phase 
between 
hinges 

Start yrs BP  
(95% CI) 

End yrs BP 
 (95% CI) 

Gradient  
(x 10^-9 per year) 
(95% CI) 

Relative growth rate 
per 25 yr generation 
(95% CI) 

1 (A-B) 14000 
10821  
(11887 to 8265) 

23.3  
(15.4 to 28) 

4.15%  
(1.12 to 5.32) 

2 (B-C) 
10821  
(11887 to 8265) 

7055  
(8013 to 5421) 

-1.3  
(-61.3 to 7.3) 

-0.05%  
(-1.96 to 0.25) 

3 (C-D) 
7055  
(8013 to 5421) 2500 

28.7 
 (20.1 to 42.5) 

0.58%  
(0.42 to 0.81) 

Table 2: Summary of the best 3-CPL model represented as Maximum Likelihood dates of hinge points, and the growth rates 

of the three phases. 95% CI calculated using quantiles. 

13. Discussion 

The three phases identified in Table 2 can be contextually informed by the archaeological record 
from dry regions in South America. While there is recent debate surrounding some earlier human 
occupations in the Americas [30, 46-49], 15/14 kyr BP represents a widely accepted range for the 
successful human exploration of the South American continent and of the SAAD in particular [50-52], 
based on both archaeological evidence and genomic data [30, 53]. In the SAAD, the period extending 
between 14,000 and 10,821 yr BP is characterized by a remarkably high growth rate of 4.15% per 25 
yr generation. Whilst current global population growth rates average c. 30% per generation (just 
over 1% per annum), this is a consequence of modern technological advances, and recent estimates 
on the prehistoric growth for human populations indicate a much smaller growth rate of 1% per 
generation (0.04% per annum) [54-56]. Therefore, the magnitude of population growth in this first 
phase is unusually high, and far greater than during any subsequent phase. This is likely due to the 
successful exploration and colonization of diverse and uncontested niches by early human societies 
[36, 52, 57] resulting in typical spread dynamics [56]. At 14.6 kyr BP the Antarctic Cold Reversal (ACR) 
began, resulting in colder conditions that were similar to those attributed to the North Atlantic 
Younger Dryas (YD) stadial [58-61]. This colder climate was accompanied by glacial advances 
throughout South America and higher lake levels in the Altiplano, which, based on palynological and 
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glacial geological studies, appear to be a result of precipitation increase over the Altiplano [62, 63]. 
The amelioration of different ecological niches and richness in resident species such as megafauna, 
would have increased the carrying capacity of the SAAD, leading to rapid human population growth 
and exploration of new landscapes. This population expansion would have had a significant 
ecological impact. In addition to climatic changes (discussed below), the increase in predation rates 
and niche displacement would ultimately have contributed to the extinction of the American 
megafauna [50, 64]. The regional pace of this anthropogenic impact on megafauna extinction 
remains unclear in the SAAD given its sparse evidence in some areas, such as in north-central Chile 
[65]. 

The second phase covers almost four millennia between 10,821 and 7055 yr BP and is associated with 

a slight population decrease (-0.05% per generation, Table 2). It has previously been hypothesised that 

human populations experienced periodic fluctuations during the mid-Holocene in response to climatic 

forces [2, 36]. However, our analysis, using a refined dataset and improved method, does not support 

this hypothesis for the SAAD. Instead, the best model suggests a population that was failing to grow, 

despite the estimated population size relative to occupiable land still being very low (c. 200,000 people 

in South America) [36]. Whilst ethnographic and theoretical studies demonstrate how a process of 

alternating growth and decline offers one possible mechanism that can give the long-term appearance 

of a stable plateau-like population trend [66, 67], we are unable to identify these hypothesised 

fluctuations. Indeed, neither did the modelling results presented by Goldberg et al [36], which, like 

our results, indicate little or no change in the population size c. 9 to 7 kyr BP. The question therefore 

remains as to what prompted such a significant shift from a rapidly growing population to one that 

was stagnating. Using the broader South American radiocarbon dataset, Riris and Arroyo-Kalin [12] 

propose three periods (8.4, 8.2 and 8.1 kyr BP) with exceptionally high frequency of climatic 

anomalies, which they correlate with an initial drop in relative population at and after 8.6 kyr BP and 

lasting until at least 6 kyr BP. Likewise, Goldberg et al [36] identified two mid-Holocene dips from 

additional SPD simulation analysis. Indeed, a relatively abrupt onset of aridity is recorded in a number 

of continental and marine records across South America [58, 68], and specifically the SAAD [17, 31, 

69-71]. This landscape was therefore remarkably different to the one experienced by the first 

colonisers. Almost all the megafaunal species were either extinct or going extinct [72], forest cover 

significantly decreased, surface water availability decreased, and temperatures were higher [57]. 

