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Abstract: In this paper, we present a fully-automatic Spatio-Temip@abCut human
segmentation methodology that combines tracking and seiginen. GrabCut initialization
is performed by a HOG-based subject detection, face detectind skin color model.
Spatial information is included by Mean Shift clusteringesbas temporal coherence is
considered by the historical of Gaussian Mixture Models. rédoer, full face and pose
recovery is obtained by combining human segmentation wittivA Appearance Models
and Conditional Random Fields. Results over public dataaetl in a new Human Limb
dataset show a robust segmentation and recovery of bottafatpose using the presented
methodology.

Keywords: segmentation; human pose recovery; GrabCut; GraphCutyeA&jppearance
Models; Conditional Random Field

1. Introduction

Human segmentation in uncontrolled environments is a hask because of the constant changes
produced in natural scenes: illumination changes, movibgats, changes in the point of view,
occlusions, just to mention a few. Because of the natureeoptbblem, a common way to proceed is to
discard most part of the image so that the analysis can berpetl on a reduced set of small candidate
regions. In [L], the authors propose a full-body detector based on a casifadassifiers?] using HOG
features. This methodology is currently being used in s¢weorks related to the pedestrian detection



Sensors 2012 12 15377

problem B]. GrabCut B] has also shown high robustness in Computer Vision segriemgaroblems,
defining the pixels of the image as nodes of a graph and eixtgacireground pixels via iterated Graph
Cut optimization. This methodology has been applied to télem of human body segmentation with
high successg,6]. In the case of working with sequences of images, this apatron problem can also
be considered to have temporal coherence. In the worK ahe authors extended the Gaussian Mixture
Model (GMM) of GrabCut algorithm so that the color space isyptemented with the derivative in time
of pixel intensities in order to include temporal infornmatiin the segmentation optimization process.
However, the main problem of that method is that moving @ixelrresponds to the boundaries between
foreground and background regions, and thus, there is a0 discrimination.

Once aregion of interest is determined, pose is often reedv®y the determination of the body limbs
together with their spatial coherence (also with tempoosletence in case of image sequences). Most
of these approaches are probabilistic, and features asdlyibased on edges or “appearance”. 8h [
the author propose a probabilistic approach for limb deiadvased on edge learning complemented
with color information. The image of probabilities is thesrmulated in a Conditional Random Field
(CRF) scheme and optimized using belief propagation. Tloikvaas obtained robust results and has
been extended by other authors including local GrabCut satation and temporal refinement of the
CRF model 5,6].

In this paper, we propose a full-automatic Spatio-TempdeahbCut human segmentation
methodology, which benefits from the combination of tragkand segmentation. First, subjects are
detected by means of a HOG-based cascade of classifiersd&@otion and skin color model are used
to define a set of seeds used to initialize GrabCut algoritSpatial information is taken into account
by means of Mean Shift clustering, whereas temporal infétionas considered taking into account the
pixel probability membership to an historical of GaussiamxtMre Models. Moreover, the methodology
is combined with Shape and Active Appearance Models (AAMjgtine three different meshes of the
face, one near frontal view, and the other ones near lateaisv Temporal coherence and fitting cost
are considered in conjunction with GrabCut segmentaticaltav a smooth and robust face fitting in
video sequences. Finally, the limb detection and a CRF nmaréedpplied on the obtained segmentation,
showing high robustness capturing body limbs due to theratethuman segmentation. The main
limitation of our approach is that it depends on a correctct@in of the person and his/her face, in order
to get the desired result. In order to test the proposed rdethgy, we use public datasets and present a
new Human Limb dataset useful for human segmentation, lietéation, and pose recovery purposes.

The rest of the paper is organized as follows: Section 2 descrithe proposed methodology,
presenting the spatio-temporal GrabCut segmentatiomA&M for face fitting, and the pose recovery
methodology. Experimental results on public and novel sigtaare performed in Section 3. Finally,
Section 4 concludes the paper.

2. Full-Body Pose Recovery

In this section, we present the Spatio-Temporal GrabCuhadetiogy to deal with the problem of
automatic human segmentation in video sequences. Theneseegiloe the Active Appearance Models
used to recover the face, and the body pose recovery metipdblased on the approach @].[
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All methods presented in this section are combined to impifowal segmentation and pose recovery.
Figurel illustrates the different modules of the project.

