Tele-substitution Reactions in the Synthesis of a Promising Class of 1,2,4-Triazolo[4,3-a]pyrazine-Based Antimalarials

Marat Korsik, ${ }^{\dagger}$ Edwin G. Tse, ${ }^{\dagger, \ddagger}$ David G. Smith, ${ }^{〔}$ William Lewis, ${ }^{\dagger}$ Peter J. Rutledge, ${ }^{*, \dagger}$ and Matthew H. Todd ${ }^{*}, \ddagger$
\dagger School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia \ddagger School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
9School of Health and Life Sciences, Federation University, Gippsland Campus, VIC 3842, Australia
E-mail: peter.rutledge@sydney.edu.au; matthew.todd@ucl.ac.uk
Phone: +6129351 5020; +44 2077535568

Abstract

We have discovered and studied a telesubstitution reaction in a biologically important heterocyclic ring system. Conditions that favour the tele-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallographic and isotope labelling experiments, a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the in vivo active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.

1 Introduction

Nucleophilic substitution is a widely employed method for functionalising electron-deficient aromatic systems. Most commonly, a halide or other leaving group is simply displaced by an incoming nucleophile, known as direct or ipso-
substitution. ${ }^{1}$ Under some circumstances however, a leaving group may be displaced from an aromatic system by a nucleophile entering at a different position on the ring, for example at the carbon adjacent to the leaving group (cine-substitution ${ }^{2}$) or even further away (telesubstitution, ${ }^{3}$ Figure 1A). We report here our discovery, and mechanistic studies, of a telesubstitution reaction in a $[1,2,4]$ triazolo $[4,3-$ a]pyrazine system, ${ }^{4}$ which is at the core of a series of molecules with significant potential for the future treatment of malaria. ${ }^{5}$

The first example of a tele-substitution reaction was reported in 1930 (Figure 1B). ${ }^{6}$ In this case, the reaction of 2-(chloromethyl)furan (1) with NaCN resulted in the attachment of the nitrile group not in place of the chlorine atom but, instead, distant from the expected electrophilic site on the opposite side of the furan ring (2). Other examples of tele-substitution reactions have since been reported for a variety of aromatic systems ranging from simple pyrazine rings ${ }^{7}$ (Figure 1C) to more complex triazolopyrazine ring systems ${ }^{8,9}$ (Figures 1D and 1 E), the latter being of particular relevance

Figure 1: A) Possible positions for nucleophilic aromatic substitution of X. B) First reported case of a tele-substitution reaction in 1930. Further reports of tele-substitution in C) pyrazine, D) [1,2,4]triazolo[1,5-a]pyrazine and E) [1,2,4]triazolo[4,3-a]pyrazine ring systems.
to the present work. Despite these and other reports, ${ }^{10-13}$ tele-substitution reactions are not well understood; they remain hard to predict and appear to be strongly substrate dependent. Interestingly, many of the known examples of tele-substitution involve aza-aromatic ring systems which are common in medicinal chemistry and drug discovery campaigns. Given the isomeric nature of the ipso- and tele-substituted products, and the sometimes cursory level of characterisation in medicinal chemistry articles (where compound identity may be demonstrated using only a ${ }^{1} \mathrm{H}$ NMR spectrum and an LCMS trace) it is important, as we have discovered, to be aware of the possibility of this underappreciated reaction in order to avoid drawing conclusions from erroneous SAR data.

Here, we illustrate this with our studies on the tele-substitution reactions of the [1,2,4]triazolo[4,3-a]pyrazine (hereafter referred to as 'triazolopyrazine') heterocyclic system. These nitrogen-rich, electron-deficient heterocycles are important building blocks for the development of new medicines and have shown a wide variety of biological activities (Figure 2). We have an interest in this motif because it
forms the core of Series 4 of the Open Source Malaria (OSM) consortium, ${ }^{14}$ represented here by compound 10 which possesses in vitro ${ }^{15}$ $\left(\mathrm{IC}_{50}=38 \mathrm{nM}\right)$ and in vivo ${ }^{16}$ antimalarial activity. Compound 11 has been reported to have nanomolar potency as an inhibitor of the kidney urea transporter UT-A1. ${ }^{17}$ Compound 12 was recently patented in 2016 as a renal outer medullary potassium channel (ROMK) inhibitor. ${ }^{18}$ Sitagliptin (13) was approved by the FDA in 2006 as an antidiabetic drug (dipeptidyl peptidase (DPP)-IV inhibitor). ${ }^{19}$ Compound 14 is a lead molecule ($\mathrm{IC}_{50}<100 \mathrm{nM}$), that acts as an inhibitor of bromodomain and extra-terminal motif (BET) proteins for cancer treatment. ${ }^{20}$ Compound 15 is patented as an N-methyl-D-aspartate subtype 2B (NMDAR2B) receptor antagonist. ${ }^{21}$

10
11
12

Sitagliptin, 13

14

15

Figure 2: Examples of bioactive molecules that include a triazolopyrazine motif or close derivative. 10 is an example compound from OSM Series 4; 11 is an inhibitor of the UT-A1 transporter; 12 is a ROMK inhibitor; Sitagliptin (13) is an FDA approved antidiabetic drug; $\mathbf{1 4}$ is a BET inhibitor with potential in cancer treatment; $\mathbf{1 5}$ is an NMDAR2B receptor antagonist.

2 Results and discussion

Figure 3: A) Reaction used to make an OSM Series 4 compound $\mathbf{1 7}$, and its tele-substituted isomer 18. B) Proposed mechanisms for ipso- and tele-substitution. ${ }^{22} \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$.

The synthesis of members of OSM Series 4 relies on a routine $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction involving the nucleophilic displacement of a chlorine atom from a triazolopyrazine core (e.g. 16). When the synthesis of thioether analogue $\mathbf{1 7}$ was attempted using the standard conditions for this reaction (Figure 3A), in addition to this expected product, a compound with a significantly lower TLC retention factor was observed and isolated. This was later identified as the tele-substituted isomer 18. Since the 8 -isomer 18 is a main product that was formed in 83% yield and due to the similarity of the ${ }^{1} \mathrm{H}$ NMR spectra of these two isomers (Figure 4), the tele-substituted isomer 18 was initially misassigned as the desired product $\mathbf{1 7}$. After the reaction had been repeated and examined more thoroughly compound 17 was successfully isolated as a minor product with 8% yield. The diagnostic spectroscopic difference between these isomers lies in the peaks arising from the hy-

Figure 4: ${ }^{1} \mathrm{H}$ NMR spectra of 17 and 18 in CDCl_{3}. The hydrogen atoms on the pyrazine ring for the 5 -substituted isomers (highlighted in green and orange in 17) give rise to sharp singlets ($\delta \sim 7.5$ and $\sim 9.0 \mathrm{ppm}$), while those in the 8 -substituted isomers (highlighted in pink and blue in 18) give well-defined doublets ($\delta \sim 7.2-7.7 \mathrm{ppm}, J=4.6 \mathrm{~Hz}$).
drogen atoms at positions 5 and 8 on the triazolopyrazine ring; the correspondence between the NMR spectra and the structures was confirmed using X-ray crystallographic (vide infra) and deuteration experiments. In a medicinal chemistry context, this spectroscopic similarity is a hazard for the understanding of structure activity relationships: the original evaluation of this synthetic product had concluded that 17 was inactive $\left(\mathrm{IC}_{50}>10 \mu \mathrm{M}\right)$ in a malaria parasite killing assay (in vitro against P. falciparum 3D7 strain), when in fact it was 18 that had been evaluated in its place. Compound $\mathbf{1 7}$ was later tested and found to have reasonable potency $\left(\mathrm{IC}_{50}=1.04 \mu \mathrm{M}\right)$.
According to the generally accepted ipsosubstitution reaction mechanism, the first step is nucleophile attack on the carbon atom to which halogen is attached (19, Figure 3B). The resulting intermediate (20) expels chloride, leading to the ipso-substituted product (21). On the other hand, a plausible mechanism for the tele-substitution reaction could involve the initial attack of the nucleophile at the 8 -position (22, Figure 3B), followed by loss of the 8-position proton as part of the elimination of the chloride (23). Since mechanistic studies on tele-substitution reactions are scarce, we sought better understanding of the process operating in this case.

To better define the scope of tele-substitution in this triazolopyrazine system, 8- and 6halogenated variants of the triazolopyrazine core were synthesised from the corresponding dihalopyrazines following literature procedures ${ }^{23}$ and subjected to the same reaction conditions as the original 5-chloro triazolopyrazine. The 8-halogenated cores (25-27, Figure 5A) reacted to give the expected ipso-substituted products only (28-36), while the 6 -halogenated analogues ($\mathbf{3 7}$ and $\mathbf{3 8}$, Figure 5B) resulted only in degradation of starting material without formation of any substituted product. While there is limited literature precedence, dihalopyrazines (e.g. 39-41, Figure 5C) have been shown to give exclusively ipso-substituted products (4244 respectively). With these experiments showing that the tele-substitution reaction is observed only with the 5 -halogenated cores (Fig-
ure 3A), the following mechanistic discussion will focus on that system.

Figure 5: Reactions of halogenated triazolopyrazine isomers and pyrazines. A) 8-Isomer; B) 6Isomer; C) Pyrazine; Conditions: ${ }^{\text {a }} \mathrm{KOH}, 18$-crown6 , toluene, room temperature (reactions involve measuring small amounts of hygroscopic KOH, which can contribute to reproducibility challenges, thus experiments were performed in duplicate and are reported as average values); ${ }^{\mathrm{b}}$ silica, toluene, reflux (more details in Table 1).

Factors influencing ipso- vs. telesubstitution.
A) Influence of triazolopyrazine structure and nucleophile. ${ }^{\text {a }}$ The nature of the nucleophile plays a crucial role in the outcome of the reaction (Table 1). When compared to reactions with alcohols, the use of more nucleophilic amines and thiols led to significantly more tele-substituted products (Entries 1-6, 1217 and 21-26). This trend may explain why tele-substituted isomers were apparently not

Table 1: Influence of triazolopyrazine structure, leaving halogen X and nucleophile on the reaction outcome.

${ }^{\text {a }} \mathrm{KOH}, 18$-crown-6, toluene, room temperature. ${ }^{\text {b }}$ Silica, toluene, reflux. ${ }^{\text {c }}$ Dehalogenation by-product 49 was isolated as well in 74% yield. ${ }^{\text {d }}$ Dehalogenation by-product 49 was isolated in 11% yield along with ring opening product 50 in 17% yield (refer to Figure 6 for details). $\mathrm{R}_{1}=$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$. ND: not determined.
seen in the literature synthesis of related structures ${ }^{24}$ in which the incoming nucleophile was restricted to alcohols.

[^0]The nature of the leaving halogen also influences the outcome, with tele-substitution favoured in the order $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$ (compare
conversion; for convenience the rate was made comparable to those seen with the other nucleophiles by raising the reaction temperature, as the reaction at room temperature was not complete after 2 weeks.

