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Abstract: This is a detailed review on olefin polym-
erization models, and the most recent process control 
approaches used to control these nonlinear systems are 
presented. Great focus has been given to the various 
approaches of fluidized-bed reactor (FBR) modeling. Cur-
rently, there has yet to be a single model that blends these 
modeling aspects together into one single formulation. In 
this article, the classification of models works by looking 
at their assumption in considering the phases inside the 
system. Researchers have been unraveling vast informa-
tion to narrate in detail the relations between various 
variables that can be found in FBRs. Although it is not 
difficult to understand about the basics of modeling poly-
mer properties, a gap exists for future researchers to jus-
tify in detail the phenomena and reduce the gap between 
model predictions and the actual data. The various con-
trolling approaches to control these FBRs have also been 
reviewed and categorized depending on the method they 
used to control significant parameters of this nonlinear 
system. The progress that can be expected in this field 
leads to the creation of more efficient reactors and mini-
mizing waste.

Keywords: fluidization; fluidized-bed reactors; olefin 
polymerization; process control; process modeling.

1  �Introduction
Olefin polymerization in gas-phase fluidized-bed reac-
tors (FBRs) is known to be one of the most economic 
methods of manufacturing commodity polymers 
including polyethylene (PE), polypropylene (PP) and 
ethylene-propylene rubber (EPR). FBRs are extensively 
used in operations that involve solid catalysts. These cat-
alysts are mainly heterogeneous Ziegler-Natta or metal-
locene in the case of polyolefins production. Unlike other 
processes that produce PE, polymerizing monomers in a 
gas-phase FBR has shown to have better heat removal 
and work at much lower temperatures and pressures and 
being needless of solvents, which contribute to its very 
broad use in industries (Alizadeh et  al. 2004). Figure 1 
sheds light on a typical fluidized-bed PE reactor process 
flow diagram. Under normal circumstances, FBRs for PE 
production are available in the industry work at a tem-
perature between 75°C and 111°C and pressure range 
between 20 and 40 bar (Xie et al. 1994). The amount of 
superficial gas velocity (U0) can be between 3 to 8 times 
of the minimum fluidization velocity. Various models 
have been recommended; hence, one can understand 
how a gas-phase ethylene polymerization works in real-
life applications. Researchers have modeled these FBRs 
in the form of single-, two- or three-phase reactors (Choi 
and Harmon Ray 1985, McAuley et  al. 1994, Fernandes 
and Lona 1999).

Several researchers have reviewed modeling or 
control of FBRs. Kiparissides (1996) classified the various 
polymers according to their molecular structure and 
briefly reviewed the various polymerization mechanisms 
and main mathematical approaches available at the time 
and presented a method for developing polymer reactor 
models. They also discussed the benefits of optimization 
and control of polymer reactors and future directions 
related to the development of computer-aided design, 
monitoring, optimization, and control for polymeriza-
tion processes. Harmon Ray and Villa (2000) examined 
the key reaction parameters for a variety of polymers pro-
duced using several types of reactors and illustrated the 
nonlinearity which can arise in industrial reactors. Some 
of the effects of imperfect mixings were also showed. 
McKenna and Soares (2001) have reviewed some single 
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particle models for olefin polymerization that can be used 
to describe particle growth, polymerization rates, concen-
tration and temperature radial profiles, polymer micro-
structure, and particle morphology. Mahecha-Botero et al. 
(2009) presented a comprehensive review of fluidized-bed 
catalytic reactor models. The authors analyzed and cat-
egorized 40  models depending on the characteristics of 
the conservation equations and their underlying assump-
tions. Since some approaches consider the reactor as a 
black box and try to model it using artificial intelligence, 
Noor et al. (2010) reviewed the use of neural networks in 
modeling and control of polymerization processes. Com-
putational fluid dynamics (CFD) has also been used exten-
sively in modeling polymerization in FBRs. Khan et  al. 
(2014) reviewed the applications of these approach and 
the analyzed its capabilities and shortcomings. Recently, 
Philippsen et  al. (2015) presented a general summary of 
the mathematical models used in modeling FBRs in all its 
process applications.

Process modeling and control are two fields that are 
fast-changing, proving that they are useful toward achiev-
ing sustainability and green processing. They help fore-
cast the system performance without having to build pilot 
plants that can be expensive and wasteful. Furthermore, 
judging the strict environmental constraints we have 
today, advanced controllers are vital to guarantee that 
the operation is safe. As new research in modeling and 
control of FBRs to produce polyolefins came very rapidly, 
a summary of recent advances would be very timely. What 
distinguishes this article from other reviews is that it 
holds the most recent advancements in this area not only 
in modeling approaches, but in control studies as well. A 
number of papers have been published in this area during 
the last decade which need to be reviewed and analyzed. 
In this article, the basics of modeling and control of olefin 
polymerization in FBRs are discussed and the latest 
papers in this field are summarized categorically to give a 
clearer picture to future researchers.
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Figure 1: A typical fluidized bed polymerization reactor.
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2  �Polymer classification and 
processes for olefin polymerization

2.1  �Classification of polymers

Polymers are made up from many monomers which are 
connected. These monomers connect in a series of kinetic 
reactions called polymerization reactions. One way to 
classify polymers is by their kinetic mechanism and mole-
cular structure. Polymers can be classified into several 
types by categorizing them based on the number of differ-
ent structural entities present in a polymer chain:

–– Homo-polymers which are the polymer chains that are 
made of many single repeating units linked together.

–– Copolymers are those polymers which are made from 
two or more types of monomers.

Bi-polymers, ter-polymers, and multi-polymers are the 
varying types of copolymers made from two, three or more 
types of monomers, respectively. Polymerizations can be 
classified into different categories based on their chain 
growth mechanism:

–– Step-growth polymerizations: Typically, step-growth 
polymerization advances by the reactions among two 
functional groups that are dissimilar to one another.

–– Chain polymerizations: Chain polymerization or addi-
tion polymerization occurs when monomer molecules 
continue to be added to an active chain center in a 
very brief period until the polymer chains grow to 
the largest size. Chain polymerization can make its 
way through free-radical, anionic, cationic, coordina-
tion polymerization and group transfer mechanisms, 
which need a chain initiator that creates the main 
active sites centers (Kiparissides 1996).

2.2  �Processes for olefin polymerization

Polymerization processes can be broken down into homo-
geneous and heterogeneous. While the reactions of the 
former occur in one phase only, that of the latter occurs 
when a different phase is present. In the latter case, 
chemical reactions, heat transfer, and inter-phase mass 
transfers are impending. Two scenarios prevail in the het-
erogeneous system. Polymerization may deal with several 
phases or insoluble polymer in the monomer phase. This 
kind of polymerization includes bulk, solution, precipi-
tation, suspension, emulsion, solid-state, inter-facial 
polycondensation and solid catalyzed polymerization 
(Kiparissides 1996).

Heterogeneous catalysts are normally used for olefin 
polymerization processes, but some processes also make 
use of soluble catalysts. There are three types of catalysts 
used for olefin polymerization processes: Ziegler-Natta, 
Phillips, and Metallocene. Most Ziegler-Natta polymeriza-
tion reactions depend on titanium catalyst systems. Ziegler-
Natta catalysts consisting of a transition metal compound 
and an activator are, in general, variations that have the 
same theme, integrated with a wide range of electron donors 
and co-catalysts. The most popular catalysts are the Ziegler-
Natta catalysts, used for PE and PP production. Phillips 
catalysts are made up of a chromium oxide supported on an 
amorphous material such as silica or silica/alumina (Soares 
2001). Metallocene catalysts are based on the metallocene 
of group 4 transition metals with methylaluminoxane, and 
they show that olefin polymerization has high activity.

In solid catalyzed polymerization, the main methods 
adopted to produce polyolefin are: slurry-phase process, 
liquid solution process and gas-phase process, while 
continuous-stirred tank and loop reactors are the main 
reactors for slurry-phase olefin polymerization, and FBRs 
or vertical or horizontal stirred-bed reactors (VSBR and 
HSBR, respectively) for gas-phase processes. The exist-
ing processes for olefins polymerizations are normally 
different in the reactor media’s physical state and the 
process unit’s operating condition. The catalyst, desired 
range of products to be produced, economics and feed-
stock availability are the main parameters or, loosely 
speaking, determinants of the olefin polymerization 
process method. Olefin monomers can be polymerized 
to make up polyolefin. Ethylene or propylene may be 
homo-polymerized to create PE and PP, or co-polymer-
ized together or with higher 1-olefins such as 1-butene, 
1-pentene, 4-methyl-1-pentene, 1-hexene and others using 
one or more catalytic metal compounds, usually transi-
tion metals, together with a co-catalyst and/or a support 
for example, with alumina or silica. Olefin polymeriza-
tion processes and their characteristics that are most 
common are summarized in Table 1 (Ray 1991).

