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Introduction: With the shift of research focus to personalized medicine in Alzheimer’s

Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient’s

risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed

e-infrastructure federating large amounts of data coupled with machine-learning (ML)

algorithms and statistical models to define the biological signature of the disease. The

present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient

Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify—CCC)

implemented in the MIP and (ii) their contribution over the standard diagnostic workup.

Methods: We examined individuals coming from the MIP installed across 3 Italian

memory clinics, including subjects with Normal Cognition (CN, n = 432), Mild Cognitive

Impairment (MCI, n = 456), and AD (n = 451). The GB classifier was applied to best

discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was

used to refine the classical disease categories. Four dementia experts provided their

diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients.

DC was based on clinical, neuropsychological, CSF, and structural MRI information and

again with addition of the outcome from the MIP tools.

Results: The GB algorithm provided a classification accuracy of 85% in a nested 10-fold

cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in

the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC
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identified five homogeneous clusters of subjects and 36 biomarkers that represented the

disease fingerprint. In the DC assessment, CCC defined six clusters in theMCI population

used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC

showed a significant impact, evaluated as +5.99% of increment on physicians’ DC. The

influence of MIP on DC was rated from “slight” to “significant” in 80% of the cases.

Discussion: GB provided fair results in classification of CN, MCI, and AD. CCC identified

homogeneous and promising classes of subjects via its semi-unsupervised approach.

We measured the effect of the MIP on the physician’s DC. Our results pave the way for

the establishment of a new paradigm for ML discrimination of patients who will or will not

convert to AD, a clinical priority for neurology.

Keywords: Alzheimer’s Dementia (AD), biomarkers, diagnostic confidence, Medical Informatics Platform (MIP),

disease signature

INTRODUCTION

The International Working Group (IWG) criteria (1, 2)
define Alzheimer’s Dementia (AD) as a construct based on
the combination of brain amyloidosis and tauopathy (3–
6). However, physicians in real-world practice primarily rely
on the patient’s clinical picture. Neurological diseases are
classified into internationally recognized catalogs (ICDM, DSM-
V) that are essentially based on phenotyping backed up by
ancillary investigations.

Neuroscience seems locked in a symptom-based diagnostic
paradigm moving forward without a wide-ranging biological
classification scheme for brain diseases (7). To reach a complete
understanding of the brain, neuroscientists cannot just focus
on one level of brain organization (8), regardless of how well
it may be determined at that specific level (9). An integrated,
holistic, multimodal, and multilevel analysis is required. This
approach could optimize the effectiveness of disease prevention
and treatment and minimize side effects by considering the
specific makeup of genetic information, in vivo biomarkers (e.g.,
biological or imaging-derived), and phenotypic characterization
to move toward the so-called personalized medicine.

However, if neuroscience desires to understand the brain
across all scales and levels of organization, it needs robust
and efficient computational e-infrastructures to work together
(10, 11). Computational power is mandatory to solve complex
brain simulations and forecasts as quickly as possible. To cope
with this need, many platforms were developed in Europe and
North America in the last decade to fill the gap between data
collection and information extraction (12). Neuroscience e-
infrastructures, such as Laboratory Of Neuro Imaging (LONI)
(13), neuGRID (14–16), C-Brain (17), and EMIF (18, 19), offer
access to large databases, neuroimaging algorithms, extended
computational resources, and statistical tools. More recently,
the Human Brain Project (HBP), funded in 2012 by the
European Commission to build an open e-infrastructure, started
to provide supervised/unsupervised machine learning (ML)
tools for neuroinformatics, brain simulation, neuromorphic
computing, and medical informatics. Within this overarching
project, the Medical Informatic Platform (MIP) was developed

to allow hospitals and research centers to share medical data
(20). Notably, patient records in European hospitals represent an
enormous source of data (21) that are waiting to be processed
using data mining algorithms and mathematical models
to extract meaningful and potentially hidden information.
Therefore, this vast amount of available data and emerging
powerful algorithms sets the stage for a paradigm shift from a
pure-hypothesis-drivenmedicine, as adopted currently, to a data-
led objective classification strategy. This shift is the overarching
aim of the MIP to find a way to combine ML tools with big data
repositories already collected in hospitals to search for disease
signatures (22).

The Italian Network of Neuroscience and Neurorehabilitation
(RIN) (23) was founded in 2017 by the ItalianMinistry of Health,
and it represents the ideal starting point to test the MIP platform
and validate the “disease signature” concept against clinical
practice. The RIN initiative (i) encourages collaboration among
the Italian Research Hospitals (IRCCS), (ii) facilitates the spread
of information on clinical/scientific activities, and (iii) promotes
collaborative actions at international level. Clinical, instrumental,
and molecular characterization of patients represent the basis of
RIN studies to identify advanced early diagnostic biomarkers,
therapeutic targets, and innovative intervention strategies. Two
IRCCS (IRCCS Fatebenefratelli and IRCCS Besta) of the RIN
network and another external Italian hospital (Niguarda Ca’
Granda) in association with the NeuroImaging lab of the Center
for Health Technologies (CHT—University of Pavia) configured
MIP platforms locally and participated in this study.

Data availability is as important as data comparability. Recent
advances in computer science and the widespread application
of big data mining have demonstrated that meaningful insights
may be obtained from heterogeneous, noisy, non-standardized
data (24). The variety of normal ranges is generally handled
with normalization and z-scoring (25). Dichotomization is used
to define abnormality when validated cut-points for abnormal
scores were developed. “Messy” data may be cleaned up via
smoothing, which is a technique long used in brain imaging
with excellent effect (26). Missing data may be imputed using
specialized interpolations, also used effectively in the averaging
of brain images (27). Scaling approaches are efficiently used in
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case of systematic differences between cohorts for scores on the
same variable (28). Strategies for coping with non-standardized
data are already in place, and MIP takes advantage of all of these
strategies to gather large numbers.