Importantly, a recent analysis at the scale of South America has identified demographic declines 

associated with climate change [12] thus substantiating the case for diverse demographic trajectories 

behind continent-wide patterns. 

Finally, the third phase extends between 7055-2500 yr BP (Table 2) and is characterized by a 0.58 

percentage increase per generation. It has been proposed that the mid Holocene increase in 

population growth rates may have been driven by the development of regional intensification [73]. 

However, except for the central coast of Peru, most centres of New World crop development were 

outside the SAAD, such as in the lowlands of central America and the interior of the Amazon [74-76]. 

Furthermore, the timing of the introduction of domestic species in the SAAD is inconsistent with the 

start of this third phase. Large parts of the drylands incorporated domesticated plant species as staples 

only after 4 kyr BP [77, 78]. Similarly llamas appear to have been initially domesticated around 4.5-4 

kyr BP in the South-Central Andes, although the full process of camelid domestication would have 

occurred independently at different times and places within the Andes [79, 80]. Therefore, the shift 

from slight population decline to an upward growth rate of 0.58% per generation occurs 2.5-3 kyr prior 

to domestication in the SAAD so does not appear to be associated with the development of 

agropastoral economies.  
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Increased sedentism has also been proposed as an explanation for this late phase of growth [36], and 

whilst a decrease in residential mobility has been proposed in the Atacama desert of northern Chile 

around 7 kyr BP [81] coinciding with our observed population growth at 7055 yr BP, there also appears 

to be much regional heterogeneity in mobility and, for instance there is little to no evidence of 

increased sedentism in large areas of the SAAD at this time, including Patagonia [50, 82].  

In contrast to these possible explanations, we note that a growth rate of 0.58% per generation (95% 

CI = 0.42 to 0.81) is not unusually high, and is instead broadly consistent with (indeed slightly lower 

than) the global estimates of 1% per generation (0.04% per year) for broadscale background Holocene 

population growth [54]. Zahid et al. [54] proposed that this background growth rate is a global 

phenomenon occurring irrespective of the local environment or subsistence strategy and is therefore 

intrinsic to our species, arguing that it is likely to be related to the global climate and/or endogenous 

biological factors.  

14. Conclusion 

Whilst current SPD simulation methods provide a robust statistical framework to test a single null 

hypothesis, successfully rejecting the null offers the researcher little in the way of drawing an 

inference about true population dynamics, and this inferential vacuum is often filled with 

overinterpretation of peaks and troughs in Summed Probability Distributions (SPDs). Furthermore, 

rejection of the simple exponential model of constant background growth has become so common 

that it is no longer tenable to use a classical hypothesis test that heavily favours this null. Instead we 

argue that a model selection approach is more appropriate. By including the exponential in the model 

selection process there is still the opportunity for this model to be selected, but unlike current 

simulation methods that can only reject (or fail to reject) an ‘assumed correct’ model, CPL modelling 

automatically provides a best explanation. The structure of the CPL model provides meaningful and 

useful date estimates of historic events; relative population levels and growth rates; avoids overfitting; 

and the GOF test quantitively checks if the data is reasonable, given the model. Together, these 

methods provide a solid inferential framework for evaluating prehistoric population dynamics from 
14C datasets of any size, and naturally avoids the overinterpretation that is common with SPD analysis.  

Our SAAD case study provides a demonstration of the need for this more robust inferential 

methodology. A substantial body of literature has grown to support a claim of mid Holocene 

population fluctuations, based on the misinterpretation of the available 14C data and the 

misappropriation of a significant p-value when using SPD simulation methods. We show that based on 

the current data this inference is unjustified, and that a steady population trajectory during this period 

is a better explanation of the data. Directly modelling population dynamics provide robust, justified 

and reasonable inferences. Our findings should not be misinterpreted as a claim that in reality there 

were no population fluctuations. Future larger datasets have the potential to support models of much 

greater complexity, and CPL modelling provides the basis and flexibility of fitting any number of hinges, 

offering detailed population histories of key events.  
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