2.2.1  �Slurry-phase and solution processes

The two primary reactors for slurry-phase olefin polymeri-
zation are the loop reactor and continuous-stirred tanks. 
In a typical manner, slurry polymerization processes are 
carried out in a high-pressure continuous reactor. In the 
process, components such as one or more monomers, 
a diluent, and a catalyst system and other reactants are 
introduced to the polymerization reactor to create a reac-
tion mixture, the solid olefin polymer particles and catalyst 
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particles are suspended and mixed well in a liquid diluent. 
Meanwhile, for solution polymerization processes, a 
monomer is dissolved in a nonreactive solvent having 
a catalyst where the solvent temperature is high enough  
for the dissolution of the polymer material. The heat 
freed by the reaction is absorbed by the solvent, thereby 
reducing the reaction rate. In both processes, concentra-
tions of the monomers are high, and the liquid can well 
remove the polymerization heat from the polymer particles 
which is what is the most attractive about these processes. 
However, separation of the polymer from in the solution 
process is often an expensive operation (Zacca et al. 1996).

2.2.2  �Gas-phase processes

Gas-phase olefin polymerization processes prepare an 
environment that is conducive for olefin polymerization. 
The remarkable characteristics of gas-phase olefin polym-
erization lie in the fact that as the system does not involve 
any liquid phase in the polymerization zone; the gas phase 
plays a role in the provision of monomers, the integration 
of polymer particles and removal of the heat of reaction. In 
this system, polymerization reaction occurs at the interface 
between the solid catalyst and the polymer matrix, and as 
can be seen, it is swollen with monomers throughout the 
polymerization stage. This process includes the VSBR, 
HSBR and FBR. In the gas-phase polymerization process, 
reactors must work closely to the dew point of the monomer 
mixture to achieve high monomer concentrations and high 
yields and the catalyst morphology must be very tightly 
controlled so that particle melting and agglomeration due 
to the heat transfer limitation of the gas can be prevented.

3  �Modeling of fluidized-bed 
polymerization reactors

3.1  �Introduction

The ability to justify how the reaction mechanism, trans-
port phenomena, reactor type and reactor operating 

conditions give the polymer quality of the final product is 
the major aim of polymerization processes (Kiparissides 
1996). The polymer quality concerns with all the molecu-
lar structure properties and the polymer product’s macro-
scopic morphological properties. Thus, it is only practical 
to classify these various phenomena that take place into 
the following models:

–– chemical kinetics;
–– reaction engineering;
–– hydrodynamics;
–– particle population balance.

The kinetics model is concerned with the reaction chem-
istry and reaction rate laws. The particle size with spe-
cific hydrodynamic correlations is given through the 
hydrodynamics model. The reaction engineering model 
defines the transient mass and energy balance equations, 
whereas the population balance model offers a steady-
state particle population balance. All the chemical and 
physical phenomena seen in polymerization can be clas-
sified into these modeling levels (Ray 1991, Kiparissides 
1996, McKenna and Soares 2001):

–– kinetics modeling in microscale;
–– physical modeling in mesoscale;
–– dynamic modeling in macroscale.

In fact, multi-scale models are needed to fully discuss the 
nature of this process. To illustrate, Table 2 shows the set 
of reactions which takes place in copolymerization reac-
tions. The reactions constants are available from various 
sources within literature based on the number of active 
sites that we want to consider in modeling the system. 
These sets of equations normally are solved using the 
method of moments. The resulting moments equations 
are given in Table 3.

3.2  �Review of fluidization basics

In such reactors, gas or liquid is passed through solid 
particles at some velocities considered high enough to 
suspend the solid and makes it act like fluid. Fluidization 
has an expansive use in industries and the applications 

Table 1: Most common olefin polymerization processes.

Process Solution Liquid slurry Gas phase

Particle size (μm) – 10–104 10–104

Commercial reactor type CSTR Batch, CSTR, loop Fluidized bed, stirred bed
Kinetic mechanism Coordination Coordination Coordination
Examples (including copolymers) LDPE HDPE, PP, EP HDPE, LLDPE, PP, EP



M.R. Abbasi et al.: Modeling and control of polymerization FBR reactors      315

Table 2: Reactions occurring in a copolymerization reaction 
(McAuley et al. 1990).

Description Reaction

Formation 
reaction

∗ →( )( ) (0, )kf jN j N j

Initiation reaction + → =ii ( )
i i(0, ) (1,  ) 1, 2,.. k jN j M N j i

Propagation + → + = =ikp ( )
i k k( , ) ( 1, ) 1, 2,..  k jN r j M N r j i k

Transfer to 
monomer

+ → + = =ikkfm ( )
i k k( , ) (1, ) ( , )  1,  2,..jN r j M N j Q r j i k

Transfer to 
hydrogen

+ → + =ikfh ( )
i 2 H( , ) (0, ) ( ,   ) 1, 2,..jN r j H N j Q r j i

+ → =ikh ( )
H i i(0, ) (1,  ) 1, 2,.. jN j M N j i

+ →rkh ( )
H 3 i(0, ) (1, )jN j AlEt N j

Transfer to 
co-catalyst

+ → + =kfr ( )
i 3 1( , ) (1, ) ( , ) 1, 2,..  i jN r j AlEt N j Q r j i

Spontaneous 
transfer

→ + =kfs ( )
i H( , ) (0, ) ( ,  ) 1, 2 , ..i jN r j N j Q r j i

Deactivation 
reactions

→ + =ikds ( )
i d( , ) (0, ) ( ,  ) 1,  2,..jN r j N j Q r j i

→kds( )
d(0, ) ( )jN j N j

→kds( )
H d(0, ) ( )jN j N j

Reactions with 
poisons

+ → + =kdI( )
i m dIH( , ) (0, ) ( ,   ) 1, 2,..jN r j I N j Q r j i

+ →kdI( )
H m dIH(0, ) (0, )jN j I N j

+ →kdI( )
m dI(0, ) (0, )jN j I N j

Table 3: Moment equations that resulted from the equations in 
Table 2.
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the slugging bed, the height-to-diameter ratio (H/D) of the 
bed is high enough and the bubble size may become the 
same as the bed’s diameter. The fluidization of particles 
will occur at a high enough gas flow rate in a turbulent 
bed, where the velocity will exceed the particles’ terminal 
velocity. Instead of the bubbles, the upper surface of the 
bed vanishes and a turbulent motion of solid masses and 
voids of gas with different dimensions are seen. Pneu-
matic transport of solids occurs with higher amount of 
gas velocity, and the fluidized bed becomes an entrained 
bed in which dispersed, lean or dilute phase fluidized bed 
would be found.

3.2.2  �Bubbling fluidized beds

Gas fluidized beds are differentiated by the bubbles 
formed at superficial gas velocities larger than minimum 
fluidization velocity. In this state, it appears that the bed 
is distributed into the emulsion phase and the bubble 
phase. The bubbles are very analogous to gas bubbles 
in liquid form, and they act similarly and merge while 
rising through the bed. The movement of particles in 
fluidized beds receives most influence from the rising 
bubbles passing through the bed. As the result, extreme 

of fluidization can be divided into physical and chemical 
operations. The FBR functions in diverse industrial appli-
cations because of the high contacting methods, uniform 
particle mixing, uniform temperature gradients and the 
ability to run reactor continuously. Various processes have 
successfully adopted this technology. This includes olefin 
polymerization, reforming and cracking of hydrocarbons, 
coal gasification and carbonization, and many others.

3.2.1  �Flow regimes in fluidization

There are different behaviors noted for the fluidized beds 
in which the solid particles are fluidized because of the 
variety in the gas, solid and velocity properties. With a 
growth in the gas velocity in the minimum fluidization 
regime, the bed voidage will escalate marginally and the 
drag force conveyed by the rising gas equals the weight of 
the particles. Next, the bed will go into the gas fluidization 
state. Higher levels of gas velocity mean that bubbles will 
set in and a bubbling fluidized bed would be seen. The 
bubbles in a bubbling fluidized bed will propagate and 
coalesce when it rises while the velocity intensifies. In 
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consideration is given to these bubbles and their proper-
ties. To compare the processes occurring inside an FBR, 
the fluidization bubbles, bubble formation, the way par-
ticles are transported and their path through the bed are 
not to be taken lightly.

3.3  �Modeling approaches

The mixing conditions and the number of phases exist-
ing in the bed are the focal point of the literature in terms 
of modeling the operation of a catalytic olefin polym-
erization in FBRs. The many phases that carry their own 
chemical reactions and interphase heat and mass transfer 
exist in various heterogeneous polymerization systems, 
resulting in a comprehensive and realistic model that will 
account for all these complex gas and solid flows, mech-
anisms of mass and heat transfers and polymerization 
kinetics. Regarding the hydrodynamics, several methods 
were recommended in the literature to explain in detail 
the fluidized-bed polyolefin reactors.

McAuley et  al. (1994) and Xie et  al. (1994) intro-
duced a well-mixed reactor as their attempt to describe 
fluidized-bed polyolefin reactors. They drew a compari-
son between this approach and simple two-phase models 
in steady state and conclusively said that the latter shows 
very little errors when it predicts the reactor temperature 
and monomer concentration. Choi and Harmon Ray (1985) 
considered the reactor to come in two phases of emulsion 
and bubble and they recommended the simple two-phase 
model. They rested their conclusion on the solid-free 
bubbles which shows that polymerization only takes 
place in the emulsion phase.