Figure 6: Unexpected product 50 via ring opening and rearrangement from the reaction of iodotriazolopyrazine and an amine nucleophile, with proposed mechanism for this product (see Figure S2 in SI for more details).
ratio in Entries 4, 15 and 24).
In cases where a larger substituent is in position 3 of the triazolopyrazine core (e.g. a (4OMe)Ph group compared to a hydrogen atom), and the leaving halogen is either a Br or I atom, the distribution of ipso- to tele-substituted products is favoured towards the latter (compare Entries 12 and 15 or 21 and 24). Similar experiments in which the leaving halogen is a Cl atom show little to no change in distribution of products (compare Entries 1 and 4). Further investigation of the substituent at the 3 -position led to the conclusion that bulkiness does not affect the reaction (i.e. substitution with $(4-\mathrm{OMe}) \mathrm{Ph}$ is comparable to that of the larger $(3,5-t \mathrm{Bu}) \mathrm{Ph}$ or 9-anthracene; Entries 4, 10 and 11 respectively).
Substrates with electron donating (EDG) and electron withdrawing (EWG) groups on the phenyl ring at the 3-position of the core were studied in order to evaluate the influence of electronic effects on the distribution of products. Experiments on bromotriazolopyrazines showed that EDGs tend to promote the tele-substitution pathway of the reaction, while EWGs lead to ipso-products only (Entries 15 and 18-20). Interestingly, chloro-triazolopyrazines do not follow this pat-
tern and show no dependence on the electronic effects from the substituent in the 3-position (Entries 4, 7, 8 and 9).
From the experiments summarised in Table 1 , two gave surprising results. The reaction between the iodo-triazolopyrazine core 45 n and the thiol nucleophile (Entry 25) in addition to the 8 -substituted compound 47 b , isolated in 13% yield, gave dehalogenated product 49 in 74% yield. This product was not observed for any other reaction substrates bearing a chlorine or bromine atom. This type of the dehalogenation reaction has not previously been reported in the literature. The other unexpected product was isolated from the reaction between the iodo-triazolopyrazine core $\mathbf{4 5 n}$ and the amine nucleophile (Entry 26). In addition to the isolation of the major tele-substituted isomer 47 d and dehalogenation product 49, a minor byproduct was obtained in 17% yield, the structure of which was determined by single crystal X-ray diffraction (see SI) to be based on a 5 -(1H-imidazol-2-yl)-1H-1,2,4-triazole core instead of the expected triazolopyrazine structure (50, Figure 6). It is possible that compound 50 could be formed via initial nucleophile attack at the 8-position of the pyrazine ring (51), followed by the pyrazine ring opening (52)
and rearrangement (53) leading to 50. While the analogous reaction utilising the chlorinesubstituted triazolopyrazine (Entry 6) did not lead to this rearranged product, it was formed in trace amounts when the bromo-substituted triazolopyrazine was employed (Entry 17). This trend may either be due to a sub-optimal bond geometry (i.e. pseudo-equatorial I atom) arising from the larger halogen atom or from a better match of orbital energies for elimination (in the case of the chlorine leaving group).
B) Influence of solvent. With the reaction between 45 i and the alcohol nucleophile (Table 1, Entry 1) giving significant quantities of both isomers, this was used as the model reaction to investigate further the influence of solvent on the reaction outcome (Table 2). A screen of aprotic solvents clearly showed that solvents with higher dielectric constants lead to less telesubstitution and also lower the overall yield of the reaction. Protic solvents are inherently unsuitable for this reaction as they can easily themselves react with the halogenated triazolopyrazine. This was demonstrated when water was used as the solvent, giving the product 48a in 94% yield, by result of tele-substitution with $\mathrm{H}_{2} \mathrm{O}$.
C) Influence of excess alcohol and base. By using the same model reaction above, the effect of alcohol and base equivalents was investigated. It was found that the use of an excess of nucleophile resulted in a shift of the reaction outcome drastically towards the formation of the 8 -isomer (47a, Figure 7A). These observations suggest that the use of a softer nucleophile (here one in which the anion is surrounded by a "solvent shell" of OH bonds arising from excess nucleophile) leads to greater formation of the 8 -isomer. Similarly, when fewer equivalents of base were used, a higher proportion of telesubstitution was again observed (Figure 7B).
D) Influence of water and temperature. In order to evaluate the impact of the level of water present on tele-substitution, the reaction between 45a (unsubstituted on the triazole ring) and piperidine was conducted in toluene with various levels of water, as well as in water itself $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{D}_{2} \mathrm{O}\right)$. The isolated yields of the 5 - (55) and 8-isomer (56) were identical for ex-

Figure 7: Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of reaction mixtures with variation in A) amount of alcohol; B) amount of base. Structures of isomers placed next to corresponding signals from CH_{2} groups which are indicated by arrow.
periments in both wet and dry toluene (Table 3, Entries 1 and 3, for X-ray single crystal structure of 45 a and 56 see the SI). At room temperature the reaction took 14 days to complete (Entry 2), but the outcome was comparable to that when heating under reflux conditions. When molecular sieves were included in the reaction mixture (using dried toluene) the ratio of products changed, though it is possible that this could arise from catalytic activity at the zeolite surface itself (Entry 4). ${ }^{25,26}$ Performing the reaction in $\mathrm{H}_{2} \mathrm{O}$ (Entry 5) gave a comparable result to that in wet toluene. This is counter to the example where the alcohol nucelophile was out-competed by the solvent water to give the tele-substitution product (vide supra). It could be concluded that the presence of water in the solvent and the reaction temperature do not alter the distribution of products in the studied reaction.
E) Isotope labeling experiments. Following the observation that no hydroxy-substituted product was identified in the reaction between the halogenated triazolopyrazine core 45a and an amine nucleophile in the presence of water, deuteration experiments were peformed to gain insight into the reaction mechanism. This reaction was carried out in $\mathrm{D}_{2} \mathrm{O}$ giving two compounds, 57 and 58 (Figure 8A). The examination of products with ${ }^{1} \mathrm{H}$ NMR and ${ }^{2} \mathrm{H}$ NMR spectroscopy showed incorporation of one D

Table 2: A) Reaction used to study the influence of solvent; B) Product isolated when $\mathrm{H}_{2} \mathrm{O}$ was employed as a solvent. Results of the reaction in different solvents (reactions performed in duplicate). All solvents were dried over molecular sieves $(3 \AA)$ for 48 h before application. All reactions proceed to complete consumption of bromo-triazolopyrazine as indicated by TLC. Total yield reported is the sum of both isomers. Product 48a typically observed to form in $\sim 15 \%$ yield but was not isolated in these reactions. R $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$.

45m

46c

47a

48a

Entry	Solvent	46c (5-isomer) yield [\%]	47a (8-isomer) yield [\%]	Total yield [\%]	Dielectric constant
1	Cyclohexane	35	24	58	2.02
2	Toluene	31	8	40	2.38
3	Dioxane	20	9	29	2.25
4	THF	19	3	22	7.58
5	Acetonitrile	43	3	45	37.5
6	DMF	25	2	27	36.7

atom in 57 and two in 58. Both molecules underwent deuterium exchange of the triazole H atom. The deuteration of triazole rings has been reported in a handful of cases,,${ }^{27,28}$ but not for the triazolopyrazine system investigated here. In order to prove that deuteration occurs at the 3 -position as a parallel reaction to the main substitution, compounds 45 a , 55 and 56 were heated under reflux in $\mathrm{D}_{2} \mathrm{O}$ without piperidine to give corresponding monodeuterated products 59,57 and 60 respectively (Figure 8B). The deuterium exchange at the 3 -position could be explained by the relatively high acidity of the hydrogen in C-H bond on the triazole, though pKa values have not been reported, a prediction model estimates pKa of similar structures to be around 29, compared to >35 for the $\mathrm{C}-\mathrm{H}$ bond of pyrazine. ${ }^{29}$ The second D atom in 58 was at the 5 -position, thus confirming that the proton which takes the place of the leaving group in the tele-substitution reaction comes from the solvent and not from the substrate (see the proposed mechanism for 19 in Figure 3B). Deuteration position assignment was based on
${ }^{1} \mathrm{H}$ NMR spectra comparison of non-deuterated compounds 55 and 56 with deuterated 57 and 60 , as well as 2D NMR data for 55 and 56 .
Importantly, the amine products 55 and 56 were found to be not interconvertible when each product separately was subjected to the reaction conditions for 3 days, as no conversion of one isomer into another could be detected by TLC. Thus the ratios of products observed in these telesubstitution reactions arise from a kinetic difference rather than one that has a thermodynamic origin.

3 Biological activity

As mentioned above, 5 -substituted triazolopyrazines (e.g. 17) showed antiplasmodium activity, while an 8 -substituted isomer (18) proved to be inactive. Based on the structural similarity of these triazolopyrazines to kinase inhibitors, ${ }^{30}$ we evaluated several compounds in the preliminary KINOMEscan ${ }^{\circledR}$ assay (at 1 $\mu \mathrm{M}$ concentration). The results revealed complementary activity of ipso- and tele-isomers, for example 47b has higher potency against

Table 3: Results of the reaction with wet and dry solvent. $3 \AA$ molecular sieves were used to dry the toluene. Water levels were measured with a Karl-Fischer titration apparatus immediately before the experiment. ${ }^{\text {a }}$ Reaction time 14 days. ${ }^{\text {b Products were partially deuterated (Figure 8). }}$

Entry	Solvent	Water level (ppm)	$55(5$-isomer) yield [\%]	$56(8$-isomer) yield [\%]	Total yield [\%]
1	Toluene commercial	136	16	71	87
$2^{\text {a }}$	Toluene commercial at rt	136	7	86	93
3	Toluene dry	6	16	71	87
4	Toluene dry with sieves in rxn	6	36	40	76
5	$\mathrm{H}_{2} \mathrm{O}$	-	21	57	78
$6^{\text {b }}$	$\mathrm{D}_{2} \mathrm{O}$	-	24	59	83

Figure 8: A) Reaction between simplified chlorosubstituted core 45a and piperidine, performed in $\mathrm{D}_{2} \mathrm{O}$ as the solvent; B) Verification that H/D exchange on the triazole, but not the pyrazine, is a parallel reaction to the main substitution reaction. ${ }^{a} \mathrm{D}_{2} \mathrm{O}$, heating at reflux.
serine/threonine-protein kinase 3 (STK3) compared to 46d (Figure 9, see SI for full screening results). Thus the occurrence of this telesubstitution reaction allows the generation of two biologically active compounds with complentary activities from a single reaction.

Figure 9: Compounds evaluated in KINOMEscan ${ }^{\circledR}$ assay.

4 Conclusion

Tele-substitution reactions are simple to achieve in the triazolopyrazine ring system, and it is important to be aware of the possibility of such isomers forming, given the wide biological relevance of many of these structures. The tele-substitution reaction occurs only in 5-halogenated triazolopyrazine cores, while 8- or 6-halogenated cores tend to give ipso-substitution or degradation respectively. The tele-substitution pathway of the reaction is also made more likely by the use of stronger nucleophiles, triazolopyrazines with bulkier halogens and the use of less polar solvents. As concluded from the isotope labeling
experiments, the hydrogen atom that takes the place of the halogen derives from solvent and not from substrate. The product ratios arise from a kinetic difference in the reactions rather than a thermodynamic difference in product energies, where, broadly, a combination of hard nucleophile and hard electrophile promotes ipso-substitution while a softer combination promotes tele-substitution (for a graphical summary see Figure 10). Computational studies to rationalise and predict substitutions of these kinds are non-trivial (in part because of the possibility of direct ${ }^{31}$ vs stepwise ${ }^{32-34}$ substitution) but are ongoing and will be reported in due course.

Figure 10: Summary of ipso- and telesubstitution reactions observed with 5 -halo-1,2,4-triazolo[4,3-a]pyrazines. Increased levels of telesubstitution observed (i) when $\mathrm{X}=\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$, and (ii) when $\mathrm{NuH}=\mathrm{RNH}_{2}>\mathrm{RSH}>\mathrm{ROH}$.

5 Experimental

5.1 General Procedures

General Procedure A. Preparation of halogenhydrazinylpyrazines

Mono or dihalogenopyrazine ($70 \mathrm{mmol}, 1$ equiv.) was dissolved in ethanol (100 mL), then hydrazine monohydrate was added (140 mmol , 2 equiv.) and the mixture was heated at reflux overnight. The solvent was removed under reduced pressure. Equal amounts of EtOAc (100 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added, the EtOAc layer was separated and the aqueous layer was washed with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine $(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give the desired com-
pound, which was used in the subsequent reaction without further purification (for reaction schemes of general procedures see SI, Figure S1).

General Procedure B. Preparation of halogeno-[1,2, 4]triazolo[4,3-a]pyrazine
To a suspension of halogen-hydrazinylpyrazine ($70.0 \mathrm{mmol}, 1.0$ equiv.) in toluene (200 mL) triethyl orthoformate or trimethyl orthoformate ($140 \mathrm{mmol}, 2.0$ equiv.) was added followed by p-toluenesulfonic acid monohydrate (14.0 $\mathrm{mmol}, 0.2$ equiv.). The mixture was heated at reflux for 5 h . The solvent was removed under reduced pressure and the residue purified by flash column chromatography (FCC) on silica using a gradient of EtOAc (20% to 100%) in hexanes to give the desired product.

