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Abstract
Motivation: Identification of functional sites in proteins is essential for functional characterization, variant interpretation 
and drug design. Several methods are available for predicting either a generic functional site, or specific types of 
functional site. Here, we present FunSite, a machine learning predictor that identifies catalytic, ligand-binding and 
protein-protein interaction functional sites using features derived from protein sequence and structure, and evolutionary 
data from CATH functional families (FunFams).
Results: FunSite’s prediction performance was rigorously benchmarked using cross-validation and a holdout dataset. 
FunSite outperformed other publicly-available functional site prediction methods. We show that conserved residues in 
FunFams are enriched in functional sites. We found FunSite’s performance depends greatly on the quality of functional 
site annotations and the information content of FunFams in the training data. Finally, we analyse which structural and 
evolutionary features are most predictive for functional sites.
Availability: https://github.com/UCL/cath-funsite-predictor. 
Contact: c.orengo@ucl.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Protein functional sites are amino acid residues, or groups of residues, 
that perform functional roles in proteins. Examples of functional sites 
include catalytic sites in enzymes, ligand-binding sites for small 
molecules, metal ions, nucleic acids and other proteins, and protein-
protein interaction sites. Characterization of functional sites is crucial for 
understanding the molecular basis of life, interpreting the impact of 
mutations, guiding targeted experiments, protein-engineering and drug 
design. Computational approaches to functional site prediction is 
essential since < 1% of all known proteins have any experimentally-
characterised or curator-assigned functional site information 
(UniProtKB, Jan 2019).

A number of different computational strategies have been used to 
predict generic functional sites (Ashkenazy et al., 2016; Wilkins, Erdin, 
Lua, & Lichtarge, 2012) and specific types of functional sites, such as 
catalytic sites (Choudhary, Kumar, Bachhawat, & Pandit, 2017; Wallace, 
Borkakoti, & Thornton, 1997), ligand-binding sites (Capra, 
Laskowski, Thornton, Singh, & Funkhouser, 2009; Skolnick & 

Brylinski, 2009; Wass, Kelley, & Sternberg, 2010) and protein-
protein interaction sites (Aumentado-Armstrong, Istrate, & 
Murgita, 2015; Xue, Dobbs, Bonvin, & Honavar, 2015). Most recent 
prediction methods use machine learning to predict a specific type of 
functional site and use features derived from protein sequence and 
structure (Brylinski & Feinstein, 2013; H. Chen & Zhou, 2005; Zhang et 
al., 2008). There are considerable differences in the properties of 
different types of functional sites which provide a basis for these 
prediction methods. For example, catalytic sites generally have limited 
exposure to solvent while ligand-binding and protein-binding sites have 
comparatively higher solvent accessibility. Both catalytic sites and 
ligand-binding sites are generally well conserved and found in, or near, 
pockets in the protein structure (Bartlett, Porter, Borkakoti, & Thornton, 
2002; Capra et al., 2009). On the other hand, protein interfaces are 
relatively flat and difficult to predict from sequence conservation alone 
(Caffrey, Somaroo, Hughes, Mintseris, & Huang, 2004; S. Jones & 
Thornton, 1997), however, the location of interfaces are conserved (Xue 
et al., 2015).

The key challenge for predicting functional sites using machine 
learning is to identify general properties of sites that distinguish one type 
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of site from the others. The features most frequently used by machine 
learning predictors include sequence conservation information, physico-
chemical properties of amino acids, solvent accessibility, secondary 
structure, pocket information and crystallographic B-factors 
(Aumentado-Armstrong et al., 2015; Brylinski & Feinstein, 2013; 
Sankararaman, Sha, Kirsch, Jordan, & Sjölander, 2010; Sun, Wang, 
Xiong, Hu, & Liu, 2016; Xue et al., 2015). Sequence conservation 
information is captured using scores derived from multiple-sequence 
alignments (MSAs) of homologous proteins––based on the assumption 
that homologous proteins are likely to share functions and, therefore, 
have similar functional sites. However, this is a non-trivial task, as 
homologous proteins with similar functions can have diverse functional 
sites (Brown & Babbitt, 2014; Dessailly, Dawson, Mizuguchi, & 
Orengo, 2013; Furnham, Dawson, Rahman, Thornton, & Orengo, 2016; 
Taylor Ringia et al., 2004).