Fernandes and Lona (2001) pitched the idea of a 
three-phase heterogeneous model which considered 
emulsion, bubble and solid phases and believed that they 
work as a plug flow. Hatzantonis et al. (2000) broke the 
reactor further into several solid-free well-mixed compart-
ments in series and considered that the emulsion and 
bubble phases are altogether mixed. Alizadeh et al. (2004) 
also embodied the reactor hydrodynamics using a tanks-
in-series model. Harshe et  al. (2004) further created an 
inclusive mathematical model based on the mixing cell 
framework to study the fluidized-bed PP reactors’ momen-
tary behavior. The authors also combined this model with 
a population balance model in steady state. This model 
could be the answer to multi-site and multi-monomer 
polymerization kinetics.

Ibrehem et  al. (2009) put forth a four-phase model 
and suggested that an FBR can involve emulsion, bubble, 
solid and cloud phases, but the authors guessed that the 

polymerization reactions only happen in the emulsion 
and solid phases. They also accounted for the effect of 
catalyst particle type and porosity on the reaction rate. 
Kiashemshaki et al. (2006) had reserved four parallel sec-
tions for the reactor. Each section has its emulsion phase 
and the mixed and the bubble phase as plug flow. The 
authors believed that the polymerization would occur in 
both phases.

Khare et al. (2004) and Luo et al. (2009) used software 
like Aspen Dynamic and Polymer Plus together with major 
basics of chemical engineering for the development of 
their model. Consideration was given to key issues such 
as selecting thermodynamic model and physical property, 
catalyst characterization, to name but a few. Khare et al. 
(2004) introduced a model for gas-phase PP polymeriza-
tion in stirred-bed reactors applicable to both steady-state 
and dynamic gas phase while Luo et  al. (2009) built a 
model for commercial bulk PP polymerization with Hypo 
Technology. An assumption is made by Khare et al. (2004) 
with respect to the existence of multiple catalyst active 
sites in Ziegler-Natta catalyst. Their model that has a set 
of thermodynamic and kinetic parameters predicts the 
polymer production rate, polydispersity index, and mole-
cular weight. The authors highlighted the measures for the 
development and validation of the polymerization model 
by focusing on the thermodynamic and physical model 
selections, reactor model, catalyst characterization, and 
Ziegler-Natta polymerization kinetics.

The very intention of the reactor modeling and control 
problems is to reach acceptable heat removal and produc-
tion rate from the reactor. The reactor model behavior 
is subjected to several process variables like monomer 
concentration, catalyst feed rate, feed gas temperature, 
superficial gas velocity and catalyst activity.

3.3.1  �Hydrodynamics

FBRs have several issues. They, for starters, are non-ideal 
and challenging to elaborate due to complicated trans-
port phenomena, flow patterns, and polymerization reac-
tions. A number of studies have focused on several mixing 
models to model such non-ideality to characterize FBRs’ 
behavior. Non-ideal FBR modeling would need the inte-
gration of transport phenomena, kinetics, and hydrody-
namics equations. Choi and Harmon Ray (1985) put forth 
a two-phase model with constant bubble. The authors 
placed it on a plug-flow bubble phase and a fully mixed 
emulsion phase to find traits of the FBR dynamic behav-
ior. McAuley et al. (1990) further guessed that there is an 
unlimited heat and mass transfer between the emulsion 
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and bubble phases and recommended a much simpler 
well-mixed model.

The traditional well-mixed and constant-bubble-size 
models presume solid-free bubbles (εb = 1) and that the 
fluidization of the emulsion phase is at the minimum 
(εe = εmf). This concept does not gauge the impact of the 
dynamic gas-solid distribution on the heat/mass transfer 
and reaction rate in the fluidized beds and has its restric-
tions when it comes to describing the low-velocity bubbling 
fluidization. Cui et al. (2000), nonetheless, have been able 
to prove theoretically and experimentally the presence of 
solid particles in the bubbles. They also proved that the 
emulsion phase may have more gas at higher gas veloci-
ties and it does not stay at minimum conditions of fluidiza-
tion. Increasing the superficial gas velocity contributes to 
the better mixing of the two phases, making more amounts 
of gas to enter the emulsion phase and further leading to 
higher solid particles entering the bubbles.

Readers can refer to various works that have collected 
different hydrodynamic formulations from the literature 
(Shamiri et al. 2015, Abbasi et al. 2016).

3.3.2  �The well-mixed model

McAuley et al. (1990, 1994) made a proper introduction of 
the fluidized bed approximated by a single-phase contin-
uous stirred tank reactor (CSTR) in the well-mixed model. 
This assumption is believed valid for very high mass and 
heat transfer rates between phases (uniform monomer 
concentration and temperature throughout the bed) or 
small-size bubbles. The bubble phase does not function 
in the model and the bed voidage (εbed) contemplates on 
the entire gas volume fraction in the bed. The following is 
a set of assumptions that would work for the well-mixed 
model:

–– The polymerization reactor is a single-phase (emul-
sion phase) well-mixed reactor because of high heat 
and the mass transfer rates between phases or pos-
sibly because bubbles are sufficiently small.

–– Composition and temperature are the same through-
out the bed.

–– The emulsion phase stays at minimum fluidization 
state.

Dynamic mass and energy balances are obtainable for the 
system based on the above assumptions for hydrogen and 
monomers. The mole balance is given by:
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In the energy balance equation, the monomer internal 
energy is considered insignificant. The conditions needed 
to address the model equation are as follows:

i 0 i in

in

[ ] [ ]

0 .( )
tM M

T t T
= =

= =

For kinetics and hydrodynamics equations, one can 
take guidance from the literature for added information 
(McAuley et al. 1990, 1994, Hatzantonis et al. 2000).

3.3.3  �The constant bubble size model

In this model, we consider the assumption made by Choi 
and Harmon Ray (1985) that the fluidized bed comes in 
two phases depending on the phase where polymeriza-
tion happens (emulsion or bubble phase). In the con-
stant bubble size model, it is safe to assume that the 
bubbles, at constant velocity, travel through the bed 
in plug flow where the spherical size is characterized 
as fixed and consistent. We also need to consider the 
fact that the emulsion phase is interchanging heat and 
mass with the bubble phase and the mixture comes in 
full mixture. To add, the mass and heat transfer coef-
ficients are constant throughout the bed, and we are led 
to believe that the heat and mass transfer resistances 
between the solid polymer particles and the monomer 
gas in the emulsion phase are trivial (Floyd et al. 1986). 
The constant bubble size model however does not ignore 
these assumptions:

–– The fluidized bed is made of the emulsion and bub-
ble phases. The former is where the reactions would 
occur.

–– The bubbles are in plug flow and the spherical size 
is the same among each other. Their velocity is also 
constant.

–– It is believed that the emulsion phase is fixed at the 
minimum stage of fluidization, and that it the mixture 
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is perfect, exchanging mass and heat with the bubble 
phase at constant rates over the bed height.

–– The gas and the solid polymer particles in the emul-
sion phase have negligible inter-phase heat and mass 
transfer resistances (Floyd et al. 1986).

It is through these assumptions that the steady-state mass 
and energy balances are derived. The mole balance for 
monomer and hydrogen can be expressed as

i b i b0

b be
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The bubble-phase energy balance can be written as
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The dynamic molar balance for the ith monomer in 
the emulsion phase is expressed by
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The dynamic energy balance for emulsion phase can 
be written as
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The boundary and initial conditions for solving the 
model equations are as follows:
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To estimate the gas velocities for bubble phase and 
emulsion phases, the bubble phase and emulsion phases 
voidage, the bed bubble volume fraction, and heat and 
mass transfer coefficients for the constant bubble size 
mode, the correlations needed for that purpose can be 
found from diverse sources in the literature (Shamiri et al. 
2012, 2015).

3.3.4  �The bubble-growth model

In the bubble-growth model, the constant bubble size 
model was extended to account for the varying bubble 
size with respect to the bed’s height (Hatzantonis et  al. 
2000). Spurred by the developments of Kato and Wen 
(1969), in this model, an assumption is that the bubble 
phase is divided into “N” well-mixed sections in series 
and the emulsion phase is mixed perfectly and at develop-
ing fluidization conditions (εbed = εmf). The bubble-phase 
sections’ size is fixed to be equal to the bubble diameter at 
the equivalent bed height. The local mass and heat trans-
fer coefficients between the emulsion and bubble phases, 
the bubble rise velocity, and the local bubble volume 
fraction are found by the bubble diameter and thus the 
equivalent bed height. This is because the bubble size has 
its minimum value at the gas distributor and it enlarges to 
its largest constant size while it moves through the bed.

