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ABSTRACT 

 

MALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide 

range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed 

on single pixels or manually assigned regions of interest (ROI). However, many sparse, small 

objects such as Alzheimer’s disease (AD) brain deposits of amyloid peptides called plaques are 

neither single pixels nor ROI. Here, we propose a new approach to facilitate comparative 

computational evaluation of amyloid plaque-like objects by MSI: a fast PLAQUE PICKER tool that 

enables statistical evaluation of heterogeneous amyloid peptide composition. Comparing two AD 

mouse models, APP NL-G-F and APP PS1, we identified distinct heterogeneous plaque populations 

in the NL-G-F model, but only one class of plaques in the PS1 model. We propose quantitative 

metrics for the comparison of technical and biological MSI replicates. Furthermore, we 

reconstructed a high accuracy 3D-model of amyloid plaques in fully automated fashion, 

employing rigid and elastic MSI image registration using structured and plaque-unrelated 

reference ion images. Statistical single plaque analysis in reconstructed 3D-MSI objects revealed 

the Aβ1-42Arc peptide to be located either in the core of larger plaques or in small plaques without 

co-localization of other Aβ isoforms. In 3D, a substantially larger number of small plaques were 

observed than the 2D-MSI data indicated, suggesting that quantitative analysis of molecularly 

diverse sparsely-distributed features may benefit from 3D-reconstruction. 

223 words  
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INTRODUCTION 

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has emerged as 

a key tool for label-free investigation of the spatial distribution of various molecules such as peptides, 

lipids, drugs, glycans, and other metabolites in 2D tissue sections (2D-MSI) [1, 2]. Recent advances in 

the speed of data acquisition and -processing have improved the feasibility of quantitative analyses 

of MSI datasets as well as image registration and reconstruction of 3D-MSI models [3-6]. However, 

most data analysis in current MSI is not yet based on quantitative measures but on the overall mean 

spectrum of either the whole dataset or of manually selected ROIs [7-9]. Any manual selection of ROIs 

may introduce user bias. Other studies define relevant ROIs by multivariate clustering [10] (e.g. k-

means, PCA, pLDA, or combinations thereof) or by co-registration of MSI datasets to other imaging 

modalities like H&E-staining or lipid MSI data [11]. However, small sparse objects like neurodegene-

rative plaques in brains occur only in a small subset of spectra. This causes their under-representation 

or even absence in the overall mean spectrum, which may require computational signal enhancement 

[12]. Computational workflows designed for definition and quantitative evaluation of classes of sparse 

objects on the single object basis are lacking in 2D-MSI.  

Moreover, most 3D-MSI studies are currently based on manual rigid 2D-alignments either of ion 

images or of co-registered optical tissue images [3, 5, 6]. More advanced 3D-reconstruction methods 

are based on automatic rigid registration of tissue stained post-MSI with H&E, but they still use 

manual rigid registration of MSI data to corresponding H&E images [4]. Recently, automatic non-linear 

registration of MSI data to magnetic resonance imaging data has been reported [13]. However, to 

extract relevant biomedical information from large MSI datasets, more efficient and custom-tailored 

methods for feature extraction and multivariate statistical analysis have to be developed [4, 14]. For 

example, computational workflows for quantitative analysis of sparse MSI-objects in 3D, which 

include estimates of their size, have not been reported yet. 

One major hallmark of Alzheimer’s disease (AD) is the formation of sparse protein deposits called 

amyloid plaques, consisting of various isoforms of amyloid-β (Aβ) peptides, which originate from 

amyloid precursor protein (APP), and presumably other molecules such as glycosphingolipids [15-17]. 

Many lines of evidence support an important role of Aβ peptides in the pathogenesis of AD [18, 19]. 

Numerous Aβ peptides with different N- and C-terminal truncations and modifications like 
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pyroglutamation have been described, but most research focuses on Aβ isoforms starting at position 

1, especially on Aβ1-42  [20]. Recent studies suggest an important role of longer forms of Aβ than Aβ1-

42 in the etiology of AD [21-23]. Traditionally, amyloid plaques have been studied extensively using 

immunochemistry, which has led to a strong focus on a few well-studied Aβ species such as Aβx-38, 

Aβx-40 and Aβx-42 or collective staining of multiple Aβ species (total Aβ). MALDI MSI has enabled 

untargeted studies of Aβ plaques, i.e. simultaneously analysis of many distinct Aβ species. Many 

studies have highlighted the complex molecular composition of Aβ plaques in brains of human AD 

patients and of AD mouse models [9, 24-26]. Currently most MSI studies are still based on single 

experiments per experimental condition (i.e. they lack MSI replicates) or simply visually compare ion 

images in replicates without computational analysis. The reason for this is the notorious difficulty of 

quantitative MSI data analysis [27, 28]. 