Figure 1. Overall block diagram of the methodology.
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2.1. GrabCut Segmentation

In [4], the authors proposed an approach to find a binary segnan(tadickground and foreground)
of an image by formulating an energy minimization schemehasone presented i®f11], extended
using color instead of just gray-scale information. Giveooéor imagel!, let us consider the array
2z = (21, Zn, .., 2nv) Of N pixels wherez; = (R;,G;,B;), i € [1,...,N] in RGB space. The
segmentation is defined as array = (ay,...ay), a; € {0,1}, assigning a label to each pixel
of the image indicating if it belongs to background or fomgrd. A trimap7 is defined by the
user—in a semi-automatic way—consisting of three regidhs; 7» and Ty, each one containing
initial background, foreground, and uncertain pixelspessively. Pixels belonging téz andT are
clamped as background and foreground respectively—whidmns GrabCut will not be able to modify
these labels, whereas those belongin@oare actually the ones the algorithm will be able to label.
Color information is introduced by GMMs. A full covariancevM®l of K components is defined for
background pixelsd; = 0), and another one for foreground pixeds; (= 1), parametrized as follows

0 ={m(a, k), pla, k), (e, k), 0 € {0,1}, k = 1..K'}, (1)

being 7 the weights,. the means and the covariance matrices of the model. We also consider the
arrayk = {ky, ..., ki, ...kn}, k; € {1,...K}, i € [1,..., N] indicating the component of the background
or foreground GMM (according ta;) the pixelz; belongs to. The energy function for segmentation is
then

E(a,k,0,z) = U(a,k,0,z) + V(a, 2), (2)
whereU is the likelihood potential, based on the probability disitionsp(-) of the GMM:
U(a, k,0,2z) = Z —log p(zi|v, ki, 0) — log m(cv;, ki) 3)

andV is a regularizing prior assuming that segmented regionsldhme coherent in terms of color,
taking into account a neighborhooetaround each pixel

Viez) =7 Y lan # an] xp(=bllzn — zl*) (4)

{m,n}eC
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With this energy minimization scheme and given the initrainap 7', the final segmentation is
performed using a minimum cut algorith®,10,12]. The classical semi-automatic GrabCut algorithm
is summarized in Algorithm 1.

Algorithm 1 Original GrabCut algorithm.
1. TrimapT initialization with manual annotation.
2: Initialize o; = 0fori € Tg anda; = 1 fori € Ty U Tk.
3: Initialize Background and Foreground GMMs from sets= 0 and«; = 1 respectively, with
k-means.
Assign GMM components to pixels.
Learn GMM parameters from data z.
Estimate segmentation: Graph-cuts.
Repeat from step 4, until convergence.

N o g ok

2.2. Automatic Initialization

Our proposal is based on the previous GrabCut frameworkising on human body segmentation,
being fully automatic, and extending it by taking into acabtemporal coherence. We refer to each
frame of the video ag;, t € {1, ..., M} being M the length of the sequence. Given a frafpewe first
apply a person detector based on a cascade of classifiegsi€IG features]]. Then, we initialize
the trimapT from the bounding box3 retuned by the detectoffy;, = {z; € B}, Ts = {z; ¢ B}.
Furthermore, in order to increase the accuracy of the segti@m algorithm, we include Foreground
seeds exploiting spatial and appearance prior informatidm one hand, we define a small central
rectangular regiork inside B, proportional toB in such a way that we are sure it corresponds to the
person. Thus, pixels inside are set to foreground. On the other, we apply a face deteas®doon a
cascade of classifiers using Haar-like featuoyer B, and learn a skin color model,,,, consisting
of a histogram over thélue channel of theHSV image representation. All pixels inside fitting in
hskin are also set to foreground. Therefore, we initialize= {z; € R} U {z; € (z;, hsrin) }, Whered
returns the set of pixels belonging to the color model deflmed,;.;,,. An example of seed initialization
is shown in Figure(b).