This study measured the performance of a supervised MIP
Gradient Boosting (GB) classifier in discriminating subjects in
one of the three broad categories originally attributed by clinical
experts: Cognitive Normal (CN), Mild Cognitive Impairment
(MCI), and Alzheimer’s Dementia (AD). The initial diagnosis
of the subjects was based on clinical and neuropsychological
testing (6, 29, 30), because the clinical judgment is still the gold
standard for the syndromic diagnosis (31). Then, we introduced
the idea of classifying subjects into more than three diagnostic
classes using a semi-unsupervised approach that exploited the so-
called 3C strategy (Categorization, Clustering, Classification—
CCC) for refinement of the common disease diagnoses, beyond
what the eye can see (32). Both tools were chosen for their high
degree of maturity in the MIP development factory.

Further, we investigated the perception of the clinical utility
of the MIP by interviewing four clinical experts at the three
participating leading Italian dementia centers to provide an
assessment of diagnostic confidence (DC). We then compared
the clinicians’ DC values based on the MIP information with
those of traditional workup information in patients with MCI.

Clinical DC truly determines patient management, and a
quantifiable measure of how the ML tools of the MIP were
perceived by the clinicians and how they could potentially be
incorporated in a clinical context would be highly beneficial.

E-infrastructures, which may undergo substantial reshaping
in the near future, involving ML algorithms and analyses of big
data, may offer a solution to the aforementioned disconnection
between the biological and clinical levels of disease description in
the long run. If the MIP paradigm is successful, it will provide
opportunities to design revolutionary in silico experiments to
examine and elucidate the mechanisms of brain diseases in ways
that were impossible until a few years ago.

MATERIALS AND METHODS

Study Design
Our study was structured in two main parts: (1) a “group
analysis” to assess the performances of two MIP ML algorithms
to classify subjects in the dementia spectrum and to identify
informative disease signatures and (2) a “single-case analysis” to
measure the clinicians’ perceived impact of theMIP tools and test
the change in their DC to identify MCI that could convert to AD
within 2 years. The same algorithms were used in both phases,
i.e., GB (33) and CCC (34). Supplementary Figure 1 shows the
workflows of the study.

Medical Informatics Platforms
We installed and configured MIPs in three leading Italian
dementia centers. The MIP platform is an e-infrastructure for
data federation and big-data analysis. It was primarily developed
by Center Hospitalier Universitaire Vaudois (CHUV) in the
context of the HBP (https://www.humanbrainproject.eu/).

MIP enables access and analyses of anonymized medical data
that are currently locked in hospitals without moving the raw
data from the servers where they reside or infringe on patient
privacy. End-users cannot explore the local database of each
hospital. Only aggregated results or features are shared outside
of the hospital.

The MIP is organized into two main parts (see
Supplementary Figure 2). The MIP-Local, where only the data
coordinator and associated staff can access the pseudonymized
data set, and the MIP Federated, where different hospitals are
connected and the end user can query and run analyses on the
federated fully anonymized data sets (35). The platform provides
algorithms for advanced statistical analyses, feature extraction,
and predictive models via data mining and ML tools. The
MIP infrastructure overall is instrumental to the identification
of the biological changes associated with AD and opens new
possibilities for early diagnosis by discovering otherwise unseen
disease signatures.

Data
For the “group analysis,” we used data from five different cohorts.
Two of the cohorts were international research data sets, such
as: The European DTI Study on Dementia (EDSD) (36) and
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (37)
that are constituent parts of each MIP platform. The other
three cohorts were Italian clinical cohorts collected from IRCCS
Fatebenefratelli (FBF), IRCCS Carlo Besta (Besta), and Niguarda
hospital (CHT-Niguarda). The local medical ethics committee
approved each study. Participants provided written informed
consent at the time of inclusion in the study for the sharing of
cognitive data, fluid samples, and MRI scans. The total number
of subjects originally collected was 2105 (559 AD, 847 MCI,
and 699 CN). Inclusion and exclusion criteria are reported
in Supplementary Table 1. The sample size was reduced to
1339 (451 AD, 456 MCI, 432 CN) to obtain data-set matching
and prevent class imbalance and after visual quality control of
the available T13D scans and the relative imaging biomarker
segmentations of experienced researchers (AR, SD).

For the “single-case analysis,” we considered 198 MCI subjects
from ADNI (118 MCI stable and 80 MCI converters to AD) with
a 24-month clinical follow up as a training set. The independent
subjects’ data for the clinical testing came from the FBB-HUG-
2014 Piramal study (38) (alias, testing set) led by the University
of Geneva, with 38 MCI possibly due to AD subjects (6).

The characteristics of all the data cohorts used in the
present study are reported in Table 1. Any variable with
more than 40% of missing data was discarded. All the
cohorts considered in the present study exposed 144 variables
and included metrics in the following categories: socio-
demographical, neuropsychological (including tests for verbal
memory, attention, and language), volumetric (from MRI),
genetic, and cerebrospinal fluid (CSF) information. In particular,
Mini-Mental State Examination (MMSE) scores were available
for all of the subjects considered. Surrogate imaging biomarkers
were extracted from 3D T1-weighted (3DT1) MRIs. Imaging
was acquired according to local Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE) or Inversion
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TABLE 1 | Characteristics of the data sets.

Data Set Types and availability Description Categories

ADNI—Alzheimer’s Disease

Neuroimaging Initiative

Research data set available

on every MIP web-server

interface (https://services.

humanbrainproject.eu/oidc/

login)

A longitudinal multicenter study designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection and

tracking of AD. ADNI was originally launched in 2003 as a

public–private partnership; its primary goal has been to test whether

MRI, PET, biological markers, and clinical and neuropsychological

assessments can be combined to measure the progression of MCI and

Alzheimer’s disease. It has targeted participants with AD (n = 222),

MCI (n = 576), and CN (n = 268).

CN

MCI

AD

EDSD—European DTI

Study on Dementia

Research data set available

on every MIP web-server

interface (https://services.

humanbrainproject.eu/oidc/

login)

A framework of nine European centers: Amsterdam (Netherlands),

Brescia (Italy), Dublin (Ireland), Frankfurt (Germany), Freiburg

(Germany), Milano (Italy), Mainz (Germany), Munich (Germany), and

Rostock (Germany). It is a cross-sectional multicenter study

characterized by 474 volumetric MRI T1-weighted scans with

socio-demographic, clinical, genetic, and biological variables.