Here, we present a new PLAQUE-PICKER approach and computational tools in R for analysis of 

sparsely distributed features (here: plaques) in tissue and for (plaque) population statistics. We paid 

special attention to fast analysis run times to accommodate future serial studies with substantial 

numbers of samples. Furthermore, we present a new registration approach for reconstructing a 3D 

model of amyloid plaques, and we apply these computational methods for a quantitative plaque 

analysis in different mouse models of AD. 

 

MATERIALS AND METHODS 

Chemicals 

All reagents were HLPC grade. Acetonitrile (ACN) and Trifluoroacetic acid (TFA) were from Merck 

(Darmstadt, Germany). Dimethyl sulfoxide (DMSO) was obtained from Sigma-Aldrich (Munich, 

Germany). Milli-Q water (ddH2O; Millipore, Burlington, USA) was prepared in-house. sDHB (9:1 

mixture of 2,5-dihydroxybenzoic acid (DHB) and 2-hydroxy-5-methoxybenzoic acid), the MALDI-

MS peptide calibration standard mix II and protein calibration standard mix I were from Bruker 

Daltonics (Bremen, Germany). Synthetic Aβ1-38, Aβ1-39, Aβ1-40, Aβ1-42, Aβ1-43 and Aβ1-45 were from 

rPeptide (Watkinsville, USA) and mixed at an equimolar concentration of 2 µmol/L in ddH2O (Aβ 

calibration standard). 
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Mouse models and tissue preparation for MALDI MSI 

Apptm3.1Tcs mice, also called APP NL-G-F mice, and transgenic Tg(Thy1-APPSw,Thy1-PSEN1*L166P) 

21Jckr, referred to as APP PS1 mice, were described elsewhere [29-31]. APP PS1 mice harbor APP 

Swedish and presenilin 1 (PS1) L1166P mutations, both overexpressed using a Thy1 promotor. 

APP NL-G-F knock-in mice expresses the mouse APP gene with a humanized Aβ sequence with 

Swedish, Arctic and Beyreuther/Iberian mutations under the control of the mouse endogenous 

promotor. This leads to cell-specific expression of APP at wild-type levels. All experiments were 

approved (No. 142/2015) by the Ethics Committee on Animal Experimentation of the University 

of Leuven. For APP NL-G-F (age 18 weeks) and APP PS1 (20 weeks) we analyzed one mouse in two 

independent technical replicates each. For APP NL-G-F (67 weeks) we analyzed three brains 

(biological replicates), of which two were additionally technically replicated (Table S1). 

Fresh-frozen mouse brains were cut (10 µm; CM 1950 cryostat, Leica Biosystems, Nussloch, 

Germany) and thaw-mounted on indium-tin-oxide (ITO)-coated glass slides (Bruker Daltonics). All 

slides were dried in a desiccator overnight at RT. Prior to protein MSI, tissue sections were 

delipidated using the washing procedure by Yang et. al. [32]: 70 % ethanol (30 s), 100 % ethanol 

(30 s), Carnoy’s fluid (60/30/10 ethanol/chloroform/acetic acid v/v/v) (120 s), 100 % ethanol 

(30 s), ddH2O (30 s) and 100 % ethanol (30 s). After drying, the slides were coated with eight layers 

of 60 mg/mL sDHB matrix in ACN/ddH2O/TFA (40/60/0.5 v/v/v) using an M5 Sprayer 

(HTX Technologies, Chapel Hill, USA) in a crisscross pattern at a flowrate of 0.02 mL/min and a 

velocity of 750 mm/min. 2 mm Track spacing, 40 mm nozzle height and 30 °C gas temperature 

were applied. 

MALDI MS Imaging 

MALDI MSI measurements were done on a Rapiflex MALDI-TOF MS (Bruker Daltonics) in positive 

linear mode with m/z 2,000-10,000 using FlexImaging 5.0 software (Bruker Daltonics). The 

acquisition method was calibrated using a 1/1/1 (v/v/v) mix of protein calibration standard I, 

peptide standard II and Aβ calibration standard using quadratic calibration. 250 laser shots at 

10 kHz repetition rate were accumulated for each raster spot with a lateral resolution of 20 µm 
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and a spot size of 20 x 20 µm. The Ion Source 1 was set to 20 kV, PIE to 1.37 kV and the ion lens 

to 1.75 kV the delayed extraction time was set to 150 ns. The digitizer was set to 0.63 GS/s and 

the deflector cut off mass for matrix suppression was set to m/z 2000. 