Most functional site predictors use PSI-BLAST (Altschul et al., 1997), 
which can detect distant homologs, to obtain sequence conservation 
information. Sequence conservation features can be calculated by an 
entropy analysis on the resulting position-specific scoring matrix 
(PSSM), which may include knowledge of positions that are conserved 
in distantly related proteins. Whilst sequence conservation features 
calculated this way have been found to predict catalytic and ligand-
binding residues well (Bartlett, Porter, Borkakoti, & Thornton, 2002; 
Capra et al., 2009, Tan et al, 2013), they are not predictive of protein-
protein interfaces (Aumentado-Armstrong et al., 2015).

One way to overcome this is to calculate conservation and other 
features from protein families where the family grouping brings together 
sequences that are likely to have similar functional sites. A large number 
of computational methods utilize protein family information to predict 
functions or functional sites (Ashkenazy, Erez, Martz, Pupko, & Ben-
Tal, 2010; Capra et al., 2009; del Sol Mesa, Pazos, & Valencia, 2003; 
Innis, Anand, & Sowdhamini, 2004; P. Jones et al., 2014; Lichtarge, 
Bourne, & Cohen, 1996). However, the quality of protein families 
greatly affects the performance of prediction, therefore using 
functionally coherent protein families is crucial.

Functional families (or FunFams) are subfamilies of evolutionary 
superfamilies in CATH (Sillitoe et al., 2019) which have been generated 
by a functional classification protocol that is based on recognizing 
sequence patterns that are conserved in the FunFam but differ between 
FunFams and, in particular, sequence patterns that reflect specificity 
determining positions (Das et al., 2016). FunFam relatives have been 
found to be more functionally similar than other domain-based resources 
(see Supplementary Section S1; (Das et al., 2016). Function prediction 
pipelines based on FunFams have been consistently ranked among the 
best function prediction methods by the international CAFA competition 
(Jiang et al., 2016; Radivojac et al., 2013) and more recently have been 
amongst the top 5 best performing methods (CAFA3; (Zhou et al., 
2019)).

Patterns of conserved residues in FunFam alignments can be used to 
identify functionally important residues. In fact, conserved residues in 
FunFam alignments have been found to be highly enriched in known 
functional sites, including catalytic, ligand-binding, protein interfaces, 
nucleic acid-binding sites and allosteric sites (see Supplementary 
Section S1; (Das et al., 2016)). However, conserved residues may also 
include residues important for the folding and packing of the protein. 
These tend to be conserved across the whole superfamily whereas 
functional determinants (also known as specificity-determining 
positions) tend to be  differentially conserved  in structurally equivalent 
positions between FunFams, thereby providing insights into the 
molecular mechanisms of functionally distinct residues in the 

superfamily (Das et al., 2016; Lee et al., 2016). Therefore, in principle, 
the finer classification of functional relatives in FunFams, compared to 
more generic PSI-BLAST approaches, could aid in detecting specific 
conservation features. These features, combined with other sequence and 
structure-based features, could be used in an integrated pipeline to 
predict different types of protein functional sites.

Despite the progress and availability of a wide range of functional site 
prediction methods, to our knowledge, none of the existing studies have 
systematically compared the characteristics of the different types of 
functional sites or attempted to predict multiple functional sites for a 
given query protein. Moreover, a large number of the prediction methods 
are not easily accessible or easy to interpret.

In this article, we present a new method (FunSite predictor) for 
predicting functional sites by using information from a protein functional 
family classification to predict three types of functional sites: catalytic, 
ligand-binding and protein-protein interaction sites. This method makes 
use of features derived from protein sequence, structure and CATH 
FunFams. Whilst we used the same set of features and machine learning 
model to train predictors for the three types of functional sites, we used 
different training sets for each type of site. We assessed the performance 
of FunSite by comparing against all publicly available functional site 
prediction methods that could be assessed using our comprehensive 
benchmark. FunSite predictors outperform all the other methods against 
which they were tested. Our combined approach allows the detection of 
sites which may have multiple functional roles. The performance of the 
predictors is highly dependent on the quality of the functional site data 
used for training.

2 Methods

2.1 Datasets
Three types of functional sites were considered: catalytic sites (CS), 

ligand-binding sites (LIG) and protein-protein interaction (PPI) sites. 

2.1.1 Dataset generation

The general criteria used to generate all the datasets are described in 
Supplementary Methods (Section S2).

2.1.2.1 Catalytic Site (CS) domain datasets

A dataset of 667 domains was generated for catalytic sites from 
Mechanism and Catalytic Site Atlas  (M-CSA; (Ribeiro et al., 2017). 
Only ‘literature’ type entries were used. 102 of the domains could be 
mapped to two datasets - the EF_Family dataset (Youn, Peters, 
Radivojac, & Mooney, 2007) and T124  dataset  (Zhang et al., 2008)– 
previously used to test other predictors (Sun et al., 2016; Zhang et al., 
2008). These 102 domains were used to construct a holdout dataset for 
benchmarking. The remaining 565 domains were used as the training set.