CN

MCI

AD

FBF Clinical data set collected by

the IRCCS Fatebenefratelli

and available via MIP-Local

and MIP-Federated

A cross-sectional collection including data from 1,784 patients enrolled

in Brescia (Italy) and nearby areas. The data set contains

socio-demographic, clinical, genotype, bio-specimen information, and

MRI T1-weighted images

CN

MCI

AD

Other

Besta Clinical data set collected by

the IRCCS Carlo Besta

hospital and available via

MIP-Local

A cross-sectional collection of 105 patients clinically characterized

using standard neuropsychological evaluation. Volumetric MRI scans at

3T are available for all patients. CSF and DNA were collected in most

cases to investigate biomarkers (e.g., T-TAU, P-TAU, AB1-42) and

genotyping.

CN

MCI

AD

Other

CHT Niguarda Clinical data set collected by

the Niguarda hospital and

available via MIP-Local

A cross-sectional collection of 171 subjects. Most of subjects

underwent clinical/neuropsychological assessments and volumetric

MRI acquisitions.

CN

MCI

AD

Other

Piramal Independent external

research data set not

federated with the MIP

infrastructure

An international, multicenter, phase 4 study where a fraction of the total

patients enrolled (n = 71) were characterized using clinical,

neuropsychological assessments, MRI (consistent with ADNI

acquisition protocol), amyloid-PET, and CSF biomarkers.

MCI

CSF, Cerebrospinal Fluid; AB1-42, amyloid beta; T-TAU, total Tau; P-TAU, phosphorylated Tau; MRI, Magnetic Resonance Imaging; CN, Cognitive Normal; MCI, Mild Cognitive

Impairment; AD, Alzheimer’s Disease; Other, atypical form of dementia in the clinical data sets of each hospital - these subjects were excluded from our study.

Recovery SPoilt Gradient echo (IRSPGR) acquisition protocols.
Volumetric scans were processed using theNeuromorphometrics
pipeline (Neuromorphometrics, Inc., Somerville, MA) (39,
40) integrated in the MIP environment and the volumes
normalized to the total intracranial volume (TIV) computed with
Statistical Parametric Mapping (SPM12) considering a reference
intracranial volume of 1,409ml (41). APOE genotyping data
from local genetic analyses were available for 65% of the selected
individuals. CSF biomarkers were obtained using different assays
across different cohorts, i.e., the Multiplex xMAP Luminex
platform with Innogenetics immunoassay kit–based reagents
(42) for ADNI subjects and Enzyme-Linked Immunosorbent
Assay (ELISA) (43, 44) for subjects from all other cohorts, which
led to different CSF biomarker distributions. To tackle this issue,
biomarkers from clinical cohorts, ADNI, and EDSD were Z-
scored based on the normative data specific for each cohort.
All of the variables considered in the MIP were adjusted by
age. A linear detrending algorithm based on age-related changes
in the CN group was adopted (45) as age correction method.
The adopted approach fitted a generalized linear model (GLM)
for each variable and age, and the age-related changes were
modeled as linear drift in the CN group only. The regression

coefficient of the resulting GLM model was used to remove
the age-related changes from all individuals to obtain corrected
values. The assumption for the age correction method is that
the age-related changes in the CN group are due to aging while
the age-related changes in the MCI and AD groups includes
disease-related changes.

Categorization of the MIP Variables
Categorization in three main sets was performed to give a logical
organization of the 144 variables specified in the input to theMIP
supervised and semi-unsupervised algorithms.

The first category included disease diagnosis (as assigned
in the original cohort) and was used in the evaluation of the
supervised GB classification performances. The diagnosis feature
had three levels: CN, MCI, and AD.

The second category was represented by 12 validated MRI
biomarkers that very well-described the brain neurodegeneration
(6). These markers were the volumes of the following structures:
left/right hippocampus, left/right amygdalae, left/right anterior
cingulate gyrus, left/right middle cingulate gyrus, left/right
posterior cingulate gyrus, and 3rd and 4th ventricles. Both GB
and CCC used this set. Furthermore, the second category was
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used in the CCC algorithm to define homogeneous clusters
of subjects.

The third category included all the other measurements
among those of the MIP we used (for a complete list
of the categorization refers to Supplementary Table 2)
for which we knew had, or potentially could have, a
predictive value for disease risks or severity. A total of 131
markers were in this category, such as sociodemographic
variables, MMSE, CSF proteins, APOE ε4 genotyping,
and all other less common Neuromorphometric derived
imaging variables. GB and CCC used this category. The
most informative features in the third category, in addition
to those in the second category, were explicitly used to
define the disease fingerprint of the CCC algorithm (see
Supplementary Table 3).

Gradient Boosting
GB is a popular ML technique to solve classification problems.
GB produces a prediction that exploits an ensemble of weak
estimators (i.e., decision trees). GBs are used extensively in
neuroimaging as because they predict outcomes with high
accuracy and possess the ability to model diverse and high-
dimensional data (46, 47). The main advantages of using GB
are its capacity to handle variables of mixed types and its inner
robustness to outliers.

In the “group analysis,” we constructed a classifier to separate
patients into the following three groups: CN, MCI, and AD, i.e.,
the values of the first category. We performed feature relevance
evaluation using a tree-based approach with a nested fold cross-
validation design. The nested cross-validation consists of an
inner loop for model building and parameter estimation and
an outer loop for model testing. Consequently, the data set
was divided into two parts: a training plus validation subset
and a test subset. In the inner loop, GB models were trained
with varying GB hyper-parameters (e.g., learning rate, number
of estimators, maximum number of features, minimum samples
split, maximum depth) based on a grid-search strategy. The
validation set was used to determine the GB hyper-parameters
over the grid of possible values. The performance of the resulting
model, with optimized GB hyper-parameters and features, was
subsequently evaluated on the test set in the outer loop. For
this outer loop, we used a stratified 10-fold cross-validation
scheme to divide the data into 10 equally sized parts. Nine of
these parts were dedicated to the training/validation set, and
one part was the test set. The 10 parts were permuted in each
iteration of the outer loop so that each one was used for testing
once. Finally, the GB results were averaged over the 10-folds
to estimate the predictive power of the proposed model on
the entire data set. To further test the GB generalizability and
flexibility performances, we performed many holdout validation
assessments between research and clinical data sets as well as on
each clinical data set.