2.3. Spatial Extension

Once we have initialized the trimap, we can apply the iteeathinimization algorithm shown in steps
4 to 7 of original GrabCut (Algorithm 1). However, insteadagiplying k-means for the initialization
of the GMMs we propose to use Mean-Shift clustering, whislo &hkes into account spatial coherence.
Given an initial estimation of the distribution modes,(x") and a kernel functiony, Mean-shift
iteratively updates the mean-shift vector with the follogZformula:

i Xag (11 5= 11%)
my,(x) = T =
> i 95 1%
until it converges, wherg; contains the value of pixel; in CIELuv space and its spatial coordinates,
and returns the centers of the clusters (distribution motteshd. After convergence, we obtain a

(5)
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segmentatior’ and the updated foreground and background GMKiat frame f;, which are used
for further initialization at framef, ;. The result of this step is shown in Figuzée). Finally, we refine
the segmentation of framg eliminating false positive foreground pixels. By definitiof the energy
minimization scheme, GrabCut tends to find convex segmentatasks having a lower perimeter, given
that each pixel on the boundary of the segmentation maskibotés on the global cost. Therefore,
in order to eliminate these background pixels (commonly ancave regions) from the foreground
segmentation, we re-initialize the trimdpas follows

TB = {ZZ‘CMZ:O}U

( t t

Z p(zilai = 0, ki, 0%) Z p(zilai = 1,k;, 0%)

’k:tfj k=t—j

Zj - > -
J J
\ J
Tp = {2z €0(2, hskin)}

where the pixel background probability membership is cotegusing the GMM models of previoys
segmentations. This formulation can also be extended &xtietise negatives. However, in our case we
focus on false positives since they appear frequently icéise of human segmentation. The result of this
step is shown in Figurg(d). Once the trimap has been redefined, false positive fovegl pixels still
remain, so the new set of seeds is used to iterate again Gralgouithm, resulting in a more accurate
segmentation, as we can see in Figa(e).

Figure 2. STGrabcut pipeline example:a) Original frame, b) Seed initialization,
(c) GrabCut, ¢) Probabilistic re-assignmeng)(Refinement andf) Initialization mask for

ft-i—l'

(b)

(d) )
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2.4. Temporal Extension

ConsideringA as the binary image representiagat f; (the one obtained before the refinement), we
initialize the trimap forf; ., as follows

Tr = {z€llz; € Ao ST, a(z) =1}
Ty = {z€llz; € Ad STy, a(z) =1\ Tk

wherec and@® are erosion and dilation operations with their respectiugcturing elements$'7, and
STy, o; == a(z;), and\ represents the set difference operation. The structutergents are simple
squares of a given size depending on the size of the persothandegree of movement we allow
from f; to f,,1, assuming smoothness in the movement of the person. An dgarha morphological
mask is shown in Figurg(f). Spatial information could be also included in the medift algorithm in
conjunction with color and spatial information. Howevee wmcluded this information explicitly to be
anisotropic. The whole segmentation methodology is detail the ST-GrabCut Algorithm 2.

Algorithm 2 Spatio-Temporal GrabCut algorithm.
1. Person detection ofi.
Face detection and skin color model learning.
TrimapT initialization with detected bounding box and learnt skihoc model.
Initialize o; = 0 fori € Tg anda; = 1 fori € Ty U Tk.
Initialize Background and Foreground GMMs from sets= 0 and«; = 1 respectively, with
Mean-shift.
fort=1..M
Person detection ofy.
Assign GMM components to pixels ¢f.
Learn GMM parameters from data z.
10:  Estimate segmentation: Graph-cuts.
11: Repeat from step 8, until convergence.
12:  Re-initialize trimapl’ (Equation 6)).
13:  Assign GMM components to pixels.
14:  Learn GMM parameters from data z.
15:  Estimate segmentation: Graph-cuts.
16:  Repeat from step 12, until convergence.
17:  Initialize trimapT using segmentation obtained in step 11 after convergencaijen?) for f;, ;.

18: end for
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2.5. Face Fitting

Once we have properly segmented the body region, the nextetesists of fitting the face and the
body limbs. For the case of face recovery, we base our proeestumesh fitting using AAM, combining
Active Shape Models and color and texture informatidg.[

AAM is generated by combining a model of shape and textureatian. First, a set of points are
marked on the face of the training images that are alignedl aastatistical shape model is builti4].
Each training image is warped so the points match those ahtren shape. This is raster scanned into
a texture vectorg, which is normalized by applying a linear transformatigny (g — 11,1)/0,, where
1is a vector of ones, and, andcrg are the mean and variance of elementg.ofAfter normalization,
g’1 = 0 and|g| = 1. Then, principal component analysis is applied to buildxdute model. Finally,
the correlations between shape and texture are learnt &r@ena combined appearance model. The
appearance model has parameteontrolling the shape and texture according to

r =7+ Q,C (8)
g=9+Q,C 9)

wherez is the mean shapgthe mean texture in a mean shaped patch@n@, are matrices designing
the modes of variation derived from the training set. A sh¥pe the image frame can be generated
by applying a suitable transformation to the points, X = S;(x). Typically, S; will be a similarity
transformation described by a scalifigan in-plane rotatior, and a translatioft,,, ¢, ).