2.1.2.2 Ligand-Binding (LIG) domain datasets

A dataset of 2826 domains was generated for ligand-binding sites for 
small-molecules (including metals) from BioLip (Yang, Roy, & Zhang, 
2013). Although BioLip excludes artefacts resulting from the 
crystallization buffer, it does not distinguish between cognate and non-
cognate ligands (Kobren & Singh, 2019; Das & Orengo,2018).  Ligand-
binding site predictions generated by ConCavity (Capra et al., 2009) 
were available for 800 domains in this dataset. These 800 domains were 
used to construct a holdout dataset for benchmarking against ConCavity 
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(Capra et al., 2009) and the remaining 2026 domains were used for 
training.

Subsets of the LIG training and holdout datasets, comprising 675 and 
240 domains respectively, gave training and benchmark datasets that 
only contained metal-binding sites.

2.1.2.3 Protein-Protein Interface (PPI) domain datasets

A dataset of 2247 domains was generated for interchain PPI sites from 
Inferred Biomolecular Interactions Server (IBIS) (Shoemaker et al., 
2012). Only annotations present in experimentally-determined structures 
were extracted from IBIS. No inferred annotations were used. PPI site 
predictions were extracted from the meta-PPISP (Qin & Zhou, 2007) 
server, a meta-predictor of multiple methods, for 600 randomly selected 
domains in our constructed dataset, of which 599 domains returned 
results. These 599 domains were used as the holdout dataset for 
benchmarking against meta-PPISP.

2.1.2.4 Combined dataset of CS, LIG and PPI domains

A dataset of 175 enzyme domains was generated from the CS, LIG 
and PPI datasets that have at least one annotation in each domain, for all 
the three types of sites.

More information about the datasets is provided in Supplementary 
Table S1. As the number of functional site residues in a protein domain 
is generally much lower than the number of non-site residues, the 
datasets have large class imbalance discussed further below together 
with strategies for addressing this. (Supplementary Figure S1). 

2.2 FunSite predictors

2.2.1 Implementation and Training

To build the FunSite predictors we used gradient boosted decision 
trees  (Friedman, 2001), applying the XGBoost (eXtreme Gradient 
Boosting) implementation (T. Chen & Guestrin, 2016). Gradient boosted 
trees are ensembles of weakly learning decision trees. During training, 
the XGBoost algorithm generates an ordered ensemble of decision trees 
in serial that are each fit to the residual error generated by all preceding 
trees in the ensemble. As such, gradient boosted trees are able to achieve 
high performance using only weakly learning decision trees.

The scikit-learn (Pedregosa et al., 2011) library in Python 
(www.python.org) was used to train and evaluate predictors using 
XGBoost’s scikit-learn API. The number of decision trees in the 
ensemble was set to 1000. XGBoost hyperparameters were optimised 
using grid search with 5-fold cross validation (GridSearchCV function in 
scikit-learn). The hyperparameters and hyperparameter ranges used for 
the different FunSite predictors are listed in Supplementary Table S2. 
To ensure the prediction error was not underestimated, the GroupKfold 

function in scikit-learn was used to select non-overlapping fold groups 
during cross-validation, such that residues from the same domain do not 
appear in the sets used for training and testing. 

The ratio of site residues (positive samples) to non-site residues 
(negative samples) was very low for CS (1:63) and LIG (1:23) datasets 
(see Supplementary Table S1, Supplementary Figure S2). In order to 
reduce the class imbalance during training, the site to non-site ratio for 
the CS and LIG predictors was set to 1:6 by randomly selecting non-site 
residues. This is similar to class distributions used in previous studies 
(Sun et al., 2016). No changes were made to the non-site set for PPI as 
the ratio of site to non-site residues in the PPI training set was 1:4.