Before the “single-case analysis” was performed on Piramal
subjects, a nested 5-fold cross-validation was used to train
and test the GB on the subgroup of ADNI MCI patients.
Accuracy, precision, and recall metrics were computed to
assess performance.

The GB algorithm, as implemented in the open-source
python Scikit-learn library (version 0.22.1), was used to perform
classification (48).

CCC Algorithm
The CCC algorithm is a semi-unsupervised ML tool developed
by Tel Aviv University (32, 34). CCC was used to obtain
a homogeneous subjects’ clustering and to identify potential
combinations of biomarkers for a deep characterization of
the disease.

In the first step, the algorithm considered the so-called second
category variables that we defined earlier, which was composed
of 12 imaging features, plus the clinical diagnosis to identify
the optimal number of clusters present in the patient’s data set.
A Random Forest (RF) selection method ranked the weight of
each feature, and the number of clusters was derived using Gap
statistic (49). Then, the clustering PAM (Partitioning Around
Medoids, also known as K-medoids) algorithm (50) was applied
to label each subject into one cluster. To discuss the meaning of
the created classes, we cross-classified the clusters generated with
the original diagnosis and demographic and clinical variables.
Finally, the still unused variables of the third category were
exploited as potential features to define and expand the disease
fingerprints of the created clusters. In particular, the CCC
algorithm selected a subset among the most promising of the 131
third category variables. To do this, a feature selection process
was performed via the RF mechanism. RF assigned a weight
of importance to each of the third category feature (51), and
the most informative were selected. In this way, CCC identified
markers that were useful to define the final disease fingerprint.

Further, the CCC algorithm, prying on the selected
informative third category variables and hierarchical decision
trees with out-of-bag validation (52), generated a matching
matrix that represented the ability to correctly classify subjects
according to the K-medoids clusters previously identified.

Parallel coordinate plots were used to allow comparison of the
derived fingerprints, including confidence intervals. Data were
normalized by subtracting the minimum and dividing by the
maximum of all observations. This method allowed comparisons
of variables of different scales and keep preserved the shape of the
different distributions.

The CCC is an MIP semi-unsupervised strategy and is based
on the “randomForest,” “cluster,” “rpart,” “psych,” and “ggparci”
R packages.

Clinical Impact
The “single-case analysis” we performed tested and measured
how physicians are influenced in their DC by the MIP
information. The clinical question was to verify the perceived
usefulness of the MIP to classify whether an MCI subject would
convert to AD or would remain stable in the next 2 years.
Physicians were also asked to express the etiological causes of
the disease. The 4 physicians (SG, GB, PT, SC) had a long
experience with the diagnostic use of AD biomarkers and were
aware of the most recent research diagnostic criteria (1, 2, 5)
for AD. To provide useful information to the clinicians, the
MIP algorithms were trained on 118 MCI stable and 80 MCI
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converters to AD from ADNI. Thirty-eight MCI subjects from
Piramal were analyzed as multiple single cases. Piramal 3DT1
scans were used to extract features using theNeuromorphometric
pipeline, and all the data were post-processed with both GB and
CCC, while the clinical assessments were collected using an ad
hoc web-based questionnaire.

The physicians interviewed did not have specific constraints
about the diagnostic etiologies. All etiological diagnoses were
grouped ex-post into:

(i) Pathophysiologically AD-related: MCI due to AD
(ii) Not pathophysiologically AD-related: MCI not due to AD,

MCI due to frontotemporal dementia (FTD); MCI due to
Vascular Disease (VD); MCI associated with psychiatric
disorder; Suspected Non-Amyloid Pathology (SNAP); and
Normal Aging (Supplementary Table 4).

The four physicians provided their initial estimate of DC.
The following available information for each Piramal
subject, describing the initial physicians’ evaluations, was
used: (1) age, sex, education, and other socio-demographic
information; (2) neurological examination; (3) MMSE score;
(4) neuropsychological assessment of long-term memory,
executive functions, language domains expressed as both raw
and equivalent scores (53); (5) MRI visual assessment performed
by an expert neuro-radiologist; and (6) amyloid beta (AB1-42),
total Tau (T-TAU), and phosphorylated Tau (P-TAU) CSF levels.

Then, the four physicians were asked to reassess the same
subjects by taking into consideration the report from the MIP,
which included the following factors: (i) the density function
distributions built from the Neuromorphometrics analysis of
established imaging biomarkers (i.e., hippocampus, cingulate,
entorhinal, parahippocampal, and superior temporal gyrus)
showing three standard deviations (Supplementary Figure 3);
(ii) the CCC K-medoids clustering (Figure 2B); and (iii) GB
classification results, which ranged from a stable stage to a very
probable conversion stage (Supplementary Figure 4), depicted
via a partial dependence plot (PDP). The four physicians
provided their final estimate of DC on a structured scale (ranging
from 0 to 100%). Clinicians finally reported whether the ML
information of the MIP affected their DC assessment for each
subject using a four-level Likert scale (possible answers: YES
significantly; YES somewhat; YES slightly; NO not at all).

Statistical Analyses
As far as “group analysis” is concerned, MANOVA was initially
performed in R (version 3.5.1) to verify the comparability of the
five data sets in the three diagnostic classes (CN, MCI, and AD).

Kruskal–Wallis and Fisher’s exact post hoc tests (α = 0.05)
were, respectively, used to test continuous or binary markers
differences between the three diagnostic groups.

With regard to “single-case analysis”, Fleiss’ Kappa inter-
physicians reproducibility on etiological diagnosis, with and
without MIP information available, was performed in R (v3.5.1)
using the “dplyr” and “irr” packages. We used the python Scikit-
learn library (version 0.22.1) for the “single-case analysis” to
generate the PDP of GB showing each Piramal subject plotted in

a 2D probability space. PDP depicted the probability of being an
MCI converter using a canonical 2D space.

RESULTS

Group Definition
To test the comparability, we performed a MANOVA test
on the three diagnostic classes for the five data sets (see
Supplementary Table 5). All data set comparisons performed
were statistically not dissimilar for the same diagnostic class (p >

0.05). Our group included 1,339 subjects, who were stratified as
follows: 432 CN (195 FBF, 28 Besta, 3 CHT-Niguarda, 100 ADNI,
106 EDSD); 456 MCI (103 FBF, 16 Besta, 18 CHT-Niguarda,
269 ADNI, 50 EDSD); 451 AD (200 FBF, 15 Besta, 135 ADNI,
101 EDSD).