LC-MS/MS verification of Aβ peptides in tissue extracts 

See Supplemental Methods 

MSI Data processing and 3D-reconstruction 

MSI raw data was converted to the imzML file format [33] using a converter programmed in-

house. Subsequently, the datasets were imported into R 3.4.1 (R Foundation for Statistical 

Computing, Vienna, Austria) using MALDIquant and MALDIquantForeign packages [34], TIC-

normalized, Savitzky-Golay-smoothed, and the baseline was removed using the “TopHat”-

method. As this method selects features on the image level, it does not need peak picking, which 

is usually one of the most time-consuming steps, since it is based on single spectra and does not 

respect spatial relationships. Nine consecutive 10 µm tissue slices were prepared on a single ITO 

slide and measured in a single MSI run. Registration of slices and following 3D-reconstruction was 

done using the M²aia tool (Cordes et. al., unpublished). Briefly, to create a 3D-MSI volume, 

consecutive slices were aligned to each other, applying subsequent rigid and elastic image-based 

registration steps. These used structural-rich ion images (5447 m/z +- 5 Da) for each slice. Rigid 

and elastic transformation parameters are stored for each alignment step and can be used to 3D 

reconstruct ion image volumes of target mass values. To assess individual plaque features specific 

for a given mouse model, area under the curves for defined m/z intervals in linear MS mode 

corresponding to Aβ peptide species were extracted (Table S2). None of these signals were 

observed in corresponding wild-type mice (Figure S5, Figure S6). For each ion image, an individual 

threshold for binarization was determined by T-point thresholding (Figure S1) [35]. In the 3D case, 

this was separately done for each slice and each Aβ peptide species. To each of the individual 

binarized images, a connected component labelling process as implemented in the raster package 

(vers. 3.0-7; https://CRAN.R-project.org/package=raster) or in the package neuroim 

(https://CRAN.R-project.org/package=neuroim) for 3D was applied [35, 36]. By combining pixel 

https://cran.r-project.org/package=raster
https://cran.r-project.org/package=neuroim
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sets thus extracted for each individual ion image (= Aβ species), a unified collection of pixel sets 

was generated by joining pixel sets with common pixel coordinates. This process results in a 

unique ID assigned to each plaque giving access to summary statistics and the individual spectra 

themselves. 

 

RESULTS 

Single object-based feature extraction from 2D-MALDI-MSI datasets for 
computational analysis of amyloid plaque composition  

Amyloid plaques and other objects of interest in MSI (like infiltrating immune or tumor cells) are 

sparsely distributed and heterogeneously composed, which can make data analysis challenging. 

Common immunohistochemical approaches can only evaluate a small number of Aβ peptide 

species, and concerns about antibody specificity are valid. Therefore, much can be learned about 

regional differences in Aβ peptide composition of amyloid plaques from the statistical evaluation 

of MALDI images of brains from AD mouse models and eventually from translation to human brain 

samples. Commonly used MSI data analysis workflows either rely on segmentation algorithms like 

k-means or on manual user input for selection of ROIs. Both options are suboptimal, as k-means 

is not well suited for imbalanced group sizes and densities, which is a common property of 

amyloid plaque MSI data, whereas manual data analysis is time-consuming and can introduce 

user bias, which may require mitigation by multiple expert users or multi-site studies [37-39].   

To this end, we developed a fast and simple workflow in R for selection of molecularly diverse 

and sparsely-distributed features that enables molecular analysis on a single plaque level and 

thereby population statistics (Figure S1): First, a number of m/z features is selected from a look-

up table, and the corresponding ion images are extracted from the dataset. Pixels containing Aβ 

peptide signals are then selected by binarizing their ion-images based on individual thresholds 

[35]. Adjacent Spectra/pixels are assigned a unique ID, which links all spectra that the plaque is 

composed of. Importantly, the number of spectra per ID provides an estimate for plaque size. This 

PLAQUE PICKER workflow enabled computational evaluation of the molecular composition of 
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amyloid plaques and correlation of molecular composition with other plaque features such as 

size. Because of fast run times, it is possible to process many MSI datasets within a short amount 

of time. 