Once constructed the AAM, it is deformed on the image to detrd segment the face appearance
as follows. During matching, we sample the pixels in the oagf interesty,,, = 7,(9) = (u; +
1)g,,, + u21, whereu is the vector of transformation parameters, and project ihé texture model
frame,g, = 7, '(9,,)- The current model texture is given gy, = g + Q,c, and the difference between
model and image (measured in the normalized texture frasree follows

r(p) =9, -9, (10)

Given the errorE = |r|?, we compute the predicted displacemefigs = —Rr(p), whereR =

(%g—;)_l %. The model parameters are updafed— p + kdp, where initiallyk = 1. The
new pointsX’ and model frame texturg, are estimated, and the image is sampled at the new points
to obtaing/,; and the new error vectat = 7., (g.,.) — ¢’,. A final condition guides the end of each
iteration: if [r'|* < E, then we accept the new estimate, otherwise, we settd).5, k = 0.25, and so

on. The procedure is repeated until no improvement is mattesterror.

With the purpose to discretize the head pose between fréataland profile face, we create three
AAM models corresponding to the frontal, right, and leftwieAligning every mesh of the model, we
obtain the mean of the model. Finally, to determine the obdssfitted face by AAM models, that is
given by its proximity to the closest mean model.

Taking into account the discontinuity that appears wherca faoves from frontal to profile view, we
use three different AAM corresponding to three meshes ofddtg: frontal viewSS -, right lateral view

Sg, and left lateral view . In order to include temporal and spatial coherence, mesthieamef,,
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are initialized by the fitted mesh points at franfie Additionally, we include a temporal change-mesh
control procedure, as follows

%H_l = mingtJrl{EgF, E%Ra ESL}v %H—l € V(%t) (11)

wherer(S7?) corresponds to the meshes contiguous to the rdéghted at timet (including the same
mesh), andEs;, is the fitting error cost of mesk;. This constraint avoids false jumps and imposes
smoothness in the temporal face behavior (e.g., a jump figint to left profile view is not allowed).

In order to obtain more accurate pose estimation, aftenditthe mesh, we take advantage of its
variability to differentiate among a set of head poses. yriab the spatial configuration of the 21
landmarks that composes a mesh, we create a new trainingvetdlin five classes. We define five
different head poses as follows: right, middle-right, tadnmiddle-left, and left. In the training process,
every mesh has been aligned, and PCA is applied to save the2(0epresentative eigenvectors. Then,
a new image is projected to that new space and classified tofdhne five different head poses according
to a 3-Nearest Neighbor rule.

Figure 3 shows examples of the AAM model fitting and pose estimationmages (obtained
from [15)]) for the five different head poses.

Figure 3. From left to right: left, middle-left, frontal, middle-rig and right mesh fitting.

2.6. Pose Recovery

Considering the refined segmented body region obtained tsenproposed ST-GrabCut algorithm,
we construct a pictorial structure modéalg[. We use the method of Ramanad], which captures
the appearance and spatial configuration of body parts. sopé& body parts are tied together in a
tree-structured conditional random field. Pakisare oriented patches of fixed size, and their position is
parameterized by locatidm, y) and orientatio. The posterior of a configuration of patts= /; given
a framef; is

P(LIf) ocexp| > (i l)+ > @(llf) (12)
(i,j)€E i
The pair-wise potentia¥'(/;,/;) corresponds to a spatial prior on the relative position efspand
embeds the kinematic constraints. The unary potef#tia|/) corresponds to the local image evidence
for a part in a particular position. Inference is performedrdree-structured conditional random field.
Since the appearance of the parts is initially unknown, & ifiference uses only edge features in
®. This delivers soft estimates of body part positions, whaoh used to build appearance models of
the parts and background (color histograms). Inferenckes tepeated witkb using both edges and
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appearance. This parsing technique simultaneously gssnp@se and appearance of parts. For each
body part, parsing delivers a posterior marginal distrdyubver location and orientatidm, v, ¢) [6,8].

3. Results

Before the presentation of the results, we discuss the mi&tfods and parameters of the comparative,
and validation measurements.