General Procedure C. Preparation of halogeno-3-aryl-[1,2,4]triazolo[4,3-a]pyrazine

Adopted from the literature procedures. ${ }^{23}$ To a stirred suspension of halogeno-hydrazinylpyrazine (7.0 mmol , 1.0 equiv.) in ethanol (100 mL) was added aldehyde (7.7 $\mathrm{mmol}, 1.1$ equiv.) and the mixture heated at reflux overnight. After the full consumption of starting material as indicated by TLC, the reaction was cooled in an ice bath and chloramine T trihydrate ($9.1 \mathrm{mmol}, 1.3$ equiv.) was added portionwise while stirring over 1 h . After consumption of the intermediate was confirmed by TLC, cold $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added to the reaction mixture. The solution was stirred for 10 min , then filtered through a sintered glass filter (P 3 porosity) and washed with $\mathrm{H}_{2} \mathrm{O}$ (30 $\mathrm{mL} \times 3$) followed by $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The solid was dried in vacuo to give desired product that was used without further purification.

General Procedure D. Coupling of alcohol or thiol with halogen-heterocycle
To a suspension of halogen-heterocycle (0.40 $\mathrm{mmol}, 1$ equiv.) in toluene (10 mL) was added 18-crown-6 ($0.032 \mathrm{mmol}, 0.08$ equiv.) and alcohol or thiol ($0.40 \mathrm{mmol}, 1$ equiv.) followed by KOH ($1.20 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture stirred for 2-24 h at room temperature. Upon completion as indicated by TLC, the reaction mixture was directly subjected to the purification by FCC on silica and flushed at the beginning with hexanes (in order to wash out
toluene from the column) followed by a gradient of EtOAc (30\% to 100\%) in hexanes (unless specified in the compound preparation) to give the desired product.

General Procedure E. Coupling of amine with halogen-heterocycle

To a suspension of halogen-heterocycle (0.40 $\mathrm{mmol}, 1.0$ equiv.) in toluene (10 mL) was added amine ($1.20 \mathrm{mmol}, 3.0$ equiv.) followed by silica $(0.5 \mathrm{~g})$. The reaction was heated at $80^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction as indicated by TLC, the solvent was evaporated in vacuo and the mixture purified by FCC on silica using a gradient of EtOAc EtOAc (30\% to 100%) in hexanes (unless specified in the compound preparation) to give the desired product.

5.2 Synthesis

2-Chloro-6-hydrazinylpyrazine (S1). General Procedure A was applied using 2,6dichloropyrazine ($35.0 \mathrm{~g}, 235 \mathrm{mmol}$) to give $\mathbf{S 1}$ as a yellow solid ($29.2 \mathrm{~g}, 202 \mathrm{mmol}, 86 \%$) mp 137-139 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9}$ 136-139 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}\right): \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz, DMSO- $\left.d_{6}\right): \delta 157.1,145.7,129.0,128.6$. The spectroscopic data and melting point were in agreement with those in the literature. ${ }^{9,35}$
2-Bromo-6-hydrazinylpyrazine (S2). General Procedure A was applied using 2,6dibromopyrazine ($8.09 \mathrm{~g}, 34.0 \mathrm{mmol}$) to give $\mathbf{S} 2$ as an orange solid ($5.45 \mathrm{~g}, 28.9 \mathrm{mmol}, 85 \%$). mp $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16$ $(\mathrm{s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8$, 138.1, 135.4, 129.2. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{4} \mathrm{H}_{6}{ }^{79} \mathrm{BrN}_{4}$ 188.9770; found 188.9773.

2-Iodo-6-hydrazinylpyrazine (S3). General Procedure A was applied using 41 (8.37 g, 25.2 mmol) to give $\mathbf{S 3}$ as a yellow solid ($4.87 \mathrm{~g}, 20.7$ $\mathrm{mmol}, 82 \%$). mp $154-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}\right): \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, DMSO- d_{6}): $\delta 157.8,137.8,128.9,115.9$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{IN}_{4}$ 236.9632; found 236.9630.

2-Chloro-3-hydrazinylpyrazine (S4). Gen-
eral Procedure A was applied using 2,3dichloropyrazine ($10.2 \mathrm{~g}, 68.3 \mathrm{mmol}$) to give $\mathbf{S 4}$ as a yellow solid ($6.61 \mathrm{~g}, 45.7 \mathrm{mmol}, 67 \%$). $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C}$ (lit. ${ }^{36} \mathrm{mp} 154{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (s, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz , DMSO- d_{6}): $\delta 152.6,140.6,132.6,130.0$. The spectroscopic data and melting point were in agreement with those in the literature. ${ }^{23,36}$

2-Chloro-5-hydrazinylpyrazine (S5). Compound was prepared following literature procedures. ${ }^{37}$ 2,5-Dichloropyrazine $(2.00 \mathrm{~g}, 13.4$ $\mathrm{mmol}, 1.0$ equiv.) was added to $\mathrm{H}_{2} \mathrm{O}$ (12.5 mL) followed by 28% aq. ammonia solution ($2.63 \mathrm{~mL}, 38.9 \mathrm{mmol}, 2.9$ equiv.) and hydrazine monohydrate ($1.57 \mathrm{~mL}, 1.61 \mathrm{~g}, 32.2$ $\mathrm{mmol}, 2.4$ equiv.). The mixture was heated at reflux overnight, then cooled in an ice bath for 15 min , filtered through a sintered funnel and washed with cold $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL} \times 3)$, then dried in vacuo to give $\mathbf{S 5}$ as a pale yellow solid ($1.62 \mathrm{~g}, 11.2 \mathrm{mmol}, 83 \%$). mp $168-170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 8.14(\mathrm{~s}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 156.6,140.3,133.9,129.5$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{ClN}_{4} 145.0276$; found 145.0275 . The spectroscopic data were in agreement with those in the literature. ${ }^{38}$

5-Chloro-3-(4-(difluoromethoxy)phenyl)-[1,2,4]triazolo[4,3-a]pyrazine (16). General Procedure C was applied using S1 ($1.51 \mathrm{~g}, \quad 10.4 \mathrm{mmol}, 1.0$ equiv.) and 4 (difluoromethoxy)benzaldehyde ($1.98 \mathrm{~g}, 11.5$ mmol, 1.1 equiv.) to give $\mathbf{1 6}$ as a brown solid $(2.26 \mathrm{~g}, 7.62 \mathrm{mmol}, 73 \%) . \mathrm{mp} 124-126{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.47(\mathrm{~s}, 1 \mathrm{H})$, $8.08(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=73.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): δ $153.3-152.1(\mathrm{~m}), 147.0,146.7,142.7,133.3$, $129.2,124.0,121.8,117.4,116.2(\mathrm{t}, \mathrm{J}=258.0$ $\mathrm{Hz})\left(\mathrm{OCHF}_{2}\right)$. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClF}_{2} \mathrm{~N}_{4} \mathrm{O}$ 297.0349; found 297.0346.

3-(4-(Difluoromethoxy)phenyl)-5-(phenethyl-thio)-[1,2,4]triazolo[4,3-a]pyrazine (17). Gen-
eral Procedure D was applied using 16 (101 mg , $0.341 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethane-1thiol ($47.1 \mathrm{mg}, 0.341 \mathrm{mmol}, 1.0$ equiv.). Fractions corresponding to the second peak were evaporated to give $\mathbf{1 7}$ as a yellow solid (11.0 $\mathrm{mg}, 0.0276 \mathrm{mmol}, 8 \%) . \mathrm{mp} 78-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$, $7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.02$ $-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=73.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.10$ $(\mathrm{t}, J=2.8 \mathrm{~Hz}), 147.6,146.4,142.3,138.3$, $133.5,131.3,128.8,128.6,128.4,127.1,124.1$, $118.3,115.65(\mathrm{t}, J=261.3 \mathrm{~Hz}), 35.8,34.6$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{OS}$ 399.1086; found 399.1080.

3-(4-(Difluoromethoxy)phenyl)-8-(phenethyl-thio)-[1, 2, 4]triazolo[4,3-a]-pyrazine (18). Isolated from the same reaction as for $\mathbf{1 7}$. Fractions corresponding to the first peak were evaporated to give to give 18 as an off-white solid ($113 \mathrm{mg}, 0.284 \mathrm{mmol}, 83 \%$). mp $156-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 8.32(\mathrm{~d}, ~ J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.59$ (dd, $J=8.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.05 (dd, $J=8.4,6.7$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 153.0$, 152.4 ($\mathrm{t}, J=3.3 \mathrm{~Hz}$), 146.9, 143.8, $139.9,130.2,129.5,128.6,128.4,126.4,122.5$, $119.2,116.1(\mathrm{t}, J=258.5 \mathrm{~Hz}), 113.2,34.4$, 29.4. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO- d_{6}): $\delta-82.8$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{OS}$ 399.1086; found 399.1083.

8-Chloro-[1,2,4]triazolo[4,3-a]pyrazine (25). General Procedure B was applied using S4 $(2.71 \mathrm{~g}, 18.8 \mathrm{mmol})$ to give $\mathbf{2 5}$ as a yellow solid ($0.870 \mathrm{~g}, 5.63 \mathrm{mmol}, 30 \%$). mp $203-206{ }^{\circ} \mathrm{C}$ (lit. ${ }^{36} \mathrm{mp} 205{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$). HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{ClN}_{4} \mathrm{Na}$ 176.9938; found 176.9937. The spectroscopic data and melting point were in agreement with those in the literature. ${ }^{36,39}$

8-Chloro-3-phenyl-[1,2,4]triazolo[4,3-a]pyrazine (26). General Procedure C was applied using S4 ($0.768 \mathrm{~g}, 5.31 \mathrm{mmol}, 1.0$ equiv.) and benzaldehyde ($0.620 \mathrm{~g}, 5.84 \mathrm{mmol}, 1.1$ equiv.)
to give $\mathbf{2 6}$ as a white solid ($0.976 \mathrm{~g}, 4.23 \mathrm{mmol}$, 80%). mp 192-195 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{40} \mathrm{mp} 193-195{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, ~ J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{q}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClN}_{4} \mathrm{Na} 253.0251$; found 253.0252 . The spectroscopic data and melting point were in agreement with those in the literature. ${ }^{40}$

8-Chloro-3-(4-nitrophenyl)-[1,2, 4]triazolo-[4,3-a/pyrazine (27). General Procedure C was applied using $\mathbf{S} 4(0.655 \mathrm{~g}, 4.53 \mathrm{mmol}$, 1.0 equiv.) and 4 -nitrobenzaldehyde (0.754 $\mathrm{g}, 4.99 \mathrm{mmol}, 1.1$ equiv.) to give 27 as a yellow solid ($1.15 \mathrm{~g}, 4.16 \mathrm{mmol}, 92 \%$). m.p. $231-234{ }^{\circ} \mathrm{C}$ (decomp.) (lit. ${ }^{23} \mathrm{mp} 201-204{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.77$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO$\left.d_{6}\right): \delta 148.9,147.6,144.6,142.5,132.0,130.1$, 129.6, 124.8, 118.4. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClN}_{5} \mathrm{O}_{2}$ 298.0102; found 298.0103. The spectroscopic data were in agreement with the literature, but the melting point was significantly higher. ${ }^{23}$

8-Phenethoxy-[1, 2, 4]triazolo[4,3-a]pyrazine
(28). General Procedure D was applied using 25 ($104 \mathrm{mg}, 0.673 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($82.2 \mathrm{mg}, 0.673 \mathrm{mmol}, 1.0$ equiv.) to give 28 as an off-white solid (83.0 $\mathrm{mg}, \quad 0.345 \mathrm{mmol}, 51 \%) . \mathrm{mp} 161-162{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.36(\mathrm{~s}$, $1 \mathrm{H}), 8.19(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 152.6,138.7,138.4,137.9,128.9$, $128.4,126.6,126.4,113.2,113.2,67.2,34.2$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{ONa} 263.0903$; found 263.0900 .

