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Abstract: Optical micromanipulation allows the movement and patterning of discrete micro-
particles within a liquid environment. However, for manufacturing applications it is desirable to
remove the liquid, leaving the patterned particles in place. In this work, we have demonstrated
the use of optoelectronic tweezers (OET) to manipulate and accurately assemble Sng;Pb3cAgs
solder microspheres into tailored patterns. A technique based on freeze-drying technology was
then developed that allows the assembled patterns to be well preserved and fixed in place after
the liquid medium in the OET device is removed. After removing the liquid from the OET
device and subsequently heating the assembled pattern and melting the solder microspheres,
electrical connections between the microspheres were formed, creating a permanent conductive
bridge between two isolated metal electrodes. Although this method is demonstrated with 40
pm diameter solder beads arranged with OET, it could be applied to a great range of discrete
components from nanowires to optoelectronic devices, thus overcoming one of the basic hurdles
in using optical micromanipulation techniques in a manufacturing micro-assembly setting.
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OCIS codes: (350.4855) Optical tweezers or optical manipulation; (120.4610) Optical fabrication; (120.4880) Optome-
chanics.

References and links

1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser
beams,” Nature 330(6150), 769-771 (1987).

2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810-816 (2003).

3. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. Bryant, and K. Dholakia, “Controlled rotation of optically trapped
microscopic particles,” Science 292(5518), 912-914 (2001).

4. M. Zhong, X. Wei, J. Zhou, Z. Wang, and Y. Li, “Trapping red blood cells in living animals using optical tweezers,”
Nat. Comm. 4, 1768 (2013).

5. X.Ding, Z. Peng, S.-C. S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, and T. J. Huang, “Cell separation
using tilted-angle standing surface acoustic waves,” Proc. Natl. Acad. Sci. U.S.A. 111(36), 12992-12997 (2014).

6. F. Guo, Z. Mao, Y. Chen, Z. Xie, J. P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Sureshd, and T. J. Huang,
“Three-dimensional manipulation of single cells using surface acoustic waves,” Proc. Natl. Acad. Sci. U.S.A. 113(6),
15221527 (2016).

#302543 https://doi.org/10.1364/0E.25.028838
Journal © 2017 Received 17 Jul 2017; revised 3 Oct 2017; accepted 5 Oct 2017; published 7 Nov 2017


http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.25.028838&domain=pdf&date_stamp=2017-11-07

Research Article Vol. 25, No. 23 | 13 Nov 2017 | OPTICS EXPRESS 28839

7.

8.

20.

2

—_

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

Optics EXPRESS

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811
(2010).

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using
optical images,” Nature 436(7049), 370-372 (2005).

A.T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and
non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213-3217 (2010).

. S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of

microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959-1961
(2010).

. A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin,

J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light
emitting diode arrays,” Opt. Exp. 19(3), 2720-2728 (2011).

. S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based

optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231-5239 (2009).

. W. Choi, S. W. Nam, H. Hwang, S. Park, and J. K. Park, “Programmable manipulation of motile cells in optoelectronic

tweezers using a grayscale image,” Appl. Phys. Lett. 93(14), 143901 (2008).

. J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced

electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714-1720 (2009).

. H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33-47 (2011).
. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,”

Laser Photon. Rev. 7(6), 839-854 (2013).

. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic

manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86-89 (2008).

. P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher Jr, and M. C. Wu, “Parallel trapping of multiwalled carbon

nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).

. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu,

“Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921-2925
(2009).

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in
manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).

. S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic

tweezers,” Sci. Rep. 6, 32840 (2016).

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation
of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163-18175
(2016).

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical
tweezers,” Opt. Exp. 14(26), 13095-13100 (2006).

K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, and O. D. Velev, “Dielectrophoretic assembly of
electrically functional microwires from nanoparticle suspensions,” Science 294(5544), 1082-1086 (2001).

R. J. Barsotti, M. D. Vahey, R. Wartena, Y. M. Chiang, J. Voldman, and F. Stellacci, “Assembly of metal nanoparticles
into nanogaps,” Small 3(3), 488-499 (2007).

M. C. Tien, A. T. Ohta, K. Yu, S. L. Neale, and M. C. Wu, “Heterogeneous integration of InGaAsP microdisk laser
on a silicon platform using optofluidic assembly,” Appl. Phys. A 95(4), 967-972 (2009).