2.2.2 Feature generation

For each residue, FunSite generates features based on sequence, 
structure and FunFams. The sequence- and structure-based features 
generated are listed in Supplementary Methods (Section S2). The 
novel FunFam-based protein family features are described below:

2.2.2.1 Protein family features

To generate protein family features, each query protein sequence was 
scanned against the library of CATH FunFam HMM models using 
HMMER3 (Eddy, 2010). The protocol cath-resolve-hits (Lewis, Sillitoe, 
& Lees, 2018) was used to determine the optimal assignment of the 
sequence into domain regions based on the HMM matches. Regions of 
the query sequence were assigned to a FunFam if the HMM match E-
value was smaller than the model inclusion threshold, defined as the 
maximum E-value obtained by scanning each sequence within a 
particular FunFam against its HMM. The query sequence was then 
aligned with the sequences in the FunFam alignment using the mafft-add 
option in MAFFT (Katoh & Standley, 2013). Following alignment of 
domain sequences to CATH FunFams the following features were 
calculated:

i. Evolutionary conservation scores: The evolutionary 
conservation score for each residue was calculated from the 
FunFam multiple sequence alignment using Scorecons 
(Valdar, 2002). This is only possible for FunFams with 
sufficient information content in their alignment (see 
Supplementary Section S1). Scorecons scores range from 0 
to 1 and residues having scores ≥ 0.7 are considered to be 
highly conserved (Das et al., 2016).

ii. PSSM and weighted observed percentages (WOP) features: 
PSSM and weighted observed percentages (WOP) were 
calculated for the FunFam alignment using PSI-BLAST. 20-
dimensional PSSM and 20-dimensional WOP vectors are 
obtained for each residue.

Figure 1. FunSite prediction protocol.  Involving three independent predictors for :- catalytic sites (CS), ligand binding sites (LIG) and protein interface sites 
(PPI) respectively.
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iii. Conservation scores and predicted functional determinant 
(FD) scores from Structural Clusters of FunFams: For each 
CATH superfamily, FunFam alignments with at least one 
domain structure, were merged to form Structural Clusters 
(SC5), such that structural relatives from the merged 
FunFams can be superimposed within a 5Å RMSD threshold. 
The Structural Cluster (SC5) MSAs were generated by 
merging FunFam MSAs guided by the structural alignment of 
domain structures from each constituent FunFam. 
Conservation scores for SC5 alignments were calculated by 
Scorecons. Functional determinant (FD) scores were 
predicted using GroupSim (Capra & Singh, 2008). GroupSim 
scores range from 0 to 1 where a higher score indicates higher 
probability for a column in an alignment to be a FD (i.e. to be 
associated with different conservation characteristics between 
FunFams within the structural cluster).

2.2.3 FunSite prediction protocol
The FunSite prediction protocol is shown in Figure 1. For each query 
protein, the residue feature vector (see Section 2.2.2) used by the 
FunSite predictors was generated for all residues. The three FunSite 
predictors (FunSite-CS, FunSite-LIG and FunSite-PPI) were run 
separately on the residue vectors of each query protein to generate 
separate prediction scores for each residue to be a catalytic, ligand-
binding or protein-protein interaction site residue. The three predictors 
were run separately, instead of combining them into a single model, 
because the functional plasticity of residues (Dessailly et al., 2013) 
means that, depending on its context, a residue can perform multiple 
functions. For example, some proteins often use the same or overlapping 
set of surface residues to bind small molecules and other proteins (Davis 
& Sali, 2010; Mohamed, Degac, & Helms, 2015). Moreover, an 
increasing number of proteins have been found to perform multiple 
molecular functions using different, overlapping or sometimes the same 
set of residues (Das, Khan, Kihara, & Orengo, 2017). Therefore, the aim 
is to predict probabilities for all three types of site. Furthermore, to 
remove false positives, residues that are positively predicted to be a 
particular functional type are filtered out if there are no other positively 
predicted site residues of the same type in their structural neighborhood 
(5Å). This is based on the assumption that functional sites generally 
comprise two or more residues. This filtering step is applied only when 
making combined predictions (i.e. all types of functional sites) but not 
for the individual predictors. This was done so as not to inflate the 
prediction of the individual predictors for comparison to other predictors 
which did not apply these filters. 

2.3 Comparison with other predictors
Performance of the FunSite predictors was benchmarked against the 

following functional site prediction methods:

2.3.1 Publicly available predictors

The following prediction methods were used, available at the time of 
writing.

Catalytic site predictors: CSmetaPred was used for benchmarking the 
predicted CS sites by FunSite-CS predictor. This is a consensus meta-
predictor that also provides predictions for its three component 
predictors– CRpred (Zhang et al., 2008), DISCERN (Sankararaman et 
al., 2010) and EXIA2 (Lu, Yu, Chien, & Huang, 2014), all of which 
exploit machine learning. 

Ligand-binding site predictor: ConCavity (Capra et al., 2009) was 
used for benchmarking the predicted LIG sites by FunSite-LIG as its 
predictions were easily available.