8-(Phenethylthio)-[1,2,4]triazolo[4,3-a/pyrazine (29). General Procedure D was applied using 25 ($104 \mathrm{mg}, 0.673 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethane-1-thiol ($93.0 \mathrm{mg}, 0.673 \mathrm{mmol}$, 1.0 equiv.) to give 29 as an off-white solid ($154 \mathrm{mg}, 0.602 \mathrm{mmol}, 90 \%$). mp $148-150{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.38(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=4.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$
(dd, $J=4.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.23(\mathrm{~h}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}$, $2 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 152.2,142.7,139.9,138.1$, 128.7, 128.6, 128.4, 126.4, 114.3, 34.4, 29.4. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{SNa} 279.0675$; found 279.0671.

N-Phenethyl-[1, 2, 4]triazolo[4,3-alpyrazin-8amine (30). Preparation 1: General Procedure E was applied using 25 ($104 \mathrm{mg}, 0.654$ mmol) and 2-phenylethan-1-amine (244 mg , $2.01 \mathrm{mmol}, 3.0$ equiv.) to give $\mathbf{3 0}$ as an offwhite solid ($135 \mathrm{mg}, 0.564 \mathrm{mmol}, 84 \%$). Preparation 2: General Procedure E was applied using 45a ($100 \mathrm{mg}, 0.649 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-amine ($235 \mathrm{mg}, 1.95 \mathrm{mmol}, 3.0$ equiv.) to give $\mathbf{3 0}$ as an off-white solid (102 mg , $0.424 \mathrm{mmol}, 65 \%) . \mathrm{mp} 191-193{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.19(\mathrm{~s}, 1 \mathrm{H})$, $8.16(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 147.4$, 139.5, 138.6, 138.1, 129.1, 128.6, 128.3, 126.0, 107.2, 41.6, 34.5. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{5} 240.1244$; found 240.1241.

8-Phenethoxy-3-phenyl-[1,2,4]triazolo[4,3alpyrazine (31). General Procedure D was applied using $26(115 \mathrm{mg}, 0.499 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($60.9 \mathrm{mg}, 0.499$ $\mathrm{mmol}, 1.0$ equiv.) to give $\mathbf{3 1}$ as a white solid ($91.0 \mathrm{mg}, 0.288 \mathrm{mmol}, 58 \%$). mp $145-147^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.19(\mathrm{~d}, ~ J$ $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.68-$ $7.59(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 153.2$, 148.0, 139.7, 138.0, 130.5, 129.3, 129.0, 128.4, 128.1, 127.4, 126.4, 125.9, 112.1, 67.4, 34.2. HRMS (ESI/FTICR) $m / z: ~[M+N a]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{ONa} 339.1216$; found 339.1217.

8-(Phenethylthio)-3-phenyl-[1, 2, 4]triazolo-[4,3-a]pyrazine (32). General Procedure D was applied using 26 ($107 \mathrm{mg}, 0.464 \mathrm{mmol}$) and 2-phenylethane-1-thiol ($65.1 \mathrm{mg}, 0.464 \mathrm{mmol}$, 1.0 equiv.) to give 32 as an off-white solid ($145 \mathrm{mg}, 0.440 \mathrm{mmol}, 94 \%$). mp $154-156^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.33$ (d, J $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.24$ (ddd, $J=8.8,5.3,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.02(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): δ 153.0, 147.6, 143.8, 140.0, 130.5, 129.5, 129.3, 128.6, 128.4, 128.2, 126.4, 125.7, 113.2, 34.4, 29.4. HRMS (ESI/FTICR) $m / z: \quad[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{~S} 333.1168$; found 333.1164.

N-Phenethyl-3-phenyl-[1, 2, 4]triazolo[4,3-
alpyrazin-8-amine (33). General Procedure E was applied using $26(102 \mathrm{mg}, 0.442 \mathrm{mmol})$ and 2-phenylethan-1-amine ($161 \mathrm{mg}, 1.33 \mathrm{mmol}, 3.0$ equiv.) to give $33(120 \mathrm{mg}, 0.381 \mathrm{mmol}, 86 \%)$. mp 206-209 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 8.27(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.57(\mathrm{~m}$, $3 \mathrm{H}), 7.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}$, $4 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H})$, $3.02-2.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 147.9,147.7,139.6,139.5,130.2$, $130.2,129.3,128.7,128.3,128.0,126.3,126.1$, 106.0, 41.6, 34.5. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5} 316.1557$; found 316.1553.

3-(4-Nitrophenyl)-8-phenethoxy-[1,2,4]tria-zolo[4,3-a]pyrazine (34). Preparation 1: General Procedure D was applied using 27 (113 mg , $0.410 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($50.1 \mathrm{mg}, 0.410 \mathrm{mmol}, 1.0$ equiv.) to give $\mathbf{3 4}$ as a yellow solid ($125 \mathrm{mg}, 0.346 \mathrm{mmol}, 84 \%$). Preparation 2: isolated from the same reaction as for 46 e preparation 1: fractions correspond to the first peak were evaporated to give 34 as a yellow solid ($2.05 \mathrm{mg}, 5.51 \mu \mathrm{~mol}, 2 \%$) mp $238-240{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta 8.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.32$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 153.2,148.2,146.5,140.1,137.9$, 132.0, 129.4, 128.9, 128.4, 127.9, 126.4, 124.3, 112.4, 67.5, 34.2. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{3} 362.1248$; found 362.1246.

3-(4-Nitrophenyl)-8-(phenethylthio)-[1, 2, 4]-
triazolo[4,3-alpyrazine (35). Preparation 1: General Procedure D was applied using 27 ($107 \mathrm{mg}, 0.390 \mathrm{mmol}$) and 2-phenylethane-1thiol ($65.7 \mathrm{mg}, 0.390 \mathrm{mmol}, 1.0$ equiv.) to give 35 as a yellow solid ($103 \mathrm{mg}, 0.273 \mathrm{mmol}, 70 \%$). Preparation 2: Isolated from the same reaction as for $\mathbf{4 6 j}$. Fractions corresponding to the first peak were evaporated to give 35 as a yellow solid ($66.2 \mathrm{mg}, 0.175 \mathrm{mmol}, 44 \%$). mp $236-$ $238{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 8.46(\mathrm{dd}, J=6.9,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 8.28-$ $8.22(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $8.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 153.1$, $148.3,146.2,144.2,139.9,131.8,130.0,129.5$, $128.6,128.4,126.4,124.3,113.5,34.4,29.5$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S} 378.1020$; found 378.1018.

3-(4-Nitrophenyl)-N-phenethyl-[1,2,4]tria-zolo[4,3-a/pyrazin-8-amine (36). Preparation 1: General Procedure E was applied using 27 ($112 \mathrm{mg}, 0.406 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-amine ($148 \mathrm{mg}, 1.22 \mathrm{mmol}$, 3.0 equiv.) to give $36(127 \mathrm{mg}, 0.352 \mathrm{mmol}$, 87%). Preparation 2: General Procedure E was applied using 45 c ($103 \mathrm{mg}, 0.374 \mathrm{mmol}$, 1.0 equiv.) and 2-phenylethan-1-amine (136 $\mathrm{mg}, 1.12 \mathrm{mmol}, 3.0$ equiv.) to give 36 as a yellow solid ($133 \mathrm{mg}, 0.369 \mathrm{mmol}, 99 \%$). mp $236-238{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.47-8.41(\mathrm{~m}, 2 \mathrm{H}), 8.38(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~h}$, $J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{tt}, J=5.9,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 148.0$, 147.9, 146.1, 139.9, 139.5, 132.4, 130.8, 129.1, 128.7, 128.3, 126.1, 124.3, 106.2, 41.6, 34.4. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2} 361.1408$; found 361.1404 .

6-Chloro-[1,2,4]triazolo[4,3-a]pyrazine (37). General Procedure B was applied using S5 $(1.53 \mathrm{~g}, 10.6 \mathrm{mmol})$ to give $\mathbf{3 7}$ as an orange solid ($0.800 \mathrm{~g}, 5.18 \mathrm{mmol}, 49 \%$). mp $215-217{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.41(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $9.36(\mathrm{dd}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, ~ J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz ,

DMSO- d_{6}): $\delta 143.9,143.0,137.3,133.4,116.3$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClN}_{4}$ 155.0119; found 155.0118.

6-Chloro-3-(4-(difluoromethoxy)phenyl)[1, 2, 4]triazolo[4,3-a]pyrazine (38). General Procedure C was applied using S 5 ($1.33 \mathrm{~g}, 9.23 \mathrm{mmol}, 1.0$ equiv.) and 4 (difluoromethoxy)benzaldehyde ($1.22 \mathrm{~mL}, 1.59$ $\mathrm{g}, 9.23 \mathrm{mmol}, 1.1$ equiv.) to give $\mathbf{2 7}$ as a pale brown solid ($1.75 \mathrm{~g}, 5.89 \mathrm{mmol}, 64 \%$). mp 159$161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.41$ $(\mathrm{s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=73.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 152.5(\mathrm{t}, J=3.3 \mathrm{~Hz}), 146.2$, 145.2, 143.4, $134.6,130.3,122.1,119.2,116.1(\mathrm{t}, J=258.6$ Hz), 115.2. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO- d_{6}): δ -82.8. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClF}_{2} \mathrm{~N}_{4} \mathrm{ONa}$ 319.0169; found 319.0169.

2,6-Diiodopyrazine (41). Compounds was prepared following literature procedures. ${ }^{41} \mathrm{Hy}$ droiodic acid (50% solution, $25 \mathrm{~mL}, 5.0$ equiv.) was added to 2,6 -dichloropyrazine $(5.07 \mathrm{~g}, 34.0$ $\mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NaI}(6.63 \mathrm{~g}, 44.2 \mathrm{mmol}$, 1.3 equiv.) in a sealed tube and heated at $100{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times$ 2), sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(50 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure to give 41 as a white solid $(9.91 \mathrm{~g}, 29.9 \mathrm{mmol}$, 88%). mp 90-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \quad \delta 8.74(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.2,116.8$. The spectroscopic data were in agreement with those in the literature. ${ }^{41}$
2-Chloro-6-phenethoxypyrazine (42). General Procedure D was applied using 2,6dichloropyrazine $(107 \mathrm{mg}, 0.718 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol (87.8 mg , $0.718 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of $\mathrm{EtOAc}(0 \%$ to 6%) in hexanes to give 42 as a colourless oil $(137 \mathrm{mg}, 0.582 \mathrm{mmol}$, 81%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13$ $(\mathrm{s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 5 \mathrm{H})$, $4.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=7.0$
$\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.3, 145.5, 137.8, 135.3, 133.3, 129.1, 128.7, 126.8, 67.8, 35.2. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{ONa} 257.0452$; found 257.0451.

2-Bromo-6-phenethoxypyrazine (43). General Procedure D was applied using 2,6dibromopyrazine ($127 \mathrm{mg}, 0.534 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol (65.2 mg , $0.534 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of EtOAc (0% to 6%) in hexanes to give 43 as a colourless oil $(122 \mathrm{mg}, 0.436 \mathrm{mmol}$, 82%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ $(\mathrm{s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 5 \mathrm{H})$, $4.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): δ 159.4, 138.3, 137.8, 136.5, 133.5, 129.1, 128.7, 126.8, 68.0, 35.2. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{2} \mathrm{ONa}$ 300.9947 ; found 300.9947 .

2-Iodo-6-phenethoxypyrazine (44). General Procedure D was applied using 41 (108 mg , $0.325 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($39.8 \mathrm{mg}, 0.325 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of EtOAc (0% to 6%) in hexanes to give 44 as a colourless oil $(83.0 \mathrm{mg}, 0.254$ mmol, 78\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}$, $5 \mathrm{H}), 4.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.5,144.2,137.8,133.7,129.1,128.7,126.8$, 112.7, 68.0, 35.2. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}_{2} \mathrm{ONa} 348.9808$; found 348.9807 .