Demographic and clinical information are presented in
Table 2. The AD subjects were older, were less educated, and
had lower MMSE compared to the other groups. We observed
a female gender preponderance in the CN and AD groups.
AD subjects were more often APOE ε4 carriers than MCI and
CN subjects. Within the CN group, when quantified, 9% of
subjects had abnormal AB1-42 CSF marker, and 82 and 97% of
subjects had this abnormal marker in the MCI group and AD
group, respectively.

For the Piramal data set, 53% of the 38 MCI subjects were
male, the mean age was 71.03 ± 7.72 years, and the mean
raw MMSE score was 26.3 ± 2.14. The overall frequencies of
the considered clinical measures and biomarkers assessed are
reported in Table 3.

Gradient Boosting Results
In the “group analysis,” the most informative features selected by
the GB classifier in order of importance were AB1-42, T-TAU,
P-TAU, and MMSE. Other important, albeit less informative
features, selected across the groups were left hippocampus, left
amygdala, and 4th ventricle. The complete rank of features is
reported in Supplementary Table 6.

In the nested 10-fold cross-validation that combined all of the
informative features, GB resulted in an accuracy of 85 ± 4% in
classifying CN, MCI, and AD subjects. Generally, exclusion of
the CSF variables led to a deterioration of the GB performance.
The results of GB in holdout validations, which was used to test
independently each clinical data set, resulted in overall better
performances, with an accuracy that ranged from 91 to 95%.
Table 4 shows the Accuracy, Precision and Recall metrics. GB
revealed high precision and high recall in the “group analysis,”
which related to a low false-positive and low false-negative
rates, respectively.

In preparation of the “single-case analysis,” we assessed the
GB performances for identifying MCI converters to AD using
a nested 5 cross-fold validation strategy performed on 198
MCI ADNI patients. These patients were followed longitudinally
for 24 months and expert ADNI neurologists performed their
clinical assessments. The final assessment of ADNI physicians
represented our ground truth and yielded an accuracy of 62 ±

1%. This base allowed us to fine-tune the GB hyperparameters in
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TABLE 2 | Group characteristics.

Characteristics Cognitively normal -

CN; n = 432

Mild cognitive

impairment - MCI; n =

456

Alzheimer disease -

AD; n = 451

P

Age—years 65.47 (9.31) 71.18 (8.08) 73.70 (7.97) <0.001 ¢,U,4

Gender—M/F 172/260 228/228 168/283 <0.001 ¢,4

Education—year 12.60 (4.36) 13.53 (4.40) 10.64 (4.75) <0.001 ¢,U,4

MMSE—raw score 27.91 (1.27) 26.33 (2.01) 20.54 (4.25) <0.001 ¢,U,4

% APOE ε4 carriers

–/– 80% 65% 25%

–/+ 18% 30% 64%

+/+ 2% 5% 11%

% AB1-42 abnormal 9% [23%] 82% [68%] 97% [38%] <0.001 ¢,U,4

% T-TAU abnormal 4% [23%] 17% [69%] 90% [38%] <0.001 ¢,U,4

% P-TAU abnormal 4% [23%] 18% [69%] 62% [37%] <0.001 ¢,U,4

Data are expressed as the mean values. Standard deviation is reported in round brackets. The overall frequencies of the CSF biomarkers in each group are reported in square brackets.

AB1-42, amyloid beta; T-TAU, total Tau; P-TAU, phosphorylated Tau; n, numerosity; P, significance on Fisher’s exact post hoc test or Kruskal–Wallis multiple comparison test with the

Benjamini–Hochberg method (¢, Significant difference between CTR and MCI; U , Significant difference between CTR and AD; 4, Significant difference between MCI and AD).

TABLE 3 | Descriptive statistics of the clinical variables and biomarkers of the

Piramal patients.

Characteristics Piramal mild cognitive impairment group

Biomarker frequency Mean (SD)

Age—years 100% 71.03 (7.72)

Gender—M/F 20/18

Education—year 100% 11.29 (4.63)

MMSE—raw score 100% 26.3 (2.14)

Logical Memory—EQS 100% 0.89 (1.11)

AVLT Immediate—EQS 100% 2.24 (1.42)

AVLT Delayed—EQS 100% 1.53 (1.39)

Digit Span Forward—EQS 100% 3.08 (1.12)

Digit Span Backward—EQS 53% 2.8 (1.20)

TMTA—EQS 71% 3.26 (1.40)

TMTB—EQS 71% 2.55 (1.34)

Letter Fluency—EQS 100% 3.21 (1.17)

Category Fluency—EQS 100% 2.42 (1.39)

% APOE ε4 carriers 40%

–/– 73%

–/+ 27%

+/+ 0%

% AB1-42 abnormal 100% 66%

% T-TAU abnormal 100% 47%

% P-TAU abnormal 87% 11%

EQS, Equivalent Score; SD, standard deviation; MMSE, Mini Mental State Examination;

AVLT, Rey Auditory Verbal Learning Test; TMT, trail-making test; AB1-42, amyloid beta;

T-TAU, total Tau; P-TAU, phosphorylated Tau.

preparation of the multiple single-case analyses on the Piramal
data set.

Categorization, Clustering, and
Classification Results
For the “group analysis,” starting from the original diagnosis
(first category) and the 12 previously defined second category
markers (i.e., neurodegeneration appraised by regional atrophy),
the Gap statistics identified that five homogeneous classes would
be appropriate (Figure 1A). The PAM assigned each subject to
one of the five clusters. For visualization purposes, the two
most important components were used to draw the data points
represented in Figure 2A. Noticeably, the leftmost cluster (i.e.,
cluster number 1) was the cluster with the maximum percentage
of AD (84% AD, 16% MCI, 0% CN), the lowest MMSE score
(21.2 ± 4.0), the highest prevalence of APOE4 carriers (71%),
and the highest level of abnormal AB1-42, T-TAU, and P-TAU
proteins in the CSF, while the rightmost cluster (i.e., cluster
number 3) contained primarily CN (5% AD, 26% MCI, 69%
CN) and had the highest MMSE score (27.5 ± 2.4), the lowest
prevalence of APOE4 carriers (24%), and the lowest level of
abnormal AB1-42, T-TAU, and P-TAU proteins in the CSF. The
CCC identified 24 potential informative features, in addition to
the 12 features of the second category, that defined the disease
fingerprint of the five clusters. A matching matrix summarizing
the results of predicting the five classes using just the 24 potential
markers is reported in Figure 3A. The values on the diagonal
(i.e., true positive) were higher than the others, which suggests
that these potential features may be used to fairly define the
definitive disease fingerprint of each patient. To understand the
meaning of the five new created classes, we present a distinctive
profiles plot in Figure 4A. The median line of each class is well
segregated from the others, and the confidence intervals for
each biomarker rarely overlapped to the others, which suggests
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TABLE 4 | Results from GB classifiers with different validation techniques.

