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Abstract21

In this study we investigate the ability of several different machine learning mod-22

els to provide probabilistic predictions as to whether interplanetary shocks observed up-23

stream of the Earth at L1 will lead to immediate (Sudden Commencements, SCs) or longer24

lasting magnetospheric activity (Storm Sudden Commencements, SSCs).25

Four models are tested including linear (Logistic Regression), non-linear (Naive Bayes26

and Gaussian Process) and ensemble (Random Forest) models, and are shown to pro-27

vide skillful and reliable forecasts of SCs with Brier Skill Scores (BSSs) of ∼ 0.3 and ROC28

scores > 0.8. The most powerful predictive parameter is found to be the range in the29

interplanetary magnetic field. The models also produce skillful forecasts of SSCs, though30

with less reliability than was found for SCs. The BSSs and ROC scores returned are ∼31

0.21 and 0.82 respectively. The most important parameter for these predictions was found32

to be the minimum observed BZ .33

The simple parameterization of the shock was tested by including additional fea-34

tures related to magnetospheric indices and their changes during shock impact, result-35

ing in moderate increases in reliability. Several parameters, such as velocity and density,36

may be able to be more accurately predicted at a longer lead time, e.g. from heliospheric37

imagery. When the input was limited to the velocity and density the models were found38

to perform well at forecasting SSCs, though with lower reliability than previously (BSSs39

∼ 0.16, ROC Scores ∼ 0.8), Finally, the models were tested with hypothetical extreme40

data beyond current observations, showing dramatically different extrapolations.41

1 Introduction42

Space weather events are ultimately driven by the interaction between the solar wind43

and the magnetosphere-ionosphere system. These interactions can be characterized as44

the storage and spontaneous release of energy, leading to intermittent, shorter space weather45

events (e.g. substorms (Freeman et al., 2019)), or by the driving of longer extreme space46

weather events by large-scale structures in the solar wind, such as Coronal Mass Ejec-47

tions (CMEs) (Illing & Hundhausen, 1983; Gosling, 1993; Richardson & Cane, 2012). CMEs48

are huge eruptions of plasma from the Sun, exploding into the solar system, often driv-49

ing fast-forward shocks ahead of them (see review by D. F. Webb & Howard, 2012). The50

impact of CMEs, and their associated interplanetary shocks, on the magnetosphere can51

drive dynamics and processes such as magnetospheric storms and substorms (e.g. Kokubun52

et al., 1977; Akasofu & Chao, 1980; Gonzalez et al., 1994; Kamide et al., 1998; Brueck-53

ner et al., 1998; Zhou & Tsurutani, 2001; Yue et al., 2010). CMEs associated with high54

speed interplanetary shocks and significant intervals of southward directed interplane-55

tary magnetic fields (i.e. negative IMF Bz) have been found to be particularly geo-effective56

(Echer et al., 2008; Balan et al., 2014). Other phenomena can also drive interplanetary57

shocks, e.g. corotating interaction regions (CIRs): structures produced when high speed58

solar wind interacts with slower moving solar wind in its path (see review by Crooker59

et al., 1999). However, CIR driven shocks are not often associated with the same large60

negative magnetic fields, and therefore may drive less severe but longer lasting magne-61

tospheric activity (Alves et al., 2006; Borovsky & Denton, 2006).62

On the ground, the impact of a significant interplanetary shock on the magneto-63

sphere can often be inferred through a sharp increase in the northward component of the64

horizontal magnetic field, known as a Sudden Commencement (or SC) (Chree, 1925; Araki,65

1994). If the shock impact is followed by a geomagnetic storm then it may be further66

termed a Storm Sudden Commencement (or SSC), if it is not then it can be classed as67

a Sudden Impulse (SI) (Joselyn & Tsurutani, 1990; Curto et al., 2007). It should be noted68

that the impact of a shock is not always guaranteed to cause large, measurable changes69