H. Yang, D. Zhao, S. Chuwongin, J. H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou,
“Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photon. 6(9), 615-620 (2012).

B. Guilhabert, A. Hurtado, D. Jevtics, Q. Gao, H. H. Tan, C. Jagadish, and M. D. Dawson, “Transfer printing of
semiconductor nanowires with lasing emission for controllable nanophotonic device fabrication,” ACS nano 10(4),
3951-3958 (2016).

S. I. Park, Y. Xiong, R. H. Kim, P. Elvikis, M. Meitl, D. H. Kim, J. Wu, J. Yoon, C. J. Yu, Z. Liu, Y. Huang,
K. Hwang, P. Ferreira, X. Li, K. Choquette, and J. A. Rogers, “Printed assemblies of inorganic light-emitting diodes
for deformable and semitransparent displays,” Science 325(5943), 977-981 (2009).

C.J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,”
Sens. Actuator A 64(1), 17-26 (1998).

. A. G. Marin, O. R. Enriquez, P. Brunet, P. Colinet, and J. H. Snoeijer, “Universality of tip singularity formation in

freezing water drops,” Phys. Rev. Lett. 113(5), 054301 (2014).

A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and
M. D. Dawson, “Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically
flexible substrates,” Appl. Phys. Lett. 103(25), 253302 (2013).

A.J. Trindade, B. Guilhabert, E. Y. Xie, R. Ferreira, J. J. D. McKendry, D. Zhu, N. Laurand, E. Gu, D. J. Wallis, I. M.
Watson, C. J. Humphreys, and M. D. Dawson, “Heterogeneous integration of Gallium Nitride light-emitting diodes
on diamond and silica by transfer printing,” Opt. Exp. 23(7), 9329-9338 (2015).




Research Article Vol. 25, No. 23 | 13 Nov 2017 | OPTICS EXPRESS 28840

Optics EXPRESS

1. Introduction

Micromanipulation technologies such as optical tweezers [1-4], acoustic tweezers [5, 6] and
dielectrophoresis (DEP) [7] allow the fine and non-invasive control and actuation of discrete
micro/nano-scale objects with no physical contact for studies in physics, chemistry and particularly
biological and medical science. More recently, optoelectronic tweezers (OET) have been
demonstrated as a new opto-electro-fluidic micromanipulation technology using light-patterned
DEP for biological applications such as cell sorting, cell patterning and studying cell-to-cell
communications [8—15]. Compared to conventional optical tweezers [16], which operate by
transferring optical momentum from the light beam to the object, OET traps exert a much
stronger manipulation force for a given intensity of light, and are well suited for massively parallel
manipulation (e.g. 15,000 traps at once with just | mW of optical power) [8,12]. OET has also been
used to assemble nanoscale electronic and photonic components such as semiconductor nanowires,
carbon nanotubes and metallic spherical nanocrystals for microfabrication applications [17-19].
Additionally, there is a growing interest in using OET to manipulate and assemble large
electronic/photonic components with scales of tens up to several hundreds of microns, such
as large metallic beads, standard surface-mount-technology components and semiconductor
micro-lasers [20-22].

Previous work has demonstrated the micromanipulation and assembly of many different
particle types using several different micromanipulation techniques including the automated
assembly of micro-particles with optical tweezers [23] and the assembly of gold nanoparticles
with DEP [24,25]. These studies show that complex patterns of micro and nanoparticles can
be created in liquids but the stability of the assembled structures can depend on the particles.
Assembly of single cells into desired arrangements using acoustic tweezing has also recently
been demonstrated [6]. One example application of this kind of assembly is the construction of
a micro-scale circuit containing small electrical components using OET. For this application,
it is necessary to first place the component into the desired position and then to fix it into
place. Recently, it has been shown that large metallic beads can be positioned using OET with
submicron accuracy [20,21]. However, a major bottleneck of using OET to assemble these beads
and construct a microscale circuit is the lack of the ability to fix the assembled beads in place
whilst removing the liquid medium. Previously-reported work has demonstrated the use of a
photocurable polymer solution to preserve the positions of the nanowires trapped by OET, which
is achieved by immobilizing the nanowires by polymerizing the solution [17]. However, the
polymer solution was found to reduce the exerted force on the nanowires significantly due to
its high viscosity and conductivity. Additionally, after photocuring the polymer solution, it is
difficult to perform further processes on the assembled nanowires. Some components can be held
in position whilst the liquid is removed [26]. However, it was also found that as the liquid dries
out, the components depending on their geometry may be dragged away from the desired position
by buffer’s meniscus. Therefore, it is desirable to develop a more widely applicable method of
fixing the assembled micro-objects in place in a micromanipulation system whilst removing the
liquid medium.