Validation technique Features used Train set Test set Accuracy Precision Recall

(Nested) 10-fold

cross-validation

143 (SCD., NPSY.,

MRI, GEN., CSF)

All All 85 ± 4% 91 ± 5% 91 ± 5%

140 (SCD., NPSY.,

MRI,GEN.)

All All 69 ± 1% 79 ± 8% 79 ± 7%

Holdout validation 143 (SCD., NPSY.,

MRI, GEN., CSF)

ADNI + EDSD FBF + Besta + CHT-Niguarda 94.63% 94.32% 94.70%

143 (SCD., NPSY.,

MRI, GEN., CSF)

ADNI + EDSD + Besta + CHT-Niguarda FBF 95.18% 95.41% 95.41%

143 (SCD., NPSY.,

MRI, GEN., CSF)

ADNI + EDSD + FBF + CHT-Niguarda Besta 91.52% 91.33% 88.77%

143 (SCD., NPSY.,

MRI, GEN., CSF)

ADNI + EDSD + FBF + Besta CHT-Niguarda 95.23% 96.43% 97.22%

(Nested) 5-fold

cross-validation

143 (SCD., NPSY.,

MRI, GEN., CSF)

ADNI (stable & conv) ADNI (stable & conv) 62 ± 1% 66 ± 1% 70 ± 1%

SCD, sociodemographic variables; NPSY, neuropsychological variables; GEN, genetic variables. All, ADNI + EDSD + FBF + Besta + CHT-Niguarda data sets; stable, 118 MCI stable

subjects from ADNI; conv, 80 MCI converter to AD or other form of dementia from ADNI.

FIGURE 1 | Optimal number of clusters. (A) Shows Gap statistics considering AD, MCI, and CN from the 5 data sets (ADNI, EDSD, FBF, Besta, CHT-Niguarda), while

(B) represents the MCI population from ADNI that was used in the “single-case analysis.” K denotes the maximum gap, and it represents the best number of

homogeneous clusters definable from our data.

good cluster separations and new informative purely data-driven
diagnostic classes.

For the “single-case analysis,” the Gap statistics identified
six subclasses (Figure 1B) from the 198 MCI (118 stable and
80 converter) patients acquired from ADNI (Figure 2B). The
leftmost cluster (i.e., cluster number 6) was the cluster with
the maximum percentage of MCI converters (70% converter,
30% stable), the lowest MMSE score (25.8 ± 2.0), the highest

prevalence of both APOE4 carrier (55%), and AB1-42 positive
(95%) subjects, while the rightmost cluster (i.e., cluster number
4) contained primarily MCI stable (6% converter, 94% stable)
and had the highest MMSE score (28.1 ± 1.1), the lowest
prevalence of APOE4 carriers (25%), and the lowest level of
abnormal AB1-42, T-TAU, and P-TAU proteins in the CSF. The
matching matrix (Figure 3B) was built considering 17 potential
informative markers. The definitive disease fingerprints of the
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FIGURE 2 | Data clustering obtained using PAM (K-medoids) algorithm. On the left (A), the “group analysis” result with five clusters. On the right (B), the “single-case

analysis” result with six clusters. Each cluster of (A,B) was cross-validated in two synoptic tables against known diagnostic classes, common demographic and

clinical variables. P: significance on Fisher’s exact post hoc test or Kruskal–Wallis multiple comparison test with the Benjamini–Hochberg method; α = 0.05 level. CN,

Normal Cognition; MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; y, years; MMSE, Mini Mental State Examination (raw score); AB1-42, amyloid beta;

T-TAU, total Tau; P-TAU, phosphorylated Tau; abn., abnormal; N.S., not significant.

new six classes were graphed combining the 17 markers, with the
12 features of the second category, and using a parallel coordinate
plot (Figure 4B).

Clinical Utility of the ML Tools in the MIP
The information provided by the MIP tools did not modify
the inter-rater agreement of the four physicians. The inter-rater
concordance on the etiologic diagnosis (pathophysiologically AD
related vs. not pathophysiologically AD related) was moderate,
with a Fleiss’ kappa of 0.521 (p < 0.001).

The MIP information induced a change in the original
etiological hypothesis in three evaluations. We registered

10 changes in the hypothesis of subject conversion with a
nonsignificant Fisher’s exact test equal to 0.909 at alpha =

0.05 level. The registered increment in diagnostic confidence
before and after the MIP information disclosure was equal to
+5.99 percentage points (Figure 5A). In Figure 5B, the DC
is described in a scatter plot. Points drawn in cooler colors,
which denote non-pathophysiologically AD-related subjects, are
in most of the cases located above the bisector of the plane,
thus showing that the MIP information increased the DC of
the physician’s prediction. Points drawn in warmer colors (i.e.,
pathophysiologically AD related) are above the bisector, for lower
initial DC values, and become closer to the bisector once the
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FIGURE 3 | Matching matrix from the CCC algorithm considering the most important potential features. On the left (A) the results for the “group analysis” exploiting

24 biomarkers. On the right (B) the results for the “single-case analysis” exploiting 17 biomarkers. Each cell in the confusion matrix shows the percentage of

predictions made for the corresponding true label. REAL, true labels of the clusters defined via PAM using first and second category variables previously defined;

PREDICTED, predicted clusters via hierarchical decision trees and third category variables previously established.

