
Aging Cell. 2020;00:e13272.	 ﻿	   | 1 of 9
https://doi.org/10.1111/acel.13272

wileyonlinelibrary.com/journal/acel

1  |  INTRODUC TION

As we age, we accumulate cells in many organs that exhibit signs 
of DNA damage, have poor proliferative capacity and are highly 
secretory. These cells are senescent, defined as being in a state of 
cell cycle arrest associated with phenotypic and functional changes 
(Campisi, 2013; Campisi & Fagagna, 2007). This process is primarily 
thought to prevent cancerous transformation of dividing cells (Braig 
et al., 2005; Chen et al., 2005), but senescence plays a vital role in 
developmental biology as well as in wound healing/tissue repair 

(Demaria et al., 2014; Krizhanovsky et al., 2008; Kurundkar et al., 
2016; Pitiyage et al., 2011; van Deursen, 2014). While transient se-
nescence is a beneficial mechanism earlier in life, the accumulation 
of senescent cells with increasing age leads to organ dysfunction, 
driving inflammation and may underlie many age-related diseases 
such as atherosclerosis (Childs et al., 2016), osteoarthritis (Jeon 
et al., 2017), neurodegenerative diseases (Chinta et al., 2018; Kritsilis 
et al., 2018) and cirrhosis (Wiemann et al., 2002).

Senescence is triggered by activation and subsequent mainte-
nance of DNA damage repair (DDR) signalling pathways. This can by 
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Abstract
The development of senescence in tissues of different organs and in the immune 
system are usually investigated independently of each other although during age-
ing, senescence in both cellular systems develop concurrently. Senescent T cells are 
highly inflammatory and secrete cytotoxic mediators and express natural killer cells 
receptors (NKR) that bypass their antigen specificity. Instead they recognize stress 
ligands that are induced by inflammation or infection of different cell types in tissues. 
In this article we discuss data on T cell senescence, how it is regulated and evidence 
for novel functional attributes of senescent T cells. We discuss an interactive loop 
between senescent T cells and senescent non-lymphoid cells and conclude that in 
situations of intense inflammation, senescent cells may damage healthy tissue. While 
the example for immunopathology induced by senescent cells that we highlight is cu-
taneous leishmaniasis, this situation of organ damage may apply to other infections, 
including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and 
senescent cells are all part of the same equation.
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induced by oncogene activation, replicative stress related to telo-
mere erosion and oxidative stress (Allsopp, 2008; Blackburn et al., 
2015) that kickstart a DDR. This involves proteins such as γ-H2AX, 
ATM, ATR, p16 and p53 (Nassour et al., 2016) that leads to cycle 
arrest which becomes permanent if repair fails. Importantly, while 
senescent cells do not proliferate, they are still metabolically active 
and secrete a wide array of cytokines, chemokines and matrix metal-
loproteinases that vary according to the cell type involved (Coppé 
et al., 2010). It is this senescence-associated secretory phenotype 
(SASP) that is thought to play a crucial role in age-related pathology 
such as the chronic low grade inflammation observed with advanced 
age, called inflammageing (Franceschi et al., 2000). Therefore, two 
recognized characteristics of senescent cells are the lack of prolifer-
ative activity and the presence of a senescence-associated secretory 
phenotype (SASP, Campisi, 2013).

