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Abstract
Spatial and visual connectivity are important metrics when developing workplace layouts. Calculating those metrics in
real-time can be difficult, depending on the size of the floor plan being analysed and the resolution of the analyses.
This paper investigates the possibility of considerably speeding up the outcomes of such computationally intensive
simulations by using machine learning to create models capable of identifying the spatial and visual connectivity
potential of a space. To that end we present the entire process of investigating different machine learning models
and a pipeline for training them on such task, from the incorporation of a bespoke spatial and visual connectivity
analysis engine through a distributed computation pipeline, to the process of synthesizing training data and evaluating
the performance of different neural networks.
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Introduction

Motivation

During the past decade the notion of performance driven
design has pushed the industry to develop an array of
tools capable of allowing real-time performance metrics
to be made available to designers as early as in concept
stages. To that end, the response time of analytical tools has
been highlighted as a critical aspect of performance-driven
design1. Simulations analysing how well connected a spatial
configuration is, in terms of traverse-ability, proximity
and visual connectivity, are extremely time-consuming,
especially when analysing large office floor plans.

The authors of this article are members of the Applied
Research and Development group at Foster + Partners -
a global studio for sustainable architecture, urbanism and
design. The offices dedication to performance driven design
has been instrumental to the development of tools which
allow intuitive yet informed decision making early on in the
design process.

To facilitate a quick understanding of spatial and visual
connectivity of spatial configurations (both in 2D and 2.5D),
the authors have developed an array of interactive design
tools (one of them portrayed in Figure 1) aiming to provide
real-time feedback for the above metrics. Albeit successful
to an extent, this has proven quite challenging, particularly
when the size of the floor plans was large and the required
analysis resolution was high. That is because evaluation of
spatial connectivity using Dijkstras algorithm2, as well as
visual connectivity using Visibility Graph Analysis3 linked
to pedestrian movement distribution4 can be particularly
computationally intensive. Connectivity and VGA analysis
could take hours to compute for large scale floor plans.
For that reason, many people have attempted to optimize
the algorithms used to calculate those metrics, by changing

the connectivity’s graph creation method5 or by using up-
to-date algorithms that utilise multi-core architectures of
modern graphics processor devices to do the calculations.6

Additionally, significant pre and post processing is required
in order to incorporate these simulations in interactive
applications. This is in order to visualise arbitrary floor
plans, while ensuring visual accuracy. This has been further
explored by Knig and Varoudis7 where the workflow
was optimized by using interactive visual programming
techniques.

Therefore, the main motivation of this research was to
explore the use of surrogate models as a replacement for
the computationally intensive spatial and visual connectivity
simulations (which are used daily within the design
workflow), when a real-time outcome is required. To do that,
the authors investigated the use of deep neural networks to
reduce computation times and resources required to run those
simulations substantially.

Spatial and visual connectivity
As mentioned previously, during the design process and
especially in the early stages of development, spatial
and visual connectivity can be helpful in evaluating the
performance of a floor plan. The two analyses closely
correlate to “manifestations of spatial perception, such as
way-finding, movement, and space use”.3

Spatial connectivity measures the distance to go form any
point to any other point on a grid. It, therefore, allows for
the analysis of walking distances between points of interest,
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Figure 1. Interactive Physical Modelling environment
incorporating visual and spatial connectivity.

use cases include analysis of escape routes, analysis of
connectivity between different teams within an office plan,
etc.8 9 10 It can also be used to understand how isolated (or
difficult to reach) a specific space is compared to other spaces
within the same floor plan.11 In contrast, visual connectivity
can be used to analyse visual rather than physical distances.
Visual connectivity was shown to have a better correlation
with real-life observations, this was showcased by Mansouri
and Ujang12 while investigating how people are moving
within a space and by Shpuza13 while studying how well
connected teams are within an office. A key concept in the
visual connectivity model is that people perceive a given
space using their field of view as a guide. This means that
during way-finding, people are more likely to navigate within
their visual space and even more so in uninterrupted straight
lines.14

Both the spatial and visual connectivity analyses require
as an input the configuration of the space. This includes
the space’s internal organization elements, such as walls,
partitions and furniture. Particularly, for visual connectivity,
the analysis can be run at knee-level, where furniture and
walls are included, or at eye-level, where only the walls are
included as obstacles.3