 

Plaques in APP NL-G-F mice are heterogeneous in composition whereas APP PS1 
bears a homogenous plaque population 

Using the PLAQUE PICKER workflow, we compared two mouse models of AD, APP PS1 at age 

20 weeks (20w) and APP NL-G-F ( 18w and 67w; Table S1). In APP PS1 mice, amyloid plaque 

pathology is driven by APP overexpression and mutations (see methods for details) known to 

increase total Aβ-production [40, 41] and to preferably produce Aβ1-42 over Aβ1-40 [30]. In contrast, 

the APP NL-G-F mouse model is a knock-in of a triple-mutant APP (see methods) with cell-type 

specific APP expression at wild-type levels and presumably devoid of artifacts originating from 

overexpression [29]. Mutations promote Aβ aggregation through oligomerization and reduced 

proteolytic degradation [42, 43]. Aβ peptides in APP NL-G-F mice contain the Arctic (E693G) 

mutation and are denoted as Aβx-yArc. We investigated the differences in plaque composition 

between brains of these mouse models to exemplify the utility of the data processing workflow. 

We subjected cryosections of the respective mouse brains to MALDI-TOF-MSI in linear positive 

mode using sDHB as matrix. Presence of the Aβ peptides assigned after MSI was verified by LC-

MS/MS analysis of homogenates from brain slices adjacent to those used for MSI (Table S5 – S7). 

Amyloid peptides Aβ1-38Arc, Aβ1-39Arc, Aβ1-40Arc, Aβ1-42Arc and Aβ1-40, Aβ1-42, Aβ1-43 were detected by 

MSI and verified by LC-MS/MS in the mouse models APP NL-G-F and APP PS1, respectively. 

Presumably owing to its low abundance, Aβ1-38 in APP PS1 mice was detected by MSI (assigned 

based on sparse distribution, plaque-like morphology and co-localization with verified Aβ species) 

but not by LC-MS/MS. 

In two replicate MALDI ion images of Aβ peptides in adjacent tissue sections of an 18w APP NL-G-F 

mouse brain, Aβ1-38Arc was present in small plaques in cortex and a few larger plaques in thalamus, 

whereas Aβ1-42Arc formed mostly smaller plaques in hippocampus but also in cortex and thalamus 
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where it co-localized with Aβ1-38Arc (Figure S2). No assigned Aβ peptide species were detected in 

the age-matched control mice (Figure S5). Plaque pathology was much more pronounced in 67w 

than in 18w APP NL-G-F brain: Intensity, size and number of plaques were all drastically higher 

(Figure S3). Based on the number of associated pixels and overall intensity, the most abundant 

Aβ peptide isoform, Aβ1-38Arc, (and Methionine-oxidized Aβ1-38Arc(Ox)) formed large plaques in 

cortex, hippocampus and thalamus and co-localized with Aβ1-39Arc (and low-abundance Aβ1-40Arc). 

In contrast, Aβ1-42Arc formed smaller plaques that mostly but not exclusively co-localized with Aβ1-

38Arc. Interestingly, Aβ1-42Arc co-localizing with the other Aβ peptide isoforms typically appeared in 

the plaque core. All these findings were consistent across three separate brains with a total of 

five MSI technical replicates (Table S1). In striking contrast with APP NL-G-F brain, plaque 

composition in two technical replicates of the 20w APP PS1 mouse was very uniform (Figure S4), 

displaying co-localizing abundant Aβ1-43 and Aβ1-42 and low-abundance Aβ1-40 and Aβ1-38, 

confirming the known shift of the Aβ peptide products towards longer species in PS1 mice [44].  

The computational workflow added detail and quantitative metrics for quality assurance to this 

initial evaluation: Plaque population-based statistics of the Aβ1-42/Aβ1-38 and Aβ1-42Arc/Aβ1-38Arc 

ratios revealed more Aβ1-42-rich plaques in APP PS1 brain than Aβ1-42Arc-rich plaques in 18w and 

67w APP NL-G-F brain (Figure 1A). Moreover, the distribution of Aβ1-42Arc/ Aβ1-38Arc-ratio was also 

more unequal in APP NL-G-F mice than in the APP PS1 mouse, as demonstrated by a higher Gini 

coefficient (Figure 1B). Plaque population-based statistics of amyloid composition highlighted 

surprisingly little variability between MALDI imaging experiments conducted on different slices 

(Figure 1C-I). For example, in the 18w NL-G-F brain the majority of plaques contained only Aβ1-42Arc 

(40 % and 68 % in two independent MSI experiments), whereas 13.5 % and 5 %, respectively, 

contained only Aβ1-38Arc. Only a small fraction also contained Aβ1-39Arc (Figure 1C/F; Suppl. Table 

