Room-Temperature ALD of Metal Oxide Thin Films by Energy-Enhanced ALD

Stephen E. Potts, Harald B. Profijt, Robin Roelofs and Erwin Kessels

222nd ECS Meeting, Honolulu, HI, USA 8th October 2012

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Outline

- Room-temperature ALD (RT-ALD) of metal oxides
 - Precursor vapour pressure
 - Purge times
 - Surface groups
- Conclusions

Why Low Temperature ALD?

Applications requiring temperature-sensitive substrates.

Polymer Substrates

- Flexible electronics
- Encapsulation
 - Solid-state lighting
 - Organic LEDS

Nanopatterning (direct spacer-defined double patterning)

Photoresist Target layer Substrate	\rightarrow						
		(a) Patterned photoresist	(b) Spacer deposition	(c) Anisotropic etch step	(d) Photoresist removal	(e) Anisotropic etch step	(f) Spacer removal

J. Beynet et al., Proc. SPIE, 7520, 75201J (2009).

Use of room-temperature ALD (RT-ALD) to avoid substrate heating?

Applied Physics / S. E. Potts

S. E. Potts *et al.*, *J. Electrochem.Soc.*, **157**, P66 (2010). H. B. Profijt *et al.*, *J. Vac. Sci. Technol. A*, **29**, 050801 (2011). TU/e Technische Universiteit Eindhoven University of Technology

Requirements for RT-ALD

Desirable

- Organometallic precursors with a high vapour pressure (≥ 5 Torr at RT).
- Short purge times.

Essential

• Reactivity with surface groups at room temperature.

Energy-enhanced ALD plays a significant role in obtaining viable RT-ALD processes

- Application of energy to a gas to form a reactive species
- Plasma-enhanced ALD
- Ozone-based ALD

3

Room-Temperature ALD in the Literature

Material	Precursor	Co-Reactant	Reference		
	AI(CH ₃) ₃	H ₂ O	Groner, Nam		
	AI(CH ₃) ₃	O ₃	Kim, this work		
AI_2O_3	AI(CH ₃) ₃	O ₂ plasma	Kessels, Niskanen, Tang, this work		
	[AI(CH ₃) ₂ (O [/] Pr)] ₂	O ₂ plasma	Potts		
B ₂ O ₃	BBr ₃	H ₂ O	Putkonen		
	Si(OEt) ₄	$H_2O + NH_3$ cat.	Ferguson		
SiO ₂	Si(NCO) ₄	H ₂ O	Gasser		
	SiH ₂ (NEt ₂) ₂	O ₂ plasma	This work		
	Ti(O [/] Pr) ₄	O ₂ plasma	Potts, this work		
TiO ₂	Ti(NMe ₂) ₄	H ₂ O	Nam		
	Ti(NMe ₂) ₄	O ₂ plasma	Nam		
Ta ₂ O ₅	Ta(NMe ₂) ₅	O ₂ plasma	Potts		
7:0	Zn(CH ₂ CH ₃) ₂	H ₂ O	Nam, Ku, Chang		
2110	$Zn(CH_2CH_3)_2$	H_2O_2	King		
ZrO ₂	Zr(O ^t Bu) ₄	H ₂ O + UV light	Lee		

Me = methyl, Et = ethyl, ^{*i*}Pr = isopropyl, ^{*t*}Bu = *tert*-butyl

For full reference list, see S. E. Potts *et al.*, ECS Trans., **50**, xx (2012).

O₂ plasma and ozone

Property	TMA Al ₂ O ₃	SAM.24 (BDEAS) SiO ₂	TTIP TiO ₂	
Structural Formula	H ₃ C Alww ^{CH} ₃ CH ₃		O ⁱ Pr ⁱ PrO ⁱ Pr ⁱ PrO ⁱ Pr ⁱ PrO ⁱ Pr	
Melting Point	15 °C	<-10 °C	14 °C	
Boiling Point	125 °C	188 °C	232 °C	
Vapour Pressure (25 °C)	~13 Torr	~2 Torr	~0.13 Torr	

- Oxford Instruments FlexAL[™] reactor
- Substrate: Si wafer with native oxide
- Thickness by spectroscopic ellipsometry (SE)

Applied Physics / S. E. Potts

Vapour Pressure Considerations for RT-ALD

- Ideally ≥5 Torr at room temperature.
- Heating to ~50 °C is fine (reactordependent).
- Further heating increases risk of condensation on the substrate.
- Bubbling allows even lower vapour pressure precursors to be used.

TMA: M. Fulem *et. al.*, *J. Cryst. Growth*, **248**, 99 (2003).
SAM.24: Air Liquide, France.
TTIP: K. L. Siefering and G. L. Griffin, *J. Electrochem. Soc.*, **137**, 1206 (1990).

Room-Temperature ALD Growth

- Linear growth at room temperature.
- Suggests neither a significant CVD component nor condensation.