(i.e. an SC) in the magnetosphere (e.g. Echer & Gonzalez, 2004).70
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The initial impact of some interplanetary shocks, and the induced sharp changes71

in ground magnetic field, have been found to generate large currents in power networks,72

particularly at low and mid latitudes (Kappenman, 2003; Beland & Small, 2004; Mar-73

shall et al., 2012; Carter et al., 2015; J. J. Zhang et al., 2015). Meanwhile, the magne-74

tospheric storms and substorms that may be caused by the shock, or the phenomena driv-75

ing the shock, are also likely to be associated with large rates of change of the geomag-76

netic field (and therefore induced currents) (Kappenman & Albertson, 1990; Kappen-77

man, 1996; Pulkkinen et al., 2005, 2012; Ngwira et al., 2013; Dimmock et al., 2019; Free-78

man et al., 2019), particularly at higher latitudes where the auroral current systems most79

often reside (Rogers et al., 2020). Recent work has shown that for the UK (at mid-latitudes)80

over 90% of extreme geomagnetic field fluctuations occur within 3 days of an SSC (A. W. Smith81

et al., 2019). Interplanetary shocks therefore represent an important source of hazardous82

space weather, whether directly or in connection with the phenomena that drives the shock.83

Links have been observed between the properties of interplanetary shocks and the gen-84

erated geomagnetic (B. T. Tsurutani et al., 1992; B. T. Tsurutani & Gonzalez, 1998; Gon-85

zalez et al., 1999; D. M. Oliveira & Raeder, 2015) and auroral observations (D. M. Oliveira86

et al., 2016). With this in mind it is of great interest to be able to forecast intervals in87

which infrastructure is at risk, i.e. to produce skillful models that are able to accurately88

forecast the geoeffectiveness of interplanetary shocks.89

From an operational perspective, it is possible to automatically identify interplan-90

etary shocks in spacecraft data, for example at L1 (e.g. Vorotnikov et al., 2008, 2011;91

Kruparova et al., 2013; Cash et al., 2014). At a minimum, the delay from L1 to the sub-92

solar magnetopause provides appropriately 30-120 minutes of warning of the shock’s ar-93

rival at Earth, though the precise delay is variable and not simple to predict (Cash et94

al., 2016). Further classification at the L1 point to determine the phenomena related to95

the shock, e.g. a CME or CIR, is more difficult to automate but would likely aid fore-96

casts (e.g. Echer et al., 2008). Recent work has had success forecasting whether an in-97

terplanetary shock will be followed by an extended interval of southward magnetic field98

(Salman et al., 2018), as these intervals are known to be particularly geo-effective (e.g.99

Gonzalez & Tsurutani, 1987).100

In the last 20 years, studies have begun to leverage machine learning techniques101

to forecast space weather; the interested reader is directed to Camporeale (2019) for a102

detailed overview. In particular, machine learning techniques have been used to forecast103

geomagnetic indices (c.f. Morley, 2020), for example the Kp index (e.g. Wing et al., 2005;104

Ji et al., 2013; R. Wang et al., 2017; Wintoft et al., 2017; Tan et al., 2018) and Dst/Sym-105

H indices (e.g. Wu & Lundstedt, 1996; Kugblenu et al., 1999; Lundstedt et al., 2002; Chan-106

dorkar et al., 2017; Lethy et al., 2018; Bhaskar & Vichare, 2019). In this work, we in-107

vestigate the ability of machine learning methods to provide a probabilistic forecast as108

to whether an observed interplanetary shock will lead to an SC (e.g. a significant ground109

magnetic field signature), and further whether this will be followed by a geomagnetic storm110

(i.e. the shock is related to an SSC). We also examine the performance of these mod-111

els when presented with inputs at and beyond the limits of the training dataset. As dis-112

cussed above, the geoeffectiveness can likely be more thoroughly determined through in-113

spection of the physical process driving the shock, however operationally the details of114

this structure may not be quantified a priori. Therefore, we investigate whether an SSC115

can be predicted based solely on information about the shock.116

The structure of the paper is as follows. In Section 2 we discuss the data and cat-117

alogs of events employed, while in Section 3 we discuss our methods, models and met-118

rics. Section 4 describes the results of the study, while Section 5 discusses the results in119

terms of the most powerful predictive parameters, the effectiveness of the parameteri-120

zation of the shock and the performance of the models when presented with extreme events.121
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2 Data and Catalogs122

For this work we require catalogs of interplanetary shocks (measured at L1) and123

sudden commencements (SCs), which are further classified into sudden impulses (SIs)124

and storm sudden commencements (SSCs). We note that any catalog may not be fully125

comprehensive, as marginal events may not be identified. However it is reasonable to as-126

sume that the largest events will be present, and it is these extreme events that are likely127

to be the most significant in terms of space weather. For this purpose we have selected128

two independent catalogs, described below.129

2.1 Interplanetary Shocks and Parameters130

We use a catalog of 547 interplanetary shocks observed by either the Wind or ACE131

spacecraft at the L1 point between 1995 and 2017, compiled by D. M. Oliveira et al. (2018).132