This model does not weigh the heat and mass transfer 
restrictions between the solid particles and the surround-
ing gas in the emulsion phase. Nevertheless, these limi-
tations can become something that should not be taken 
lightly for high rates of polymerization.

If the bubbles are solid-free (no reaction), we can 
write the molar balance for the i monomer in the n 
compartment:
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where db,n is the bubble size corresponding to the n 
compartment.

In effect, the energy balance for the n compartment 
can be written as
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The dynamic mass and energy equations can also be 
derived and this had been discussed by Hatzantonis et al. 
(2000).

3.3.5  �Other mathematical approaches

Fernandes and Ferrareso Lona (2001) had contemplated 
on gas in bubble and emulsion phases plus solid polymer 
particles, all as plug-flow phases, to suggest on their three-
phase heterogeneous model. Jafari et  al. (2004) brought 
to comparison the performance of some available models 
of the time such as simple two-phase model and general-
ized bubbling/turbulent model. They summed up that the 
later model gives the most fitted results to experimental 
data. Luo et  al. (2009) had worked further on a method 
to model the PP process based on Hypol Technology. The 
authors adopted the Polymer Plus and Aspen Dynamics 
to foresee process behavior and physical properties in the 
steady-state and dynamic modes. In something similar, 
Zheng et al. (2011) developed a steady-state and dynamic 
method to model the propylene process with the aid of the 
Spheripol Technology. Their kinetic model leaned on both 
single and multi-site catalyst and their molecular weight 
distribution results were fitted with the help of the actual 
gel permeation chromatography (GPC) data.

In the meantime, some researchers focused on parti-
cle size distribution studies in fluidized beds rather than 
kinetic or property estimation (Khang and Lee 1997, Imma-
nuel et al. 2002, Ashrafi et al. 2008). That said, fluidization 
regimes have also been studied in vast literature. Differ-
ent methods that can find the fluidization regimes in gas-
solid FBRs have been applied on these reactors to study 
several hydrodynamic aspects (Makkawi and Wright 2002, 
Sederman et al. 2007, Tamadondar et al. 2012). Alizadeh 
et  al. (2004) put forth a pseudo-homogeneous tanks-in-
series model to guess on the behavior of industrial-scale 
gas-phase PE production reactor. Kiashemshaki et  al. 
(2006) were inspired by this model and they suggested a 
two-phase model to describe the fluidized-bed ethylene 
polymerization reactor. Their model was a dynamic model 
except in terms of the computation of the temperature and 
co-monomer concentrations.

Shamiri et  al. (2010, 2011, 2013, 2014) analyzed dif-
ferent dynamic and non-dynamic modeling and control 
approaches for gas phase homopolymerization or copoly-
merization of olefin in FBRs.

Abbasi et  al. (2016) proposed a dynamic two-phase 
ethylene copolymerization model which considers parti-
cle carryover in the model. Their model showed to be a 
more realistic model where the accuracy was shown by 

confirming the results with industrial data. The main 
equations in the developed model are as follows:
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Energy balance for emulsion phase:

( )

e e e.(in) ref i e,(in) pi e e e ref i e pi
1 1

v e ref e pi i e b pol p.pol
1

e pe R be e e b

e e e ref pi i e
1

e e
e ref e pi

e

( [ ] [) ( )

( )

]

( ) [ ] (1 )

(1 ) ( )
1

[ ]

( )

m m

i i

m

i

m

i

U A T T M C U A T T M C

R T T C M C

R H H V T T

dV T T C M
dt

K A
T T C

W

ε ε ρ

δ
ε ∆

δ

ε

ε

= =

=

=

 
 
 

− − −

− − + −

 
+ − − − − 

− −

− −

∑ ∑

∑

∑

( )

( ) ( )

i e b pol p.pol
1

e e pi i e e pol p.pol e ref
1

[ ] 1

[ ] 1 .

m

i

m

i

M C

dV C M C T T
dt

ε ρ

ε ε ρ

=

=

+ −

 
= + − − 

 




∑

∑

( )

e e e.(in) ref i e,(in) pi e e e ref i e pi
1 1

v e ref e pi i e b pol p.pol
1

e pe R be e e b

e e e ref pi i e
1

e e
e ref e pi

e

( [ ] [) ( )

( )

]

( ) [ ] (1 )

(1 ) ( )
1

[ ]

( )

m m

i i

m

i

m

i

U A T T M C U A T T M C

R T T C M C

R H H V T T

dV T T C M
dt

K A
T T C

W

ε ε ρ

δ
ε ∆

δ

ε

ε

= =

=

=

 
 
 

− − −

− − + −

 
+ − − − − 

− −

− −

∑ ∑

∑

∑

( )

( ) ( )

i e b pol p.pol
1

e e pi i e e pol p.pol e ref
1

[ ] 1

[ ] 1 .

m

i

m

i

M C

dV C M C T T
dt

ε ρ

ε ε ρ

=

=

+ −

 
= + − − 

 




∑

∑

Energy balance for bubble phase:
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Solid elutriation constants gathered from the litera-
ture are obtained from Rhodes (2008) and are as follows:
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These equations can be solved using the following 
initial conditions:
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3.3.6  �Condensed mode cooling modeling

Injection of a quench liquid into the reactor is an accepted 
heat removal method in olefin polymerization FBRs. 
Although in PE the “quench” liquid is usually an inert 
alkane (often referred to as an induced condensing agent, 
ICA), but it is the liquefied monomer in the case of PP. 
Introduction of propylene copolymers and heavier mon-
omers such as hexane or butene gives the possibility of 
condensing these monomers and inserting them in liquid 
form in a gas-phase process.

To find out the effect of liquefied co-monomer injec-
tion on the reaction rate, the influence of these com-
ponents on solubility, transport, and other “physical” 
processes on one hand and their impact on the reaction 
on other hand need to be found. As an example, the 
instantaneous rate of ethylene polymerization increased 
in the presence of an ICA in the study which was done by 
Namkajorn et  al. (2014). The authors related this to the 
enhancement of the local concentration of ethylene due to 
the heavier hydrocarbon at the catalyst active sites. They 
also examined different isomers of pentane and hexane. 
Alizadeh et al. (2015) concluded that the complex effects 
were the result of the alkane replacement with a similar 
alkene. Based on thermodynamics, both alkanes and 
alkenes increase the rate of ethylene polymerization via 
the cosolubility effect, but considering that the alkenes 
are also co-monomers, they have a direct influence on the 

reaction rate. Moreover, they boost the polymerization 
rate (called co-monomer effect) at low concentrations; 
nonetheless, they decrease the reaction rate at higher con-
centrations despite the cosolubility effect. Nevertheless, 
the ethylene’s concentration is higher in the existence of  
a heavier compound rather than ethylene alone.

Although condensed mode cooling is common in 
industries, only a few studies have focused on modeling 
this approach to analyze its effect on the hydrodynamics, 
transport phenomena and polymerization reactions, and 
there is still a need for models that can accurately account 
for the entire process considering the condensed mode 
cooling practice (Jiang et al. 1997, Yang et al. 2002, Mirzaei 
et al. 2007, Zhou et al. 2013, Alizadeh et al. 2017, Pan et al. 
2017).

3.3.7  �CFD approaches

CFD is a category of fluid mechanics that uses numerical 
analysis and data structures to solve and analyze problems 
that involve flow of fluids (Schneiderbauer et  al. 2015). 
Researchers use computers to do the essential calculations 
to simulate the fluid and surface interactions defined by 
boundary conditions. With high-performance computa-
tions, better solutions can be completed in less time.

CFD model development is a progressive research area 
for picturing fundamental phenomena without executing 
real-time experiments. It can be used to solve momen-
tum and conservation equations in multi-phase flows. 
For polymerization reactors, an added benefit of CFD is 
that it can offer information on turbulent zones which is 
very important because the reactants are mostly inserted 
within these areas where the reaction yield is superior 
(Dompazis et al. 2008).

Two methods of CFD models, i.e. Eulerian and 
Lagrangian, are used to define gas-solid fluidized reac-
tors. Both phases (gas and solid) are counted as contin-
uum (fluid) in the Eulerian model, and momentum and 
continuity equations are dealt with for both phases. The 
Lagrangian model, meanwhile, solves Newton’s equa-
tions of motion for each particle and particle-particle col-
lisions and applied forces on the particle are considered. 
The Eulerian-Lagrangian method, which is also known 
as discrete element method or discrete particle model, 
studies the fluid as a continuum and considers solids 
to be dispersed phase (Schneiderbauer et al. 2016). The 
discrete element method models the continuous phase 
and particle trajectories using the Eulerian and Lagran-
gian frameworks, respectively. The continuous phase 
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can be modeled by averaging its properties over an 
extensive variety of these paths or trajectories. However, 
to obtain an average of all quantities in a moment, it is 
recommended that a plentiful of particle trajectories be 
simulated. Gas and emulsion phases are presumed to be 
continuous in the Eulerian-Eulerian approach while they 
are considered completely interpenetrating in all control 
volumes.