In order to run the simulations, the floor plans required
pre-processing to be turned into a graph representation. This
is achieved by overlaying a grid on the floor plan and using
that as the basis of the graph, where each grid cell represents
a graph node. For this study, the grid used consisted of
square cells, each cell sized at 0.3 meters. It is important
to note that in the case of spatial connectivity, the results
reported are not substantially affected by the cell’s size, as
they are reported in metric distance. However, the choice of
the cell’s size has to meet two conflicting criteria: the cell
has to be small enough to retain maximum details about the
floor plan, while also being large enough to minimize the
number of nodes representing the floor plan for computation
time concerns. During the conversion process, some of the
nodes in the graph are rendered inaccessible to other graph
nodes. This happens when a node is on top of a wall or
outside the floor plan boundary. At the end of the pre-
processing step, the graph is encoded as a binary image.
Nodes in the graph are either represented as black pixels or
white pixels. Black indicates obstacles (walls and furniture)

or inaccessible nodes, while white indicates accessible open
space or accessible nodes. This binary image becomes the
input for the next step.

After the nodes are created, the connectivity of the graph
is determined. This step differs between the two analyses,
as each of them uses different adjacency rules, these rules
determine the connections between the different grid cells
and they are quite simple. For the spatial connectivity, each
cell’s node is connected with its immediate neighbours,
excluding the nodes that are on walls or outside the floor
plan boundary. This creates a graph where each node has at
most 8 neighbours (4 across and 4 diagonal). Identifying the
connections can be easily computed by a convolution over
the grid and using a small 3×3 kernel.

As for visual connectivity, the connections are slightly
more complicated, but can be determined by using the
following rule, “two nodes are connected to each other if
you can draw a line without crossing an obstacle”. There
are various methods to determine these connections. The
authors used recursive shadow-casting. This is a technique
which is commonly used in video games —where speed is
paramount— to determine the line of sight.3 15 16 Recursive
shadow-casting was chosen over other slightly more accurate
ray-casting techniques, due to its superior speed, which
allows for a single pass over the grid resulting in computed
visibility. Graph nodes in visual connectivity analysis, can
have any number of connections, as opposed to the spatial
connectivity’s maximum of eight.

The product of both analyses is a coloured map that
describes areas with high or low connectivity and visibility
(see Figure 2 for a comparative example). For spatial
connectivity, the colors describe the average shortest distance
taken to walk from every location to every other location.
To calculate that on the graph, Dijkstra’s algorithm is used
along with a shortest path algorithm.2 Whereas, for visual
connectivity, the colors represent how visually connected a
person in a given location would be to all other locations. To
calculate this measure, Dijkstra’s algorithm is again used to
traverse the graph, while the calculations are done according
to VGA as described in A. Turner’s paper.3

Pipeline

Given that the authors had already developed a simulation
engine that could run spatial and visual connectivity analysis,
the rest of the process focused on the following aspects:
the development of a properly tailored dataset to train deep
neural networks and the investigation of the appropriate
architecture of the neural network itself. The paper will
thus start by presenting the pipeline that allowed for the
parametric creation of the floor plans and the automatic
completion of their respective analyses using a High
Performance Computing system to parallelize the simulation
process. It will then delve into the network architectures
investigated and will finally discuss their respective success
in training the system.
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Figure 2. Visual and Spatial connectivity analyses.

Convolutional Neural Networks for
connectivity analysis

Supervised machine learning and analytical
models
There is an increasing body of work that investigates
developing surrogate models to speed-up computationally
demanding analysis such as computational fluid dynamics
analysis2, finite element analysis, solar radiation etc. Recent
advancements in the fields of Machine Learning (ML) and
cognitive computing17 proved more effective for building
such models. The task of performing visual graph or spatial
connectivity analysis on a given plan could be formulated
in the language of ML as a supervised learning problem.18

It can be expressed as a mapping between a floor plan with
walls and furniture (an input image) to an analysed plan (an
output image). The output is some translation of the input,
where certain pixels of the image stay unchanged (walls),
whereas the others are assigned a value according to the
analysis. Those values could then be represented using a
color gradient. Therefore, a basic input image is less complex
than an analysed image. This task is more common to
image processing tasks such as style transfer or colourization
than to vision problems like semantic segmentation. In
recent years, Convolutional Neural Networks (CNNs) have
become popular for a variety of image tasks, because they
outperformed previous state of the art techniques.19 20

Data generation, representation and
augmentation
When machine learning techniques are applied to a new
domain, there is usually a deficit of high-quality training
data. Therefore, data collection and labelling become a
critical bottleneck. There are different approaches for
acquiring data to use for training models, from data discovery
to data augmentation and data generation, all three discussed
in details by Roh et al.21 In the case of visual and spatial
connectivity the input to the system is effectively a 2D
plan, but there are no public datasets available to use or
to benchmark the models being investigated against. Even
though an abundance of data representing 2D plans is
publicly available online in an image format, it is not readily
usable as the images may contain a lot of noise and are
drawn using different styles. This makes them unsuitable
in their “raw” form and would require a lot of laborious
preprocessing before they could be used as inputs to any
solver.