5-Chloro-[1,2,4]triazolo[4,3-a]pyrazine (45a). General Procedure B was applied using S1 ($25.4 \mathrm{~g}, 176 \mathrm{mmol}$) to give 45a as a yellow solid ($12.3 \mathrm{~g}, 79.8 \mathrm{mmol}, 45 \%$). mp 169-171 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9}$ $\left.167-172{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8$, 141.9, 134.7, 128.3, 121.3. The spectroscopic data and melting point were in agreement with those in the literature. ${ }^{9}$ X-ray single crystal data can be found in the supporting information.

5-Chloro-3-(4-methoxyphenyl)-[1,2,4]tria-
zolo[4,3-alpyrazine (45b). General Procedure C was applied using $\mathbf{S 1}(1.01 \mathrm{~g}, 6.97 \mathrm{mmol}$, 1.0 equiv.) and 4 -methoxybenzaldehyde (1.04 $\mathrm{g}, 7.66 \mathrm{mmol}, 1.1$ equiv.) to give 45 b as an off-white solid ($1.34 \mathrm{~g}, 5.16 \mathrm{mmol}, 74 \%$). mp $145-147{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.63-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): δ 160.8, 147.4, 146.9, 142.7, 132.8, 129.1, 121.8, 119.1, 113.1, 55.3. HRMS (ESI/FTICR) m / z : [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}$ 261.0538; found 261.0535 .

5-Chloro-3-(4-nitrophenyl)-[1,2,4]triazolo-[4,3-alpyrazine (45c). General Procedure C was applied using $\mathbf{S 1}(1.06 \mathrm{~g}, 7.33 \mathrm{mmol}$, 1.0 equiv.) and 4-nitrobenzaldehyde (1.21 g , $8.07 \mathrm{mmol}, 1.1$ equiv.) to give 45 c as an offwhite solid ($1.91 \mathrm{~g}, 6.93 \mathrm{mmol}, 95 \%$). mp $238-240{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \quad J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \quad J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO$\left.d_{6}\right): \delta 148.6,147.2,145.8,142.7,133.7,132.9$, 129.4, 122.7, 121.9. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClN}_{5} \mathrm{O}_{2}$ 276.02828; found 276.02784 .

5-Chloro-3-(2-methoxyphenyl)-[1,2,4]triazolo-[4,3-alpyrazine (45d). General Procedure C was applied using $\mathbf{S 1}(400 \mathrm{mg}, 2.77 \mathrm{mmol}$, 1.0 equiv.) and 2 -methoxybenzaldehyde (414 $\mathrm{mg}, 3.04 \mathrm{mmol}, 1.1$ equiv.) to give 45 d as an off-white solid ($430 \mathrm{mg}, 1.65 \mathrm{mmol}, 60 \%$); m.p. $142-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.63$ (ddd, $J=8.3,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=$ $7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H) ; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO$\left.d_{6}\right) \delta 158.4,146.9,144.7,142.8,132.7,132.0$, 129.0, 121.8, 120.1, 116.3, 111.0, 55.4; HRMS (ESI/FTICR +) $m / z: \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}$ 261.0538; found 261.0539.

5-Chloro-3-(2-nitrophenyl)-[1,2, 4]triazolo-[4,3-a]pyrazine (45e). General Procedure C was applied using S1 (1.04 g, $7.20 \mathrm{mmol}, 1.0$ equiv.) and 2-nitrobenzaldehyde ($1.20 \mathrm{~g}, 7.92$ $\mathrm{mmol}, 1.1$ equiv.) to give 45 e as a grey solid ($1.74 \mathrm{~g}, 6.29 \mathrm{mmol}, 87 \%$). mp $224-228{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.57(\mathrm{~s}, 1 \mathrm{H})$, 8.44 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.06$ -7.95 (m, 2H), 7.93 (dd, $J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 148.0$, $146.8,143.8,143.0,134.5,134.3,132.9,129.2$, 125.0, 122.4, 121.4. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{Na}$ 298.0102; found 298.0109.

5-Chloro-3-(3,5-di-tert-butylphenyl)-[1,2,4]-triazolo[4,3-alpyrazine (45f). General Procedure C was applied using $\mathbf{S 1}(1.05 \mathrm{~g}, 7.26 \mathrm{mmol}$, 1.0 equiv.) and 3,5 -di-tert-butylbenzaldehyde ($1.74 \mathrm{~g}, 7.99 \mathrm{mmol}, 1.1$ equiv.) to give $\mathbf{4 5 f}$ as a grey solid ($1.68 \mathrm{~g}, 4.90 \mathrm{mmol}, 67 \%$) . mp $133-135{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): δ $9.46(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 149.6$, 148.1, 147.0, 142.7, 129.2, 126.3, 125.8, 123.6, 121.8, 34.6, 31.1. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClN}_{4} 343.1684$; found 343.1687.

3-(Anthracen-9-yl)-5-chloro-[1, 2, 4]triazolo-[4,3-a]pyrazine (45g). General Procedure C was applied using $\mathbf{S 1}(1.08 \mathrm{~g}, 7.47 \mathrm{mmol}, 1.0$ equiv.) and anthracene-9-carbaldehyde (1.69 g , $8.22 \mathrm{mmol}, 1.1$ equiv.) to give 45 g as a bright yellow solid ($1.62 \mathrm{~g}, 4.90 \mathrm{mmol}, 66 \%$). mp $218-221{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $9.64(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 8.02 ($\mathrm{s}, 1 \mathrm{H}$), 7.58 (ddd, $J=8.2,6.6,1.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.49 (ddd, $J=8.8,6.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (dd, $J=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 147.8,144.0,143.4$, $132.4,130.6,130.3,129.2,128.6,127.5,125.8$, 125.5, 121.1, 120.5. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{4} 331.0745$; found 331.0745 .

5-Bromo-[1,2,4]triazolo[4,3-a]pyrazine (45h). General Procedure B was applied using S2 $(2.35 \mathrm{~g}, 12.4 \mathrm{mmol})$ to give 45 h as an orange solid ($1.75 \mathrm{~g}, 8.81 \mathrm{mmol}, 71 \%$). $\mathrm{mp} 167-170{ }^{\circ} \mathrm{C}$ (decomp.) (lit. ${ }^{9} 214-217{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~s}$, $1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz , DMSO- d_{6}): $\delta 145.3,142.0,137.5,131.0,109.9$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{3}{ }^{79} \mathrm{BrN}_{4} \mathrm{Na} 220.9433$; found 220.9431 . The spectroscopic data were in agreement with
the literature, but the melting point was significantly different. ${ }^{9}$

5-Bromo-3-(4-methoxyphenyl)-[1,2,4]tria-zolo[4,3-a]pyrazine (45i). General Procedure C was applied using $\mathbf{S 2}(1.03 \mathrm{~g}, 5.46 \mathrm{mmol}, 1.0$ equiv.) and 4 -methoxybenzaldehyde (0.818 g , $6.01 \mathrm{mmol}, 1.1$ equiv.) to give 45 i as a pale brown solid ($1.00 \mathrm{~g}, 3.27 \mathrm{mmol}, 60 \%$). mp $156-$ $157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.44$ $(\mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.13$ $-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 160.8,148.1,146.6$, 143.0, 133.1, 132.7, 119.1, 113.1, 110.2, 55.3. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}$ 305.0033; found 305.0030.

5-Bromo-3-(4-nitrophenyl)-[1,2,4]triazolo-[4,3-a]pyrazine (45j). General Procedure C was applied using $\mathbf{S 2}(0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$, 1.0 equiv.) and 4-nitrobenzaldehyde (0.57 $\mathrm{g}, 3.8 \mathrm{mmol}, 1.1$ equiv.) to give 45 j as a yellow solid ($0.93 \mathrm{~g}, 2.9 \mathrm{mmol}, 85 \%$) mp $200-205{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \quad J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO$\left.d_{6}\right): \delta 148.7,146.9,146.4,143.0,133.9,133.2$, 133.0, 122.6, 110.4. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{2}$ 319.9778; found 319.9781.

5-Bromo-3-(2-methoxyphenyl)-[1, 2, 4]triazolo-[4,3-a]pyrazine (45k). General Procedure C was applied using $\mathbf{S 2}(0.66 \mathrm{~g}, 3.5 \mathrm{mmol}, 1.0$ equiv.) and 2-methoxybenzaldehyde (0.52 g , $3.8 \mathrm{mmol}, 1.1$ equiv.) to give 45 k as a white solid ($0.75 \mathrm{~g}, 2.5 \mathrm{mmol}, 71 \%$). mp 137-139 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.34(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.58$ (ddd, $J=8.4,7.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J$ $=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}$, 1H), 3.73 (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.2,147.1,146.6,143.4,133.1$, 133.0, 132.5, 120.5, 116.3, 110.5, 110.1, 55.4. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}$ 305.0033; found 305.0036.

5-Bromo-3-(2-nitrophenyl)-[1,2,4]triazolo-[4,3-a]pyrazine (451). General Procedure C was applied using $\mathbf{S} 2(0.62 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.0$ equiv.) and 2-nitrobenzaldehyde ($0.54 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.1$ equiv.) to give 451 as a yellow solid (0.84 g ,
$2.6 \mathrm{mmol}, 81 \%) . \mathrm{mp} 210-213{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.50-8.36$ $(\mathrm{m}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 148.1,146.4,144.6,143.2$, $134.6,134.2,132.9,132.7,124.9$, 122.6, 109.9. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}_{2} 319.9778$; found 319.9780 .
5-Iodo-[1,2,4]triazolo[4,3-a]pyrazine (45m). General Procedure B was applied using S3 ($1.54 \mathrm{~g}, 6.52 \mathrm{mmol}, 1.0$ equiv.) to give 45 m as a brown solid ($1.08 \mathrm{~g}, 4.39 \mathrm{mmol}, 67 \%$, contains 0.5% DCM). mp $180-185^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.54(\mathrm{~s}, 1 \mathrm{H})$, $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 144.4,142.2,140.2,137.7$, 83.9. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{IN}_{4} 246.9475$; found 246.9475 .

5-Iodo-3-(4-methoxyphenyl)-[1, 2, 4]triazolo-[4,3-a]pyrazine (45n). General Procedure C was applied using $\mathbf{S 3}$ ($1.47 \mathrm{~g}, 6.21 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($0.930 \mathrm{~g}, 6.83 \mathrm{mmol}$, 1.1 equiv.) to give 45 n as an off-white solid (1.55 g, $4.39 \mathrm{mmol}, 71 \%$). mp 229-230 ${ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 9.40$ $(\mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.15$ $-7.09(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 161.6,149.5,146.2$, 143.9, 140.6, 134.4, 119.4, 113.6, 84.1, 55.8. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{IN}_{4} \mathrm{O} 352.9894$; found 352.9891.

5-Phenethoxy-[1,2,4]triazolo[4,3-a]pyrazine (46a). General Procedure D was applied using 45a ($107 \mathrm{mg}, 0.692 \mathrm{mmol}$) and 2-phenylethanol ($84.5 \mathrm{mg}, 0.692 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of EtOAc (20 to 100\%) in hexanes to give 46a as an off-white solid (125 mg , $0.520 \mathrm{mmol}, 75 \%) . \mathrm{mp} 143-146{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 9.38(\mathrm{~d}, J$ $=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{t}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (s, 1H), $7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 2 H), 3.19 ($\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 145.8,142.4,137.3$, 134.4, 133.0, 129.2, 128.4, 126.5, 108.3, 71.3, 34.4. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}$ 241.1084; found 241.1081. 5-(Phenethylthio)-[1,2,4]triazolo[4,3-a]pyra-
zine (46b). General Procedure D was applied using 45 a ($105 \mathrm{mg}, 0.681 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethane-1-thiol ($94.2 \mathrm{mg}, 0.681 \mathrm{mmol}$, 1.0 equiv.) to give 46 b as an off-white solid ($88.6 \mathrm{mg}, 0.346 \mathrm{mmol}, 51 \%$). mp $108-110{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.55$ (d, J $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.27$ $-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}$, $J=7.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 144.6$, $141.5,139.0,136.1,131.5,128.6,128.2,126.4$, 126.1, 34.8, 33.5. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S} 257.0855$; found 257.0853.