In this work, we have demonstrated the use of OET to assemble 40 um diameter SngyPbsgAgy
solder microspheres to form electrical connections with low resistance. After assembling the
solder microspheres with OET, we have implemented a new method based on freeze-drying to
remove the liquid medium. We freeze the liquid medium in the OET device and then reduce the
surrounding pressure to allow the frozen medium to sublimate directly from its solid phase to its
gas phase. This method allows the assembled solder beads to be well preserved and fixed in place in
the OET device after the liquid medium is removed. Based on this method, we demonstrated using
OET to construct a microscale circuit with solder microspheres assembled into a straight line to
connect two isolated metal contacts with 200 um gap. After removing the liquid in the OET device
with an optimized step-by-step freeze-drying process and subsequently heating the assembled
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solder microspheres to melt them together, electrical connections between the isolated metal
contacts were formed with resistances as low as 11.6 Q. Scanning electron microscope (SEM)
(Hitachi S4700) images were taken at the interfaces between the two metal contacts connected by
the solder microspheres, which showed that the surfaces of the microspheres became textured
and physical connections between the adjacent microspheres were formed after the heating and
melting process. Analysis suggested that the heating process melted the materials at the surface
of the solder microspheres and thus enabled to form electrical connections between adjacent
microspheres with much reduced interface resistance. By using these combined techniques,
micro-electrical connections between the isolated metal contacts have been successfully created.
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Fig. 1. (a) Schematic experimental setup. (b) 3D schematic of the OET device. (c) Microscope
images of a solder microsphere attracted to the illuminated region under positive DEP force.
(d) Image of the bottom OET electrode with six pairs of isolated metal contacts with different
gaps. Inset: microscope image of the metal contacts with a 200 um gap.

2. Experimental setup and device structure

Figure 1(a) shows the schematic of the optical setup used in the experiment (a seperate Appendix
section is also provided to show experimental details). As shown in the setup, a digital micro-
mirror device (DMD) projector is used to create light patterns which are imaged through the
objective of a microscope onto the OET device, which is placed on top of a Peltier cooler. A
camera mounted on top of the microscope is used to record experimental images and videos of
particles being manipulated in OET for further data analysis. The position of the OET device
is controlled by the motorized XY stage while the DMD and camera are kept stationary. A
long-pass filter is used to filter out the blue emission from the projector and only the green-red
portion of the light emission is projected onto the OET device. A short-pass filter is used in front
of the camera to filter out the strong red emission from the projector. This filtering allows the
particles to be viewed by bright-field microscopy with just a faint pattern of the intense patterned
light from the projector. Figure 1(b) shows a three-dimensional (3D) schematic of the OET
device used in this work, which consists of two electrodes, both of them glass slides coated with
600-nm-thick indium tin oxide (ITO). The bottom electrode is also coated with an additional
1-pm-thick hydrogenated amorphous silicon (a-Si:H) photoconductive layer. The two electrodes
were attached together by a 150 um thick spacer to form a chamber where inside contains the
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sample of liquid medium and the solder beads. In the dark, the impedance of the a-Si:H layer
is very high and the applied AC voltage is mainly dropped across this layer. However, when a
light pattern is projected on to the a-Si:H layer, the impedance of this layer drops significantly,
which makes the voltage drop predominantly across the liquid medium above the illuminated
area, thus creating a non-uniform electric field between the dark and illuminated regions in the
device chamber. This non-uniform electric field interacts with the samples in the liquid medium
producing either attractive (positive DEP force) or repulsive (negative DEP force) depending
on their Clausius-Mossotti (CM) factors [7]. Therefore, ‘traps’ can be created to manipulate the
positions of samples in the OET device by controlling the positions of projected light patterns.
For the solder microspheres used in this work, they were attracted to the illuminated regions
under positive DEP force, as shown in Fig. 1(c).