FIGURE 4 | Parallel coordinate plots with confidence intervals. Distinctive plots of the different clusters identified in the “group analysis” (A) and “single-case analysis”

(B) are shown. Every line connects the medians of the features identified by the CCC for each group. The variables were normalized to the [0,1] scale. In (A), the five

classes are well separated; in (B), the confidence bands of the six MCI subclasses were partially overlaid. Both panels report the second category variables plus the

informative third category variables, selected as potential features, useful to define the disease fingerprint for each cluster. Biomarkers used to graph fingerprints of

(A,B) are reported in Supplementary Table 3.
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initial DC value increases. Therefore, the impact of the MIP was
more evident when the initial DC of MCI conversion to AD
is low (<70%).

When directly asked about the perceived impact of the MIP
tools on the final DC, in 20% of cases clinicians reported that the
additional information did not change their initial DC. In 36%
and in 29% of cases, they felt “somewhat” or “slightly” impacted,
respectively. In 15% of cases, they significantly changed their
initial belief.

DISCUSSION

The present study demonstrated that theMIP provided dedicated
tools for CN, MCI, and AD classification reaching in our
“group analysis” similar performance to the state of the art
ML algorithms (54–56). We used the supervised GB classifier
based on the combination of sociodemographic, MMSE, APOE
ε4 genotype, CSF, and MRI data to predict the patient’s stage
in the entire disease spectrum with fair accuracy. Such level of
accuracy was expected and can be explained because the clinical
data used for prediction partially correlated with those used for
making the supervised diagnosis at baseline. GB performances
were higher for the hospital holdout tasks than in cross-validation
and reached a maximum peak of 95% of accuracy in two out of
the three clinical cohorts. The following possible reasons explain
these results: (i) the evaluation depends on which data points
end up in the training set and which end up in the test set,
furthermore the evaluation often may be significantly different
depending on the hospital cohort subdivision; (ii) the holdout
strategy is subjected to higher variance because of the smaller size
of data, and the samples used might not be always representative;
and (iii) the holdout method might provide only an estimate of
the “true error rate” (accuracy) of the classifier.

Considering the power of the MIP to federate features
from a limitless number of data sets across the globe, our
results are encouraging and exciting. Indeed, the MIP platform
will need to be further tested in future studies with other
cohorts. To quantitatively measure the performance of the
GB in discriminating MCI stable vs. converters, we used the
longitudinal ADNI data set, which represented an indirect
validation and a plausibility test of the MIP tool granting a 62%
of accuracy. This level of performance is consistent with the
results proposed in the literature (57–59) using similar features
available in our study. It is realistic that GB performances were
suboptimal when considering a complex classification task, such
as the prediction of MCI conversion, compared to the earlier
distinction between well-established diagnostic classes, i.e., CN,
MCI, and AD. GB is an advanced and powerfulML tool; however,
it cannot provide a real change in the diagnostic paradigm.
This issue is naturally ingrained in the supervised algorithm
design that cannot allow the definition of new diagnostic classes.
However, GB was judged to be informative for the physicians in
the “single-case analysis.”

The use of the MIP with the CCC algorithm, based
on its agnostic data-mining approach called known-group
validity, identified finer clusters and provided a newer data-led

stratification of disease based on each patient’s brain features.
We presented a semi-unsupervised approach that separated
patients into homogenous groups according to well-known
imaging biomarkers of neurodegeneration. Notably, in the
“group analysis,” we found five classes, which were identified in
another recent study (60), that might represent a more careful
distinction of subjects compared with the three classical broad
diagnostic groups, such as CN, MCI, and AD. We enriched the
conventional imaging biomarker set of the second category with
24 additional potential markers to demonstrate the consistency
of the new classes. Overall, the matching matrix produced
interestingly results in which many true positive predictions were
located on the diagonal of the table, which gave reliability to the
selected potential features of the third category to discriminate
the five clusters. The matching matrix showed small prediction
errors because percentage values outside the diagonal were
generally small. One possible explanation for the mismatched
cases is that there were some partially interrelated features among
the features used for the classification. CCC defined groups that
were characterized by sets of quantifiable biological and clinical
variables (alias disease fingerprint) that well defined the biological
makeup of the disorders.

The same approach was used in the “single-case analysis” to
obtain six classes, with 17 potential features that were useful
to define the disease fingerprint of the MCI subgroups in
combination with the conventional imaging biomarker set of
the second category. We do not claim that our findings present
the best current views on the problem. Although the perceived
impact of clinicians was in favor of the MIP tools, how well the
CCC strategy identified the risk of conversion and the etiology
must be yet determined because information about follow-ups
and postmortem examinations is not provided in the Piramal
database. Future studies must thus be designed to validate this
stimulating finding. Moreover, expert knowledge in enlightening
the data, such as diversification of questions to different cognitive
domains or other biomarker measurements, could help create
even more refined clusters of disease arrangement.

In the “single-case” part of this study, MIP provided an added
value to clinicians’ DC even when used on top of the traditional
diagnostic workup.MIP in combination with neuropsychological
assessments and CSF biomarkers had not a trivial impact with
an increment equal to +5.99% in the final DC. This result
was consolidated considering the perception of the physicians
involved in the scoring of MCI subjects who declared that MIP
information influenced their DC with an impact that was rated
from “slight” to “significant” in 80% of the cases.

Because the MIP platform is by definition a simple,
quantitative, reproducible tool that requires fast training, it may
provide an important added value in the diagnostic process of
the dementia.

Few discordant and contradictory MIP results were registered
by physicians between CCC and GB. These were primarily due to
algorithm implementation differences in terms ofML approaches
and different selection mechanisms of biomarkers to be used.
CCC performed a feature pruning mechanism, GB instead was
more robust to overfitting and tried to maximize the pathological
information using all of the available features. Agreement
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FIGURE 5 | MIP and diagnostic confidence. (A) Shows the incremental clinicians’ diagnostic confidence (DC). (B) Shows a scatter plot describing the DC before and

after disclosure of the MIP information. Points that lay on the bisector of the plane are cases for which there was no change in DC, whereas points that are further from

the bisector are cases for which the change in DC was largest. Color transparency was used for all the points to achieve the best visualization of patients having same

DCs. AD, Pathophysiologically AD-related group; non-AD, Non-pathophysiologically AD related.

between MIP tools is thus subject to technical differences, which
may lead to slightly different diagnostic conclusions on the same
patient. Therefore, the physician is absolutely essential and not
replaceable by any artificial intelligence system, not even themost
advanced (61, 62). However, discordant cases may also be due to
borderline results.