Room-Temperature ALD Saturation

Purge Times

- Quickly pumped from reactor
 - Precursors with high vapour pressures.
 - Gaseous reaction products.
- Water condenses easily, purging an issue. M. D. Groner *et al.*, *Chem. Mater.*, **16**, 639 (2004). T. Nam *et al.*, *J. Korean Phys. Soc.*, **59**, 452 (2011).
- Reactive species from energy-enhanced ALD can be 'turned off'
 - Plasma
 - Ions and electrons disappear almost instantaneously
 - Radicals quickly recombine (surfacedependent)

H. C. M. Knoops et al., J. Electrochem. Soc., 157, G241 (2010).

• Ozone is quickly pumped away.

Surface OH During Plasma-Enhanced ALD

Surface Groups during RT-ALD After the Co-Reactant Pulse

(a) Carbonaceous Species

- More transient in O_2 plasma.
- Reactive with low-bondenergy ligands
 - e.g. Al–CH₃.
- No or negligible reactivity with higher-bond-energy ligands
 - e.g. Si–NEt₂, Si–H, Ti–OR.

(b) Hydroxyls

 High reactivity towards all incoming precursor ligands.

D. M. Goldstein et al., J. Phys. Chem. C, 112, 19530 (2008).

Surface Groups during RT-ALD After the Metal Precursor Pulse

TMA, $AI(CH_3)_3$

- Highly reactive AI–C bonds.
- Easily removed by O_2 plasma and ozone.

Н Н

SAM.24, $SiH_2(NEt_2)_2$

- s-H predominates.
- Easily removed by O_2 plasma.
- No or negligible reactivity with ozone.

TTIP, Ti(OⁱPr)₄

- Ti–O bond already relatively strong.
- Easily removed by O_2 plasma.
- No or negligible reactivity with ozone.

Surface Groups during RT-ALD TTIP + Ozone

TTIP with Ozone

- ALD process has a thermal activation component.
- Increase in temperature
 → increase in growth.
- TTIP surface groups/ozone simply unreactive at RT.

O₂ plasma: S. E. Potts *et al.*, *J. Electrochem.Soc.*, 157, P66 (2010).
O₃: P. Willaims *et al.* at ALD Conference 2008, Bruges. This work (RT).

Applied Physics / S. E. Potts

SAM.24 + Ozone

Two Explanations:

1. Thermal activation

 Low reactivity of Si–NEt₂ and Si–H with carbonaceous species at RT.

2. Low reactivity of Si–H at room temperature

- Reactivity with surface OH: Si–NR₂ >> Si–H.
 B. B. Burton *et al.*, *J. Phys. Chem. C*, **113**, 8249 (2009).
 G. Dingemans *et al.*, *J. Electrochem. Soc.*, **159**, H277 (2012).
- High (initial) surface [OH] → bifunctional binding.
 S. Haukka *et al.*, *Appl. Surf. Sci.*, 82/83, 548 (1994).
 S. Haukka *et al.*, *Interface Sci.*, 5, 119 (1997).
- Si–H remains, but is unreactive with ozone.
- Surface NEt₂ reacts and is present at higher temperatures.

Requirements for RT-ALD

- Desirable: high vapour-pressure precursors (≥ 5 Torr at RT).
- Desirable: short purge times.
- Essential: reactivity with surface groups at room temperature.

15

RT-ALD Film Compositions (RBS/ERD)

Material	Co- reactant	T _{dep}	[O]/[M] ratio	[C] (at.%)	[H] (at.%)	Mass density (g cm ⁻³)	M deposited (at. nm ⁻² cycle ⁻¹)
Al ₂ O ₃	O ₂ plasma	RT	2.0	2.8	15.2	2.7	4.2
		200 °C	1.5	< 1	2.5	3.1	3.4
	Ozone	RT	2.1	9.0	20.8	2.4	1.9
		200 °C	1.7	< 2	8.1	3.0	2.2
SiO ₂	02	RT	2.0	< 5	7.8	1.9	2.8
	plasma	200 °C	2.1	< 5	7.1	2.0	2.3
TiO ₂	O ₂ plasma	RT	2.2	4.2	16.9	2.7	0.9
		200 °C	2.0	< 1	< 5	3.7	1.2

SiO₂ process: N was below 5% detection limit.

- Al₂O₃ and TiO₂: RT films have lower density and higher O, C, H content than 300 °C films.
- SiO₂: RT and 200 °C (and 300 °C) films are remarkably comparable!

Plasma-Enhanced RT-ALD of Al₂O₃ Variation of Film Composition with Plasma Time

- Saturation of growth per cycle does not correspond to saturation of film quality.
- A longer O₂ plasma leads to
 - An increase in AI atoms deposited.
 - A reduction of C, H and excess O.
 - An increase in film density.

RT-ALD films with 10 s plasma

 equivalent to films grown at 100 °C using standard process (2 s plasma).