While senescence was first discovered in fibroblasts and ex-
tensively worked on in other non-leukocytic cells, it has become 
increasingly clear that immune cells undergo senescence as well. 
Within the immune system, the existence of non-proliferative leu-
kocyte populations that have high capacity for biologically active 
mediator secretion has been recognized for many decades, albeit 
under a different name. These are the effector T lymphocytes that 
secrete pro-inflammatory cytokines and cytotoxic granules but do 
not proliferate after activation (Dunne et al., 2005). Recent studies 
show that these cells also harbour DNA damage, short telomeres, 
low telomerase activity and engage signalling pathways associated 
with cellular senescence (Callender et al., 2018; Henson et al., 2014; 
Lanna et al., 2014). Therefore, the terms effector T cells and senes-
cent T cells may be synonymous and refer to the same T cell popula-
tions. Effector T cells that are expanded in number during the acute 
phase of a human anti-viral response to Epstein-Barr Virus (EBV) are 
highly expanded in number and lose the expression of the anti-apop-
totic molecule Bcl-2 that makes them short-lived (Akbar et al., 1993). 
These cells also have relatively long telomeres due to upregulation 
of the enzyme telomerase and are in cell cycle (Maini et al., 1999). 
The difference betwen such short-lived effector cells and senescent 
T cells in the steady state is that the latter are non-proliferative, do 
not express telomerse after activation, exhibit short telomeres and 
express senescence related signalling molecules as described above. 
Nevertheless senescent cells in the steady state in both CD4 and 
CD8 compartments still express lower levels of Bcl-2 that the other 
subsets. Collectively this indicates that the extent of T cell prolifera-
tion the acute phase of a viral infection drives T cells to senescence. 
These cells are still susceptible to apotosis but can persist if suffi-
cient antiapototic cytokines are tissue niches. It can be argued that 
senescent T cells derive from a subpopulation of effector T cells that 
do not undergo apoptosis, instead becoming senescent and lingering 
long term. In this review, we discuss recent observations suggesting 
that certain infectious agents can drive the accumulation of CD8+ T 
cells that exhibit all the hallmarks of senescence as described above 
(henceforth referred to as Tsen). We will focus on patients infected 
with Leishmania braziliensis where the increased Tsen numbers in the 
skin may induce the characteristic skin lesions associated with this 

disease. We propose a hypothesis, bases on existing data, that this 
pathology occurs because senescent non-lymphoid cells in the skin 
are be killed by infiltrating Tsen, a novel interaction between senes-
cent lymphoid and non-lymphoid cells that may also have implica-
tions for ageing.

2  |  FUNC TIONAL PROPERTIES OF CD8+ 
Tse n

CD8+ T cells can be subdivided based on expression of the co-
stimulatory molecules CD27 and CD28, where naïve CD8+ T cells 
co-express both markers and as they differentiate to an effector 
phenotype lose CD28 expression and subsequently CD27 (Henson 
et al., 2012). Sometimes these will be subdivided further into TEMRA 
cells, so named because they re-express CD45RA (Henson et al., 
2012). The CD27−CD28− compartment harbours Tsen cells which can 
be identified further by expression of KLRG1 and CD57 (Brenchley 
et al., 2003; Henson et al., 2009). Moreover, many studies have 
shown a plethora of markers that are upregulated on Tsen cells, such 
as downregulated telomerase, shortened telomeres, DNA damage 
responses and constitutive MAPK activity, features specific to Tsen 
over effector T cells. Tsen also exhibit a SASP consisting of proteases 
and pro-inflammatory mediators such as TNF and IL-1β (Callender 
et al., 2018). These functional changes are summarized in Table 1 
(Akbar et al., 1993; Brenchley et al., 2003; Callender et al., 2018, 
2019; Geginat et al., 2003; Gumá et al., 2004; Henson et al., 2009, 
2012, 2014, 2015; Libri et al., 2011; Maini et al., 1999; Ouyang et al., 
2003; Pereira et al., 2020; Plunkett et al., 2001; Tarazona et al., 2001, 
2002; Voehringer et al., 2002; Weng et al., 2009). Single cell RNAseq 
analysis of peripheral blood derived CD8+ T cells show that CD8+ T 
cells identified by the above functional criteria also express multiple 
features associated with cellular senescence (Table 1, Pereira et al., 
2020). This indicates that the terms senescent and effector CD8+ T 
cells are synonymous and identify identical populations.