Figure 1(d) shows the images of the bottom electrode of the OET device used in this work.
Compared with conventional OET devices, this bottom electrode has six pairs of specifically-
designed isolated metal contacts with different gaps (50 um, 100 ym, 150 pum, 200 gum, 300 um,
400 um) on top of the a-Si:H layer. Such design is to demonstrate the use of OET to construct
a microscale circuit via the assembly of solder microspheres to form electrical connections
between the isolated metal contacts. The bottom OET electrode and top OET electrode were
mounted together by a 150 um thick spacer to form a chamber, where the solution containing
solder microspheres were injected via pipette. More information of the structure of the OET
device and experimental details can be found in the Appendix.

3. Experiment and discussion

3.1. Parallel assembling, freezing-drying and heating solder microspheres

In this work we assembled the micro solder beads into conductive links by light-patterned DEP
in a specifically-designed OET device. The device was mounted onto a Peltier cooler on the
microscope stage so that once the desired bead arrangement was achieved it could be cooled down,
freezing the liquid buffer. Figures 2(a)-(d) show the process of parallel assembly of 40 ym (+5
pm) diameter solder beads in OET to form a straight line to connect two isolated metal contacts.
Videos showing more details of the assembling process can be found in the supplementary
materials (Visualization 1, Visualization 2). Shown in Fig. 2(a) is the first step of the assembling
process, in which the solder beads were moved to interface with the metal contacts. When a light
pattern is used to trap a bead and gradually moves to the metal contact, the bead will follow the
light pattern and stop at the edge of metal contact as a strong electrical gradient is formed at the
edge of the metal, drawing the beads towards it. However, the metal contacts effectively block
the applied electrical fields preventing the beads from being moved further onto them. After
manipulating the solder bead to interface with metal contact on each side, more solder beads were
precisely manipulated and positioned to fill in the gap to form a straight line, as shown in Figs.
2(b) and 2(c). During the assembling process, multiple light patterns were used to move the beads
to fill in the gap and also to fix the solder beads which have already been positioned in place.
This parallel manipulation prevents the interactions between the solder beads pushing each other
away from their desired positions, allowing the solder beads to gently touch each other. After all
the solder beads were assembled, the projector used to produce the light patterns was turned off
and the assembled beads would stay in place (see Fig. 2(d)) [20]. It is worth mentioning that the
solder beads can be positioned quickly with high positional accuracy under strong DEP force
in the OET device (see Visualization 1, Visualization 2) [20,21]. Additionally, compared with
widely used transfer-printing technology based on using robotic arms and stamps/tips to ‘pick
and place’ targeted objects [27-29], OET is capable of performing effective touchless parallel
manipulation of objects in the same plane, allowing the solder beads to be precisely assembled
next to each other in real time. This makes OET a useful tool to perform the assembly of solder
beads or similar metallic micro-objects for potential applications such as device microfabrication
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Fig. 2. Parallel assembling, freezing-drying and heating the solder beads. (a) Microscope
image of the solder beads positioned at the edge of the metal contacts. (b) Microscope image
of parallel assembly of solder beads to fill in the gap and form the straight line. (c) Straight
line of solder beads formed by the light patterns. (d) Microscope image of formed straight line
of solder beads after turning off the DMD projector. Videos showing the detailed assembling
process of solder beads can be found in Visualization 1, Visualization 2. Microscope images
of solder beads: (e) after assembling the solder beads, (f) after freezing the solder beads, (g)
after sublimating the liquid medium, (h)after heating the solder beads. (i) SEM image of the
assembled solder beads after heating. (j) SEM image of two adjacent solder beads before
heating. (k) SEM image of two adjacent solder bead after heating.

and precise circuit construction. It is worth mentioning that OET has been demonstrated to be
a compatible micromanipulation technology capable of assembling many different nano- and
micro-scale objects, ranging from semiconductor nanowires and carbon nanotubes [17, 18], to
metallic and dielectric particles on the order of tens of microns [10, 11,20], to photonic/electronic
devices with sizes greater than 100 microns [21,22]. Additionally, alignment of particles with
OET can be made as the assembly is ongoing in a way that would not be possible with either
photo or e-beam lithography, giving added flexibility to the fabrication process. Therefore, we
believe that OET has a great potential for micro-assembly applications on its own or together
with other techniques, such as photolithography and 3D printing, if necessary.