Protein-protein interaction site predictors: The meta-predictor meta-
PPISP (Qin & Zhou, 2007) was used as this does not require partner-
specific information for generating predictions.  meta-PPISP also 
provides the predictions for three component independent machine 
learning predictors––PINUP (Liang, Zhang, Liu, & Zhou, 2006), 
Promate (Neuvirth, Raz, & Schreiber, 2004) and cons-PPISP (Chen and 
Zhou 2005).

2.3.2 Generic predictors

Generic predictors were also constructed for benchmarking the 
performance of the FunSite predictors. This was done by using the same 
training and test datasets, model implementation and parameters for 
model training. However, the generic predictors did not include any 
FunFam-based features. Instead, they include similar conservation-based 
features derived from PSSMs generated by PSI-BLAST. These features 
were combined with the other sequence- and structure-based features 
used by FunSite and which are frequently used by other functional site 
predictors, such as amino acid properties, pocket predictions, solvent 
accessibility, secondary structure information and B-factor. The full list 
of features used for training the generic predictors is provided in 
Supplementary Table S3.

The generic predictors provide an unbiased benchmark that is not 
affected by the size of the training dataset, the sampling strategy used, 
the machine learning model, or their different implementations. As a 
result, any improvement of performance shown by a FunSite predictor 
over its generic equivalent can be assumed to be largely due to the power 
of the FunFam-based features.

The evaluation methods used to compare performance with other 
predictors are described in Supplementary Methods (Section S2).

3 Results and Discussion

3.1 Analysis of conservation properties for different 
functional site types 

Figure 2. Density plots showing the distribution of sequence conservation 
scores for catalytic site (CS), ligand-binding site (LIG) and protein-protein 
interaction site (PPI) residues in CATH FunFams compared to non-site 
residues that are buried (buried_NS) and those that are on the surface 
(surface_NS). The sequence conservation scores were generated by 
Scorecons (ranging from 0-1) and the residues with scores ≥ 0.7 are 
considered to be conserved (shaded gray in the figure).
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Residue conservation analysis of CATH FunFam alignments with 
high information content showed that experimentally characterised 
catalytic and ligand-binding site residues are generally highly conserved, 
i.e. they have Scorecons conservation scores ≥ 0.7. Figure 2 shows a 
comparison of the distribution of conservation scores for different types 
of known functional site residues identified in CATH FunFams and non-
site residues that are either buried or present on the protein surface. The 
majority of known catalytic site residues correspond to highly conserved 
residues in CATH FunFams. In a few cases, catalytic residues have low 
conservation scores due to the presence of mutated residues in those sites 
in some of the domains. A large proportion of the known ligand-binding 
sites were also found to be highly conserved in CATH FunFams. 
Comparatively, only a small number of known protein-protein 
interaction sites were found to be conserved in CATH FunFams. This is 
consistent with the findings of previous studies suggesting that few 
residues are conserved in protein interfaces (Caffrey et al., 2004; David 
& Sternberg, 2015; Humphris & Kortemme, 2007). The conservation 
(calculated using scorecons) for the protein-protein interaction (PPI) site 
residues and non-site surface residues (surface_NS) however differed 
significantly with a p-value of 2.2e-16 as calculated using Mann-Whitney 
U-test.

Buried non-site residues were also observed to be under evolutionary 
constraints because of their role in maintaining protein folding and 
stability. Non-site residues present on the surface were found to be the 
least conserved, although it is important to note that some of these may 
include sites that have not yet been annotated and other types of 
functional sites not considered in this analysis, such as allosteric and 
phosphorylation sites.

3.2 Selection of discriminating FunSite features for sites
Knowledge of the general characteristics of functional site residues 

was used to select a feature set for training the predictors to distinguish 
functional site residues from non-functional site residues. Some of these 
features included traditional characteristics such as sequence 
conservation scores (see Supplementary Figure S2a), solvent 
accessibility values and predicted pocket residues that are known to 
capture discriminating characteristics of CS, LIG and PPI residues. 
Additionally, a large number of other features were included in the 
FunSite predictors that were derived from combining sequence 
conservation information with other structural characteristics. For 
example, the number of residues surrounding conserved pocket residues 
(i.e. at a distance < 5Å) was found to be significantly different between 
site and non-site residues for CS and LIG (see Supplementary Figure 
S2b) and the average number of surface residues within a 5Å radius (see 
Supplementary Figure S2c) was found to differentiate PPI residues 
from other residues. 

3.3 Performance evaluation of FunSite predictors
The performance of the FunSite predictors for CS, LIG and PPI sites 

was evaluated and compared to generic predictors and other publicly 
available functional site predictors. The Precision-Recall (PR) curve was 
obtained by varying the positive classification threshold between 0 and 
1. 