CD8+ Tsen have limited proliferative capacity after activation via 
the T cell receptor (TCR) complex (Akbar et al., 2016) that is due in 
part to downregulation of key TCR signalling molecules such as LCK, 
LAT and PLC-γ (Pereira et al., 2020). CD4+ Tsen also exhibit identi-
cal markers of senescence to their CD8+ counterparts (Lanna et al., 
2014) but are present at much lower frequency that CD8+ Tsen in the 
peripheral blood of healthy donors. The development of senescence 
characteristics in T cells was initially considered to indicate the dys-
function of these cells during ageing (Akbar et al., 2004). However, 
CD8+ Tsen populations express surface receptors that are associated 
with NK cells such as NKG2D, NKG2C, NKG2A and Killer immuno-
globulin-like receptor (KIR) families compared to undifferentiated 
and non-senescent CD28+CD27+ CD8+ T cells (Abedin et al., 2005; 
Michel et al., 2016; Pereira et al., 2020; Vallejo et al., 2011). This sug-
gests rather than being dysfunctional, these cells acquire an alter-
native functional profile as they differentiate towards senescence. 
This is supported by observations that these Tsen express DAP12, 
an NK cytotoxicity adaptor molecule, and are capable of killing 
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tumour cell lines in an MHCI-independent manner (Pereira et al., 
2020). Mechanistically, the switch from TCR to NKR expression in 
CD8+ Tsen is regulated by stress proteins known as the sestrins in 

both humans and mice (Pereira et al., 2020). Of note, CD4+ Tsen also 
express NKRs, suggesting that they may also mediate effector func-
tions through these receptors (Pereira et al., 2020).

TA B L E  1 List of T cell, NK cell and senescence-associated marker expression in CD8 T cell subsets

Cellular feature Naïve Central memory
Effector 
memory EMRA/senescent References

T cell-associated

CD27 +++ ++ − − Henson et al. (2012)

CD28 +++ ++ +/− − Henson et al. (2012)

CD45RA +++ ++ − ++ Henson et al. (2012)

CCR7 +++ ++ − +/- Henson et al. (2012)

CD62L ++ ++ − − Henson et al. (2012)

Lck-LAT-Zap70 + + + +/− Pereira et al. (2020)

PI3 K-Akt-mTOR + + + +/− Henson et al. (2014)

TCR-mediated 
proliferation

+++ +++ ++ +/− Henson et al. (2009)
Pereira et al. (2020)

NK cell-associated

CD57 − − + ++ Brenchley et al. (2003)

KLRG1 − − + ++ Voehringer et al. (2002)
Ouyang et al. (2003)
Henson et al. (2009)

NKG2A/C − − +/- + Tarazona et al. (2002)
Gumá et al. (2004)
Pereira et al. (2020)

NKG2D + + + ++ Tarazona et al. (2002)
Gumá et al. (2004)

CD244 + − − +++ Tarazona et al. (2002)

KIRs − − − ++ Gumá et al. (2004)
Pereira et al. (2020)

DAP12 − − − + Pereira et al. (2020)

Senescence

Proliferative capacity +++ +++ ++ − Weng et al. (2009)

Telomere length +++ +++ ++ +/− Plunkett et al. (2001)
Weng et al. (2009)

Telomerase +++ ++ + − Maini et al. (1999)
Weng et al. (2009)

BCL-2 +++ ++ + +/− Akbar et al. (1993)
Geginat et al. (2003)
Libri et al. (2011)

p16 − − − + Henson et al. (2015)
Pereira et al. (2020)

γH2AX − − − ++ Callender et al. (2019)

DDR − − − + Callender et al. (2018)
Pereira et al. (2020)

SASP − − − ++ Callender et al. (2018)

IL-1β − − ++ + Callender et al. (2018)

IL-18 − − − ++ Callender et al. (2018)

CCL16 − −/+ ++ +++ Callender et al. (2018)

ADAM28 − − − +++ Callender et al. (2018)

Sestrins − − + ++ Pereira et al. (2020)

MAPK (p38/Erk/Jnk) − − +/− ++ Henson et al. (2014), Henson et al. (2015)
Pereira et al. (2020)
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3  |  CD8+ Tse n ACCUMUL ATE DURING 
AGEING AND PERSISTENT VIR AL 
INFEC TION