Particle size distribution is a key factor in CFD studies 
of this system. To define the particle size distribution in a 
multi-phase flow, the population balance equation (PBE), 
continuity, momentum, and energy equations need to be 
solved simultaneously. Researchers have used a combina-
tion of PBE solving methods with CFD to discuss particle 
size distributions and flow patterns within polymeriza-
tion FBRs (Yan et al. 2012, Akbari et al. 2015a,c, Che et al. 
2015a, 2016).

Several researchers also performed advanced inves-
tigations on the influence of operating conditions and 
geometry of the reactor, such as distributor type, size of 
solid particles, gas velocity and operating pressure on the 
hydrodynamics of the reactor, for accurate scale-up and 
design of reactors (Akbari et  al. 2014, 2015b; Che et  al. 
2015b) and some used the results of CFD for further analy-
sis using signal or image processing to study fluid struc-
tures during the process (Aramesh et al. 2016).

For more details on CFD modeling of olefin polym-
erization in FBRs, readers may refer to a comprehensive 
review by Khan et al. (2014).

4  �Control of olefin polymerization 
in FBRs

Modeling and controlling polyolefins polymerization 
in FBRs are difficult to perform because of its highly 
nonlinear behavior. This is the direct impact of having 
complex flow characteristics of gas and solids, various 
mass and heat transfer mechanisms, very complex reac-
tion mechanisms and the interaction that takes place 
between process control loops. Bequette (1991) reviewed 
the nonlinear control system techniques extensively. He 
regarded the techniques promising since they can address 
common problems associated with chemical processes. 
While the progress in nonlinear control is encouraging, 
several goals for future research in nonlinear control of 
chemical processes were explained thoroughly. Several 
research articles were published in the past years on the 
control of olefin polymerization processes. This literature 

using various algorithm types as control strategy is shown 
in a summary in Table 4. Figure 2 illustrates some of the 
control loop structures which are used to control differ-
ent polymer and reactor properties such as temperature, 
production rate and MFI.

4.1  �Conventional control

Despite many sophisticated control theories and tech-
niques that have been devised in the last decades, con-
ventional controllers especially proportional integral (PI) 
controllers are still the most implemented in real-world 
cases. In fact, due to their simple structure, PI controllers 
are easy to tunes, and their use is well understood by a 
clear majority of industrial practitioners and automatic 
control designers.

Choi and Harmon Ray (1985) used PI controller to 
control the reactor temperature in an olefin homopolym-
erization FBR by manipulating feed gas temperature. The 
authors concluded that reactor temperature can be con-
trolled if there is sufficient heat removal capacity in the 
system. The authors later studied the PID control of tem-
perature, bed level, and pressure in a solid catalyzed gas 
phase CSTR (Choi and Ray 1988).

The closed-loop simulations by Ali and Abasaeed 
(1998) using a PI controller on an industrial model of gas-
phase ethylene polymerization reactor showed that a single 
control loop with the feed temperature as the manipulated 
variable is not sufficient to stabilize the reactor tempera-
ture against external disturbances. Another disadvantage 
of the PI controller was the need to retune the controller 
parameters from case to case. The authors found that a 
multi-loop control scheme must be used to improve the 
feedback response and they did so using an NLMPC con-
troller. The authors, in another study, tried to overcome 
the PI shortcomings in SISO and MIMO cases by on-line 
adaptive tuning and finding proper control structures (Ali 
and Abasaeed 1999).

Ghasem (2000) also studied the dynamics of a 
UNIPOL® process using their model a PI controller. In the 
same ear, Sato et al. (2000) developed a model based on 
the work of McAuley et al. (1990) and applied a two-by-
two MIMO PI control structure to control MFI and density 
by changing feed hydrogen and butene flow rates.

Salau et  al. (2008) studied the dynamic behavior of 
this process using their proposed model and utilized PID 
controller designed via optimization in the frequency 
domain to control the reactor temperature by manipulat-
ing the cold-water valve position.
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4.2  �AI-based control

Conventional controllers such as PID controllers are 
popular in industrial applications since their design is 
easy, the structure is straightforward, and the cost is rea-
sonable. However, their performance is abysmal when they 
are vulnerable to unknown disturbances. An effective way 
of handling such nonlinearity is to adopt fuzzy logic, char-
acterizing an enhancement in the transient characteristic 
of the control performance (Rashid et al. 2011). By contrast, 
setting up a systematic design method for fuzzy control 
is not easy to do, since it is nonlinear in nature and, as a 
result, has no mathematical design method as its support. 
The excellent performance of fuzzy control in transient state 
combined with the high accuracy of PI control in the steady 
state would give us a solution that could be very workable. 
Alexandridis et al. (2002), based on fuzzy systems, had set 

up a systematic method to the nonlinear system identifica-
tion problem. This fresh method had led to a linguistic and 
an analytic system model. The method was tested in a CSTR 
to diagnose fixed operating states. The model could display 
several types of nonlinear manners successfully.

Mollov et al. (2002) offered the synthesis of a TS fuzzy-
based predictive controller for a nonlinear process which 
led to a robust control system. The success of this method 
was proven via both simulation and laboratory setups 
for on-line control of a cascaded-tanks setup. A predic-
tive control technique which takes its guidance from the 
dynamic TS fuzzy model was put forth by Sarimveis and 
Bafas (2003). This model was employed to forecast the 
upcoming performance of the control variable in a SISO 
control loop. Aided by a genetic algorithm, the control-
ler’s objective function was solved on line. The suggested 
method was put on an arbitrary process in a non-isothermal 

Table 4: Summary of control studies in olefin polymerization.

Reactor type   Model   Controller   Control variables   References

FBR-PE and PP   Two-phase   PI   Temperature   (Choi and Harmon Ray 1985)
CSTR-PP   Well mixed   PID   Temperature, bed level, pressure   (Choi and Ray 1988)
FBR-PE   Well mixed   IMC   MFI, density   (McAuley and Macgregor 1993)
FBR-PE   Well mixed   ETC   Temperature   (Dadebo et al. 1997)
FBR-PE   Two-phase   PI, NMPC   Temperature, monomer concentration   (Ali and Abasaeed 1998)
FBR-PE   Two-phase   PI   Temperature, monomer concentration   (Ali and Abasaeed 1999)
slurry-PE   Well mixed   NMPC   Amount of unreacted monomer, MFI   (Bolsoni et al. 2000)
FBR-PE   Two-phase   PI   Temperature   (Ghasem 2000)
FBR-PE   Well mixed   PID, Optimal 

servo system
  Density and MFI   (Sato et al. 2000)

FBR-PE   Two-phase   MPC   Temperature, MFI, production rate and 
density

  (Brempt et al. 2001)

CSTR-PE   Well mixed   NNMPC   Production rate, partial pressures of the 
gas phase compositions

  (Seki et al. 2001)

FBR-PE   Well mixed   LMPC, NMPC, PI  Bleed flow and pressure, feed flow 
rates, temperature

  (Ali et al. 2003)

FBR-PE   Well mixed   PI   Bed level, production rate, temperature, 
MFI, pressure, density

  (Chatzidoukas et al. 2003)

FBR-PE   Well mixed   fuzzy logic   Temperature   (Ghasem 2006)
HSR-PP   Well mixed   GMC   MFI, monomer conversion   (Ali et al. 2007)
FBR-PE   Four-phase   NNMPC   Molecular weight, temperature   (Ibrehem et al. 2008)
FBR-PE   Two-phase   PID   Temperature, bed level, feed 

concentration, pressure
  (Vahidi and Shahrokhi 2008)

FBR-PE   Two-phase and 
well mixed

  PID   Temperature, pressure, bed level   (Sarvaramini et al. 2008)

FBR-PE   Well mixed   PID   Temperature   (Salau et al. 2008)
FBR-PE   Two-phase   PID   Bed level   (Hassimi et al. 2009)
FBR-PE   Well mixed   NMPC   Molecular weight distribution   (Ali and Ali 2010)
Batch-PS   Kinetics based NN  NN-MPC   Temperature   (Anwar et al. 2011)
FBR-PP   Two-phase   APMBC   Temperature, production rate   (Ho et al. 2012)
jCSTR-PS   Well mixed   Adaptive back 

stepping
  Temperature, monomer concentration   (Biswas and Samanta 2013)

FBR-PP   Two-phase   MPC   Temperature, production rate   (Shamiri et al. 2013)
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CSTR and the authors claimed that it can be applied to all 
types of fuzzy models, being primarily beneficial in cases 
where a fuzzy controller cannot be constructed directly as 
the system is found to be a complicated one.

Habbi et al. (2003) studied a natural circulation drum-
boiler-turbine and suggested a nonlinear dynamic fuzzy 
model. The authors showed that the dynamic fuzzy model 
brings proper and precise universal nonlinear estimates, 
and at the same time, the proposed local models are 
near estimates to the local linearization of the nonlinear 
dynamic system.