Figures 2(e)-(h) show a complete process of assembling, freeze-drying, and heating the solder
beads. This process is not the same process shown in Figs. 2(a)-(d). Experimental results and
discussions of freeze-drying and its influence on bead position will be presented later. As shown in
Fig. 2(e), the solder beads were firstly assembled into a straight line to connect two isolated metal
electrodes with a 200 um gap. Then, the OET device was frozen by the Peltier cooler to preserve
the assembled beads (see Fig. 2(f)). After the liquid medium was removed via freeze-drying
(see Fig. 2(g)), the assembled solder beads were heated and melted to connect with each other
(see Fig. 2(h)). After the heating process, the morphology of the solder bead changes and the
physical connections appear at the interface between adjacent solder beads. To provide more
details of the morphology change of the beads, SEM images were taken before and after heating
the solder beads. Figure 2(i) shows SEM image of the assembled solder beads between the metal
contacts after heating, in which the beads show rough and textured surfaces. This contrasts with
the solder beads before heating (see Fig. 2(j)), in which the beads show smooth surfaces. More
detailed morphology changes of the solder beads can be found in Fig. 2(k), in which the fused
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structure between the adjacent solder beads is formed after the heating process. These SEM
images provide clear evidence to show that the heating process melts the solder beads and makes
the material on the surface of the bead flow toward the interfaces between the adjacent solder
beads, forming the observed fused structure.
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Fig. 3. (a) Trapped solder beads in OET device. (b)&(c) Trapped solder beads were dragged
away by meniscus during the process of evaporating the solution. See Visualization 3 for a
video showing the detailed process. (d) Phase diagram of supercritical drying which goes
beyond the critical point (high pressure/high temperature regime) and the freeze drying
which goes below the triple point (low pressure/low temperature regime).

3.2. Freeze-drying

After assembling micro particles into a desired arrangement for many applications, it is necessary
to remove the liquid medium. This allows the assembled components to be further processed,
used as a device or stored in a stable state. However, as the micromanipulation forces are small
compared to the forces needed to overcome the surface tension of the liquid medium during the
solution evaporating process, the particles will be moved as the meniscus passes over them thus
making the assembled structure difficult to preserve. Figures 3(a)-(c) show the influence of the
liquid evaporating process on the assembled structure with meniscus passing over it. A video
showing the detailed process can be found in the supplementary materials (Visualization 3). It is
possible to reduce this effect with organic solutions with smaller surface tension coefficients such
as Isopropyl alcohol and Methanol to replace the deionized (DI) water solution. However, it is
found that even with organic solutions, the assembled structure cannot be preserved well making
it necessary to develop another method to remove the liquid medium from the OET device. To
address this issue a method based on freeze-drying was developed. Here we freeze the solution
and then reduce the surrounding pressure to allow the frozen medium to sublimate directly from
the solid phase to the gas phase. This results in no meniscus passing over the particles, hence
preserving their arrangement. Similar procedures have been adopted in micro-electro-mechanical
system (MEMS) technologies [30]. Here the problem is that MEMS components that are designed
to be free from the surface become stuck if processed in a liquid and then dried out by conventional
blow drying. Switching the water with methanol before evaporation, sublimation drying with
alcohol, and supercritical drying with CO; have all been assessed with both sublimation and
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supercritical drying producing good results [30]. Shown in Fig. 3(d) is the phase diagram of
supercritical drying and freeze-drying, while both cases avoid the direct liquid-gas transition.
Supercritical drying requires going from the liquid to the gas phase around the high pressure/high
temperature side of the liquid’s critical point where the difference between liquid and gas become
indistinct. By instead going from the liquid to the solid phase first and then to the gas phase,
freeze-drying is easier to implement under a microscope in a typical micromanipulation setting
and so this is the process that we developed. To freeze the liquid medium while avoiding moving
the OET device, a Peltier cooler was coupled to the bottom of the OET device (see Fig. 1(a)).
After the liquid medium was visibly frozen the OET device was put into a freezer (RS Biotech
Eclipse 100) and kept at -80 °C for 10 minutes ensuring the completion of the freezing process.
Then, the OET device was transferred to a freeze dryer (Thermo Heto PowerDry LL3000) to
sublimate the frozen medium for 30 minutes. After the frozen medium was sublimated, the top
ITO electrode of the OET device was removed to expose the assembled solder beads. During the
experiment, it was found that a rapid freezing process can move the positions of the assembled
solder beads and break the assembled pattern. Therefore, quantitative measurements were carried
out to study the influence of freezing process on the finished structure.
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Fig. 4. Experimental results of the solder bead before freezing the solution and after
sublimating the frozen medium. (a)-(d) Microscope images of the assembled solder beads
before freezing the solution (outlined in white) and after sublimating the frozen medium
(outlined in red) under different freezing conditions, in which rapid freezing was used for (a)
and (b); step-by -step freezing was used for (c) and (d). Shown in (e) is the distribution of
moving distances (in X-axis and Y-axis) of solder beads before freezing the solution and
after sublimating the frozen medium. The moving distances are calculated based on the
microscope images shown in (a)-(d).