S3). Even at 67w, about half of the Aβ1-42Arc-containing plaques featured no other amyloid 

peptides. Surprisingly, a large number of the plaques (~35%) at this age were Aβ1-38Arc-only, and 

Aβ1-39Arc was consistently associated with Aβ1-38Arc (Figure 1 D/G). 
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Figure 1. Quantitative analysis of amyloid plaque composition reveals differences between APP NL-G-F- and APP 
PS1 mouse brains. A, Mean Aβ1-42/Aβ1-38-ratio (APP PS1) or Aβ1-42Arc/Aβ1-38Arc-ratio (APP NL-G-F) in plaques. B Gini 
coefficient as a measure of inequality of Aβ1-42/Aβ1-38-ratios across all plaque individuals of a given brain slice (see 
Figure S8). Independent MSI experiments: APP NL-G-F 18 weeks n= 2, APP NL-G-F 67 weeks n = 5, APP PS1 n = 2. C-I, 
Composition of amyloid plaques is much more uniform in APP PS1 brain than in APP NL-G-F brain. C-E, Ion images of 
Aβ1-42Arc (C/D) or Aβ1-42 (E) in green, Aβ1-38Arc or Aβ1-38 in red. I-F, Venn-diagrams visualizing the degree of co-
localization of plaque populations defined by different Aβ peptide species relative to the total number of plaques: 
Ab1-38Arc (red), Ab1-39Arc (blue), Ab1-40 (yellow), Ab1-42 and Ab1-42Arc (green), Ab1-43Arc (purple). C & F APP NL-G-F mouse 
(18 weeks) D & G APP NL-G-F mouse (67 weeks) E, H & I APP PS1 mouse (20 weeks). See Table S 3 for a full overview 
of the co-localization of Aβ peptide species. 
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Again, plaque composition was remarkably consistent between five MSI experiments using three 

separate mice/brains. In contrast to APP NL-G-F mice, plaque composition was much more 

homogeneous is 20w APP PS1 brain, as the vast majority of plaques contained Aβ1-38, Aβ1-40, Aβ1-42 

and Aβ1-43 (Figure 1 E/H/I). 

 

Large plaques in APP NL-G-F mice are associated with a greater Aβ-diversity and 

enriched in Aβ1-38Arc 

 

Figure 2. Differences in molecular plaque composition in two AD animal models. Aβ1-42/ Aβ1-38-ratio (APP PS1 brain) 
or Aβ1-42Arc/ Aβ1-38Arc-ratio (APP NL-G-F brain) in relation to estimated plaque sizes (≤ 400 µm² (red) corresponds to 
1 pixel, ≤ 2000 µm² (green) corresponds to ≤ 5 pixels, > 2000 µm² (blue) corresponds to > 5 pixels). In APP NL-G-F 
mice, size-dependent differences in plaque composition increase with age, and large plaques are Aβ1-38Arc-rich. Plaque 
composition is more uniform in APP PS1 than in APP NL-G-F mouse brain. 
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Figure 3. Plaques with higher Aβ-diversity tend to be larger. Molecular plaques composition versus plaque area of 
APP NL-G-F mice at ages 18 and 67 weeks. Plaques were split into multiple classes with distinct amyloid compositions 
(see Venn-diagrams in Figure 1). Size distributions of all plaques of a given molecular composition were plotted as 
violin-plots normalized to equal maximal width of distribution. 

 

To add further detail to the analysis of amyloid plaque composition, we divided plaques into three 

different size groups (“small plaques” ≤400 µm² corresponding to 1 pixel, “medium plaques“ of 

400-2000 µm² corresponding to ≤5 connected pixels, and >2000 µm² corresponding to >5 pixels: 

“large plaques”) (Figure 2). In young APP NL-G-F mice, large plaques displayed a wide range of 

Aβ1-42Arc/Aβ1-38Arc ratios, whereas small and medium plaques had mostly high Aβ1-42Arc/Aβ1-38Arc 

ratios. In old APP NL-G-F mice, however, large plaques featured low Aβ1-42Arc/Aβ1-38Arc ratios and 

small plaques a wider range of Aβ1-42Arc/Aβ1-38Arc ratios. In contrast, in APP PS1 mice differences 

between the different size groups were much smaller for all Aβ-ratios. For the APP PS1 mouse 

there is a tendency that larger plaques have a higher Aβ1-42/ Aβ1-38 (Figure 2) whereas the ratio 

for Aβ1-42/ Aβ1-40 and Aβ1-43/ Aβ1-40 seem to be unaffected by size of the considered plaque (Figure 

