
Synthetic Benchmarks for Genetic Improvement
Aymeric Blot

University College London
London, United Kingdom

a.blot@cs.ucl.ac.uk

Justyna Petke
University College London
London, United Kingdom

j.petke@ucl.ac.uk

ABSTRACT
Genetic improvement (GI) uses automated search to find improved
versions of existing software. If over the years the potential of many
GI approaches have been demonstrated, the intrinsic cost of evalu-
ating real-world software makes comparing these approaches in
large-scale meta-analyses very expensive. We propose and describe
a method to construct synthetic GI benchmarks, to circumvent
this bottleneck and enable much faster quality assessment of GI
approaches.

CCS CONCEPTS
• Software and its engineering → Search-based software

engineering.
KEYWORDS

Genetic improvement; Search-based software engineering

ACM Reference Format:
Aymeric Blot and Justyna Petke. 2020. Synthetic Benchmarks for Genetic
Improvement. In GI@ICSE ’20: 8th Workshop on Genetic Improvement at the
International Conference on Software Engineering, May 24, 2020, Seoul, South
Korea. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Genetic improvement (GI) [7] uses automated search to find im-
proved versions of existing software. In the last decade many works
have repeatedly demonstrated the potential of GI for the improve-
ment of both functional and non-functional properties of software.
The GI field however suffers frommajor segmentation, due to a lack
of standard GI benchmarks, as work usually focuses on different
software, at different granularity levels, for different applications
scenarios, using very slightly different search processes. If many of
these steps are determined by the problem at hand (e.g., the pro-
gramming language, the fitness function), many others require to
be manually fixed, at great costs, using expert knowledge or human
intuition (including, e.g., the search process and its parameters, the
granularity level, or the types of mutations considered).

There is still much to learn on how to, given a specific applica-
tion scenario, select the most suitable approach. Ideally one would
simply select a set of various different software, compute a set of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GI@ICSE ’20, May 24, 2019, Seoul, South Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

features (e.g., programming language, size, application), and per-
form a comprehensive study to understand relationships between
features and approaches. This is unfortunately infeasible due to the
inherently big cost of running large-scale GI experiments. Indeed,
in essence all GI approaches suffer from the inevitable bottleneck
that is fitness assessment, requiring in most cases to repeatedly run
the (slow) targeted software. Even if GI runs are easily parallelisable,
the product of numbers of software, search algorithms, parameter
configurations, and repetitions required for statistical validation,
drastically reduce the scope for quick experimentation. Addition-
ally, meta-approaches, such as automated algorithm configuration
or automated algorithm selection, are also currently extremely
costly to compute, being orders of magnitude slower than the GI
approaches, themselves already orders of magnitude slower than
the target software.

To enable such large-scale experiments, it is necessary to be
able to avoid the need of repetitive costly fitness evaluation. We
propose to construct new, artificial scenarios, in which the fitness
evaluation would not require any costly computation. These new
scenarios would use synthetic data, automatically generated fol-
lowing statistics obtained from real scenarios obtained beforehand
using preliminary analyses. Generating artificial data is often done
when data is too scarce or too expensive to obtain [4], and mostly
prevalent in machine learning and data science [5]. Other possible
solutions may include simulating the execution of software variants,
or computing surrogate models to predict its performance [2].

2 FORMALISM
GI focuses on improving somemeasure of a given software, typically
its ability to clear a test suite without error or a performance mea-
sure such as running time, or memory or energy consumption [7].
GI can be formalised [1] as an abstract optimisation problem, as
shown in Equation 1, given the space S of variants of the target
software s0, a distributionD (e.g., the test suite of an automated pro-
gram repair scenario or the inputs or instances of a non-functional
property optimisation scenario), a cost metric o : S × D → R, and
a statistical population parameter E (e.g., the arithmetic mean).

(GI)
{

optimise E[o(s, i), i ∈ D]

subject to s ∈ S
(1)

We propose to completely substitute in Equation 1 the costly
fitness estimation E[o(s, i), i ∈ D] of the software variant s , re-
quiring compilation and subsequent multiple executions of s over
elements of D, by a single query to synthetic model, following the
list of mutations between s and s0. In practice, the model needs to
associate with each possible software variant s both a final state
(for example, for cases when the mutated software failed to compile,
or provides an invalid result) and the actual measure of the quality
of s .

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GI@ICSE ’20, May 24, 2019, Seoul, South Korea Aymeric Blot and Justyna Petke

3 PROPOSAL
For the sake of simplicity, we assume an extremely simple scenario,
in which: (1) the targeted software is represented by an abstract
syntax tree (AST) of n statements, (2) software variants are repre-
sented by a list of mutations, (3) mutations are either deletions or
replacements of statements, (4) the quality measure of a software
is the average running time over a set of inputs, and (5) validity of
a variant can be checked simply by comparing outputs.

3.1 Analysing the Original Software
GI search spaces are huge. Even by only considering deletions
and replacements, there are around n + n2 different mutations, and
therefore around

∑m
k=1(n+n

2)k software variants up tommutations
to consider. In order to keep the complexity of our model low, we
will suppose that the contribution of mutations are all independent.