Shown in Fig. 4 are the results of the freezing step with the solder bead before freezing the
solution (outlined in white) and after sublimating the frozen medium (outlined in red) under
different freezing conditions. Figures 4(a) and 4(b) show the experimental results based on a
quick freezing process, in which the Peltier cooler was driven continuously at 3 A for 10 minutes
to freeze the liquid medium in the OET device. The temperature profile produced is shown in
Fig. 5(a) with the device reaching a temperature of -10 °C in 320 seconds. As shown, the beads
moved away from where they are placed under this rapid freezing process. Figures 4(c) and 4(d)
show the experimental results under an optimized step-by-step freezing process, in which the
Peltier cooler was driven at 1 A for 2 minutes, 1.5 A for 2 minutes, 2 A for 2 minutes, 2.5 A for 3
minutes and 3 A for 5 minutes (see Fig. 5(b)). In this case, the freezing process is optimized
to preserve the assembled solder beads by gradually increasing the input current of the Peltier
cooler so that cooling to -10 °C took 540 seconds. Under this step-by-step freezing process, the
assembled solder beads can remain where they are placed after the sublimation process, as shown
in Figs. 4(c) and 4(d). The distances moved by the beads are plotted for two different freezing
processes and shown in Fig. 4(e). It can be seen that rapid freezing can move the beads by over
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20 microns whilst slowly freezing can keep the bead displacement to less than one micron. These
results suggest that the freeze-drying method containing step-by-step freezing and sublimation
can preserve the assembled microstructures of solder beads whist removing the liquid solution.
Interestingly, under the rapid freezing process, the assembled solder beads didn’t move randomly
from where they are placed; instead, they moved in a similar direction. This suggests that the
movement is due to the crystallization process of the liquid medium, which starts at one side of
the device and generates a force to move the beads at the interface between the solid phase (ice)
and the liquid phase. For a free liquid droplet on a cold plate, the geometry of the freezing front
results in a tip being formed on the frozen droplet [31]. However here we have two plates which
the water freezes between producing a predominantly horizontal movement of the freezing front.
The crystallization process tends to follow a specific direction pushing the beads along with it in
horizontal plane (see Fig. 6(a)). In the step-by-step slow freezing process, the OET device may
be cooled more uniformly allowing the crystallization process of the liquid to start at the bottom
of the OET device and proceed vertically through the device inducing less horizontal freezing
motion (see Fig. 6(b)). These results suggest the advantage of using freeze-drying to preserve
fragile structures assembled by OET. More details of using freeze-drying to dry out MEMS
structures and the advantage of reduced mechanical and thermal stresses were well described
previously [30].
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Fig. 5. (a) Temperature profile of OET device with the Peltier cooler being driven at 3A for

10 minutes (quick freezing). (b) Temperature profile of OET device with the Peltier cooler

being driven at 1 A for 2 minutes, 1.5 A for 2 minutes, 2 A for 2 minutes, 2.5 A for 3 minutes

and 3 A for 5 minutes (step-by-step freezing).

