Plasma-Enhanced ALD: Precursor Considerations for Opening the ALD Temperature Window

Stephen E. Potts s.e.potts@tue.nl

1st ENHANCE Winter School, Bochum, Germany 25th-28th January 2011

TU/e

Technische Universiteit **Eindhoven** University of Technology

The research leading to these results has received funding from the MaxCaps Research Project (Medea+).

Where innovation starts

Outline

• Merits of Plasma-Enhanced ALD (a reminder)

Experimental

• ALD reactors & diagnostics (spectroscopic ellipsometry, RBS)

Low temperature ALD: Al₂O₃

- Depositions down to room temperature
- Barriers against corrosion and atmospheric moisture

• High(er) temperature ALD: TiO₂

• Ligand tailoring for increasing the maximum ALD temperature of a process.

Conclusions

Merits of Plasma-Enhanced ALD

1. Improved material properties

- High reactivity of the plasma can reduce impurities
- Higher film density

2. Deposition at reduced substrate temperatures

• Reactive plasma radicals and ions accelerated within the plasma sheath provide more reactivity than is possible with thermal energy alone

3. Increased choice of precursors and materials

- Use of precursors with high thermal and chemical stability as plasmas can remove (combust) ligands which aren't easily hydrolysed
 - e.g. [Ti(Cp*)(OMe)₃], unreactive with water and low reactivity with ozone during ALD (see later)
- Deposition of metals (a 'dark art')

Plasma Atomic Layer Deposition

W. M. M. Kessels, H. B. Profijt, S. E. Potts and M. C. M. van de Sanden, *Atomic Layer Deposition of Nanostructured Materials*, editors: M. Knez and N. Pinna, Wiley-VCH (2011), **in press**.

Merits of Plasma-Enhanced ALD

4. Good control of stoichiometry and film composition

- Tuning physical variables to tune stoichiometry
- E.g. Varying plasma
 - Composition: TaN_x from $[Ta(NMe_2)_5]$ ($x = \sim 0-1.67$)
 - Time: Pt or PtO₂ from [Pt(Cp^{Me})Me₃]

5. Increased growth rate

- Higher growth per cycle (increased number of nucleation sites)
- Shorter purges
- Shorter nucleation time

6. More processing versatility in general

- Possibility of *in situ* (pre-)treatment of the substrate/reactor
- Reactor cleaning (e.g. etching with SF₆ plasma) and wall conditioning

Experimental Details (Plasma & Thermal ALD)

Motivation: Low Temperature ALD

- Some applications require high film quality but the substrates required are temperature-sensitive.
- Alloys (or polymers) requiring a corrosion-resistant barrier layer
 - Dense, defect-free films required.
 - Higher temperatures can alter the mechanical properties of industrial alloys.
- Moisture permeation barriers for OLEDs
 - Films need to be deposited on organic substrates.

Coating metal substrates at TU/e

OLEDs at TU/e

Low Temperature Oxide ALD in the Literature

6/23

Material	Metal Precursor	Co-Reactant	Lowest <i>T_s</i> (°C)	Reference
Al ₂ O ₃	[AI(CH ₃) ₃]	H ₂ O	33	Groner et al.
	[AI(CH ₃) ₃]	O ₃	25	Kim <i>et al.</i>
	[AI(CH ₃) ₃]	O ₂ plasma	25	van Hemmen <i>et al.</i>
TiO ₂	[Ti(O [/] Pr) ₄]	H ₂ O	150	Ritala <i>et al.</i>
	[Ti(O [/] Pr) ₄]	H ₂ O ₂	77	Liang et al.
	[Ti(O [/] Pr) ₄]	O ₂ plasma	25	Potts et al.
	[Ti(Cp ^{Me})(O ⁱ Pr) ₃]	O ₂ plasma	50	Potts <i>et al.</i>
	[Ti(Cp*)(OMe) ₃]	O ₂ plasma	50	Potts <i>et al.</i>
	[Ti(Cp ^{Me})(NMe ₂) ₃]	O ₂ plasma	25	Sarkar et al.
Ta ₂ O ₅	TaCl₅	H ₂ O	80	Kukli <i>et al.</i>
	[Ta(NMe ₂) ₅]	H ₂ O	150	Maeng et al.
	[Ta(NMe ₂) ₅]	O ₂ plasma	25	Potts <i>et al.</i>
PtO _x	[Pt(acac) ₂]	O ₃	120	Hämäläinen <i>et al.</i>
	[Pt(Cp ^{Me})Me ₃]	O ₂ plasma	100	Knoops <i>et al.</i>
ZnO	$[Zn(CH_2CH_3)_2]$	H ₂ O	60	Guziewicz et al.
	$[Zn(CH_2CH_3)_2]$	H ₂ O ₂	25	King et al.
	[Zn(CH ₂ CH ₃) ₂]	O ₂ plasma	25	Rowlette et al.