Figure 4. (a) Samples of the cVSG corpus anu) (UBDataset image sequences, ang (
HumanLimb dataset.

o Data: We use the public image sequences of the Chroma Video SegtoenGround Truth
(cVSG) [17], a corpus of video sequences and segmentation masks dep&poma based techniques
have been used to record Foregrounds and Backgrounds tedyabeing later combined to achieve
final video sequences and accurate segmentation maskstauotosmatically. Some samples of the
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sequence we have used for testing are shown in Fig{@e The sequence has a total of 307 frames.
This image sequence includes several critical factorsrtiede segmentation difficult: object textural
complexity, object structure, uncovered extent, objege,siForeground and Background velocity,
shadows, background textural complexity, Background imaidality, and small camera motion.

As a second database, we have also used a set of 30 videospomdéng to the defense of
undergraduate thesis at the University of Barcelona tothestmethodology in a different environment
(UBDataset). Some samples of this dataset are shown ind=dgio.

Moreover, we present the Human Limb dataset, a new datasgiased by 227 images from 25
different people. At each image, 14 different limbs are latbgsee Figurel(c)), including the “do
not care” label between adjacent limbs, as described inr€iguBackgrounds are from different real
environments with different visual complexity. This dats useful for human segmentation, limb
detection, and pose recovery purposks.

Figure 5. Human Limb dataset labels description.
labell-Head — — Label 15 — Don’t care

Label 8 - Trunk

Label 2 = Right-up arm !
j ‘/ Label 5 — Left-uparm

Label 3 - Right-down arm '—— Label 6 - Left-down arm

Label 4 - Right hand ——‘“ . . Label7 —Left hand

Label 9 — Right-up leg
Label 12 — Left-up leg

Label 10 - Right-downleg — r Label 13 — Left-down leg

-l Label 14 - Left foot
Label 11 - Right foot _‘ Label 0 - Background

o Methods: We test the classical semi-automatic GrabCut algorithmHoman segmentation
comparing with the proposed ST-GrabCut algorithm. In theecaf GrabCut, we set the number of
GMM components: = 5 for both foreground and background models. Furthermoeeabteady trained
models used for person and face detectors have been takethedOpenCV 2.1.

We also test the mesh fitting and body pose recovery methgigsion the obtained segmentations.
The body model used for the pose recovery was taken directhy the work of B].

o Validation measurements: In order to evaluate the robustness of the methodologydardn body
segmentation, face and pose fitting, we use the ground tratksnof the images to compute the

overlapping facto© as follows

> Mgc N Mgr
> Mge U Mgr
where Mg and Mg are the binary masks obtained for spatio-temporal Grab&@yhentation and the
ground truth mask, respectively.

@)

(13)
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3.1. Spatio-Tempral GrabCut Segmentation

First, we test the proposed ST-GrabCut segmentation oretiigesice from the public cVSG corpus.
The results for the different experiments are shown in Tabla order to avoid the manual initialization
of classical GrabCut algorithm, for all the experimentsdsaitialization is performed applying the
commented person HOG detection, face detection, and skin swdel. First row of Tablel shows
the overlapping performance of Equatidr8( applying GrabCut segmentation witkmeans clustering
to design the GMM models. Second row shows the overlappini@ipeance considering the spatial
extension of the algorithm introduced by using Mean Shifstéring (Equations)) to design the GMM
models. One can see a slight improvement when using the destcategy. This is mainly because
Mean Shift clustering takes into account spatial inforimatnf pixels in clustering time, which better
defines contiguous pixels of image to belong to GMM modelsooéground and background. Third
performance in Tablé shows the overlapping results adding the temporal extarisithe spatial one,
considering the morphology refinement based on previousisetation (Equation7)). In this case,
we obtain near 10% of performance improvement respect teaqus result. Finally, last result of
Tablel shows the full-automatic ST-GrabCut segmentation oveitapperformance taking into account
spatio-temporal coherence, and the segmentation refirtemterduced in Equatior). One can see that
it achieves about 25% of performance improvement in retatith the previous best performance. Some
segmentation results obtained by the GrabCut algorithrineocVSG corpus are shown in FigugeNote
that the ST-GrabCut segmentation is able to robustly segougwvex regions. We have also applied the
ST-GrabCut segmentation methodology on the image segsi@htédBDataset. Some segmentations are
shown in Figures.