Liquid medium

Fig. 6. 3D schematic of the movement of a solder bead under different freezing conditions.
(a) Schematic of a solder bead moved horizontally under the rapid freezing. (b) Schematic
of a solder bead stabilized horizontally under the step-by-step freezing process.
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3.3. |-V measurement

After assembling the solder beads and subsequently removing the liquid medium via freeze-drying,
the OET device was placed on top of a hotplate (Cole-Parmer StableTemp) at 185 °C for five
minutes to heat and melt the assembled solder beads (melting point 178 °C - 180 °C). The
experimental results of assembling, freezing-drying and heating solder beads have been shown in
Figs. 2(e)-(k). The current-voltage (I-V) characteristics of the isolated metal contacts connected
by the solder beads were measured by a semiconductor device analyzer (Keysight BIS00A) using
a probe station (Casca-deMicrotech MPS150). As shown in Fig. 7(a), the resistances between
the isolated metal contacts before and after assembling the solder beads (without heating) were
measured to be around 10® Q and 107 Q, respectively. The drop of the resistance is due to the
assembled solder beads, however, it is still very large. Figure 7(b) shows the I-V characteristic
of the circuit after heating the assembled solder beads and the resistance was measured to be
11.6 Q. In this case, the assembled solder beads bridge an effective conductive path between the
isolated metal contacts, inducing a significant drop of the resistance between the metal contacts.
The SEM images show that the heating process melted the material from the surface of the solder
beads and formed a fused structure between the adjacent solder beads, significantly reducing the
interface resistance between them. The SEM images also show that the adjacent beads are fused
together with a contact area over ten microns across. If the lithographically patterned contacts
were connected by a single bar of solder tens microns in diameter over the 200 um gap it is
expected that the resistance of this bridge would be less than 1 Q according to the calculation
shown in the Appendix. The fact that the bridge produced is more resistive than this suggests that
the measured resistances are still dominated by the interfaces between beads and between the
beads and the metal contacts even after the melting stage. Therefore, relevant work is currently on
going to reduce the interface resistance by optimizing the heating process such as adjusting the
temperature, time and sample’s ambient heating environment to create more conductive interfaces
between the beads. Since the solder beads have a great potential to be used for creating electrical
connections, our future work in this area will focus on using OET to assemble solder beads
together with photonic and electronic components to make functional devices. A proof-of-concept
demonstration of using OET to assemble solder beads and a micro-sized light-emitting diode
(micro-LED) [32,33] can be found in the Appendix.
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Fig. 7. I-V characteristics. (a) I-V characteristics of the isolated metal contacts before and
after assembling the solder beads (without heating). (b) I-V characteristic of the isolated
metal contacts after heating the assembled solder beads.

4. Conclusion

In summary, this work demonstrates how freezing and subsequent sublimation can be used
to preserve the arrangement of micro-particles assembled through optical micromanipulation
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techniques in a liquid environment. We have shown that by using a slow, step-by-step, freezing
process micro solder beads can be preserved in a desired arrangement to within one micrometer
of their initial positions whereas quickly freezing the solution can cause them to move by tens
of microns. We further show that this level of control is sufficient to allow the subsequent
fusing together of the solder beads by heating and melting them and that this fused connection
has a relatively low resistance. Additionally, the OET device is capable of performing parallel
manipulation of solder beads in the same plane, allowing the beads to be precisely assembled and
interfaced with each other or other small electronic components which then is an enabling step
towards manufacturing electrical circuits using OET rather than pick and place technologies. The
freezing and subsequent freeze-drying process developed here however will be more generally
applicable to other tweezing modalities such as optical, acoustic or magnetic tweezing allowing
the preservation of patterned micro-particles for many applications.

5. Appendix
5.1. Sample preparation

The solder beads used in this work are commercially-available SngyPbsgAg, microspheres
(Industrie des Poudres Sphériques, France), which are in powder formats as provided from the
company. To make the sample for the experiment, the beads were put into a solution, consisting
of deionized water with 0.05% volume ratio of non-ionic surfactant TWEEN 20 (SIGMA P9416).
Since the solder beads tend to ‘clump together’ in random complexes and stick onto the surface of
pipette, adding TWEEN 20 in the solution can minimize the clumps and help transfer the beads
into the OET device. The conductivity of the solution was measured to be 2 mSm~! after adding
the TWEEN 20. To carry out the experiment, the solution containing the metallic microspheres
was injected into the OET device at a volume of 10 uL each time using a pipette and the device
was biased with a 15 kHz 25 V peak-to-peak AC signal.

5.2. Device fabrication

The OET device used in this work consists of a top electrode and a bottom electrode. The top
electrode is made from a standard microscope glass slide (2.5 cm X 7.5 cm X 1mm) coated on
one side with 600 nm thick ITO by magnetron sputtering (Diamond Coating Ltd, UK) (see Figs
8(a) and 8(b). To make the top electrode, the ITO-coated glass slide was cut to small pieces with
sizes around 2.5 cm X 1.5 cm using a diamond scriber. An electrical wire was bonded to the
small piece of ITO-coated glass slide using a conductive silver paint (Agar Scientific, Acheson
Silver DAG 1415M) and an epoxy resin (Mxbon Waterproof Epoxy-E41A). Image of the top
electrode can be found in Fig. 9(a).