Cerrada et  al. (2005) introduced a method for adap-
tive dynamic fuzzy modeling. Their method combines the 
historical performance of the system variables with mem-
bership functions of fuzzy systems. The authors illustrated 

tolerable identification errors by giving some descriptive 
examples of system identification which can unravel the 
effectiveness of the fuzzy models suggested. Despite the 
abrupt fluctuations in the input variables, these models 
adhere to the real output which is vital in an acceptable 
identification model in experimental practices. The focus of 
this tactic rests on cases that cause an identification model.

The usage of fuzzy logic in modeling of the systems 
and their control studies needs to be stressed, as they may 
propel a more straightforward execution of algorithms for 
integration. They are interesting since they boast off exe-
cution simplicity, time, ability to swiftly model complex 
systems, and its moderately low cost.

Ghasem (2006) used the fuzzy logic controllers based 
on the TS inference method to regulate the reaction 
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Figure 2: Some of the control loop structures applied on fluidized bed reactors.
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temperature of the industrial ethylene polymerization 
FBRs. The simulation results suggest that the conventional 
fuzzy logic controller will oscillate in the process response. 
For a better performance of the conventional scheme, the 
authors proposed that a hybrid control scheme needs to 
be adopted. Some striking improvements in the control-
ler performance could be achieved by bringing together 
these approaches. The hybrid control scheme mitigates 
the severe oscillations of the common method and con-
tributes toward better control precision. The comparison 
between Mamdani fuzzy logic and Takagi-Sugeno-type 
fuzzy controller has been investigated. Results have shown 
that Mamdani fuzzy logic is not difficult to build, that it is 
too simple to control the process quickly and that it only 
works with the long delay system. Takagi-Sugeno controller 
is ideal to play its role as multiple linear controllers to run 
dynamic nonlinear systems. This says that it can control the 
process that changes swiftly and has high frequent input 
signals.

4.3  �Model-based control

4.3.1  �Model predictive control

Polymerization plants must function under different 
grade transition scenarios. This is to fully cater for the 
many types of product qualities needed for various appli-
cations. The best answer for this situation depends on 
a suitable objective function defined for a minimization 
problem. This optimization problem depends on time 
needed to change product quality specifications, process 
safety limitations and the quantity of off-spec polymer. 
Since choosing the best control scheme has signifi-
cant impacts on process quality and process operability 

optimization, the time optimal transition problem needs 
to be considered together with this control strategy 
simultaneously.

It should be said that many conventional control 
algorithms are not enough in dealing with the strict 
limitations enforced in a few industrial processes, spe-
cifically once a first-rate commodity is needed. This is 
particularly valid for polymerization processes wherein 
definite properties like MFI or average molecular weight 
with the effect on plastic quality should be fulfilled. 
At this point, a proper way is to adopt a model predic-
tive control (MPC), that makes use of a process tailored 
dynamic model as an essential part for the process 
control structure.

The MPC is an optimization-based control strategy 
which is very suitable for constrained, multi-variable pro-
cesses. The MPC predicts the actual system’s future behav-
ior over a time interval defined by the prediction horizon. 
The implication made by the simpler diagram of the MPC 
algorithm shown in Figure 3 is that a parallel process 
model to the controller is used in MPC to predict the con-
trolled variable.

MPC works by minimizing a cost function given by 
Seborg et al. (2004):

y

mv

i
1 1

2

1

2

1

( ) [ ( 1) ( 1)]

(

( )

{ [ ) ,}1 ]

nP
y
j j

i j

nM
u

j j
i j

V k w y k r k

w u k i∆ ∆

= =

= =

= + − +

+ + −

∑∑

∑∑

where P is the prediction horizon, ny is the number 
of plant outputs, y

jw  is the weight for output j, k is the 
current sampling interval, k + i is a future sampling inter-
val (within the prediction horizon), [yi(k + i)–rj(k + i)] is 
the predicted deviation at future instant k + i, nmv is the 

Figure 3: Model predictive control system (Shamiri et al. 2013).
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number of manipulate variables (inputs), M is the control 
horizon, ∆u

jw  is the weight for input j and Δuj(k + i–1) is the 
predicted adjustment (i.e. move) in manipulated variable  
j at future (or current) sampling interval k + i.

The unequal constraints of the manipulated and 
control variables also restrict the cost function as follows:

Manipulated variable constraint:

≥ + − ≥max min( ) ( 1) ( )u k u k i u k

Manipulated variable rate constraint:

∆ ∆≥ + − ≥max min( ) ( 1) ( )u k u k i u k

Output variable constraint:

max min( ) ( 1) ( ).y k u k i y k≥ + − ≥

The problem formulation would decide if several para-
meters such as the control horizon, prediction horizon 
and weighting matrices in the optimization formulation 
should be completed so that the predicted output can 
perform better.

As mentioned by Campello et  al. (2003), MPC algo-
rithms have been used for chemical process control for 
their usage simplicity and capability to deal with limita-
tions that involve the input and output variables in proce-
dures. Schnelle and Rollins (1997) adopted a continuous 
polymerization (CP) process design and applied an MPC. 
They illustrated that MPC technology proved to be a prom-
ising substitute for this type of process. Santos et al. (2001) 
made the effort to control the temperature and liquid 
level in a pilot plant CSTR reactor and they implemented 
an on-line nonlinear MPC algorithm. The authors also 
established several sources of unmeasured disturbances 
and model mismatch. They leave an impact on the model 
quality in representing the reactor dynamics. While there 
are mismatches and disturbances, the closed loop system 
performed credibly in terms of disturbance rejection and 
set-point tracking. The application of a nonlinear MPC 
based on extended Kalman filter to control polymer prop-
erties had been analyzed by Park and Rhee (2003), for a 
semi-batch methyl methacrylate/methacrylate copolym-
erization reactor. The authors drew a comparison between 
the experimental results and other techniques to show the 
superior performance of this control strategy.

Ramaswamy et  al. (2005) had sought to control an 
unsteady-state CSTR bioreactor with the help of an MPC. 
A vital MPC parameter for its tuning is prediction horizon 
which was analyzed in this work by concentrating on the 
variation effects.

The DMC (dynamic matrix control) strategy has the 
utmost applications in industry between MPC control 

techniques. It is because of its design and application 
straightforwardness together with its ability to soundly 
handle cases where manipulated variable is restricted 
within a range.

Within chemical industries, MPC has stood out to 
become the principal method of advanced multi-variable. 
In another approach, Dougherty and Cooper (2003) had 
given a multiple model adaptive control approach for 
multi-variable DMC. This technique blends the output of 
multiple linear DMCs without adding extra computational 
intricacy contrasting to the non-adaptive DMC. Adap-
tive linear DMC (ALDMC) algorithm was developed and 
employed by Guiamba and Mulholland (2004) in a MIMO 
pump-tank setup. Where the plant/model mismatch is 
concerned, ALDMC presented better performance in com-
parison to the non-adaptive linear DMC (LDMC). Haeri and 
Beik (2005) considered the handling of MIMO systems 
within specified circumstances and recommended an 
approach which extended the nonlinear DMC procedure. 
The authors have illustrated that the method usefulness 
is clear by presenting the simulated control results of a 
MIMO stirred reactor nonlinear model and another MIMO 
power unit nonlinear model.

Carlos et al. (1989) highlighted critical issues whereby 
any control system should discuss and review MPC 
techniques in the light of those issues to highlight their 
advantages in terms of the design and implementation. 
Several design techniques such as internal model control 
and inferential control emanate from MPC; they were put 
in perspective with respect to one another and the simi-
larity with more traditional methods like linear quad-
ratic control were investigated. The malleable constraint 
management capabilities of MPC were a prominent asset 
in the framework of the global operating goals of the 
process industries and the 1-, 2-, and ∞-norm formula-
tions of the performance goal. The application of MPC to 
nonlinear systems was examined and its attractions were 
also studied. The authors also suggested that, although 
the MPC is not any stronger than classical feedback, its 
robustness can be adjusted more easily.

The nonlinear model based control was applied by 
Özkan et al. (2001) to the styrene solution polymerization 
in a jacketed batch reactor and checked its effectiveness 
to reach the required molecular weight and monomer 
conversion. The authors used Hamiltonian optimization 
to assess the optimal temperature profiles for the proper-
ties of polymer quality. Analytical and experimental non-
linear model based control were analyzed to keep tab of 
the temperature at the trajectory which was believed to 
be optimal. Two types of parametric and nonparametric 
models were assessed to control temperature optimally. 
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Nonlinear auto regressive moving average exogenous 
(NARMAX) gives an association among reactor tempera-
ture and heat input to depict the system dynamics. It 
should also be added that this model served to define the 
control system as a parametric model. Simulation results 
were brought for comparison with experimental control 
data. Authors summed up that the control simulation 
program is the representative of the behavior of the con-
trolled reactor temperature with some good prediction 
capabilities. Moreover, nonlinear model based control 
keeps the reactor temperature stable within the optimal 
trajectory.

Qin and Badgwell (2003) did a survey on commer-
cially available MPC technology, both linear and nonlin-
ear, based primarily on data provided by MPC vendors 
and described approaches taken by each vendor for the 
various aspects of the calculation. A review of the identifi-
cation technology was needed to enable a list of similari-
ties and differences to be found between the approaches. 
MPC applications performed by each vendor were summa-
rized following the application area.