This database is comprised of interplanetary shocks selected by D. M. Oliveira et al. (2018),133

as well as those identified by Dr. J. C. Kasper for the Wind (http://www.cfa.harvard.edu/shocks/wi_data/)134

and ACE data (http://www.cfa.harvard.edu/shocks/ac_master_data/), and also135

by the ACE team (http://www-ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html#shocks),136

and by C. Wang et al. (2010).137

As a part of this study we wish to evaluate the most powerful predictive proper-138

ties of solar wind shocks, and we therefore extract a wide variety of parameters from the139

observations of the shock and the surrounding solar wind. Specifically we record the max-140

imum, minimum, range and mean of the GSM components of the solar wind velocity (V)141

and interplanetary magnetic field (B), the magnitude of B and the solar wind proton den-142

sity, henceforth referred to as features. We do not consider properties that can be fur-143

ther calculated from such features, for example dynamic pressure or the various coupling144

parameters, as they strongly correlate with the existing features. The properties of the145

interplanetary shocks were extracted from data obtained from the ACE and WIND space-146

craft within the hour preceding shock arrival at the Earth (as inferred from an increase147

in the Sym-H index). The one hour window was determined empirically in order to in-148

clude all shocks and account for the different propagation times between L1 and the sub-149

solar magnetopause. Though this scheme will sample different quantities of pre- and post-150

shock plasma, depending on the speed of the shock, the extracted parameters are found151

to be dominated by the shock itself and any associated field rotation. Adjusting the in-152

terval of time sampled around the shock was not found to significantly change the re-153

sults.154

From ACE, data were used from the Solar Wind Electron, Proton and Alpha Mon-155

itor at 64 s resolution (McComas et al., 1998), and the Magnetic Field Experiment at156

16 s resolution (C. Smith et al., 1998). Meanwhile from WIND, data were used from the157

Solar Wind Experiment at 92 s resolution (Ogilvie et al., 1995) and the Magnetic Fields158

Investigation at 1 minute resolution (R. P. Lepping et al., 1995). We note that the data159

from ACE and WIND can be incomplete, particularly during more extreme solar wind160

conditions. As it is our goal to demonstrate a method that could be used for operational161

forecasting, our feature selection method has been chosen such that they may be extracted162

from incomplete data. Operationally, i.e. from a forecasting perspective, it would be im-163

portant to minimize the effect of any missing data on the predictions made. However,164

if the data quality were assured and continuous then it would likely be of significant value165

to include more detailed parameters of the shock, such as the shock impact angle (D. Oliveira166

& Samsonov, 2018). It should also be noted that this study has been performed using167

science data (i.e. “Level 2 data”), any future operational form should be trained on the168

more immediately available data products to provide a more representative comparison.169
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Table 1. Cross Comparison IP Shocks (D. M. Oliveira et al., 2018) with SCs identified by the

ISGI, classified with the scheme of Fiori et al. (2014)

IP Shock No IP Shock Totals

SC 307 107 414
No SC 240 - 240

Totals 547 107

SSC 94 31 125
SSCd 167 49 216
SI 46 27 73
No SC 240 -

Totals 547 107

2.2 Sudden Commencements170

To evaluate the geo-effectiveness of the interplanetary shocks we use an indepen-171

dent database of 417 sudden commencements (SCs), for the same time interval as above,172

provided by the International Service of Rapid Magnetic Variations (part of the Inter-173

national Service of Geomagnetic Indices) based at Ebre Observatory (http://www.obsebre.es/en/rapid).174

These events are identified from the data collected by five low-latitude magnetic obser-175

vatories (Curto et al., 2007). The catalog has been used in the past to statistically as-176

sess the consequences of SCs and related activity (e.g. Fiori et al., 2014; Carter et al.,177

2015; A. W. Smith et al., 2019). We further classify the SCs into Sudden Impulses (SI)178

or Storm Sudden Commencements (SSC) according to the scheme of Fiori et al. (2014),179

based on the Sym-H index in the days following the observation (c.f. Gonzalez et al., 1994).180