3.3.1 FunSite-CS

The precision-recall (PR) curves in Figure 3a show the performance 
of FunSite-CS in predicting catalytic sites, compared to the generic 

predictor. Both FunSite and generic predictors were generated from 5-
fold cross-validation of the CS training dataset. FunSite-CS performs 
better with respect to both precision and recall and gives a higher area 
under the PR curve (PR AUC). Other evaluation metrics calculated on 
the CS training set are shown in Supplementary Table S4.

Figure 3b shows the performance of FunSite-CS compared to other 
predictors on the CS holdout set of 106 domains. The FunSite-CS 
predictor performs competitively with the meta-predictor CSmetapred 
and performs better than the generic CS predictor and the individual 
catalytic site predictors (CRpred, EXIA2 and DISCERN). The 
distribution of prediction probabilities by FunSite-CS predictor on the 
holdout set is shown in Supplementary Figure S3a. It is important to 
note that the generic predictor also outperforms the publicly available 
predictors. This is most likely due to the use of a larger training set for 
the generic predictor and increase in the quality of catalytic site 
annotations (Ribeiro et al. 2017).

 3.3.2 FunSite-LIG

Figure 3. Precision-recall curves showing the performance of the FunSite 
predictors for catalytic (CS), ligand-binding (LIG) and protein-protein 
interaction (PPI) sites. Figures (a), (c) and (e) show the 5-fold cross 
validation results on the training datasets for the FunSite-CS, FunSite-LIG 
and FunSite-PPI predictors respectively compared to the generic predictors. 
Figures (b), (d) and (f) show the performance of the FunSite-CS, FunSite-
LIG and FunSite-PPI predictor on the hold-out test sets compared to other 
predictors.

                                     (e)                                                                                                               (f)   
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Figure 3c shows the performance of the FunSite-LIG predictor from 
5-fold cross-validation of the LIG training set compared to the generic 
LIG predictor. Neither predictor perform well, as shown by the shape 
and area under the precision-recall curves (AUC of 0.563 for FunSite-
LIG predictor and 0.497 for FunSite-LIG predictor on the hold out test 
set). However, when the LIGmetal dataset  (a subset of the LIG dataset that 
only contains metal-binding sites) was used in a similar manner, to 
predict metal-binding sites, a large improvement was observed on the 
performance of both the FunSite-LIGmetal and generic LIGmetal predictors 
(Supplementary Figure S4). Other evaluation metrics calculated on the 
LIG test dataset are shown in Supplementary table S4. 

The comparatively lower performance of the predictors for the LIG 
set is probably due to variations in the characteristics of the ligand 
binding set. For example, this could include (i) differences in the types 
of ligands represented in the dataset (e.g. cognate and non-cognate) 
(Kobren & Singh, 2019; Das & Orengo,2018) and (ii) differences in the 
characteristics of ligand binding between enzymes and non-enzymatic 
proteins. For example, it is known that non-cognate ligands can bind to 
different regions in a protein to those bound by the cognate ligands, 
reflecting different binding characteristics (Tyzack, Fernando, Ribeiro, 
Borkakoti, & Thornton, 2018).

Figure 3d shows the performance of the LIG predictors on the LIG 
hold-out test set compared to the ConCavity ligand-binding site 
prediction method. The FunSite-LIG predictor shows the highest PR 
AUC, followed by the generic LIG predictor and then ConCavity. The 
FunSite-LIGmetal predictor also performs better than the generic predictor 
on the LIGmetal test set (Supplementary Figure S4).

3.3.3 FunSite-PPI

Figure 3e shows the performance of the FunSite-PPI and generic-PPI 
predictors derived from 5-fold cross-validation of the PPI training 
dataset. FunSite-PPI outperforms the generic predictor to a greater extent 
than both FunSite-CS and FunSite-LIG. This shows that the FunFam 
based conservation-based features and other structural and sequence 
features of the FunSite-PPI predictor make a more powerful contribution 
towards distinguishing between protein interfaces and other residues, 
than the PSI-BLAST PSSM conservation feature and structure features 

captured by the generic predictor (an improvement in AUC of 0.112 for 
FunSite-PPI compared to generic-PPI, while FunSite-CS and FunSite-
LIG had only an improvement of 0.033 and 0.084 respectively on hold 
out test sets).

On the PPI holdout set, the FunSite predictor also outperformed the 
generic predictor and the meta-predictor meta-PPISP along with the 
individual PPI predictors (cons-PPISP, PINUP and PROMATE) (Figure 
3f). Other evaluation metrics calculated on the PPI test dataset are shown 
in Supplementary table S4.