Table 1. GrabCut and ST-GrabCut Segmentation results on cVSG corpus

Approach Mean overlapping
GrabCut 0.5356
Spatial extension 0.5424
Temporal extension 0.6229
ST-GrabCut 0.8747

3.2. FaceFitting

In order to measure the robustness of the spatio-tempord¥l Aesh fitting methodology, we
performed the overlapping analysis of meshes in both umeated and segmented image sequence
of the public cVSG corpus. Overlapping results are shownahld2. One can see that the mesh
fitting works fine in unsegmented images, obtaining a finalmee&rlapping of 89.60%. In this test, we
apply HaarCascade face detection implemented and traynée:lDpen Source Computer Vision library
(OpenCv). The face detection method implemented in OpengCRainer Lienhart is very similar to the
one published and patented by Paul Viola and Michael Joaesely called Viola—Jones face detection
method [L9]. The classifier is trained with a few hundreds of sample gi@# a frontal face, that
are scaled to the same size (2020), and negative examples of the same size. However, nate th
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combining the temporal information of previous fitting aheé ST-GrabCut segmentation, the face mesh
fitting considerably improves, obtaining a final of 96.36%0wuérlapping performance. Some example
of face fitting using the AAM meshes for different face poskthe cVSG corpus are shown in Figufe

Figure 6. Segmentation examples af)(UBDataset sequence h)(UBDataset sequence 2
and €) cVSG sequence.

Figure 7. Samples of the segmented cVSG corpus image sequences titéndjfferent
AAM meshes.

To create three AAM models that represent frontal, rightlaftdviews, we have created a training set
composed by 1,000 images for each view. The images have kiranted from the public databask].
To build three models we manually put 21 landmarks over 5Qies for each view. The landmarks of
the remaining 500 images which covers one view, has beeaglaca semi-automatic process, applying
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AAM with the set learnt and manually correcting. Finally, alggn every resulting mesh and we obtain
the mean for each model. As the head pose classifier, tofgléissispatial mesh configuration in 5 head
poses, we have labeled manually the class of the mesh obyiamdying the closest AAM model. Every
spatial mesh configuration is represented by the 20 mostseptative eigenvectors. The training set is
formed by 5,000 images from the public databals}.[Finally, we have tested the classification of the
five face poses on the cVSG corpus, obtaining the percentdgentes of the subject at each pose. The
obtained percentages are shown in Téble

Table 2. AAM mesh fitting on original images and segmented images®tW¥SG corpus.

Approach Mean overlapping
Mesh fitting without segmentation 0.8960
ST-Grabcut & Temporal mesh fitting 0.9636

Table 3. Face pose percentages on the cVSG corpus.

Face view System classification Real classification
Left view 0.1300 0.1211

Near Left view 0.1470 0.1347
Frontal view 0.2940 0.3037

Near Right view 0.1650 0.1813

Right view 0.2340 0.2590

3.3. Body Limbs Recovery

Finally, we combine the previous segmentation and facedittrith a full body pose recoverg]. In
order to show the benefit of applying previous ST-GrabCutrsagation, we perform the overlapping
performance of full pose recovery with and without humamsegtation, always within the bounding
box obtained from HOG person detection. Results are shoWwabte4. One can see that pose recovery
considerably increases its performance when reducing égmn of search based on ST-GrabCut
segmentation. Some examples of pose recovery within th@hwsegmentation regions for cVSG corpus
and UBdataset are shown in Figu8e One can see that in most of the cases body limbs are correctly
detected. Only in some situations, occlusions or changksdy appearance can produce a wrong limb
fitting.

Table 4. Overlapping of body limbs based on ground truth masks.

Approach Mean overlapping
Limb recovery without segmentation 0.7919
ST-Grabcut & Limb recovery 0.8760
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Figure 8. Pose recovery results in cVSG sequence.

In Figure 9 we show the application of the whole framework to perform genal tracking,
segmentation and full face and pose recovery. The coloregpond to the body limbs. The colors
increase in intensity based on the instant of time of itsat&e. One can see the robust detection and
temporal coherence based on the smooth displacement cdifigidemb detections.

Figure 9. Application of the whole framework (pose and face recovemy)an image
sequence.