In this scheme the events are classed as an SI if the Sym-H index is greater than −30 nT181

for the 48 hours following the SC, an SSC if the Sym-H index falls to less than −30 nT182

within 4 hours of the SC, and as a delayed SSC (SSCd) if the fall to below −30 nT oc-183

curs between 4 and 48 hours after the SC. It should be noted that these definitions do184

not include any recognition of SSCs that may be identified by the changing magnetic ”rhythm”185

of the stations (Mayaud, 1973), however it is simple and easily reproducible.186

2.3 Cross-Comparison187

We can cross-compare the events in both catalogs to evaluate whether the inter-188

planetary shocks identified at L1 caused a ground signature that was recognized as an189

SC, and whether any further activity was observed. To do so, the SC database was checked190

for corresponding SCs within ±15 minutes of each shock impact. This choice of window191

size was confirmed to correctly match those that would be associated manually. Table192

1 shows a comparison between the two catalogs.193

First from Table 1 and the perspective of the shock observations, we can see that194

240 of the 547 interplanetary shocks in the interval (44%) did not cause a significant ground195

signature, i.e. an identified SC. This relatively large fraction is expected: an interplan-196

etary shock impact is not a sufficient criterion for an SC to be observed (e.g. Echer &197

Gonzalez, 2004). Meanwhile, 94 out of 125 (75%) SSCs can be directly related to solar198

wind shocks. This is entirely consistent with the findings of a shorter time interval stud-199

ied by C. Wang et al. (2006). From an similar perspective, while 94 interplanetary shocks200

(out of 547, 17%) directly correspond to SSCs, a total of 261 (out of 547, 48%) can be201

linked to some form of storm activity (i.e. SSCs or SSCds). This is similar to the ob-202
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servations of Echer and Gonzalez (2004), who found that between 1973 and 2000 57%203

of their 574 interplanetary shocks were followed by a Dst below −50 nT in the follow-204

ing three days.205

Meanwhile from the perspective of SCs, 107 of the 414 (25%) SCs recorded dur-206

ing this interval do not correspond to an identified interplanetary shock at L1. This is207

very similar to the fraction found by C. Wang et al. (2006) in their study between 1995208

and 2004; such events have been attributed to other phenomena in the solar wind (e.g.209

B. Tsurutani et al., 2011; Park et al., 2015). Additionally, it is possible that there are210

data gaps due to extreme plasma conditions at L1 which prohibit the identification of211

a counterpart shock. This would likely preferentially effect more extreme solar wind con-212

ditions. On the other hand, it is also possible that some of the SCs that lack an inter-213

planetary counterpart could be due to the independent nature of the catalogs. It is of-214

ten the case that when surveying data manually, smaller scale events can be more no-215

ticeable when the time period is highlighted by the occurrence of a related phenomenon.216

With regards to the SSC and SSCds that have an unidentified interplanetary cause, it217

should be noted that our statistics will include relatively small storms due to our adop-218

tion of a low threshold of −30 nT . Previous works have suggested a very strong asso-219

ciation between large storms and interplanetary shocks (e.g. Chao & Lepping, 1974; Gosling220

et al., 1991). Interestingly, if we increase our storm threshold to −50 nT or even −100 nT221

we still return 22−25% of SSCs that do not correspond to an identified interplanetary222

shock. This suggests that a combination of the factors described above may be respon-223

sible.224

Finally we note that if we restrict the study to those events with sufficient in situ225

L1 data to provide the required features, the number of events reduces down to 93 (from226

94) interplanetary shocks related to SSCs (with prompt storm activity within 4 hours)227

and a total of 303 (from 307) interplanetary shocks that are related to a detected ground228

signatures (SCs). This marginally reduced catalog will form the database for the remain-229

der of the study.230

3 Methods, Models and Metrics231

In this work we demonstrate the use of machine learning models to provide prob-232

abilistic estimates as to whether observed interplanetary shocks at L1 will be geo-effective,233

defined in Section 2 as causing an identifiable sudden commencement (SC), and also by234

whether they will be related to a geomagnetic storm (or SSC). In this section we out-235

line the feature selection methods, the machine learning models and metrics used to eval-236

uate the performance of the models.237

3.1 Feature Selection238

There are a large number of solar wind and IMF properties obtained at L1 that239

could possibly be used to describe an interval of data around an interplanetary shock.240

However, not all of these variables will be useful to the models; there will be some that241

correlate with each other, and some may be confounding variables (e.g. Bentley et al.,242