Ibrehem et al. (2008) implemented adaptive predictive 
model-based control to control the system and compared 
with the conventional PID controller, giving acceptable 
results.

Mjalli et  al. (2009) considered a multi-model adap-
tive control strategy to handle the variation of operational 
process parameters and the effect of process disturbances 
in a biodiesel transesterification reactor.

Ho et al. (2012) had concentrated on the control of a 
gas phase propylene polymerization model in an FBR, 
where a two-phase dynamic model was used, and since 
the process is nonlinear, an advanced control scheme was 
adopted to ensure an efficient regulation of the process 
variables. Adaptive predictive model-based control 
(APMBC) strategy (an integration of the recursive least 
squares algorithm, RLS and the generalized predictive 
control algorithm, GPC) have the function to control the 
emulsion phase temperature and PP production rate by 
manipulating the reactor cooling water flow rate and cata-
lyst feed rate again. The APMBC in set point tracking was 
reported to be superior, as compared to the conventional 
PI controller and the ability of APMBC to capture the 
effects of monomer concentration, hydrogen concentra-
tion and superficial gas velocity on the process variables 
as efficiently as possible. It is common for the polym-
erization processes to have a highly nonlinear dynamic 
behavior leading to an abysmal performance of control-
lers based on conventional internal models to be poor or 
for it to need a considerable amount of effort in controller 
tuning.

Shamiri et  al. (2013) took advantage of a two-phase 
model to delve into the dynamic behavior and process 
control of a fluidized-bed PP production reactor produc-
tion rate and temperature. To control the reactor tem-
perature and the PP production rate, a centralized MPC 
technique was used by making use of the catalyst feed rate 
and cooling water flow rate, respectively. They reached 
a conclusion that the MPC could yield some controller 
moves which not only were subjected to the specified 
input constraints for both control variables, but also that 
they are characteristically non-aggressive and sufficiently 
smooth for practical use.

Broadly speaking, the challenge is to organize the 
sophisticated chemical processes due to their volatile 
nature of parameters and structural mismatch. Adaptive 
linear or nonlinear algorithm is a very important tool to 
control these kinds of processes. In normal circumstances, 
the stability of Lyapunov functions serves to design non-
linear adaptive controllers. This algorithm can also deal 
with other parametric uncertainties throughout the input 
saturation. Biswas and Samanta (2013) considered the 
controlling polymerization process with input saturation 
and parametric uncertainty and worked on an adaptive 
back stepping methodology. The controller is showed to 
be robust in modeling uncertainties in a polymerization 
process and it also showed powerful disturbance rejection 
ability. The adaptive controller could take both matched 
and unmatched uncertainties. In addition, to get better 
results, the authors made use of several parameters in 
which the controller gave a sturdy performance even 
around high parametric uncertainty.

4.3.2  �Fuzzy-based MPC

Nascimento Lima et  al. (2009) built a predictive control 
system based on type Takagi-Sugeno fuzzy models for 
polymerization, where they had a close look into the copo-
lymerization of methyl methacrylate with vinyl acetate to 
test the ability of the recommended control system. They 
adopted a nonlinear mathematical model to justify the 
reaction plant that can generate data and probe deeper 
into the controller performance. The fuzzy approach 
adopted in their work suggested that it can predict outputs 
as a function of dynamic data input. The authors drew a 
comparison with this fuzzy approach with conventional 
predictive control in regulatory and servo issues, and as 
the result, the fuzzy controller was easy to implement, 
and its response is much more reliable.

Bringing together the capability of fuzzy logic predic-
tive approaches and system characterization is appealing 
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for designing controllers. Roubos et al. (1999) integrated 
the MPC algorithms with Takagi-Sugeno fuzzy models. 
In this approach, what happens first is that the model 
identification using fuzzy logic is given for MIMO archi-
tectures. With the establishment of the fuzzy model, it 
was brought together with MPC. The authors ran a test 
on this method for a two input-four output MIMO liquid 
level control case.

With the help of fuzzy-Hammerstein (FH) models, the 
nonlinear system was identified and controlled and this 
was described by Abonyi et al. (2000). This model carries a 
static fuzzy model linked with a series of a linear dynamic 
model. This model was integrated in a MPC control struc-
ture and a new method was introduced to handle con-
straints. To elaborate further, a simulated water-heater 
process was adopted. Simulation results have shown not 
only good dynamic modeling performance but also a well-
captured steady-state behavior of the system. The applica-
tion of fuzzy decision making (FDM) in MPC was studied 
by da Costa Sousa and Kaymak (2001), and there is a con-
formity of the results with those obtained from the usual 
MPC. Experiments with nonlinear dynamics were run on 
three states, namely an air conditioning system, unstable 
linear system, and a non-minimum phase. Results have 
suggested that the MPC performance can be made better 
using fuzzy criteria in the framework of fuzzy decision 
making.

To address the many optimization problems that are 
non-convex which come from the application of MPCs to 
nonlinear processes, Mendonça et al. (2004) gave the sim-
plified version of fuzzy predictive filters to multi-variable 
processes. The introduced structure was implemented on 
a portal crane control. The benefits of the method were 
presented following the simulation results. The TS fuzzy 
design for a hybrid fuzzy modeling methodology was an 
idea proposed by Karer et al. (2007). The authors analyzed 
an MPC algorithm which was fit for systems with discrete 
inputs and the results have given a clue on the advantages 
of the MPC algorithm using the proposed fusion fuzzy 
model on a batch-reactor simulation example. The hybrid 
fuzzy predictive control design that is leaning on a genetic 
algorithm was suggested by Causa et al. (2008). Using two 
on/off input valves and a discrete-position mixing valve, 
the batch reactor temperature was controlled. The strat-
egy revealed to be a proper technique to control hybrid 
systems, delivering the same performance in comparison 
with conventional hybrid predictive controllers plus large 
reductions in computation time. To add, the authors also 
formulated a problem with hybrid predictive adaptive 
control structure, and the results were believed highly 
potential.

4.3.3  �Generic model controller

Generic model control (GMC) is a type of control scheme 
which directly uses the nonlinear process model. The 
dynamic mass, momentum, and energy balances are 
used to get first-principle models. If the process was still 
ambiguous, black-box models can be used to represent 
the unknown parts. Being a process model based control 
algorithm, the GMC incorporates a process model within 
the control structure directly. It has been illustrated to 
show excellent control, despite reasonable modeling 
errors. Abonyi et al. (2002) looked into these hybrid GMC 
models. They concluded that the first principles part of 
these models focuses on the main structure of the control-
ler, while the black-box section plays its role as state/dis-
turbance estimators.

Signal and Lee (1992) had built an algorithm within a 
GMC framework which seeks to mitigate larger modeling 
errors by updating the model parameters occasionally. 
Authors made a strong claim that this adaptive algorithm 
had the capability of adapting model parameters in a non-
linear model, where the parameters manifest themselves 
nonlinearly. Several examples were presented to highlight 
the technique principles.

Ali et al. (2007) had worked on a modified GMC and 
simulated it to analyze the results. It entails a model-based 
control of a propylene polymerization reactor in which the 
melt index and monomer conversion of the polymer are 
controlled by manipulating the inlet hydrogen concentra-
tion and the reactor cooling water flow. Nonlinear control 
is made, using a simplified nonlinear model, to show the 
strength of the control strategy. Two model variables are 
updated on-line to make sure that the outputs of the con-
trolled process and their estimated values are followed 
carefully. The controller is the static inverse of the process 
model with set points of the measured process outputs 
changed to set points for several state variables. The simu-
lation study illustrated that the suggested controller has 
good set point tracking and disturbance rejection proper-
ties and is the best, compared to the conventional GMC 
and Smith predictor control approaches.

4.4  �On-line monitoring of polymerization 
processes

As the need to produce polymers with pre-specified prop-
erties intensifies, great emphasis is laid on the progress of 
precise, strong instruments developments that can be used 
for on-line monitoring of polymerization reactions. The 
viscous and complex nature of polymerization systems 
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makes on-line measurements difficult. Poor reliability and 
long measurement delays are two prevalent issues which 
lead to these difficulties. Even the off-line measurement of 
several polymer properties cannot be considered an easy 
task, as they need sophisticated and time-consuming ana-
lytical techniques. The manufacturing of on-line polymer 
sensors needs an interdisciplinary struggle, improved 
process knowledge and understanding, reactor design, 
and instrumentation engineering to name but a few.

Kammona et al. (1999) reviewed the progress that has 
been made in developing on-line hardware sensors to 
oversee polymerization reactions, in addition to analyz-
ing the accuracy and robustness of the on-line techniques 
used to gauge the molecular weight, monomer conversion, 
molecular weight distribution (MWD), copolymer compo-
sition, and particle size distribution (PSD) in a continuous 
manner in polymer reaction operations.