S. E. Potts et al., J. Electrochem. Soc., 157, P66 (2010).

Plasma-Enhanced & Thermal ALD of Al₂O₃

7/23

- Water processes: lower growths per cycle at low temperatures
- Ozone process: many extra surface groups at T_s < 100 °C \rightarrow very low density.
- Reduction in growth per cycle with increasing T_s \rightarrow dehydroxylation.

Plasma-enhanced ALD gives high growths per cycle at low deposition temperatures.

[■], [▲] J. L. van Hemmen *et al.*, *J. Electrochem. Soc.* **154**, G165 (2007).
[O] M. D. Groner *et al.*, *Chem. Mater.*, **16**, 639 (2004).
[☆] S. K. Kim *et al.*, *J. Electrochem. Soc.*, **153**, F69 (2006).
/ Applied Physics / Plasma & Materials Processing / S. E. Potts

Plasma-Enhanced & Thermal ALD of Al₂O₃

8/23

On Si (100)

- Variation in growth due to changes in density (low T) and dehydroxylation (higher T)
- Densest films have lowest OH concentrations

Al₂O₃: Co-Reactant Purge Times

- Water build-up leads to a CVD-like effect
- Water requires substantial purging at low temperatures due to its 'sticky' nature
- Plasma(s) and ozone are more easily purged away
- If the plasma is long enough then purging may not be necessary

Cycle times at low temperatures are reduced considerably.

[■], [▲] J. L. van Hemmen *et al.*, *J. Electrochem. Soc.* **154**, G165 (2007).
[O] M. D. Groner *et al.*, *Chem. Mater.*, **16**, 639 (2004).
[☆] S. K. Kim *et al.*, *J. Electrochem. Soc.*, **153**, F69 (2006).
/ Applied Physics / Plasma & Materials Processing / S. E. Potts

Al₂O₃ as a Corrosion Barrier

Standard Industrial Alloys

- 100Cr6 mild steel
- Aluminium Al2024-T3
- Neutral salt-spray tests
 - Al₂O₃ on 100Cr6 mild steel improves its resistance to corrosion.
 - Thicker films offer better protection
 - Plasma ALD films lasted longer than thermal ALD in the tests

This work has received funding from the European Community's FP7/2007-2013 project, grant agreement no. CP-FP213996-1 (CORRAL). S. E. Potts *et al.*, *J. Electrochem. Soc.*, **in press** (2011). / Applied Physics / Plasma & Materials Processing / S. E. Potts

Al₂O₃ as a Corrosion Barrier: TEM

Al₂O₃ on Al2024-T3

- Films conformal on the substrates in both cases
- Gap between coating in the case of thermal ALD suggests poor adhesion
- Plasma-enhanced ALD affords better adhesion in this case.

S. E. Potts *et al.*, *J. Electrochem. Soc.*, **in press** (2011). / Applied Physics / Plasma & Materials Processing / S. E. Potts

Technische Universiteit **Eindhoven** University of Technology

Moisture Permeation Barrier for OLEDs

Organic LEDs (OLEDs)

- Energy-efficient lighting
- Large luminous area
- Sensitive to H₂O, O₂ and temperature

Requirements:

- Deposition temperature <110 °C
- Water vapour transmission rate (WVTR) ~10⁻⁶ g m⁻² day⁻¹

Plasma-Enhanced ALD for OLEDs

20-40 nm AI_2O_3 by plasma-enhanced ALD

 Calcium tests: films deposited at 25 °C gave lowest water vapour transmission rates

13/23

Poly-LED No encapsulation

PE-CVD 300 nm a-SiN_x:H

PE-ALD 40 nm Al₂O₃ Ue Technische Universiteit Eindhoven University of Technology

Summary: Low Temperature ALD

• Using plasma-enhanced ALD

- Deposit good to fair material down to room temperature
- Significantly reduced co-reactant purging times for lower temperature (compare with water)

Corrosion barriers

- Protect industrial metal alloys
- Plasma-enhanced ALD films offer improved protection (density)

Moisture permeation barriers

• Deposited at room temperature gave the best barrier properties

Motivation: High(er) Temperature ALD

- Many applications require TiO₂
- Mixed (Ternary) Oxides
 - SrTiO₃ (STO) and BaSrTiO₃ (BST)
 - Ultra-high-*k* dielectric for DRAM trench capacitors

Requirements

- Ultra-thin films
- Good conformality
- Control of stoichiometry/atomic composition
- Generally, the best electronic and optical properties can be obtained at higher deposition temperatures.