Due to the above, a choice was made to focus on
synthetic data generation using an automated system.
Given the size of the dataset required and how time
intensive the spatial and visual connectivity analyses are,
modest floor plan sizes were used that would only take
a few minutes to compute. A parametric model was
implemented in a CAD framework (Rhino and Grasshopper),
capable of procedurally generating 2D plans. The plans
contained different wall and furniture arrangements, creating
a plethora of spatial configurations both open plan and
compartmentalized. Using this parametric model, 6,000
images of different layouts were generated to be used for
initial testing, (Figure 3) shows examples of the produced
dataset and its respective analyses.

Since the dataset was generated from scratch, the format
of the input data could be tailored. The images, as mentioned
previously, were a basic binary representation of the plan,
where zeroes (black pixels) indicated obstacles and ones
(white pixels) indicated accessible zones. The resolution
of the produced image was also carefully considered, as
the analysis time increased exponentially based on the
image size. For that reason, the images were constrained to
100×100 pixels, where 1 pixel represented 1 meter in real
space.

In addition to the above, a Signed Distance Function
(SDF) representation for all the plans was generated.
An SDF describes the distance of a given point from
the closest boundary, it is used in computer graphics
and computer vision for Simultaneous Localization and
Mapping (SLAM) algorithms (ex. 3D reconstruction using
depth cameras).22 23 24 SDF is expected to encode local
geometry details along with global scene structure. Encoding
this method of representation along with the binary
representation of borders, improved the performance of other
“reduced order models developed for CFD simulation.25

Furthermore, to ensure that the previously described
dataset was rich enough and to prevent the trained models
from memorizing the data and over-fitting, we used on-the-
fly augmentation by randomly flipping the images vertically
and horizontally during the training process.

The data generated was split into a 70-20-10 training,
validation and test split. The test split was later used to
evaluate different ML models’ performance.

Figure 3. Dataset generation and analysis output. First row
represents the dataset (binary), as produced via the generative
process and representing both compartmentalized and
open-plan spaces. Second row represents Spatial Connectivity
(0-255) and third row represents Visual Connectivity (0-255).
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Analysing Data

For the generated images to be analysed based on the
bespoke simulation engine developed, a connectivity graph
was generated, as discussed in previous chapters. This
graph was effectively the actual input to the simulation
engine. To expedite the analysis, the graph was reduced
by removing all the non-connected nodes (previously black
pixels) to make the calculation quicker. Furthermore, any
isolated sub-graph within the network was disregarded. After
the original (pre-analysis) dataset was processed based on
the above rules, each image was analysed by the custom
spatial and visual connectivity simulation engines, which
were abstracted to run in a headless mode, using a simple
command line argument. These algorithms were highly
parallelized, so the code was adjusted to take advantage
of all the cores of the system. Normally, running these
analyses would require high computational resources, and
it would result in long run times. This could become a
significant bottleneck given the amount of simulations that
needed to be run to produce a big enough training set
for a CNN. In computing, such problems are tackled by
using massive parallelization. Nevertheless, this concept has
not been widely used in architecture. However, there are
some notable examples which include a prototype of an
evolutionary optimization system, which could distribute
phenotype and fitness calculations using Microsoft Azure
cloud computing system26; utilization of a shared network
system to speed up daylight autonomy simulation using
Radiance27; distribution of Radiance based annual daylight
simulation over Microsoft Azure.26 In the discussed pipeline
this problem was tackled in two ways: the first was to multi-
thread the analysis and take advantage of the full capabilities
of the available hardware and the second was to spread all the
data over multiple desktop machines and compute them in
parallel. These two mitigations essentially reduced the time it
would take to produce the training dataset from a month to a
few hours. The overall parallelization process was facilitated
by using High Performance Computing system called Hydra.
Hydra28 is a bespoke in-house developed system, built on top
of an on-premise render farm and it was used to distribute
simulation tasks to 16 concurrent computing nodes. Each
node used an Intel Xenon CPU E5-2660 processor. This
allowed for a massive performance speed up. For a detailed
breakdown please refer to (Table 1).