S9).  
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Apparently, amyloid composition was very heterogeneous in APP NL-G-F mouse brain, but less so 

in APP PS1 brain. Also, we observed a strong trend suggesting that larger plaques featured lower 

Aβ1-42Arc/ Aβ1-38Arc-ratios in APP NL-G-F brain. To answer the question of what other properties 

distinguished larger from smaller plaques in the APP NL-G-F mouse model, we separated all 

plaques into different classes depending on the Aβ-species associated with them (see Venn-

diagrams in Figure 1) and analyzed their estimated size (Figure 3). We found that plaques with a 

higher Aβ-diversity were associated with larger plaques. Especially plaques containing Aβ1-38Arc 

(alone or in combination with other Aβ-species) were consistently larger, especially in old APP NL-

G-F mice.  

 

High-resolution 3D-model of amyloid plaques in APP NL-G-F mouse model 

We wanted to further investigate the non-uniform plaque pathology of the APP NL-G-F mouse. 

Here the main motivation was to examine if the observation that Aβ1-42Arc typically composes the 

core of a plaque holds true or if it was just caused by the misleading nature of 2D-images, i.e. 

sections from 3D-volumes. After all, the cutting plane may have been placed in the center of the 

volume (in which case a statement about the core of a plaque would be possible) or at the 

periphery of a larger volume (“tip of the iceberg effect”). We therefore chose to reconstruct a 3D-

model of the 67w APP NL-G-F brain. We measured nine consecutive 10 µm-slices, all mounted on 

the same slide, in a single MSI run at 20x20 µm resulting in a voxel volume of 20x20x10 µm. We 

then reconstructed the 3D model in an automated approach using the M2aia IT tool that is 

currently being developed. We used the ion image of m/z 5447 ± 5 Da as reference landmark for 

all slices, as it represented the general brain structures like cortex and hippocampus well.  

At first glance, the overall plaque distribution was similar in 2D- and 3D images of the 67w APP 

NL-G-F brain: As in 2D, the highest plaque density was in cortex and hippocampus also in 3D, and 

mostly small Aβ1-42Arc-only plaques were found in hypothalamus (Figure 4A). Many large and 

medium-sized plaques extended over several z-layers (Figure 4B/C). These plaques were typically 

composed of an Aβ1-42Arc-containing core and an outer shell consisting of Aβ1-38Arc. In several cases, 

especially in cortex and hippocampus, this Aβ1-38Arc-rich shell connected different Aβ1-42Arc-rich 
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cores (Figure 4 C). As in the 2D-comparison, the APP NL-G-F (but not the APP PS1) mouse 

displayed two distinct plaque populations (Figure 4D depicts Aβ1-42Arc-rich plaques): “Typical 

plaques” consisting of Aβ1-38Arc and Aβ1-39Arc (with some Aβ1-40Arc and Aβ1-42Arc) were located in 

cortex and hippocampus and much larger than the second, small and Aβ1-42Arc-rich plaque 

population. An animated version of the 3D-model is available as supplementary content. 

 

 

Figure 4. 3D model of APP NL-G-F brain (age 67 weeks) reveals that Aβ1-42Arc either occurs Aβ1-38Arc-independently 
or at the core of larger plaques, surrounded by Aβ1-38Arc. Orange: Aβ1-38Arc, Blue: Aβ1-42Arc. A, Overview of the whole 
3D-model representing ~200 µm section of the brain (see supplementary material for an animated version). Colored 
rectangles mark positions of zoomed in plaques in C-D. B, Example of a larger plaque extending over several z-layers 
and with Aβ1-42Arc in several inner regions connected by Aβ1-38Arc. C, Example of typically sized plaques. Aβ1-42Arc is 
mostly located inside a larger Aβ1-38Arc-rich region. D, Example of small plaques mainly composed of Aβ1-42Arc. 

 

This second plaque population was located in brain regions populated also by “typical plaques”, 

but it was also found in regions devoid of “typical plaques” like the hypothalamus. Overall, the 3D 

model presented a much more detailed overview of plaque morphology and the distribution of 

Aβ peptides inside them. We therefore applied the method for single-plaque statistics to the 3D 

model and compared results for a single slice to a full 3D-stack. When the single slices used for 

the reconstruction of the 3D model were evaluated individually in 2D (i.e. as additional technical 

replicates), results agreed with Figure 2 (Figure S10). 
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Figure 5. Statistical evaluation of the relationship between single-plaque Aβ1-42Arc/ Aβ1-38Arc-ratios vs. plaque 
area/volume of APP NL-G-F mouse (67 weeks) in 2D and 3D. A, 2D-evaluation of a single 10 µm slice. B, 3D-
evaluation of 9 consecutive slices at 10 µm thickness. 