Previous reports have shown that CD8+ Tsen accumulate in older 
humans and that this is largely driven by ongoing sub-clinical re-
sponses to persistent viruses especially cytomegalovirus (CMV) 
(Jackson et al., 2017; Nikolich-Žugich et al., 2020; Savva et al., 2013). 
Moreover, this population has increased capacity to rapidly respond 
to signals mediated by inflammatory cytokines (Freeman et al., 
2012). Furthermore, proinflammatory cytokine production associ-
ated with persistent CMV infection may induce bystander senes-
cence in non-CMV specific T cells (Fletcher et al., 2005). Therefore 
the cytotoxic CD8+ Tsen populations that accumulate during ageing 
and during persistent viral infections are now re-focussed to prefer-
entially recognize NK ligands that may be expressed by infected, ma-
lignant or “stressed” tissues (Pereira et al., 2019; Sagiv et al., 2016). 
Therefore, Tsen can mediate NKR dependent cytotoxicity, indepen-
dently of their antigen specificity.

4  |  THE KILLING OF SENESCENT NON-
LYMPHOID TISSUE CELL S BY NK AND CD8+ 
T  CELL S

Senescent non-lymphoid cells accumulate in many tissues during 
ageing (Campisi, 2013) and are associated with tissue dysfunction 
that lead to frailty. Transgenic mouse models that enable the specific 
removal of senescent cells from different tissues in vivo show that 
the elimination of these cells increases lifespan, improves overall fit-
ness and reduces age-associated characteristics of the animals (Baar 
et al., 2017; Baker et al., 2011, 2016). An exciting observation was 
that cells of the immune system, including NK, CD4+ and CD8+ T 
cells, can also recognize and eliminate senescent cells in vitro and 
in vivo (Gorgoulis et al., 2019; Pereira et al., 2019), a new role form 
immunosurveillance that may be relevant for ageing. The mecha-
nisms involved in this include the interaction between NKG2D 
and NKG2A/C receptors on CD8+ T and NK cells, and their ligands 
such as MICA/B and HLA-E expressed by senescent stromal cells 
(Krizhanovsky et al., 2008; Pereira et al., 2019; Sagiv et al., 2016).

Despite the evidence for senescent cell clearance by the immune 
system, it is not yet clear why senescent cells accumulate during age-
ing and persist at sites of age-related pathology (Karin et al., 2019; 
Ovadya et al., 2018; Sharpless & Sherr, 2015). Altered immunity 
during ageing may contribute to this, however senescent cells also 
elicit evasion strategies, including the expression of inhibitory NK re-
ceptor ligands such as HLA-E (Pereira et al., 2019) and the shedding 
of NKG2D ligands that act as decoy receptors that interfere with 
cytotoxic cell recognition and killing (Muñoz et al., 2019). Therefore 
a balance between activating and inhibitory signals will determine 
the outcome of the NK and T cell cytotoxic response to senescent 
tissue cells. On one hand, the development of NK-like function in 
CD8+ Tsen cells that lose the capacity to proliferate may be beneficial 

as it enables the retention of cytotoxic cells with broad spectrum of 
activity during ageing that may be important for killing of infected 
and malignant cells. However the acquisition of NK-like function in 
T cells during ageing may have negative consequences and induce 
pathology, for example in skin lesion formation in patients with cu-
taneous leishmaniasis (Figure 1).

5  |  IMMUNIT Y IN PATIENTS WITH 
CUTANEOUS LEISHMANIA SIS;  THE 
DOUBLE-EDGED SWORD

Leishmania braziliensis is the main causal agent of cutaneous 
leishmaniasis (CL) in Brazil, where destructive cutaneous lesions 
develop (World Health Organization/Department of control of ne-
glected tropical diseases, 2015). Patients with L. braziliensis skin in-
fections usually develop lesions after 2–4 weeks (Oliveira-Ribeiro 
et al., 2017). The early stages of infection do not present with 
CD8+ T cell infiltration, but CD8+ T cell activity increases as the 
infection progresses and the characteristic CL skin lesions form 
(Faria et al., 2009). Production of inflammatory mediators such as 
IFN-γ as well as CD8+ cytotoxic T cell activity is observed during 
the acute and healing phase of L. major infection and is linked to 