*From: M. Vehkamäki *et al.*, *Electochem. Solid-State Lett.*, **2**, 504 (1999). / Applied Physics / Plasma & Materials Processing / S. E. Potts

14:45 Valentino Longo

PA-ALD of Strontium Titanate using Cyclopentadienyl-Based Precursors

Merits #1 & #3

Ligand-Tailoring of TiO₂ Precursors

• Tailoring ligands can allow for an increase in the maximum temperature

16/23

ersity of Technology

- Stronger M–L bonds
- Incorporation of ligands less prone to decomposition

O'Pr

llin

- [Ti(O^{*i*}Pr)₄]
 - "TTIP"
 - A standard TiO₂ precursor
 - Homoleptic alkoxide
 - Tendency to dimerise
 - Decomposition at 300 °C
- ALD with water and ozone
 - Increase in GPC with increasing substrate temperature:
 - Thermally-driven process.
- Plasma ALD
 - Consistently high GPC over the temperature range.

Precursor decomposition at T_s > dashed line.

H₂O process: Q. Xie *et al.*, *J. Appl. Phys.*, **102**, 083521 (2007). O₃ process: P. Williams at ALD 2008, Bruges, Belgium.

echnische Universiteit **Endhoven** Jniversity of Technology

17/23

- 18/23
- $[Ti(Cp^{Me})(O'Pr)_3]$ 1.5 O, Plasma Cp^{Me} for increased stability and volatility **3PC (Ă/cycle**) No oligomerisation 1.0 Decomposition above 300 °C $(\beta$ -H on ^{*i*}Pr groups) 0.5 Not reactive with water in ALD process. 0.0 **Thermally-driven mechanism** 50 100 200 250 300 350 150 n for ozone. Substrate Temperature (°C) Flat GPC profile for plasma Precursor decomposition at T_s > dashed line. process. Me O₃ process: P. Williams at ALD Comparable GPC to #1. 2008, Bruges, Belgium.

- [Ti(Cp*)(OMe)₃]
 - "Ti-Star" or "StarTi"
 - No obvious decomposition
 - OMe groups have no β-H
- Similar GPC to #1 and #2.
- Increase in GPC with temperature for ozone less prominent.
- Preliminary DFT calculations
 - Full chemical bonding does not take place with OH surface groups.*
 - H-bonding via OMe groups.
 - Cp^x left on surface.

- 20/23
- $[Ti(Cp^{Me})(NMe_2)_3]$ \mathbf{Q} 1.5 Possibility of oxides and nitrides. BPC (Å/cycle) • NMe₂ more reactive towards 1.0 oxidants. **GPC** of plasma and ozone 0.5 processes follow similar O₂ Plasma trend. O_{3} **Higher GPC than #1-3.** 0.0 50 150 200 250 300 350 100 () **Reactivity of NMe₂ ligands** Substrate Temperature (°C) higher than OR. Precursor decomposition at T_s > dashed line.

Me₂

This reactivity reduces at T_s
< 200 °C.

TU/e

Higher Deposition Temperatures of TiO₂

Combination of OMe ligands and Cp result in the highest decomposition temperature.

Upper limit of temperature window effectively increased

* O₃ processes: 1, 2, 4: P. Williams at ALD 2008, Bruges, Belgium. 3: R. Katamreddy *et al.*, *ECS Trans.*, **25**, 217 (2009).

/ Applied Physics / Plasma & Materials Processing / S. E. Potts

Summary: High(er) Temperature ALD

- H₂O, O₃ and an O₂ plasma give very different results for the same ligands.
- For plasma ALD, the precursor reactivity with the substrate surface (1) is, in practice, the only limiting step.
- Reactivity of ligands in Ti compounds towards surface groups at low temperature:

 $Cp^x \ll OR \ll NR_2$

- Ability to H-bond with surface groups is key to the reaction mechanism.
- Plasmas allow Cp-based precursors to be used for microelectronics applications:
 - Give good ALD behaviour
 - Cp^x ligands provide stability to the precursors

Conclusions

- Plasma-enhanced ALD at low deposition temperatures
 - Higher OH content, lower density
 - Al₂O₃ as barrier layers
 - Protects 100Cr6 and Al2024-T3 alloys from corrosion
 - Gives a lower film porosity at lower temperatures
 - Lowest water vapour transmission rates at room temperature
- Plasma-enhanced ALD at high(er) deposition temperatures
 - Better electronic and optical properties
 - Able to use stable precursors (stronger M–L bonds)

Plasmas allow for ALD over a wider temperature range than possible with thermal ALD