3-(4-Methoxyphenyl)-5-phenethoxy-[1,2, 4]tri-azolo[4,3-a/pyrazine (46c). Preparation 1: General Procedure D was applied using 45b ($103 \mathrm{mg}, 0.395 \mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-ol ($48.3 \mathrm{mg}, 0.395 \mathrm{mmol}, 1.0$ equiv.) to give 46 c as a yellow solid (95.1 mg , $0.275 \mathrm{mmol}, 69 \%$). Preparation 2: General Procedure D was applied using 45 i (122 mg , $0.400 \mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-ol ($48.9 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.). Fractions corresponding to the second peak were evaporated to give 46c (first run: $45.4 \mathrm{mg}, 0.127$ $\mathrm{mmol}, 33 \%$, second run: $43.0 \mathrm{mg}, 0.124 \mathrm{mmol}$, 31%, average yield is 32%). mp $162-163{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.00(\mathrm{~s}, 1 \mathrm{H})$, $7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.12$ $(\mathrm{m}, 3 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.88(\mathrm{~m}$, $2 \mathrm{H}), 4.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.89$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 160.4,147.3,146.3,143.9,137.4$, 135.0, 132.2, 128.7, 128.2, 126.3, 120.0, 113.0, 108.6, 71.2, 55.3, 33.9. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$ 347.1503; found 347.1498.

3-(4-Methoxyphenyl)-5-(phenethylthio)[1,2,4]-triazolo[4,3-alpyrazine (46d). General Procedure D was applied using 45 b ($100 \mathrm{mg}, 0.384$ $\mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethane-1-thiol ($53.0 \mathrm{mg}, 0.384 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of $\mathrm{MeOH}(0 \%$ to $10 \%)$ in DCM , fractions corresponding to the second peak were evaporated to give $\mathbf{4 6 d}$ as a yellow solid ($11.3 \mathrm{mg}, 0.0312 \mathrm{mmol}, 8 \%$). mp 202-205 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.12$ ($\mathrm{s}, 1 \mathrm{H}$),
$7.78(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09-6.99(\mathrm{~m}$, $4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 162.5,149.2,147.5,142.8,140.2$, 134.1, 132.3, 129.59, 129.56, 129.4, 127.5, 120.7, 113.9, 56.2, 36.3, 35.1. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OS} 363.1274$; found 363.1270 .

3-(4-Nitrophenyl)-5-phenethoxy-[1, 2, 4]tria-zolo[4,3-alpyrazine (46e). Preparation 1: General Procedure D was applied using 45c ($104 \mathrm{mg}, 0.377 \mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-ol ($46.1 \mathrm{mg}, 0.377 \mathrm{mmol}, 1.0$ equiv.). Fraction corresponding to the second peak were evaporated to give 46e as a yellow solid ($105 \mathrm{mg}, 0.290 \mathrm{mmol}, 77 \%$). Preparation 2: General Procedure D was applied using 45 j ($128 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($48.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.) to give $\mathbf{4 6 e}$ (first run: $85.6 \mathrm{mg}, 0.237$ $\mathrm{mmol}, 59 \%$, second run: $87.8 \mathrm{mg}, 0.243 \mathrm{mmol}$, 61%, average yield is 60%). m.p. $168-170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.11(\mathrm{~s}, 1 \mathrm{H})$, $8.29-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.15$ (dd, $J=5.0,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.95$ (dd, $J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.93(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 147.9,147.6,144.6,143.8$, 137.1, 134.9, 134.1, 131.9, 128.4, 128.1, 126.3, 122.6, 109.3, 70.9, 33.5. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{3} 362.1248$; found 362.1245 .

3-(2-Methoxyphenyl)-5-phenethoxy-[1,2,4]-triazolo[4,3-alpyrazine (46f). General Procedure D was applied using 45 k ($122 \mathrm{mg}, 0.400$ $\mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol (48.8 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.). Fractions corresponding to the second peak were combined and evaporated to give $\mathbf{4 6 f}$ as a yellow solid (first run: $36.1 \mathrm{mg}, 0.104 \mathrm{mmol}, 26 \%$, second run: $34.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 25 \%$, average yield is 26%). mp $147-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.62$ (ddd, $J=8.3,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.50$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.79-6.73$ (m, 2H), $4.37(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): δ
158.2, 147.1, 143.9, 143.2, 137.2, 135.1, 132.0, $131.4,128.8,128.2,126.3,119.9,117.4,110.9$, 108.8, 71.4, 55.4, 34.1. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$ 347.1503; found 347.1504.

3-(2-Nitrophenyl)-5-phenethoxy-[1,2,4]tria-zolo[4,3-alpyrazine (46g). Preparation 1: General Procedure D was applied using 45e ($110 \mathrm{mg}, 0.399 \mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-ol ($48.8 \mathrm{mg}, 0.399 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of EtOAc (30\% to 100%) in hexanes, then $\mathrm{MeOH}(0 \%$ to $5 \%)$ in EtOAc to give 46 g as a yellow solid (first run: $123 \mathrm{mg}, 0.341 \mathrm{mmol}, 86 \%$, second run: $113 \mathrm{mg}, 0.313 \mathrm{mmol}, 79 \%$, average yield is 83%). Preparation 2: General Procedure D was applied using $451(128 \mathrm{mg}, 0.400 \mathrm{mmol}$, 1.0 equiv.) and 2 -phenylethan-1-ol (48.8 mg , $0.400 \mathrm{mmol}, 1.0$ equiv.) to give $\mathbf{4 6 g}$ (first run: $108 \mathrm{mg}, 0.299 \mathrm{mmol}, 75 \%$, second run: 111 mg , $0.307 \mathrm{mmol}, 77 \%$, average yield is 76%). mp $178-181{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) : $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=8.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=$ $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $3 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 147.7,147.0,143.1$, $142.5,136.7,135.3,134.0,133.8,131.9,128.4$, 128.2, 126.4, 124.7, 123.1, 109.1, 71.2, 33.6. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{3} 362.1248$; found 362.1247 .

3-(3,5-Di-tert-butylphenyl)-5-phenethoxy-[1,2,4]triazolo[4,3-a]pyrazine (46h). General Procedure D was applied using 45 f (137 mg , $0.400 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($48.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.). Fractions corresponding to the second peak were combined and evaporated to give 46 h as a yellow solid (first run: $139 \mathrm{mg}, 0.325 \mathrm{mmol}, 81 \%$, second run: $140 \mathrm{mg}, 0.326 \mathrm{mmol}, 82 \%$, average yield is 82%). mp $175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.68$ $(\mathrm{m}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J$ $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
(126 MHz, DMSO- d_{6}): δ 149.6, 147.2, 147.0, 143.9, 137.4, 135.0, 128.6, 128.1, 127.4, 126.3, 124.7, 123.7, 108.8, 71.4, 34.7, 34.1, 31.3. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{ONa} 451.2468$; found 451.2471 .
3-(Anthracen-9-yl)-5-phenethoxy-[1,2, 4]tria-zolol4,3-alpyrazine (46i). General Procedure D was applied using $45 \mathrm{~g}(132 \mathrm{mg}, 0.399 \mathrm{mmol}$, 1.0 equiv.) and 2 -phenylethan- 1 -ol (48.8 mg , $0.399 \mathrm{mmol}, 1.0$ equiv.). Fractions corresponding to the second peak were combined and evaporated to give $\mathbf{4 6 i}$ as a yellow solid (first run: $110 \mathrm{mg}, 0.264 \mathrm{mmol}, 66 \%$, second run: $107 \mathrm{mg}, 0.258 \mathrm{mmol}, 65 \%$, average yield is 66%). mp 207-211 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.27$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (ddd, $J=8.3,6.6$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.47$ (m, 3H), 7.39 (dd, J $=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.78$ $-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.08-6.03(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 147.7$, 143.6, 142.4, 136.7, 135.7, 131.8, 130.5, 129.8, $128.5,128.2,127.7,127.1,126.0,125.6,125.5$, 121.8, 109.2, 71.4, 33.3. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}$ 417.1710; found 417.1713.

3-(4-Methoxyphenyl)-8-phenethoxy-[1,2,4]-triazolo[4,3-a]pyrazine (47a). Preparation 1: isolated from the same reaction as for 46 c preparation 1. Fractions corresponding to the first peak were evaporated to give 47a (4.10 $\mathrm{mg}, 0.0118 \mathrm{mmol}, 3 \%)$. Preparation 2: General Procedure D was applied using 45 n (132 mg , $0.375 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1ol ($45.8 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.0$ equiv.). Fraction corresponding to the first peak were evaporated to give 47a as an off-white solid (70.0 $\mathrm{mg}, 0.202 \mathrm{mmol}, 54 \%)$. Preparation 3: isolated from the same reaction as for 46 c preparation 2. Fractions corresponding to the first peak were evaporated to give 47a (first run: 13.0 $\mathrm{mg}, 0.0375 \mathrm{mmol}, 9 \%$, second run: 15.5 mg , $0.0447 \mathrm{mmol}, 11 \%$, average yield is 10%). mp 208-211 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): δ $8.17-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23$ (m, 1H), $7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 160.8$, 153.2, 147.9, 139.5, 138.0, 129.7, 128.9, 128.4, 127.2 , 126.4, 118.1, 114.8, 112.1, 67.3, 55.4, 34.2. HRMS (ESI/FTICR) $m / z: ~[M+H]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$ 347.1503; found 347.1499.
3-(4-Methoxyphenyl)-8-(phenethylthio) [1,2, 4]-triazolo[4,3-alpyrazine (47b). Preparation 1: General Procedure D was applied using 45i ($110 \mathrm{mg}, 0.360 \mathrm{mmol}$) and 2-phenylethane-1thiol ($50.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 1.0$ equiv.) to give 47 b as a yellow solid ($122 \mathrm{mg}, 0.337$ $\mathrm{mmol}, 93 \%)$. Preparation 2: General Procedure D was applied using $45 \mathrm{n}(108 \mathrm{mg}, 0.307$ $\mathrm{mmol}, 1.0$ equiv.) and 2-phenylethane-1-thiol ($43.0 \mathrm{mg}, 0.307 \mathrm{mmol}, 1.0$ equiv.) to give $\mathbf{4 7} \mathbf{b}$ ($14.0 \mathrm{mg}, 0.0390 \mathrm{mmol}, 13 \%$). Preparation 3: isolated from the same reaction as for 46 d . Fractions corresponding to the first peak were evaporated to give $\mathbf{4 7 b}(116 \mathrm{mg}, 0.319 \mathrm{mmol}$, 83%). mp 192-194 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.52(\mathrm{~m}, 2 \mathrm{H})$, $3.20-3.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 160.9,152.9,147.6,143.7,140.0$, $129.8,129.3,128.6,128.4,126.4,117.9,114.8$, 113.2, 55.5, 34.5, 29.4. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OS} 363.1274$; found 363.1268 .