 

For comparison of Aβ1-42Arc/ Aβ1-38Arc-ratios in a single slice of 67w APP NL-G-F brain (Figure 5A) to 

the 3D-model (Figure 5B), the size bins for plaque areas used in the 2D case were converted to 

volumes under the assumption of spherical plaques. In contrast to 2D-statistics, the majority of 

plaques of all sizes displayed an Aβ1-42Arc/ Aβ1-38Arc-ratio just below 1, whereas a smaller fraction of 

plaques were Aβ1-42Arc-rich (Figure 5B). More small plaques were Aβ1-42Arc-rich than for any other size 

class, but the trend was notably weaker than in 2D-statistics. This could be replicated in a second 

independent 3D-model based on MSI for different tissue sections (Figure S11). This observation 

may support a “tip of the iceberg” notion for 2D-based statistics of 3D-objects and may suggest 

that biological phenomena should be evaluated in 3D more often also in the field of MSI.  
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DISCUSSION 

In this study, we presented a fast technique for image-wide feature extraction of sparse, small 

and separated objects and statistical tools for evaluation and comparison of relative abundance, 

co-localization and sizes of structures in 2D and in 3D. Our computational workflows were applied 

to statistical evaluation of amyloid plaques in brains of AD model mice, but they should be 

generally applicable for the statistical analysis of sparsely distributed objects in MSI. Current 

software solutions widely used throughout the MSI community regularly use hierarchical- or k-

means-clustering as a means for segmentation or ROI selection. For many applications this may 

lead to good results, and scalability and simplicity of the algorithms enables fast runtimes. A 

common property of MSI images of plaques in AD brains (but also of other analytical topics in 

MSI, e.g. rare cell types in an organ [45]) is the low number of spectra, which carry AD-associated 

signals (or signals of certain rare cell types in other applications). In addition, the intensity of Aβ-

signals can vary by 1-2 orders of magnitude, and typically also very low signals (but with SNR ≥ 3) 

may be selected. This leads to unequal group sizes (signal-baring spectra/pixels vs. non-signal-

baring spectra) and unequal group densities (all spectra with Aβ signals SNR <3 meaning “no 

plaque” vs. all spectra with SNR ≥ 3 meaning “plaque”). Both of these properties (unequal group 

sizes and densities) are known weaknesses of k-means algorithms [46]. We have therefore chosen 

a new approach that focuses on the sparsity of signals.  

As peptide MSI of AD brains means targeted analysis of known m/z values of Aβ isoforms, the 

actual segmentation task can be better described as separation of fore- and background on a 

relatively low number of ion-images. This is reminiscent of immunohistochemistry image analysis. 

Many typical images consist of several sets of coherent pixels with comparable grey levels, which 

often results in histograms with at least two modes, where a threshold can be set at the local 

minima between modes [47]. However, ion images of sparse signals like plaques tend to be 

unimodally distributed, and therefore we used T-point thresholding [48], which results in binary 

ion images of the m/z of interest (i.e. Aβ species). By applying connected component labeling to 

the binary image, each plaque gets its own unique ID that raw spectra are linked with. As the 

number of spectra for each ID and the MSI spot size are known, the plaque size can be 
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approximated and used as an additional feature that has not been accessible for MSI in an 

automated way until now.  

Since amyloid plaques are 3D-objects, we investigated possible observational bias caused by not 

considering the 3rd dimension. To address this, we reconstructed a 3D-model of AD plaques. 

Although the effort is still high, very fast MALDI-imaging instruments and automated MSI image 

registration tools (Cordes et al., M²aia registration tool, manuscript in preparation) should enable 

regular 3D analysis. 3D-amyloid plaques have been shown in several studies with different 

modalities like synchrotron X-ray, stimulated emission depletion microscopy or light sheet 

microscopy [49-51] but to our knowledge this is the first time a 3D model of AD plaque pathology 

has been reconstructed that enables statistical analysis of molecular details such as plaque 

composition.  