F I G U R E  1 Leishmania infection results in infiltration of Tsen that 
aberrantly kill stressed and senescent stromal cells contributing to 
excessive damage. Leishmania infection of macrophages induces 
inflammatory cytokine production driving expression of MICA/B 
and other stress ligand on resident skin cells such as fibroblasts. 
Concurrently, these cytokines activate the endothelium which 
upregulates adhesion markers like E-selection. This binds to CLA 
expressing senescent T cells enabling their infiltration into the skin. 
Here, these senescent T cells, expressing a host of NKRs including 
NKG2D interact with resident skin cells. The interaction between 
NKG2D+ Tsen and MICA/B

+ fibroblasts results in killing of the latter 
and contributing to off-target tissue pathology.



    |  5 of 9COVRE et al.

parasite clearance (Rossi & Fasel, 2017). There is a strong correla-
tion between the severity of the disease and the number of CD8+ 
T cells present in the lesion (Faria et al., 2009; Santos et al., 2013), 
but this is independent of the presence of parasites in the lesions 
(Carvalho et al., 2007; Murray et al., 2005; Pearson et al., 1996). 
Despite this, if untreated, the lesions increase in size progressively 
causing the characteristic pathology of CL. This raises the ques-
tion as to the cause of the lesions in the skin suggesting the possi-
bility that chronic inflammation and non-specific CD8+ T or NK cell 
cytotoxic responses may lead to non-specific tissue destruction.

Leishmania braziliensis infected individuals have elevated numbers 
of circulating CD4+ and CD8+ T cells that possess short telomeres, 
decreased expression of the catalytic component of the enzyme telo-
merase (hTERT), have reduced proliferative activity and increased ex-
pression of the nuclear DNA-damage response protein (Covre et al., 
2019). In addition, these T cells secrete SASP-like cytokines in response 
to L.  braziliensis antigen (LbAg) or anti-CD3 stimulation compared to 
controls in vitro. Although Tsen accumulate in patients (Covre et al., 2019), 
the robust proliferative response to LbAg stimulation indicates that not 
all the L. braziliensis specific T cells that are present are senescent (Covre 
et al., 2019). Nevertheless, the association between the frequency of 
both CD4+ and CD8+ Tsen cells in the circulation and cutaneous lesion 
size in infected patients suggests that these cells may be recruited into 
the lesions and may contribute to the observed skin ulceration.

An interesting observation is that the accumulation of senescent 
T cells, but not NK correlates with the age of CL patients (Covre L and 
Gomes D, unpublished data). Compared to young subjects, elderly 
patients displayed larger cutaneous lesions, longer duration of illness 
and were more likely to develop mucocutaneous leishmaniasis, the 
most inflammatory and severe clinical form of the tegumentary leish-
maniasis (Carvalho et al., 2015). Senescent T cells from CL patients 
but not healthy controls also upregulate the skin homing receptor 
CLA in response to activation with L. braziliensis antigens (Covre et al., 
2019) This facilitates their homing into the skin where they can per-
form effector functions. Interestingly, while NK cells in the periph-
eral blood of have a greater cytotoxic potential compared to CD8+ 
Tsen, NK cells have reduced CLA expression and do not home to skin 
lesions as efficiently as CD8+ Tsen. This suggests that during acute 
infection with L. braziliensis, Tsen within both CD4+ and CD8+ subsets 
home to the skin where they initially control the infection. However 
their potent inflammatory activity may also contribute to develop-
ment of the skin pathology of CL even after the parasites have been 
cleared. This raises the question about the mechanism involved in the 
tissue damage within the cutaneous lesions of these patients.