3-(4-Methoxyphenyl)-N-phenethyl-[1,2,4]-tri-azolo[4,3-a]pyrazin-8-amine (47c). Preparation 1: General Procedure E was applied using 45b ($106 \mathrm{mg}, 0.407 \mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-amine ($148 \mathrm{mg}, 1.22 \mathrm{mmol}, 3.0$ equiv.) to give 47 c as a yellow solid (126 mg , $0.365 \mathrm{mmol}, 90 \%$). Preparation 2: General Procedure E was applied using 45 i (101 mg , $0.331 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan1 -amine ($120 \mathrm{mg}, 0.993 \mathrm{mmol}, 3.0$ equiv.) to give 47 c ($75.0 \mathrm{mg}, 0.217 \mathrm{mmol}, 66 \%$). Preparation 3: General Procedure E was applied using 45 n ($341 \mathrm{mg}, 0.968 \mathrm{mmol}$) and 2-phenylethan-1-amine ($350 \mathrm{mg}, 2.91 \mathrm{mmol}, 3.0$ equiv.) to give 47 c ($195 \mathrm{mg}, 0.564 \mathrm{mmol}, 58 \%$). mp 193$196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.23$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dd}, J=6.8,2.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 160.6$, 147.9, 147.6, 139.5, 139.4, 129.9, 129.5, 128.7, 128.3 , 126.0, 118.5, 114.7, 105.9, 55.4, 41.6, 34.5. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}$ 346.1662; found 346.1657. 3-(3,5-Di-tert-butylphenyl)-8-phenethoxy-[1,2,4]tria-zolo[4,3-a]pyrazine (47d). Isolated from the same reaction as for 46 h . Fractions corresponding to the first peak were combined and evaporated to give 47d as a yellow sticky solid (first run: $5.0 \mathrm{mg}, 11.6 \mu \mathrm{~mol}, 3 \%$, second run: $5.00 \mathrm{mg}, 11.6 \mu \mathrm{~mol}, 3 \%$, average yield is $3 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39$ (s, 18H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.4, 152.3, 149.8, 140.5, 137.7, 129.3, 128.7, 128.0, 126.8, 125.4, 125.1, 122.8, 110.8, 68.3, 35.3, 35.2, 31.5. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{ONa} 451.2468$; found 451.2471.
3-(Anthracen-9-yl)-8-phenethoxy-[1,2,4]tria-zolo[4,3-alpyrazine (47e). Isolated from the same reaction as for 46 i. Fractions corresponding to the first peak were combined and evaporated to give 47 e as a yellow solid (first run: $2.50 \mathrm{mg}, 6.00 \mu \mathrm{~mol}, 2 \%$, second run: 3.00 mg , $7.20 \mu \mathrm{~mol}, 2 \%$, average yield is 2%). mp 175$180{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.61$ (ddd, $J=8.3,6.6,1.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.51 (ddd, $J=8.9,6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.32$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.83$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 153.4$, 145.4, 141.8, 141.4, 140.0, 138.1, 131.0, 130.83, $130.79,129.3,129.0,128.9,128.4,127.8,127.5$, 126.5, 125.9, 125.6, 124.6, 118.1, 111.8, 67.5, 34.4. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}$ 417.1710; found 417.1709.

3-(2-Methoxyphenyl)-8-phenethoxy-[1, 2, 4]-triazolo[4,3-alpyrazine (47f). Isolated from the same reaction as for 46f. Fractions corresponding to the first peak were combined and evaporated to give 47 f as a white solid (first
run: $13.1 \mathrm{mg}, 37.8 \mu \mathrm{~mol}, 9 \%$, second run: 12.2 $\mathrm{mg}, 35.2 \mu \mathrm{~mol}, 9 \%$, average yield is 9%). mp $124-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $7.71(\mathrm{~d}, ~ J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.5$, $7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.18(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 156.9$, 152.9, 146.7, 139.4, 138.0, 132.7, 131.9, 128.9, $128.4,126.5,126.4,120.9,114.2,113.3,112.1$, 67.3, 55.6, 34.2. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}$ 369.1322; found 369.1326.

3-(4-Methoxyphenyl)-[1,2,4]triazolo[4,3-a]-pyrazin-8-ol (48a). General Procedure D was applied (with following modification: $\mathrm{H}_{2} \mathrm{O}$ was used as a solvent) using $45 \mathrm{i}(107 \mathrm{mg}, 0.341$ mmol) and 2-phenylethan-1-ol ($41.7 \mathrm{mg}, 0.341$ $\mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of $\mathrm{MeOH}(0 \%$ to 20%) in EtOAc to give 48a as a pale brown solid ($80.0 \mathrm{mg}, 0.330 \mathrm{mmol}$, 94%). mp 312-316 ${ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 7.81-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): δ 160.9, 153.0, 149.2, 145.0, 129.9, 118.4, 117.9, 114.8, 103.8, 55.4. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}$ 265.0696; found 265.0696.
3-(4-Nitrophenyl)-[1,2,4]triazolo[4,3-a]pyra-zin-8-ol (48b). General Procedure D was applied using 45 j ($128 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethan-1-ol ($48.8 \mathrm{mg}, 0.400$ $\mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of EtOAc (30\% to 100\%) in hexanes, then MeOH (0% to 20%) in EtOAc, fractions corresponding to the third peak were combined and evaporated to give 48 b as a yellow solid (first run: $28.8 \mathrm{mg}, 0.112 \mathrm{mmol}, 28 \%$, second run: 31.9 $\mathrm{mg}, 0.124 \mathrm{mmol}, 31 \%$, average yield is 30%). $\mathrm{mp} 207-210{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.48-8.36(\mathrm{~m}, 2 \mathrm{H}), 8.20-8.14$ $(\mathrm{m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ 4.7 Hz, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO-
$\left.d_{6}\right): \delta 159.9,147.4,146.3,144.6,133.7,132.7$, 128.3, 124.3, 99.8. HRMS (ESI/FTICR) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na} 280.0441$; found 280.0444 .
3-(2-Methoxyphenyl)-[1,2,4]triazolo[4,3-a]-pyrazin-8-ol (48c). Isolated from the same reaction as for $\mathbf{4 6 f}$. Fractions corresponding to the third peak were combined and evaporated to give 48 c as a yellow solid (first run: 47.6 $\mathrm{mg}, 0.197 \mathrm{mmol}, 49 \%$, second run: 46.3 mg , $0.191 \mathrm{mmol}, 48 \%$, average yield is 49%). mp $116-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $11.45(\mathrm{~s}, 1 \mathrm{H}), 7.65$ (ddd, $J=8.9,7.4,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}$, $J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}): $\delta 156.9,152.9,147.9,144.9,132.8$, $131.9,120.9,117.7,114.2,112.1,104.8,55.7$. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na} 265.0696$; found 265.0700 .

3-(2-Nitrophenyl)-[1, 2, 4]triazolo[4,3-a]pyra-zin- 8 -ol (48d). Isolated from the same reaction as for 46 g preparation 2. Fractions corresponding to the third peak were combined and evaporated to give 48d as an orange solid (first run: $11.4 \mathrm{mg}, 44.3 \mu \mathrm{~mol}, 11 \%$, second run: 13.8 $\mathrm{mg}, 53.7 \mu \mathrm{~mol}, 13 \%$, average yield is 12%). mp $124-127{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=8.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=$ $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- $\left.d_{6}\right): \delta 152.7,148.1,146.2,144.9$, 134.6, 133.1, 132.7, 125.4, 119.9, 118.9, 103.7. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na} 280.0441$; found 280.0443.
3-(4-Methoxyphenyl)-[1,2, 4]-triazolo[4,3alpyrazine (49). Preparation 1: General Procedure E was applied using 45 n ($341 \mathrm{mg}, 0.968$ $\mathrm{mmol}, 1.0$ equiv.) and 2 -phenylethan-1-amine (352 mg , $2.91 \mathrm{mmol}, 3.0$ equiv.). Fractions corresponding to the second peak were re-purified by RP-FCC on C18 using a gradient of MeOH (5% to 80%) in $\mathrm{H}_{2} \mathrm{O}$. Fractions corresponding to the first peak were combined and evaporated to give 49 as a white solid $(24.0 \mathrm{mg}, 0.106 \mathrm{mmol}$, 11%). Preparation 2: General Procedure D was
applied using $45 \mathrm{n}(108 \mathrm{mg}, 0.307 \mathrm{mmol}, 1.0$ equiv.) and 2-phenylethane-1-thiol (43.0 mg , $0.307 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was purified by FCC on silica using a gradient of $\mathrm{MeOH}(0 \%$ to $10 \%)$ in DCM , fractions corresponding to the second peak were evaporated to give 49 as a yellow solid (51.0 mg , $0.225 \mathrm{mmol}, 74 \%) . \mathrm{mp} 202-205^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 9.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.23$ - 7.16 (m, 2H), $3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}): $\delta 160.9,146.5,145.5$, 144.1, 129.8, 129.7, 117.8, 116.9, 114.8, 55.4. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{ONa} 249.0747$; found 249.0747.

3-(4-Methoxyphenyl)-5-(1-phenethyl-1H-im-idazol-2-yl)-4H-1,2,4-triazole (50). Isolated from the same reaction as for 49 preparation 1. Fractions corresponding to the second peak, after RP-FCC were combined and evaporated to give 50 as a white solid ($57.0 \mathrm{mg}, 0.165$ mmol, 17\%). mp $143-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.07$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 162.9, 139.3, 129.9, 129.5, 129.1, 127.7, 124.0, 115.4, 55.9, 50.0, 38.6. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}$ 346.1662; found 346.1656 . X-ray single crystal data can be found in the supporting information.

> 5-(Piperidin-1-yl)-[1, 2,4]triazolo[4,3-a]pyra- zine (55). General Procedure E was applied using 45a ($101 \mathrm{mg}, 0.652 \mathrm{mmol}, 1.0$ equiv.) in toluene (10 mL) and piperidine (167 mg , $1.96 \mathrm{mmol}, 3.0$ equiv.) and heated at reflux for 72 h . The reaction mixture was purified by FCC on silica using a gradient of EtOAc (50% to 100%) in hexanes, then $\mathrm{MeOH}(0 \%$ to 5%) in EtOAc. Fractions corresponding to the second peak were evaporated to give 55 as an orange crystalline solid ($20.7 \mathrm{mg}, 0.102 \mathrm{mmol}$, 16%). mp $158-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.39(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.05$ $(\mathrm{d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.05$ $(\mathrm{m}, 4 \mathrm{H}), 1.76(\mathrm{p}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.67-1.58$ (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}):
$\delta 145.6,138.4,135.7$, 134.5, 116.4, 50.2, 25.0, 23.6. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5}$ 204.1244; found 204.1243.

8-(Piperidin-1-yl)-[1,2,4]triazolo[4,3-a]pyrazine (56). Isolated from the same reaction as for 55 . Fractions corresponding to the first peak were evaporated to give 56 as an orange crystalline solid ($93.4 \mathrm{mg}, 0.460 \mathrm{mmol}, 71 \%$). mp $181-183{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H})$, $1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=7.6,3.9$ $\mathrm{Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 148.8,141.5,138.3,129.9,108.3,48.1,26.9$, 25.5. HRMS (ESI/FTICR) $m / z: ~[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5}$ 204.1244; found 204.1241. X-ray single crystal data can be found in the supporting information.

5-(Piperidin-1-yl)-[1,2, 4]triazolo[4,3-a]pyra-zine-3-d (57). General Procedure E was applied using 45a ($101 \mathrm{mg}, 0.652 \mathrm{mmol}, 1.0$ equiv.) and piperidine ($167 \mathrm{mg}, 1.96 \mathrm{mmol}$, 3.0 equiv.) in $\mathrm{D}_{2} \mathrm{O}(5 \mathrm{~mL})$. The reaction mixture was heated at reflux for 72 h and purified by FCC on silica using a gradient of EtOAc (50% to 100%) in hexanes then MeOH (0% to 5%) in EtOAc. Fractions corresponding to the second peak were evaporated to give 57 as an orange crystalline solid ($31.1 \mathrm{mg}, 0.153 \mathrm{mmol}$, 23%). mp 158-161 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 3.19-$ $3.13(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{p}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.66-$ $1.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR (77 MHz, DMSO- d_{6}): δ 9.44 (s, 1D). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO$\left.d_{6}\right): \delta 145.6,138.3,135.7,134.7-133.9(\mathrm{~m})$, 116.3, 50.2, 25.0, 23.6. HRMS (ESI/FTICR) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{DN}_{5}$ 205.1307; found 205.1304.

8-(Piperidin-1-yl)-[1,2,4]triazolo[4,3-a]pyra-zine-3,5- d_{2} (58). Isolated from the same reaction as for 57 . Fractions corresponding to the first peak were evaporated to give 58 as an orange crystalline solid ($78.7 \mathrm{mg}, 0.387 \mathrm{mmol}$, 59%). mp 181-183 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 4 \mathrm{H}), 1.68(\mathrm{tt}, J=6.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61$ (tq, $J=8.4,5.3,4.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR (77 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 9.28$ ($\mathrm{s}, 1 \mathrm{D}$), 7.88 ($\mathrm{s}, 1 \mathrm{D}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- $d_{6} \delta$ 147.1,
139.6, $137.86-137.14(\mathrm{~m}), 128.6,107.41(\mathrm{t}, J=$ 29.3 Hz), 46.6, 25.7, 24.2. HRMS (ESI/FTICR) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{~N}_{5}$ 206.1369; found 206.1366 .