The first step of our proposition is to collect statistics from the tar-
geted real-world software. Unless n is extremely large, it should be
reasonable to consider all deletions, but mutations such as replace-
ments will necessarily require uniform random sampling. Each of
the selected mutations is to be individually investigated, each time
recording if the mutated variant compiled, successfully returned a
acceptable output, and the associated running time normalised to
the running time of the original software. Aggregating these data
provides for each type of mutation the distributions that will be
used to create the synthetic data.

3.2 Forging the Synthetic Model
We need to construct a model that can, given a list of mutations,
provide a consistent and coherent alternative to compiling and
running the associated mutated software. The model is ultimately
equivalent to a simple hash table, with software variants as keys
and results as values. As mentioned before, we consider here a very
simplistic model in which the contributions of individual mutations
are independent, so the hash table only needs to contain around
n + n2 keys, while the values are randomly generated according to
the previously acquired statistics.

To generate values on-the-fly and avoid to actually storing that
much data, we propose to rely instead on the pseudo-random num-
ber generator. From a canonical string representation of the muta-
tion, supposedly unique, salted with the root random seed of the
model, it is easy to generate a hash that can be used as a random
seed to regenerate the characteristics of that particular mutation.

To then aggregate the individual contributions, we propose to
abide by the following rules. First, if any of the individual muta-
tion is deemed to have failed to compile, the complete patch is
also deemed to have failed to compile. If any mutation leads to a
wrong output, the complete patch also leads to a wrong output. If
all the individual mutations are valid, the normalised running time
of the complete patch is obtained by computing the product of all
normalised running times. Finally, multiple appearances of a single
mutation are ignored. For example, if a patch contains three muta-
tions, one being 20% faster, one having to impact on running time,
and one slowing the software by 5%, then the combined running
time will be 0.8 × 1.0 × 1.05 = 84% of the original software.

At last, changing the root random seed of the model will modify
all hashes and thus provide other instances of models based of the

initial analysis. Performing analyses on many different software
with different features will hopefully provide GI researchers with
diverse and cheap benchmarks.

3.3 Discussion
The model we propose is purposely very simple, and many draw-
backs could be alleviated by considering more complex models. For
example, the independence assumption it requires is quite strong; to
lessen it one solution would be to sample sets of mutations during
the preliminary analysis to then reuse the collected statistics when
aggregating individual contributions. Data pertaining to result vari-
ability, e.g., noise or affinity to given inputs, could also be integrated
in the model. Similarly, the current model uniformly uses unified
statistics for all nodes of the AST; clustering samples at the end of
the analysis (e.g., by type, content, results, or simply position in
the AST) would also lead to a more complex but hopefully more
sensible model.

In general, synthetic models should ultimately reflect known
GI search spaces [6] and include features that can have a strong
impact on GI approaches (e.g., mutational robustness [8], or plastic
regions [3]). However, models should also compromise between
high complexity and fidelity, and overall speed usage.

Finally, because correctness or consistency of such artificial mod-
els cannot really be proven, they cannot replace real-world scenar-
ios but they can provide a very convenient way to prototype new
approaches and conduct large-scale comparisons.

4 CONCLUSION
The main bottleneck of GI is software quality assessment, which
prevents large scale comparisons and meta-analyses of GI processes.
We presented a method to completely circumvent executing the
target software by replacing it by a very simple deterministic syn-
thetic model. If this method can be shown to be efficient in creating
reasonable and quick to evaluate models, we believe it to be of great
potential for GI researchers.

ACKNOWLEDGMENTS
This work is supported by UK EPSRC Fellowship EP/P023991/1.

REFERENCES
[1] Aymeric Blot and Justyna Petke. 2019. On Adaptive Specialisation in Genetic

Improvement. In GECCO 2019 companion.
[2] Nguyen Dang, Leslie Pérez Cáceres, Patrick De Causmaecker, and Thomas Stützle.

2017. Configuring irace using surrogate configuration benchmarks. In GECCO
2017. 243–250.

[3] Nicolas Harrand, Simon Allier, Marcelino Rodriguez-Cancio, Martin Monperrus,
and Benoit Baudry. 2019. A journey among Java neutral program variants. Genetic
Programming and Evolvable Machines 20, 4 (2019), 531–580.

[4] Yuri Malitsky, Marius Merschformann, Barry O’Sullivan, and Kevin Tierney. 2016.
Structure-Preserving Instance Generation. In LION 10 (LNCS), Vol. 10079. 123–140.

[5] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The Synthetic Data
Vault. In DSAA 2016. 399–410.

[6] Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E.I. Brownlee, Markus
Wagner, and David R. White. 2019. A Survey of Genetic Improvement Search
Spaces. In GECCO 2019 companion.

[7] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David Robert White, and John R. Woodward. 2018. Genetic Improvement of
Software: A Comprehensive Survey. IEEE Trans. Evolutionary Computation 22, 3
(2018), 415–432.

[8] Eric M. Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie For-
rest. 2014. Software mutational robustness. Genetic Programming and Evolvable
Machines 15, 3 (2014), 281–312.

	Abstract
	1 Introduction
	2 Formalism
	3 Proposal
	3.1 Analysing the Original Software
	3.2 Forging the Synthetic Model
	3.3 Discussion

	4 Conclusion
	Acknowledgments
	References