6  |  HYPOTHESIS:  THE NON-SPECIFIC 
NATURE OF CD8+ Tse n INDUCES 
IMMUNOPATHOLOGY DURING INFEC TIONS 
SUCH A S CUTANEOUS LEISHMANIA SIS

We hypothesize that dermal macrophages infected by Leishmania 
initiate an inflammatory response that preferentially attracts 

L. braziliensis specific CD8+ Tsen from the blood which clear the in-
fection. However, the inflammation in the skin, induced by the in-
teraction between infected macrophages and the infiltrating T cells, 
induces the expression of stress ligands including those that bind to 
NK receptors by the surrounding stroma (Gasser et al., 2005; Groh 
et al., 2001; Molinero et al., 2004). The interaction between these 
ligands and NK receptors on Tsen leads to cytotoxic killing and tis-
sue damage. In turn, this damage leads to exacerbated inflamma-
tion, inducing further expression of stress ligands and results in 
more destruction by CD8+ Tsen. This generates a destructive positive 
feedback loop that leads to progressively larger skin lesions if left 
untreated. At this advanced stage of the infection, CD8+ Tsen cells 
that infiltrate the inflamed lesion do not have to be specific for L. bra-
ziliensis but may be specific for other antigens (e.g. CMV) that have 
been shown to drive T cell senescence and therefore the acquisition 
of NK characteristics (Figure 1). This is supported by previous obser-
vations that the bystander activation of memory CD8+ T cells in the 
skin may contribute to the chronic inflammation and tissue damage 
in an NKG2D-dependent manner during murine cutaneous leishma-
niasis (Crosby et al., 2014). Furthermore, the pathogenesis of murine 
cutaneous leishmaniasis is exacerbated by LCMV infection-induced 
CD8+NKG2D+ T cells, supporting the possibility that tissue damage 
can occur independently of the antigen specificity of the infiltrating 
cells (Crosby et al., 2015). Interestingly, human lesional CD4+ and 
CD8+ T cells are able to proliferate and produce IFN-γ in response 
not only to Leishmania antigens but also to other pathogens (Da-
Cruz et al., 2010). This highlights that not all the T cell in the lesions 
are senescent but supports the role of T cells of different specifici-
ties in the promotion of cutaneous lesions in CL.

7  |  FUTURE PERSPEC TIVES

The investigation of the cellular infiltrate in patients with cutaneous 
leishmaniasis by gene expression (Amorim et al., 2019; Christensen 
et al., 2016) and histological analyses is essential to determine the 
presence of alternative ligands for CD8+ Tsen within the tissue. It 
is also crucial to identify the source of inflammation at these sites, 
are the myeloid cells, the stromal cells, the leukocytes or all of them 
involved? The hypothetical positive feedback loop described here 
that involves Tsen and excessive inflammation and non-specific tissue 
damage may also be involved in other non-resolving inflammatory 
diseases where accumulation of Tsen cells have been demonstrated 
including Chagas disease (Molina & Kierszenbaum, 1989) and ma-
laria (Cockburn et al., 2014). The accumulation of senescent T cells 
with increased pro-inflammatory potential has been implicated 
during age-related diseases such as rheumatoid arthritis (Goronzy 
et al., 2013; Weyand et al., 2017), Alzheimer's (Gate et al., 2020), 
and cardiovascular diseases (Youn et al., 2019; Yu et al., 2015), 
where the non-specific tissue damage driven by Tsen cells needs to 
be investigated and might offer new opportunities for prevention 
and treatment (Andersson et al., 2011). Furthermore, it would im-
portant to know if inflammation that is induced by infections such 
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as SARS-CoV-2 that have a disproportionate pathological impact in 
older individuals (Merad & Martin, 2020) results from non–specific 
Tsen recruitment and induction of non-antigen specific damage in 
the lung and other tissues. Furthermore, it is currently unclear how 
senolytic drugs that are being used to clear senescent cells will af-
fect senescent leukocyte populations and if this may have beneficial 
or detrimental consequences. Collectively we suggest that T cells 
that have been driven to extreme differentiation and senescence by 
infectious agents acquire potent MHC-I-unrestricted cytotoxic and 
capacity for inflammatory cytokine secretion together with the abil-
ity to cause non-specific NK-related damage. Given the increased 
burden of tumours and infections with age, the expansion of NK cell-
like functions in CD8+ T cells could be an advantageous adaptation 
that would enable the recognition and elimination of infected and 
transformed cells. However, the accumulation of senescent T cells 
during ageing is a double-edged sword that may induce pathology, 
especially in inflammatory environments.
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