5-Chloro-[1, 2, 4]triazolo[4,3-a]pyrazine-3-d (59). Compound 45a ($227 \mathrm{mg}, 1.47 \mathrm{mmol}$) was stirred in $\mathrm{D}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for 2 days. The solvent was evaporated and the reaction mixture was purified by FCC on silica using a gradient of EtOAc (20 to 100\%) in hexanes to give 59 as a white solid ($197 \mathrm{mg}, 1.27$ $\mathrm{mmol}, 86 \%$). mp $170-173{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{2} \mathrm{H} \operatorname{NMR}\left(77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.10(\mathrm{~s}, 1 \mathrm{D})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9$, 142.0, 134.96-134.04 (m), 128.4, 121.3. LRMS (ESI/IT) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$156.0.
8-(Piperidin-1-yl)-[1,2,4]triazolo[4,3-a]pyra-zine-3-d (60). $56(10 \mathrm{mg}, 49 \mu \mathrm{~mol})$ was dissolved in $\mathrm{D}_{2} \mathrm{O}(5 \mathrm{~mL})$ and heated at reflux for 72 h . Solvent was evaporated to give $\mathbf{6 0}$ as an orange solid ($10 \mathrm{mg}, 49 \mu \mathrm{~mol}, 100 \%$). mp 181$183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ $(\mathrm{s}, 4 \mathrm{H}), 1.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR (77 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75$ (s, 1D). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.1,140.7,137.1-$ 136.1 (m), 130.0, 106.0, 47.6, 26.4, 24.9. LRMS $(\mathrm{ESI} / \mathrm{IT}) m / z:[\mathrm{M}+\mathrm{Na}]^{+} 227.1$.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: The following files are available free of charge.

- ORTEP diagrams for the X-ray structures and crystal data; experimental details for biological activity evaluations and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of novel compounds. (PDF)
- The archive of laboratory notebook with all experiments described in the article and raw NMR data for all novel compounds. (ZIP)
- The KINOMEscan ${ }^{\circledR}$ assay report on the biological activity of compounds 46 d and 47b. (XLS)
- X-ray crystal data of $\mathbf{4 5 a}, 50,56$. (CIF)
- The structural information in strings formant for all compounds described in the article with reference codes to the laboratory notebook. (XLS)

Acknowledgement We thank Mark Coster for suggestions on the mechanism of the telesubstitution reaction; Chris Swain, Chase Smith and other members of the OSM consortium for their valuable discussion on GitHub; Peter Turner for the help with X-ray crystallography; Irene Hallyburton for conducting in vitro antiplasmodial activity assay and the Structural Genomics Consortium at The University of North Carolina at Chapel Hill (SGC-UNC) for facilitating the KINOMEscan ${ }^{\circledR}$ assay. Also we thank the Australian Research Council and the Medicines for Malaria Venture for support (LP150101226).

References

(1) IUPAC Gold Book (accessed Jan 15, 2020). https://goldbook.iupac.org/ terms/view/I03251.
(2) IUPAC Gold Book (accessed Jan 15, 2020). https://goldbook.iupac.org/ html/C/C01081.html.
(3) IUPAC Gold Book (accessed Jan 15, 2020). https://goldbook.iupac.org/ html/T/T06256.html.
(4) Preprint of this manuscript has been deposited at ChemRxiv: Korsik, M.; Tse, E.; Smith, D.; Lewis, W.; Rutledge, P. J.; Todd, M. Tele-Substitution Reactions in the Synthesis of a Promising Class of Antimalarials. ChemRxiv 2020, DOI: 10.26434/chemrxiv.12212927.v1.
(5) Open Source Malaria Project. Offcial website (accessed Jan 15, 2020). http:// opensourcemalaria.org/.
(6) Runde, M. M.; Scott, E. W.; Johnson, J. R. Rearrangement of the AlphaFurfuryl Group. 2-Furylacetic Acid and 5Methylfuroic Acid. Journal of the American Chemical Society 1930, 52, 12841289.
(7) Torr, J. E.; Large, J. M.; Horton, P. N.; Hursthouse, M. B.; McDonald, E. On the nucleophilic telesubstitution of dichloropyrazines by metallated dithianes. Tetrahedron Letters 2006, 47, 31-34.
(8) Verček, B.; Stanovnik, B.; Tišler, M. Products of abnormal substitution of s-triazolo(1,5-a)pyrazines. Tetrahedron Letters 1974, 15, 4539-4542.
(9) Bradac, J.; Furek, Z.; Janezic, D.; Molan, S.; Smerkolj, I.; Stanovnik, B.; Tisler, M.; Vercek, B. Heterocycles. 167. Telesubstitution and other transformations of imidazo[1,2-a]- and s-triazolo[4,3a]pyrazines. The Journal of Organic Chemistry 1977, 42, 4197-4201.
(10) Suwiński, J. W. cine- and teleSubstitution reactions: review of work from 2002-2016. Arkivoc 2017, 2017, 402-435.
(11) Suwiński, J.; Świerczek, K. cine - and tele Substitution reactions. Tetrahedron 2001, 57, 1639-1662.
(12) Tišler, M. Tele-substitutions in Heterocyclic Chemistry. Acta chimica Slovenica 2011, 58, 9-13.
(13) Terrier, F. Modern Nucleophilic Aromatic Substitution; Wiley-VCH, 2013.
(14) Open Source Malaria Project wiki (accessed Jan 15, 2020). https://github. com/OpenSourceMalaria/Series4/wiki.
(15) Open Source Malaria Project wiki (accessed Jan 15, 2020). https://github.com/ OpenSourceMalaria/Series4/wiki/ Modification-of-the-Triazole-Substitution.
(16) Open Source Malaria Project wiki (accessed Jan 15, 2020). https: //github.com/OpenSourceMalaria/ Series4/wiki/In-Vivo-Efficacy.
(17) Lee, S.; Cil, O.; Diez-Cecilia, E.; Anderson, M. O.; Verkman, A. S. NanomolarPotency 1,2,4-Triazoloquinoxaline Inhibitors of the Kidney Urea Transporter UT-A1. Journal of Medicinal Chemistry 2018, 61, 3209-3217.
(18) Pasternak, A.; Pio, B.; Chobanian, R., Harry; Shi, Z.-C.; Dong, S.; Guo, Y.; Walsh, P., Shawn; Guo, Z.; Ferguson, D., Ronald; Cato, B. Inhibitors of the renal outer medullary potassium channel. WO2016/060941. April 21, 2016.
(19) Aschner, P.; Kipnes, M. S.; Lunceford, J. K.; Sanchez, M.; Mickel, C.; and, D. E. W.-H. Effect of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy on Glycemic Control in Patients With Type 2 Diabetes. Diabetes Care 2006, 29, 2632-2637.
(20) Ali, I.; Lee, J.; Go, A.; Choi, G.; Lee, K. Discovery of novel [1,2,4]triazolo[4,3- a |quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorganic ε^{3} Medicinal Chemistry Letters 2017, 27, 4606-4613.
(21) Shapiro, G. 3,3-Difluoropiperidine carbamate heterocyclic comopunds as NR2B NMDA receptor antagonists. WO2016/196513. December 8, 2016.
(22) Github. Open Source Malaria Project (accessed Jan 15, 2020). https://github. com/OpenSourceMalaria/Series4/ issues/39\#issuecomment-391222820.
(23) Mal, S.; Prathap, K. J.; Smith, S. C.; Umarye, J. D. Facile one pot synthesis of 8-chloro-[1,2,4]triazolo[4,3-a]pyrazines via oxidative cyclisation using chloramine T . Tetrahedron Letters 2015, 56, 2896-2901.
(24) Helal, C. J. et al. Application of StructureBased Design and Parallel Chemistry
to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor. Journal of Medicinal Chemistry 2017, 60, 5673-5698.
(25) Viswanathan, B.; Jacob, B. Alkylation, Hydrogenation and Oxidation Catalyzed by Mesoporous Materials. Catalysis Reviews 2005, 47, 1-82.
(26) Venuto, P.; Hamilton, L.; Landis, P.; Wise, J. Organic reactions catalyzed by crystalline aluminosilicatesI. Alkylation reactions. Journal of Catalysis 1966, 5, 81-98.
(27) Zaydoun, S.; Idrissi, M. S.; GarrigouLagrange, C. Étude vibrationnelle du méthyl-4 triazole-1,2,4 et de son chlorhydrate. Canadian Journal of Chemistry 1987, 65, 2509-2512.
(28) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Anhydrous proton conduction at $150{ }^{\circ} \mathrm{C}$ in a crystalline metal-organic framework. Nature Chemistry 2009, 1, 705-710.
(29) Shen, K.; Fu, Y.; Li, J.-N.; Liu, L.; Guo, Q.-X. What are the pKa values of $\mathrm{C}-\mathrm{H}$ bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron 2007, 63, 1568-1576.
(30) Wu, P.; Nielsen, T. E.; Clausen, M. H. FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences 2015, 36, 422-439.
(31) Kwan, E. E.; Zeng, Y.; Besser, H. A.; Jacobsen, E. N. Concerted nucleophilic aromatic substitutions. Nature Chemistry 2018, 10, 917-923.
(32) Stenlid, J. H.; Brinck, T. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy. The Journal of Organic Chemistry 2017, 82, 3072-3083.
(33) Brinck, T.; Carlqvist, P.; Stenlid, J. H. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding. The Journal of Physical Chemistry A 2016, 120, 10023-10032.
(34) Liljenberg, M.; Brinck, T.; Herschend, B.; Rein, T.; Tomasi, S.; Svensson, M. Predicting Regioselectivity in Nucleophilic Aromatic Substitution. The Journal of Organic Chemistry 2012, 77, 3262-3269.
(35) Liu, W.; Li, J.; He, K.; Huang, F.; Ma, Y.; Li, Y.; Li, Q.; Xu, F. Synthesis, bioactivity, action mode and 3D-QSAR of novel anthranilic diamide derivatives. Chinese Chemical Letters 2019, 30, 417-420.
(36) Tam, H. D.; Sarfati, R. S.; Gouyette, C.; Igolen, J.; Bisagni, E.; Lhoste, J. M.; Civier, A. Synthesis of C-nucleosides. 17. s-Triazolo[4,3-a]pyrazines. The Journal of Organic Chemistry 1979, 44, 1028-1035.
(37) Calderwood, D. J.; Bonafoux, D. F.; Burchat, A.; Ding, P.; Frank, K. E.; Hoemann, M. Z.; Mullen, K. D.; Davis, H. M. Novel Triazolopyridazines. WO/2009/005675. January 8, 2009.
(38) Kanaya, N.; Ishiyama, T.; Muto, R.; Ochiai, Y.; Watanabe, T.; Shima, N. Amidopyrazole Derivative. EP1698626 (A1). September 06, 2006.
(39) Kim, D. et al. (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-
dihydro[1,2,4]triazolo[4,3-a]pyrazin-
$7(8 \mathrm{H})$-yl]-1-(2,4,5-trifluorophenyl)butan-
2-amine: A Potent, Orally Active
Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. Journal of Medicinal Chemistry 2005, 48, 141-151.
(40) Rasmussen, L.; Demmer, C.; Jørgensen, M.; Kehler, J.; Bunch, L. Synthesis and Selective Functionalization of [1,2,4]Triazolo-[4,3-a]pyrazines. Synlett 2015, 26, 519-524.
(41) Jackson, J. J.; Kobayashi, H.; Steffens, S. D.; Zakarian, A. 10-Step Asymmetric Total Synthesis and Stereochemical Elucidation of ()-Dragmacidin D. Angewandte Chemie International Edition 2015, 54, 9971-9975.

Graphical TOC Entry

[^0]: ${ }^{\text {a }}$ When the conditions employed with alcohols and thiols ($\mathrm{KOH}, 18$-crown-6) were used with amine nucleophiles, the reaction progress was comparatively slow so the base was replaced with silica, which gave better