3.4. Human Limb Data Set

In this last experiment, we test our methodology on the pteseHuman Limb dataset. From the
14 total limb annotations, we grouped them into six catexgoritrunk, up-arms, up-legs, low-arms,
low-legs, and head, and we tested the full pose recoveryefrark. In this case, we tested the body
limb recovery with and without applying the ST-GrabCut segmation, and computed three different
overlapping measures: (1) %, which corresponds to theapihg percentage defined in Equati@B)(

(2) wins, which corresponds to the number of Limb regionswhiilgher overlapping comparing both
strategies; (3) match, which corresponds to the numbemds liecoveries with overlapping superior

to 0.6. The results are shown in Talle One can see that because of the reduced region where the
subjects appear, in most cases there is no significantelifterapplying the limb recovery procedure with

or without previous segmentation. Moreover, the segmematgorithm is not working at maximum
performance due to the same reason, since very small baokdjregions are present in the images,
and thus the background color model is quite poor. Furthegma this dataset we are working with
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images, not videos, and for this reason we cannot includeetin@oral extension in our ST-GrabCut
algotithm for this experiment. On the other hand, lookingh& mean average overlapping in the last
column of the table, one can see that ST-GrabCut improveslifoverlapping measures the final limb
overlapping. In particular, in the case of the Low-legs ¥ty is when a more clear improvement
appears using ST-GrabCut segmentation. The part of theemagesponding to Low-legs is where
more background influence exists, and thus the limb recokasythe highest confusion. However,
as ST-GrabCut is able to properly segment the concave regibthe Low-legs regions, a significant
improvement is obtained when applying the limb recoveryhodblogy. Some results are illustrated on
the images of Figur&0, where the images on the bottom correspond to the improvismbetained using
the ST-GrabCut algorithm. Finally, Figuld show examples of the face fitting methodology applied on
the human body limb dataset.

Table 5. Overlapping percentages between body parts (intersectien union), wins
(comparing the highest overlapping with and without segmtemn), and matching
(considering only overlapping greater than 0.6).

Trunk Up-arms Up-legs Low-arms Low-legs Head| Mean

% No segmentation| 0.58 0.53 0.59 0.50 0.48 0.6Y 0.56
STGrabCut* 0.58 0.53 0.58 0.50 0.56 0.67Y 0.57

Wins No segmentation| 106 104 108 109 68 120 102.5
STGrabCut* 121 123 119 118 159 107 124.5

Match No segmentation| 133 127 130 121 108 15§ 129
STGrabCut* 125 125 128 117 126 157 129.66

* STGrabCut was used without taking into account temporakmétion.

Figure 10. Human Limb dataset results. Up row: limb recovery without&@&abCut
segmentation. Down row: limb recovery with ST-GrabCut segtation.
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Figure 11. Application of face recovery on human body limb dataset.

4. Conclusions

In this paper, we presented an evolution of the semi-autor@atbCut algorithm for dealing with
the problem of human segmentation in image sequences. Thiah@utomatic ST-GrabCut algorithm
uses a HOG-based person detector, face detection, and dkinncodel to initialize GrabCut seeds.
Spatial coherence is introduced via Mean Shift clusteramgl, temporal coherence is considered based
on the historical of Gaussian Mixture Models. The segmenairocedure is combined with Shape and
Active Appearance models to perform full face and pose regov

This general and full-automatic human segmentation, pesevery, and tracking methodology
showed higher performance than classical approaches iicpoiage sequences and a novel Human
Limb dataset from uncontrolled environments, which makaseful for general human face and gesture
analysis applications.

One of the limitations of the method is that it depends on tiigalization of the ST-GrabCut
algorithm, which basically depends on the person and fatectes. Initially, we wait until at least
one bounding box is returned by the person detector. Thigigieal point, since we will trust the first
detection and start segmenting with this hypothesis. Iitrast) there is no problem if a further detection
is missed, since we initialize the mask with the previougcin (temporal extension). Moreover, due
to its sequential application, false seed labeling can ractate segmentation errors along the video
sequence. As the next step, we plan to extend the limb regeygaroach so that more complex poses
and gestures can be recognized, and feed a gesture reoagystem20] with the temporal aggregation
of the recovered poses along the sequence in order to lookdtion patterns of the limbs.

As a future work, the algorithm could be extended in ordeefgnsent sequences with more than one
person present in the images, since our current method egiments one subject in the scene.



Sensors 2012 12 15392

Acknowledgements

This work has been supported in part by projects IMSERSOtBno de Sanidad
2011 Ref. MEDIMINDER, RECERCAIXA 2011 Ref. REMEDI, TIN200P4404-C02 and
CONSOLIDER-INGENIO CSD 2007-00018. The work of Antonio igpported by an FPU fellowship
from the Spanish government.