Automatic Continuous On-line Monitoring of Polymer-
ization Reactions (ACOMP) is a name given to a technique 
that was developed at Tulane University by Reed (2004). 
The ACOMP technique oversees the polymerization reac-
tions in real-time. In this method, small quantities of 
polymer are withdrawn from the reactor continuously 
and diluted. After this step, the diluted polymer sample 
will undergo several detectors to calculate standard para-
meters such as intrinsic viscosity, light scattering, and 
refractive index. Subsequently, the polymer is continu-
ously characterized as the reaction is running. ACOMP 
can be used for reaction optimization or feedback control 
of reactors. The method is independent from any model 
and it can perform an analysis on the polymer properties 
on-line. It is a direct measurement rather than a theoreti-
cal understanding of the reaction (Alb and Reed 2008).

Different reaction parameters can be fine-tuned based 
on which ACOMP is used in real-time. This method would 
be helpful for the reaction efficiency and product con-
sistency maximization and waste minimization (Alb and 
Reed 2010).

5  �Conclusions
This article goes through the basics and latest advances 
in modeling and control of FBRs. Different modeling 
approaches have been elaborated, and the most recent 
papers have been analyzed. In addition, the latest papers 
on controlling fluidized-bed polymerization reactors 
are also covered in this article. It has been shown that 
although a lot of progress has been made recently, there 
is a call to further improve the accuracy of mathematical 

models and introduce control algorithms that can control 
the variables linked with this highly nonlinear system in 
an optimal manner. Moreover, current models still fall 
short on explaining the whole polymerization phenomena 
within fluidized-bed polymerization reactors especially 
industrial ones. Future models need to fully consider 
hydrodynamics, kinetics and transport phenomena in 
industrial reactors and account for custom processes 
such as condensed mode polymerization and the effect of 
additives. Controlling polymer parameters is another area 
which has still plenty of advancement space. Controlling 
properties such as MWD accurately, needs innovation in 
all fields of chemistry, catalysis, multi-scale modeling and 
advanced process control. New innovative MIMO control-
lers can be designed to control multiple variables of FBR 
process at once. Lastly, an integrated dynamic model that 
considers all the scenarios which could happen within an 
FBR would be the future goal of this research field and it 
will have many applications for designing, scale-up, opti-
mization and controller designs of FBRs to come up with 
much greener, cost-effective and efficient processes. That 
would only be possible with advancement in all related 
research fields such as first-principle modeling, accurate 
empirical models, advanced control methods, CFD mode-
ling, computer science and progress in high-performance 
computing.

Nomenclature
A	 Cross-sectional area of the reactor (m2)
ALDMC	 Adaptive linear DMC
AlEt3	 Triethyl aluminum co-catalyst
APMBC	 Adaptive predictive model-based control
Ar	 Archimedes number
Bi	� Moles of reacted monomer bound in the polymer in the 

reactor
CFD	 Computational fluid dynamics
Cp,pol	 Specific heat capacity of solid product (J/kg · K)
Cpg	 Specific heat capacity of gaseous stream (J/kg · K)
Cpi	 Specific heat capacity of component i (J/kg · K)
CSTR	 Continuous stirred tank reactor
db	 Bubble diameter (m)
db0	 Initiate bubble diameter (m)
Dg	 Gas diffusion coefficient (m2/s)
DMC	 Dynamic matrix control
dp	 Particle diameter (m)
Dt	 Reactor diameter (m)
FBR	 Fluidized-bed reactor
Fcat	 Catalyst feed rate (kg/s)
FDM	 Fuzzy decision making
fi	� Fraction of total monomer in the reactant gas which is 

monomer Mi

FH	 Fuzzy Hammerstein
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G	 Gravitational acceleration (m/s2)
GPC	 Gel permeation chromatography
H	 Height of the reactor (m)
H2	 Hydrogen
Hbc	 Bubble-to-cloud heat transfer coefficient (W/m3 · K)
Hbe	 Bubble-to-emulsion heat transfer coefficient (W/m3 · K)
Hce	 Cloud-to-emulsion heat transfer coefficient (W/m3 · K)
HDPE	 High-density polyethylene
ICA	 Induced condensing agent
i	 Monomer type
Im	 Impurity such as carbon monoxide (kmol/m3)
j	 Active site type
Kb	 Elutriation constant in bubble phase (kg · m2/s)
Kbc	 Bubble-to-cloud mass transfer coefficient (1/s)
Kbe	 Bubble-to-emulsion mass transfer coefficient (1/s)
Kce	 Cloud-to-emulsion mass transfer coefficient (1/s)
kdI (j)	� Deactivation by impurities rate constant for a site of 

type j
kds (j)	� Spontaneous deactivation rate constant for a site of 

type j
Ke	 Elutriation constant in emulsion phase (kg · m2/s)
kf (j)	 Formation rate constant for a site of type j
kfhi (j)	� Transfer rate constant for a site of type j with terminal 

monomer Mi reacting with hydrogen
kfmi (j)	� Transfer rate constant for a site of type j with terminal 

monomer Mi reacting with monomer Mk

kfri (j)	� Transfer rate constant for a site of type j with terminal 
monomer Mi reacting with AlEt3

kfsi (j)	� Spontaneous transfer rate constant for a site of type j 
with terminal monomer Mi

kg	 Gas thermal conductivity (W/m · K)
khi (j)	� Rate constant for reinitiating of a site of type j by mono-

mer Mi

khr (j)	� Rate constant for reinitiating of a site of type j by 
cocatalyst

kii (j)	� Rate constant for initiation of a site of type j by 
monomer Mi

kpik (j)	� Propagation rate constant for a site of type j with termi-
nal monomer Mi reacting with monomer Mk

kpTi	 Propagation rate constant (m3/kmol · s)
LDMC	 Linear DMC
LDPE	 Low-density polyethylene
LLDPE	 Linear low-density polyethylene
MFI	 Melt flow index (g/10 min)
[Mi]	 Concentration of component i in the reactor (kmol/m3)
[Mi]in	� Concentration of component i in the inlet gaseous 

stream
MIMO	 Multi-input-multi-output
Mn	� Number average molecular weight of polymer (kg/kmol)
MPC	 Model predictive controller
Mw	 Weight average molecular weight of polymer (kg/kmol)
MWD	 Molecular weight distribution
mwi	 Molecular weight of monomer i (g/mol)
N (0, j)	� Uninitiated site of type j produced by formation 

reaction
NARMAX	� Nonlinear Auto Regressive Moving Average with eXog-

enous input
N∗(j)	 potential active site of type j
Nd (j)	 spontaneously deactivated site of type j
NdIH (0, j)	 impurity killed sites of type j

NH	� uninitiated site of type j produced by transfer to hydro-
gen reaction

Nj (r,j)	� living polymer molecule of length r, growing at an 
active site of type j, with terminal monomer M

P	 pressure (Pa)
PBE	 population balance equation
PID	 proportional-integral-differential
PDI	 polydispersity index
Q (r, j)	� dead polymer molecule of length r produced at a site of 

type j
r	 number of units in polymer chain
Remf	� Reynolds number of particles at minimum fluidization 

condition
Ri	 Instantaneous consumption rate of monomer (kmol/s)
Rp	 Production rate (kg/s)
Rv	 Volumetric polymer outflow from the reactor (m3/s)
SISO	 Single input-single output
T	 Temperature (K)
t	 Time (s)
Tin	 Temperature of the inlet gaseous stream (K)
TS	 Takagi-Sugeno fuzzy inference system
Tref	 Reference temperature (K)

tU ∗ 	 Dimensionless terminal falling velocity coefficient
U0	 Superficial gas velocity (m/s)
Ub	 Bubble velocity (m/s)
Ubr	 Bubble rise velocity (m/s)
Umf	 Minimum fluidization velocity (m/s)
Ut	 Terminal velocity of falling particles (m/s)
V	 Reactor volume (m3)
Vp	 Volume of polymer phase in the reactor (m3)
Wb	 Weight of solids in the bubble phase (kg)
We	 Weight of solids in the emulsion phase (kg)
X (n,j)	� nth moment of chain length distribution for dead poly-

mer produced at a site of type j
Y(n,j)	� nth moment of chain length distribution for living 

polymer produced at a site of type j
Z-N	 Ziegler-Natta catalyst

Greek letters
∆HR	 Heat of reaction (J/kg)
δ	 Volume fraction of bubbles in the bed
εb	 Void fraction of bubble for Geldart B particles
εe	 Void fraction of emulsion for Geldart B particles
εmf	 Void fraction of the bed at minimum fluidization
μ	 Gas viscosity (Pa · s)
ρg	 Gas density (kg/m3)
ρpol	 Polymer density (kg/m3)
φs	 Sphericity for sphere particles

Subscripts and superscripts
1	 Ethylene
2	 1-Butene
b	 Bubble phase
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e	 Emulsion phase
i	 Component-type number
j	 Active site-type number
mf	 Minimum fluidization
pol	 Polymer
ref	 Reference condition
T,TT	 Pseudo-kinetic rate constants
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