The output (post-analysis dataset) was a set of 100×100
pixel images, with each pixel having its value remapped in
grey-scale from 0 to 255, based on the analysis results.

Network architecture and implementation

While various possible architectures for the neural network
were investigated, the main requirement was for the
Convolutional Neural Network (CNNs) to be able to scale
up. That meant that the architecture of the CNN system
needed to allow the input to be of arbitrary size and not
restricted to the input size on which the network would
be trained. This led to the use of a Fully Convolutional
Network (FCN).29 Another concern was the need for an
architecture that would offer good localization and manage to
propagate context information through-out the whole model,

Table 1. Computation statistics of analysis speed-up using
Hydra.

Dataset Corridors Corridors

Analysis VGA Con
No. of samples 3002 3002
Total CPU time
[dd : hh : mm : ss]

02:07:50:53 00:14:36:15

Actual Evaluation Time
[hh : mm : ss]

06:00:57 02:47:09

Speed-up 9.16 5.25

Dataset Open Plan Open Plan

Analysis VGA Con
No. of samples 3002 3002
Total CPU time
[dd : hh : mm : ss]

02:19:41:07 00:08:57:31

Actual Evaluation Time
[hh : mm : ss]

06:40:33 02:21:24

Speed-up 10.14 3.8

which pointed at the use of a U-Net network.30 The U-
Net architecture is symmetrical and contains two parts: a
contracting path and an expansive path, which gives it the
‘U’ shape. The number of operations along the two paths is
the same.

The contracting part is a typical CNN, and is made of
successive down-sampling operation blocks, successively
applied on top of each other, with the first applied to the input
image. The objective is to ensure that the network effectively
learns complex structures and features. Each operational
block consists of two 3×3 convolution layer, followed by
a 2×2 max pooling operation. The purpose of those steps
is to reduce the dimensionality of the input while increasing
the number of features extracted. The number of trainable
filters/feature-detectors after each down-sampling operation
is doubled (64, 128, 256, 512 and 1024), hence so does
the resulting feature maps. A feature map is the result of
convolving with a filter/feature-detector over the input image
or the output of a previous operation block.

The expansion part is symmetrical to the contraction one
but contains only up-sampling blocks, trying to reconstruct
the image from the output of the last down-sampling
block. Each up-sampling block passes the input through two
3×3 convolution layers then a 2×2 up-sampling layer. To
maintain symmetry with the contracting part, the number
of of trainable filters/feature-detectors gets halved in each
new block (1024, 512, 256, 128, 64). To preserve the
contextual/spatial information and the features learned in
the down-sampling path, the input to each successive
expansion block is augmented by the feature maps from the
corresponding contraction block, this “knowledge transfer”
between the two paths is called skip connections. More
details about the model’s architecture can be seen in
Ronneberger et al. work.30 The model’s implementation was
done using Tensorflow in Python.

Some adjustments were introduced to the U-Net model,
while the original use of the model was to do per-pixel
classification, the final activation layer was changed to a
sigmoid function to accommodate the task in hand, which
can be described as a per-pixel regression task. Different
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optimization algorithms were tested first on a subset of the
data, while using different learning rates.

Training
When training a machine learning model, there are
some hyper-parameters that require tuning. Two of the
prominent parameters to tune are the learning rate and
the choice of the optimization algorithm. Using the U-Net
model, different optimization algorithms were tested. Those
included Stochastic Gradient Decent, Adam, RMSProp and
Adadelta.31 The tests took place on a small subset of 50
images from the dataset and the best performers were SGD
and Adadelta. The models using these optimizers converged
quickly, managing at the beginning of the training to map
black pixels in the input to black pixels in the output,
while the rest - on more than one occasion - were stuck
fading the black pixels and replacing them with grey or
white. Therefore, SGD and Adadelta were selected for the
experiments to follow. With both optimizers, the consequent
training was initiated with different learning rates and an
increased subset of 100 images. Between the two optimizers
and during different runs, Adadelta managed to converge
faster.

Besides tracking the training loss, the model was also
tested in each step on a fixed number of images, so that
the training progress could be observed and traced. This
process allowed visualizing the effect of the optimizers and
the chosen learning rates. In addition, it provided a visual
and intuitive way of evaluating early on if the model was
converging towards a desired minima or not.