References

1. Dalal, N.; Triggs, B. Histogram of Oriented Gradients forrian Detection. In Proceedings
of CVPR ’'05: 2005 IEEE Computer Society Conference on Compdision and Pattern
Recognition, San Diego, CA, USA, 25 June 2005; Volume 2, 36-893.

2. Viola, P.; Jones, M.J. Robust Real-Time Face Detectioh.J. Comput. Vis. 2004 57, 137-154.

3. Geronimo, D.; Lopez, A.; Sappa, A. Survey of Pedestrian @rte for Advanced Driver
Assistance Systems$EEE Trans. Patt. Anal. Mach. Intell. 201Q 32, 1239-1258.

4. Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactivereground Extraction Using Iterated
Graph CutsACM Trans. Graph. 2004 23, 309-314.

5. Ferrari, V.; Marin-Jimenez, M.; Zisserman, A. ProgressBearch Space Reduction for Human
Pose Estimation. IrProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, AK, USA, 24-26 June 2008.

6. Ferrari, V.; Marin, M.; Zisserman, A. Pose Search: RetngviPeople Using Their Pose. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL,
USA, 20-25 June 20089.

7. Corrigan, D.; Robinson, S.; Kokaram, A. Video Matting Usikigtion Extended GrabCut. In
Proceedings of 5th IET European Conference on Visual Media Production (CVMP), London, UK,
26—27 November 2008.

8. Ramanan, D. Learning to Parse Images of Articulated Bodil$PS, 2006. Available online:
http://books.nips.cc/papers/files/nips19/NIPS20869.pdf (accessed on 8 November 2012).

9. Boykov, Y.Y.; Jolly, M.P. Interactive Graph Cuts for OptitrBoundary & Region Segmentation
of Objects in N-D Images. IRroceedings of ICCV 2001: Eighth IEEE International Conference
on Computer Vision, Vancouver, BC, Canada, 7-14 July 2001.

10. Boykov, Y.; Funka-Lea, G. Graph Cuts and Efficient N-D Imaggi@entation.Int. J. Comput.
Vis. 2006 70, 109-131.

11. Kolmogorov, V.; Zabih, R. What Energy Functions can be Miiziedl via Graph Cuts.EEE Trans.
Patt. Anal. Mach. Intell. 2004 26, 65-81.

12. Boykov, Y.; Kolmogorov, V. An Experimental Comparison of MCut/Max-Flow Algorithms for
Energy Minimization in Vision.|EEE Trans. Patt. Anal. Mach. Intell. 2001, 26, 359-374.

13. Cootes, T.; Edwards, J.; Taylor, C. Active Appearance Med&EEE Trans. Patt. Anal. Mach.
Intell. 2001, 23, 681-685.

14. Cootes, T.; Taylor, C.; Cooper, D.; Graham, J. Active Shapsd&s—Their Training and
Application. Comput. is. Image Understand. 1995 61, 38-59.



Sensors 2012 12 15393

15. Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, Eabeled Faces in the Wild: A Database
for Studying Face Recognition in Unconstrained Environments, Technical Report 07-492007;
University of Massachusetts: Amherst, MA, USA, 2007.

16. Felzenszwalb, P.; Huttenlocher, D. Pictorial Structums@bject Recognition.Int. J. Comput.
Vis. 2005 61, 55-79.

17. Tiburzi, F.; Escudero, M.; Bescos, J.; Martinez, J. A Grodndth for Motion-Based Video-Object
Segmentation. IfProceedings of IEEE International Conference on Image Processing (Workshop
on Multimedia Information Retrieval), San Diego, CA, USA, 12-15 October 2008.

18. Human Limb dataset. Availbel online: http://www.maiaedi%7Esergio/linked/humanlimbdb.zip
(accessed on 8 November 2012).

19. Viola, P.; Jones, M.J. Robust Real-Time Face Detectidnte. J. Comput. Vision 2004 57,
137-154.

20. Alon, J.; Athitsos, V.; Yuan, Q.; Sclaroff, S. A Unified Framerk for Gesture Recognition and
Spatiotemporal Gesture SegmentationEEE Trans. Pattern Anal. Mach. Intell. 2009 31,
1685-1699.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. s Huticle is an open access article
distributed under the terms and conditions of the Creativem@ons Attribution license
(http://creativecommons.org/licenses/by/3.0/).