Our 3D-model (APP NL-G-F mouse; 67w) revealed large plaques harboring serval Aβ1-42Arc-rich 

“core regions” connected by much larger regions rich in Aβ1-38Arc and Aβ1-39Arc. This supports 

current views in the AD field where longer peptides, even at low concentrations, seed the 

aggregation of more abundant peptides. Such a seed mechanism has been proposed for human 

AD [52, 53]. However, even though the 3D-model may provide circumstantial evidence, it cannot 

resolve the order of events. Earlier (2D) MSI studies reported similar observations in the 

TgAPPswe mouse model, where they found high levels of Aβ1-42 in younger plaques whereas 

plaque maturation was characterized by a relative increase in Aβ1-40 [26]. On the other hand in 

another study on the TgAPPswe mouse Aβ1-40 was found in the core of mature plaques, and Aβ1-

42 appeared more in diffuse plaques or diffuse radial structures of cored deposits [54]. However, 

the TgAPPswe model is difficult to compare, since it is based on APP overexpression and only 

harbors one of its three mutations of the NL-G-F mouse model. Furthermore, 3D plaque statistics 

done on two independent 3D-reconstructions indicates that (statistical) evaluation of 3D objects 

based on 2D sections might create a bias that obscures the real nature of the 3D object. This may 

result from the fact that large objects likely extend throughout several z-planes, whereas small 

objects only cover one or two z-planes. Consequently, the number of small plaques will rise with 

each additional z-plane considered, whereas the number of large plaques rises more slowly in 3D 
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than in 2D. In addition, small parts of large plaques will still be considered a small plaque in 2D, 

whereas the 3rd dimension will make such errors less likely.  

So far the vast majority of published MSI studies of AD brains have presented qualitative results, 

i.e. investigations of presence and (co-)localization of Aβ peptides on an image level (i.e. based 

on the overall mean spectrum) or for a manually selected subset of plaques [7-9]. Some studies 

have also evaluated the relative abundance of various peptide species, but also there the analysis 

has always been based on a subset of plaques or has evaluated them as all pixels containing 

signals originating from AD-associated molecular species [55]. In our single plaque analysis of APP 

NL-G-F mouse brain, Aβ1-40Arc was a minor signal, both in overall intensity and number of signal-

bearing pixels, compared to Aβ1-42Arc, confirming previous observations that the APP I45F (Iberian) 

mutation causes a high Aβ1-42Arc/ Aβ1-40Arc-ratio [42, 56]. We found Aβ1-38Arc as the main species in 

NL-G-F, but cannot be sure if this may be a result of better ionization of Aβ1-38Arc over Aβ1-42Arc (for 

peptide standards about 5-fold). This also means that an Aβ ratio of 1 does not imply 

equimolarity. Because of the high complexity of the tissue, the lack of isotope-labeled standards 

and the intricacies of the MALDI process itself, we presently do not know the real molecular ratios 

in plaques.  

Furthermore we introduced size estimates extracted from m/z images as an additional feature 

for interpretation of MSI data of sparse objects (e.g. plaques). We used a combination of plaque 

composition and corresponding sizes to show that larger plaques were associated with a high 

diversity in plaque composition and that presence of Aβ1-38Arc was associated with larger plaques.  

In APP PS1 brain we revealed high abundance of a longer Aβ peptide, Aβ1-43, by MALDI MSI for 

the first time. Long Aβ isoforms, in particular longer ones than Aβ1-43, have recently been 

implicated in the pathogenesis of AD [22]. Plaque composition was more homogenous in APP PS1- 

than in APP NL-G-F brain of similar age. It is presently unknown if this homogeneity in APP PS1 

brain may be a result of APP overexpression, which also leads to other effects like perturbed 

axonal transport or overexpression of other APP derived fragments such as sAPP, CTF-β and AICD 

that themselves also possess biological functions [29]. In contrast, the APP NL-G-F mouse of 

similar age displayed two types of plaques that were even more pronounced at higher age. The 
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I716F (Iberian) mutation of APP was implicated in producing abundant diffuse amyloid plaques 

mainly composed of Aβ1-42 [56]. Other observations on differentially composed plaques as distinct 

populations were also observed in human sporadic cases of AD by MSI, but there the shorter 

species (<42) accumulated mostly in blood vessels [9]. Taken together, the PLAQUE PICKER 

analytical workflow may help to resolve functional differences between animal models of AD and 

elucidate differences between animal models and human AD. 

 

CONCLUSION 

Evaluation on single-sparse-object basis enables in-depth analysis of MSI data for e.g. AD 

pathology and enables better comparability for technical and biological replicates related to such 

analytical questions. We developed a fast analysis pipeline that enables such automated analysis 

for the first time in MSI. We could show different aspects like size-related differences in 

composition of plaques that were not assessable with classical analysis methods in MSI. 

Furthermore, we showed an elastically reconstructed 3D-MSI model of AD pathology and used 

our analysis pipeline to point out possible shortcomings of 2D based evaluation of molecularly 

diverse sparsely-distributed features.  
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