After settling on those two parameters (Adadelta as an
optimizer and a learning rate of 1.0) the model was trained
on the whole training set using Mean Squared Error (MSE)
as the loss function. Loss functions or cost functions are an
essential component in a neural network, helping and guiding
the optimization algorithm explore the solution space. This
function guides the network to make desired results, for
example to create sharp edges in the context of VGA. The
goal of the function is, given an analysis prediction from the
model to an input plan, and knowing the correct output of
the analysis for that plan, calculate how much the model’s
prediction deviated from the correct answer. Loss functions
design is considered a pressing problem which is heavily
researched and requires expert knowledge. In this case, using
MSE, the loss was decreasing, but when comparing the
model’s prediction and the actual analysis side by side, it
was revealed that the distribution of values was not visually
matching. Using other simplistic loss functions like Absolute
Error or Mean Square Logarithmic Error did not help. A
more tailored loss function seemed to be necessary. That
led to experimenting with image Gradient Difference Loss
(GDL) developed by Mathieu et al.32 which used a weighted
sum along with MSE. GDL takes into consideration the
neighbouring pixels intensity differences. This enhanced the
performance of the model, but still didn’t reach the targeted
accuracy. It is worth noting at this point that the use of a
Signed Distance Function representation of the plans, did not
increase the performance of the network, so only the binary
representation was used as an input.

It was then decided to experiment with a different model
architecture based on Generative Adversarial Networks

Table 2. Model Loss Comparison between U-Net network and
the Conditioned Generative Adversarial Pix2Pix network.

Model U-Net Pix2Pix

MSE Loss
(300imagestestset)

0.0064 0.0066

minimum 0.00148 0.00041
maximum 0.0167 0.0248

(GAN) where two models, a generator and a discriminator,
are competing to accomplish a defined task. This architecture
depends partially on the U-Net architecture used before, but
instead of using explicit loss functions, the discriminator
network is trying to learn a loss function suitable for the
task in hand. This architecture basically transforms the
loss function to a trainable parameter in the model. The
two networks then compete: the generator network tries
to learn how to generate convincing images against its
adversary, the discriminator, which tries to judge whether an
image presented to it is original (from the training data) or
synthesized by the first network.

This architecture avoids hand-engineering of the loss
function and incentivizes the network to produce images
which could be undistinguishable from reality. An effective
implementation of such an architecture is Pix2Pix, a con-
ditional Generative Adversarial Network (cGAN) developed
by Isola et al.33 It was designed as a general-purpose image-
to-image translator, that can be conditioned to generate a
specific translation given an input image, instead of just a
randomly generated image. In this approach the generator
network is presented with both an input image and a random
noise vector and learns to produce images that the discrim-
inator cannot tell apart from the genuine analyses output.
The Pix2Pix generator network uses the encoder-decoder
pattern with skip connections form the U-Net architecture,
to preserve low-level information shared between the input
and output.

Table 2 compares the performance of the two networks:
the fully convolutional U-Net network and the Conditioned
Generative Adversarial Pix2Pix network, both trained on
the same data subset, while Figure 4 showcase the visual
results. For each sub-figure the picture to the left shows
the analytical result while the one in the middle shows
the network-generated analysis. The third picture always
demonstrates the delta between the two (darker parts mean
the more optimal the results output by the network). Finally,
Figure 5 demonstrates the distribution of losses for U-Net,
Pix2Pix generating Connectivity Analysis.

Discussion

One of the goals of training a neural network compared to
running the actual analysis, was to optimize the speed of the
outcome. This is especially useful as the time it takes to run
one image is not dependent on the floor plan scale or the type
of analysis (as in the actual analytical models), but on the size
of the image and the type of network used. For the Pix2Pix
architecture, inference (predicting the output given an input
image) for one image is computed in 0.08 seconds and for the
U-Net in 0.032 seconds for each of the analyses, compared
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(a) Minimum loss scored in the test set using U-Net.

(b) Maximum loss scored in the test set using U-Net.

(c) Minimum loss scored in the test set using Pix2Pix.

(d) Maximum loss scored in the test set using Pix2Pix.

Figure 4. Visual comparison between the images that the
models scored lowest and highest loss value for. In each, the
left image is the expected output, the middle shows the model’s
predicted output and the last image to the right shows the delta
between both, darker means closer to the correct answer.

to 15 seconds for running the actual spatial connectivity
analysis and 128 seconds for running the visual connectivity.
It is also important to note, that for running the analysis a
100×100 pixels image was used and for training the dataset
a 256×256 pixels image, so the data was scaled up. This
means that there is a potential of using the same network
architecture for more detailed and/or larger floor plans.