Shown in Fig. 8 is the fabrication flow of the bottom electrode. Compared with the top
electrode, an extra photoconductive layer made of a-Si:H was deposited on top of the ITO layer
at a thickness of 1 um by plasma-enhanced chemical vapour deposition (PECVD) (Oxford
Instruments PECVD 80+) (see Fig. 8(c)). On top of the a-Si:H layer, a SiO, insulation layer with
a thickness of 350 nm was also deposited by PECVD (Oxford Instruments PECVD 80+) (see
Fig. 8(d)). Then, a standard photolithography process was used to define photoresist patterns
on top of the SiO; layer (see Figs. 8(e) and 8(f)). After the photoresist patterns were formed,
reactive ion etching (RIE) (Oxford Instruments RIE80+) was used to remove specific parts in the
SiO, layer and expose the a-Si:H layer (see Fig. 8(g)). Then, acetone (CH3;COCH3) was used
to remove the photoresist patterns. The following step was to use standard photolithography to
redefine the photoresist patterns (see Figs. 8(h) and 8(i)). After this step, the exposed a-Si:H layer
was covered by photoresist while there is no photoresist on top of the SiO; layer (see Fig. 8(i)).
After depositing a thin metal layer consisting of Ni/Au (10 nm/ 90 nm) using an electron beam
evaporator (Plassys MEB 550S) (see Fig. 8(j)), a metal lift-off process was used to remove the
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Fig. 9. Image of the OET device. (a) Image of the top OET electrode used in this work. (b)
Image of the bottom OET electrode used in this work.

metal deposited on top of the photoresist. Therefore, specifically-designed metal contacts can
be fabricated on top of the a-Si:H layer with SiO, insulation layer sandwiched in between (see
Fig. 8(k)). To make the bottom electrode, the ITO-coated glass slide with a-Si:H layer and metal
contacts was also cut to small pieces with sizes around 2.5 cm X 1.5 cm. Then, a scratch knife
was used to remove the a-Si:H at the edge to expose the conductive ITO layer, where an electrical
wire was mounted using silver paint and epoxy as for the top electrode. An image of the bottom
electrode can be found in Fig. 9(b). After the top and bottom electrodes were fabricated, they
were attached together by a 150 um thick spacer to form a chamber, where the liquid medium
containing the solder beads was injected via a pipette. This attached electrode pair formed the
OET device used in this work.

5.3. Used equipment

The equipment used for the experimental setup (see Fig. 2) includes a DMD projector (Dell
1510X), a microscope (Olympus BX51 microscope, with motorized Prior Scanl11 stage), a
Peltier cooler (ETH-127-14-15-RS), an amplifier (Thurlby Thandor Instrument WA31 amplifier),
a function generator (TG5011 LX1 function generator), a long-pass filter (Thorlabs FD1R) and
a short-pass filter (Thorlabs FES0550). An infrared camera (FLIR E60bx) was also used to
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measure the temperature profiles of the OET device cooled by the Peltier.

5.4. Resistance calculation

A simplified model of solder bar (cylinder) was used to calculate the resistance of the bridge
formed by the solder beads. For a single bar of solder with 10 um in diameter over the 200 um
gap, it is expected that the resistance of this bar would be:

R:p‘Length _ p-l

(M

Area m-r?

For the solder bead used in this work, the electrical resistivity (p) is 0.145 Q - um; L is 200 um;
r is 5 um. Therefore, the resistance of the bar is calculated to be 0.4 Q.
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Fig. 10. (a) Schematic of the micro-LED device. (b) Schematic layout of connecting solder
beads to the metal contacts of a micro-LED device. (c) & (d) Microscope images of solder
beads assembled by OET to connect with the metal contacts at the corners of the micro-LED
device.

5.5. Assembling of the solder beads with the photonic device

Figure 10 shows the micro-assembly of solder beads to connect with the metal contacts of a
micro-sized light-emitting diode (micro-LED) device using OET. The detailed device structure
and fabrication procedures can be found in previously reported work [32,33].
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