3.4 Prediction using only FunFam and PSI-BLAST based 
features

    FunFam derived features were both sequence and structure based 
while PSI-BLAST derived features were only sequence based (Section 
2.2.2.1 and Table S3). We built 2 types of predictors using the FunFam 
features (one using only sequence information, another containing both 
FunFam derived sequence and structure information). We also built a 
predictor using only sequence derived PSI-BLAST features. The results 
showed that the predictors built using FunFam sequence features had 
similar performance compared to the predictor built using PSI-BLAST 
features (Figure S8). However, when we included the additional 
structure information from FunFams, the predictor outperformed the 
PSI-BLAST predictor (Figure S9). However, the performance was 
lower than the FunSite and generic predictors, suggesting that the 
additional features employed in those predictors are important i.e. the 
addition of other non-FunFam based sequence and structure-based 
features helped to improve performance.

3.5 Most influential features for FunSite predictions
The most important features for the FunSite predictions were analysed 

using Tree SHAP (Lundberg & Lee, 2017). SHAP combines a number of 
approaches to identify the influence of individual features on the 
prediction performance of tree ensemble methods. Feature influences are 
reported as SHAP values which are more consistent than classic feature 
importance metrics (Lundberg, Erion, & Lee, 2018). Higher SHAP 

Figure 4.  Tree SHAP summary plots showing the importance of top 25 features in (a) FunSite-CS, (b) FunSite-LIG and (c) FunSite-PPI predictors. The features in 
the red box indicate FunFam based features. Details of the features in the plot have been tabulated in Table S5.
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values for features correspond to higher log-odds ratios that a residue is a 
functional site. Figure 4 shows the top 25 features for the FunSite-CS, -
LIG and -PPI predictors ranked by SHAP values (see Supplementary 
Figure S5 for FunSite- LIGmetal). The top features are conservation 
scores, hydration potential, pocket information for CS sites; conservation 
scores, pocket information, solvent accessibility for LIG sites; and 
solvent accessibility, residue curvature for PPI sites.

3.6 FunSite predictions for the combined dataset
The full FunSite prediction protocol (Figure 1) was run on the 

combined dataset of 175 enzyme domains that have CSA, LIG and PPI 
functional site annotations. Prediction scores for each FunSite predictor 
were generated for all residues. To do this the three separate FunSite 
predictors were independently trained on the CS, LIG and PPI training 
datasets, respectively, from which the 175 query domains had been 
removed. As in the previous tests, positively predicted residues that had 
no other surrounding predicted residue of the same type were filtered 
out.

For each domain in the dataset, residues were assigned three ranks, 
based on the prediction scores from each of the three FunSite predictors. 
Only positively predicted residues, with predicted probability ≥ 0.5, for 
each site were ranked. The top ranked residues, up to a maximum of 20 
residues, for each type of functional site were generated as FunSite 
predictions. As examples, Figure 5, Figure S10 and Figure S11 shows 
the FunSite predictions obtained for the12asA00, 4mdhA02 and 1itqA00 
domains respectively. 

FunSite-CS FunSite-LIG FunSite-PPI

FunSite vs FunSite_no-filter 5.6e-05 1.4e-09 7.7e-175

FunSite vs conserved site 6e-181 0 0

The final FunSite predictions (i.e. top 20 predicted residues for each 
predictor) were found to be significantly more enriched (Table 1, 
Supplementary Figure S6) in known functional sites compared to 
FunSite predictions which hadn’t been filtered by removing likely false 
positives. They were also enriched compared with sets obtained by 
simply predicting that the conserved sites in FunFams are functional 
sites. The filtering step was most valuable for removing false positives in 
the prediction of PPI sites (Table 1).

Supplementary Figure S7 shows the pairwise plot of the prediction 
scores for the three different types of predicted sites in the 175 domains 

of the combined dataset. It can be seen that the prediction scores for CS 
sites are highly correlated with LIG sites. PPI sites do not show any 
positive correlation with either CS or LIG sites, although some sites have 
a high PPI score and either a high CS or high LIG score. This will occur 
in proteins that have an active site located between two or more domains 
(Ali, 2005; Der, 2012). There are also cases where LIG sites overlap 
with PPI sites (Mohamed, Degac, & Helms, 2015).