Since Pix2Pix tries to learn a loss function well suited
for the problem in hand, it is easier to start experimenting
with, there is no need to tweak anything in the models
architecture and hyper-parameters. This is useful for quickly
testing whether an idea, or a collected dataset is appropriate.
Choosing a suitable loss function in UNet and tweaking
other hyper-parameters, requires more time and experience,
and in this case, led to better performance. Moving from
simple loss functions, like Mean Square Errors or Absolute
Errors to more sophisticated ones like image Gradient
Difference Loss, helped increase the performance of a fully
convolutional network like U-Net.

While evaluating a model’s performance, it is important
to study the distribution of losses. Even though Pix2Pix
reported lower loss on the test data set, plotting the losses

(a) UNet loss distribution for test set.

(b) Pix2Pix loss distribution for test set.

Figure 5. distribution of losses for U-Net, Pix2Pix generating
Connectivity Analysis and Pix2Pix generating VGA.

Table 3. Time per image during training the UNet model on
different NVidia GPUs.

Model P4000 RTX4000 RTX6000

Training time
(sec/image)

0.714 0.429 0.357

for both models as seen in Figure 5 shows that the variance
in UNet is lower. This means that the UNet model manages
to generalize better on almost all the test examples.

Even though training the model requires a lot of time, this
can be resolved by using newer GPUs optimized for machine
learning tasks. This can be seen in the speed improvements
in training time in Table 3. The UNet model had 31,031,685
trainable parameters in total. The training set was composed
of 2,100 images of size 256×256 pixels, each just one
channel. The batch size (number of images the model gets
to try and predict the output for, before the cost function is
calculated and the parameters of the model are updated by
the optimizer) was 8 images. The experiments ran for around
500 epochs (one epoch is 262 batches or the length of the
dataset by the batch size). For the comparison, the average
time it took to train per batch was taken into consideration.
Each batch included feeding forward calculations for the
total number of images per batch, calculating loss, averaging
it and then doing back propagation. The number of images
per batch was being tweaked and hence varied during some
of the experiments. So the total computation time was
divided by the number of images which, albeit unusual, made
the numbers comparable. Effectively, based on the numbers
in Table 3, the acceleration compared to the baseline Nvidia’s
P4000 card that was used, was 66% using Nvidia’s RTX4000
card and 100% using Nvidia’s RTX6000 card.
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Future work

Although further steps need to be taken to improve
the reporting of the metrics, the current speed and
accuracy provide some interesting possibilities for further
development. Networks such as the ones presented here
could be used for the creation of interactive applications
that provide real-time feedback to designers as they design
a space. Up until now, in order to achieve that, one should
sacrifice either accuracy or time. This doesn’t have to be
the case, particularly now, as due to the popularity of
Machine Learning, GPU manufacturers currently provide
highly optimized hardware for running and training neural
networks, while also making it accessible and cheaper.

It would also be worthwhile investigating further
augmentation techniques, especially if the advantages of U-
Net are to be utilized, as well as going through a more
exhaustive testing of both networks on corner cases. We
leave these and other improvements for future work.

The results of this process have been encouraging enough
to indicate potential expansion of this system into an array
of different analysis that require a floor plan as an input -
particularly environmental analysis like glare, that seems to
be a recurring problem in the architectural sector.

Another point of interest is looking into means of
converting images of plans into a unified queryable
representation. This would aid in bypassing the laborious
pre-processing required to clean up the images, making
them feasible to be used as a training dataset. In addition
to potentially providing access to a huge number of floor
plan images publicly available online, instead of creating
synthetic datasets.

Conclusion

This paper presented the process of using deep learning
to train a surrogate model that could output spatial and
visual connectivity for any given floor plan in real-time.
The use of spatial and visual connectivity in architecture
was discussed, as well as the computationally intensive
requirements of both these algorithms. An implementation
of a Fully Convolutional Network was then presented as
a potential deep learning model to replace the analytical
models. It was also compared to another more recent model
architecture which is the Generative Adversarial Networks
architecture. To that end, the authors showcased how the
training set was generated and analysed for the supervised
machine learning process, and how the network architecture,
implementation and training were conducted. The predicted
analyses output from our trained model are orders of
magnitude faster compared to usual calculation approaches,
at the cost of minimal error rates. The paper concluded with
the ongoing results of the research and the next steps that
would be required for its continuation.
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