This said, the MIP could contribute to help physicians in their
daily workup and in their patient management and it may be used
to test other clinical hypotheses. One of the main advantages of
adoptingMIP and its integratedML tools is to combine hundreds
of pieces of information (i.e., features) of different nature in a
few graphs for the benefit of clinicians, which simplifies how to
process the wealth of information available.

Analyzing health and especially hospital data, which are
normally much noisier than research data, requires researchers to
face some challenges. Some of the major challenges are reported
hereinafter. Compensatory mechanisms may obscure the linkage
between biological markers and disease (63). For example, two
subjects with the same brain images do not necessarily share the
same clinical manifestation. It is not only due to the complexity
of the disease or the inefficiency of the marker but also by the fact
that different compensatory mechanisms exist from one subject
to another, which generate a miscellaneous effect on the clinical
phenotype. The rate of agreement between physicians is generally
modest, which means that supervised ML approaches may be
partially invalidated by a poor initial classification. Recent major
pathological reviews reported that the diagnosis of AD was no

better than 60–70% accurate (4, 5). This had generated a great
debate on the potentially greater usefulness of semi-unsupervised
or completely data-driven approaches. Big-data analyses may
increase the possibility to tease out irrelevant biomarkers that
were identified by chance in reduced populations. To tackle this
methodological problem, a well-founded and validated selection
process for features and patients must be performed.

The CCC approach clearly showed the presence of disease
classes beyond clinical ones in the overall group of patients and
within the MCI group itself. Notably, the overall patient group
was divided into classes with clearly defined features that did
not overlap with each other and maintained a specific order
(i.e., in “group analysis,” group 3 was above all other groups
for all features, and group 1 was characterized by the lowest
values for all features, with the inversion of the 4th ventricle
size). Therefore, the disease fingerprint we can derive for each
patient is appealing and may be beneficial for their selection
in the future clinical trials, as long as a deeper phenotyping
of the identified clusters will be available and confirmed by
the clinicians.

Unfortunately, the number of new drugs entering the market
is scarce, andmany big-pharma companies have recently stopped
investing in this area. This situation is a direct consequence of the
lack of a clear causative understanding of AD, and it is difficult to
find new treatments for brain diseases in this scenario. Therapies
in ADnormally focus on cholinesterase inhibitors, which are only
given after the onset of symptoms.
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To change this perspective toward a new paradigm, the MIP
platform is gathering a large number of patients and healthy
controls to characterize the disease from quantifiable biomarkers
instead of gathering the patients’ referred symptoms and from
few non-standardized instrumental assessments.

We showed how the MIP platform could provide accurate
and innovative ways to detect, stratify, and classify patients. We
identified possible subject-specific biological signatures that are
not captured by the traditional and oversimplified diagnostic
categories. These fingerprints should clarify the researchers and
physicians on the causes and mechanisms of AD to highlight
targets for effective personalized treatment approaches and
upcoming prevention studies.

The present study was cross-sectional, and it is still far
from a real big analytics experiment despite the gathering
of a large number of multidomain features from different
cohorts of patients. Future efforts should be made to identify
sets of biomarkers that distinguish different disease trajectories
longitudinally. This goal requires the integration of data sets
with follow-ups within the MIP and appropriate spatiotemporal
mathematical models (64–66), which are currently absent in
the platform, that may be used as a source of information on
biological mechanisms that drive AD progression.

Several unanswered questions must be clarified in the future,
such as the following: Is the disease signature a “guarantee of
success” for new drug development? Will biological fingerprint
characterization predict disease manifestations more accurately?
What is the phenotypic difference between close and distant
disease signatures?

The present study has a few limitations. The RIN network
includes participating Italian clinical centers, which may
represent a selected group that is more likely to make use of
innovative biomarkers for diagnosis. In principle, we cannot
exclude that different ML tools, hosted within the MIP but
not chosen for our specific study, could have different impacts,
better or worse, on the classification performances of the group
analysis and on the DC we performed. Our study chose GB
and CCC algorithms for their implementation readiness inside
the MIP platform. However, other promising or most common
classifiers such as Random Forest (67), Support Vector Machine,
or semi-supervised heuristic approaches (68) should be tested
further on. The development of new feature selection strategies
to identify relevant and nonredundant feature subsets, innovative
ensemble, and deep learning algorithms for clinical classification
(69) should be explored too. Except for the MMSE score, in the
“single-case analysis” part, aggregated outcomes coming from
neuropsychological tests were acquired and dichotomized into
normal/abnormal according to different local clinical practices
and protocols. The same caveat applies to CSF biomarkers. We
cannot claim that different tests and protocols may have different
impacts on DC. Furthermore, we included only one biomarker
of brain amyloidosis (i.e., CSF AB1-42) without considering the
amyloid-PET imaging data. We chose not to include amyloid-
PET because this examination could not be processed by the
MIP because of the lack of an ad hoc automatic pipeline of
imaging analysis. Indeed, it will be important to integrate this
type of pipeline so that future studies will also take advantage

of multimodal MRI and PET imaging information. Lastly, the
limited sample size in the single-case analysis of MCI patients
warrants replication in larger studies.

CONCLUSION

Thanks to the MIP platform, we are assisting to a radical
change in neuroscience that is symbolized by moving away
from traditional syndromic diagnosis toward diagnoses based
on biological signatures, while not ruling out the importance of
clinician supervision. Advanced statistics, notably data mining
and ML tools, are the armamentarium for this paradigm shift.
The novel approach we demonstrated does not constitute a
substitute for the classical hypothesis-led approach conducted in
neuroscience so far. Rather, it is a complementary methodology
that allows a better understanding of the complexity of the brain
and its diseases. The present study also demonstrated an effect
on DC and an influence on the physicians’ clinical thinking
and decision making when the MIP outcomes were added to
other biomarkers.

The disease signature, emerging from big-data analyses and
innovative ML approaches, seems to play a promising role in
patients’ stratificationwithin future clinical trials or observational
studies. This methodology may help to identify new targets for
intervention, guide better care, and lead to precision diagnostics.
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