Conclusions 
We have developed predictors for three types of functional site 

residues in proteins: catalytic, ligand-binding and protein interface 
residues. Our prediction methods exploit gradient boosted decision trees 
and a range of features based on sequence, structure and protein families. 
Features include conservation scores for residues, measured using 
entropy-based analysis of the multiple sequence alignment (MSA) of the 
functional family to which the protein domain has been assigned. 
Conservation analysis of residues known to be functional sites showed 
that catalytic sites were associated with high conservation scores. Ligand 
binding sites also exhibit high conservation scores, although not as high 
as catalytic residues. Protein interface residues, whilst showing some 
degree of conservation, exhibit the lowest level of conservation out of all 
three functional types.

Our method is focused at the domain level since FunFams are 
classified at the domain level and domains often have a particular 
functional role that is independent of the multi-domain context (Bashton 
& Chothia, 2007). In the context of catalytic residues, studies of enzyme 
families have shown that the majority of catalytic residues typically lie in 
one of the domains in a multi-domain protein (Furnham et al., 2016). In 
addition to using conservation features obtained from entropy analysis of 
FunFam MSAs, we also explored a range of other structure- and 
sequence-based features typically used in the prediction of protein 
functional sites. SHAP analysis revealed that conservation scores figured 
highly for catalytic and ligand binding residues, together with pocket 
information, whilst accessibility and curvature were more important than 
conservation for protein interface residues, although conservation was a 
contributing feature. However, we observed that the difference in 
performance between the FunSite predictor and the generic predictor was 
greatest for protein interface residues, suggesting that the FunSite based 
features were better able to distinguish interface/non-interface than those 
used by the generic predictor. The SHAP plots indicate that both 
FunFam and non-FunFam based sequence and structure features are 
important for the prediction of functional sites.

A major challenge in assessing the performance of site predictors is 
the difficulty in obtaining appropriately annotated functional sites. 
Recent studies of ligand-binding data in the PDB revealed that in many 
cases the bound ligands were not cognate (Tyzack et al., 2018). In 
addition, databases can employ different definitions of these sites. This 
will introduce both false positives (i.e. from non-cognate ligand-binding 
residues) and false negatives (i.e. missing cognate ligand-binding 
residues) confounding performance measures. The improvement 
observed in prediction performance for the metal ligand binding 
predictor is quite likely to be partially attributable to the greater accuracy 
of the positive annotations in this case. Higher quality annotations of 
functional sites will improve the reported performance of prediction 
methods, as demonstrated by the performance of our generic predictors.

Despite reasonable performances for CSA and LIG prediction, 
predicting protein interface residues is challenging. This could be aided 

Figure 5.  Example domain (12asA00) (a) Known functional sites (b) 
Predicted functional sites

Table 1. Results from one-sided Fisher’s exact tests comparing the 
precision/enrichment of the prediction of functional sites using FunSite 
predictor with filtering, compared to no filtering, and compared to 
simply using conserved sites as predicted functional sites.
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by including features associated with co-varying residues (De Juan, 
Pazos, & Valencia, 2013) . However, these predictions require 
knowledge of the protein partner and exploiting that information was 
outside the scope of this analysis. Future work will explore the 
enhancements in performance which can be obtained by using this type 
of information.   

The main novelty of our approach lies in the fact that we are able to 
consider the likelihood of residues in a query protein belonging to three 
different types of functional site and we allow for the possibility that a 
residue may have more than one functional role, such as contributing to 
both the binding of a domain or protein partner and to the binding of the 
substrate. We do not recommend any cut off on the confidence measure 
when using our predictor. We suggest that the user consider the top 
ranked predictions even if they are relatively low confidence, but they 
should be guided by their own judgement for predictions with low 
confidence. 

Some methods (Gligorijevic et al., 2020), exploit large scale 
metagenome data to make function prediction. Such approaches rely on 
highly expanded sequence families (e.g. bacterial or universal families). 
Our method does not require large scale metagenomic data and can 
therefore be used for function prediction across a wider range of 
superfamilies. 
   Since our approach has the advantage over other publicly available 
methods of exploiting recent, more comprehensive and possibly more 
accurate data for training the predictors, we also compared our approach 
against a generic predictor which uses the same features as our predictor, 
except for the conserved residue features. These were obtained from 
multiple sequence alignments obtained by PSI-BLAST rather than 
FunFams. This allowed us to assess the benefits of deriving conservation 
data from more functionally pure sets of relatives. We found that our 
FunFam based predictors outperformed the generic predictor for all types 
of functional sites. 

Future work involves extending our pipeline to other types of 
functional sites and applying our predictor to identify putative functional 
sites for all FunFams in CATH superfamilies with high-quality 
conservation data from high information content from sequence diverse 
relatives. 
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