2018). A correlation matrix of the solar wind features is presented and discussed in Ap-243

pendix A1. Additionally, the inclusion of a large number of features may result in over-244

fitting, where the model over-learns from the training examples and then is not able to245

extrapolate to future or unseen events. For this reason, we evaluate which features of246

the shock are the most useful to the models.247

For this study we have chosen to extract the feature importances using a random248

forest (ensemble) model. The importance of each feature is a measure of how the Gini249

impurity or information (entropy) is changed by placing requirements upon that feature.250

It should be noted that this method can have unexpected results when scoring features251
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that have large differences in scales (e.g. Strobl et al., 2007). To minimize the effect of252

this on our results we have chosen to standardize the values of each feature using the mean253

and standard deviation. Additionally, it should be noted that if two features are corre-254

lated then the first selected will have the original importance, while the second will have255

a significantly reduced importance: its subsequent addition will not significantly improve256

the forecast. This is despite the fact that both features may individually be good pre-257

dictors, as would be expected if they correlate strongly. Therefore an interpretation should258

be careful to note that the relative feature importance does not necessarily represent the259

individual skill of each feature in isolation, but instead the combination of features that260

best contribute to making classifications.261

Two other feature evaluation methods were considered, the F Score and Mutual262

Information (MI) of the features. However, the F Score only measures linear relation-263

ships and does not account for correlations between features (Chen & Lin, 2006), and264

was therefore found to give poorer results. The MI method provided almost identical re-265

sults to the ensemble feature importance method, but does not easily provide an uncer-266

tainty estimate and therefore it was not selected over the chosen method.267

3.2 Models268

In this study, we develop a series of forecasts using relatively simple machine learn-269

ing techniques such that these forecasts can be run in near-real-time to forecast the con-270

sequences of an interplanetary shock that is observed at the L1 point. All models are271

available from the scikit-learn python package (Pedregosa et al., 2011). In Section 5 we272

will also consider hypothetical or extreme interplanetary shocks, for example historical273

events or those that may be predicted, perhaps through ballistic or MHD heliospheric274

models.275

Firstly, we consider a simple linear model. Fitting this model on a single feature276

would be the equivalent of scaling the probability of an ‘event’ with the value of the pa-277

rameter, providing a useful benchmark. The model is based on Logistic Regression, a278

linear technique where the probability of each outcome is modeled with a logistic func-279

tion (or sigmoid curve) (Hosmer & Lemeshow, 2005).280

We also consider two non-linear models to examine whether the interplanetary shocks281

can be better evaluated in this way. Firstly, we test a Gaussian Process classifier, a non282

parametric model that uses a Bayesian approach, assuming a prior distribution on the283

underlying probability densities (Rasmussen & Williams, 2006). It has the advantage that284

it natively provides a probabilistic result, however it is known to be relatively compu-285

tationally intensive when applied to high dimensional data sets. The second contrast-286

ing non-linear method tested is a Gaussian Naive Bayes model, based on applying Bayes’287

theorem while assuming conditional interdependence between features, given the assigned288

class (Pérez et al., 2006; G. I. Webb et al., 2011). In this formulation, the likelihood of289

the features is assumed to be Gaussian. This model has been included as it has been shown290

to perform well as a classifier with a relatively small training set. However, the proba-291

bilities that it assigns are known to be unreliable (H. Zhang, 2004), and we therefore re-292

scale the returned probabilities in order to report better calibrated and reliable forecasts293

using Platt Scaling (Platt, 1999). Platt scaling involves fitting a parametric logistic re-294

gression model to the output of the model. Essentially, this scaling enables the correc-295

tion of the initial returned probabilities into a more reliable output. The sklearn pack-296

age provides this feature as a part of the CalibratedClassifierCV class.297

Finally, we consider an ensemble model based on decision trees. Each tree divides298

the parameter space into ‘leaves’, with each split designed to maximize separation of the299

distinct classes (Breiman et al., 1984). This method is highly non-linear, and is known300

to be susceptible to overfitting. Therefore, Random Forests average the results of mul-301

tiple independently derived ’trees’, thereby reducing the variance of the model and over-302
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fitting (Ho, 1995; Breiman, 2001). Probability estimates are obtained from the ensem-303

ble of predictions made from the different trees. To calibrate the returned probabilities304

we once more perform Platt scaling (Platt, 1999).305

The Logistic Regression and Random Forest models (in particular) have several hyper-306

parameters: internal model parameters used during training that can be tuned to pro-307

vide superior model performance. In this work we apply a simple grid search method to308

optimize these parameters and improve model performance. To create a completely op-309

timal form of these models a more detailed optimization of these hyper-parameters could310

be performed.311

3.3 Cross Validation312

We apply a k-fold cross-validation procedure to ensure that the model results are313

not specific to a selected set of training data and can be generalized. This procedure in-314

volves splitting the data into k groups; using k− 1 groups to train the model and the315

remaining group to validate the model results (Schaffer, 1993; Shao, 1993; Kohavi, 1995).316

Specifically, we apply a stratified k-fold (with 4 folds) to examine the results of the mod-317

els. The stratification ensures that the classes are evenly represented in all folds.318

More generally, it is good practice to test model performance on a portion of data319

that was initially withheld from the model (i.e. a validation set). However, in this case320

we report the results of the k-fold cross-validation due to a limited and imbalanced data321

set, particularly when considering SSCs. Partitioning a validation set in this case returned322

metrics that varied considerably between distinct model runs, due to the relatively poor323

quantity of data and random selection processes. Given our chosen method of report-324

ing, the training and test data are not fully independent and therefore the uncertainty325

in the model metrics is likely to be underestimated.326

3.4 Baseline and metrics327

In this study, we assess the performance of the models using two standard prob-328

abilistic forecast verification metrics: the Brier Skill Score and the ROC score. These329

metrics were developed for assessing terrestrial weather forecasts but have also been used330

in a variety of space weather contexts (Crown, 2012; Murray et al., 2017; Azari et al.,331

2018; Forsyth et al., 2020).332

The Brier Score (BS) is a measure of the mean square of the probability error (Brier,333

1950), calculated using Equation 1:334

BS =
1

N

N∑
i=1

(pi − ai)
2 (1)

where N is the number of observed events, pi is the forecast probability (between335

0 and 1) and ai is the observation (1 = occurred, 0 = did not occur). The Brier Score336

is measured between zero (for a perfect forecast) and one (for a completely incorrect fore-337

cast). In this study we are interested in comparing the skill of the model as compared338

to a baseline prediction, and so we calculate the Brier Skill Score (BSS), which shows339

the improvement of the BS of the model compared to the BS obtained by a reference pre-340

diction (climatology, or overall/total probability for example), calculated using:341

BSS =
BSClim −BSModel

BSClim
(2)

where BSClim is the BS obtained by the climatology, and BSModel is the BS ob-342

tained by the model under investigation. The BSS will be maximized for a perfect fore-343
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cast and will equal 1, while negative values indicate that the forecast is worse than sim-344

ply using the climatological forecast.345

Reliability diagrams graphically describe the accuracy of a probabilistic forecast,346

displaying how well the forecast probability of an event corresponds to the actual chance347

of observing the event. The frequency of the observations is plotted against the frequency348

of the forecast probability. A perfectly reliable forecast would lie along the diagonal line349

of gradient unity; for example, a forecast of 30% would correspond to an observation of350

the event 30% of the time. The comparison between the diagonal and the reliability curve351

provides a measure of how reliable the model results are. However, it is worth mention-352

ing that a consistently ’unreliable’ model can be re-calibrated once its reliability curve353

has been assessed, as described above (c.f. Platt, 1999).354

Finally, ROC curves describe the ability of a forecast to discriminate between events355

and non-events (the skill of the model), something that is not tested by the reliability356

diagram and the Brier Skill Scores. An ROC curve is a plot of the false alarm rate against357

the hit rate for a series of forecasts in which the parameter which determines a positive358

or negative forecast is varied (Swets, 1988). In this study, we set a threshold for the fore-359

cast probability and vary this to generate the ROC curve. In theory, as the probability360

threshold is increased a skillful forecast would show an increasing number of ’hits’, while361

the number of false positives would grow more slowly. This curve would lie close to the362

top left of the plot, such that the hit rate approaches 100% while the false positives re-363

main low. To quantify this behavior the area under the curve may be evaluated, known364

as the ROC score, and is measured between 0 and 1 (Zweig & Campbell, 1993). A per-365

fect forecast will be described by a point at the top left of the plot, maximizing the hits366

without incurring any false alarms, and return an ROC score of 1. In contrast, if the prob-367

ability of an event is random then it would be expected that the false positives would368

grow at the same rate as the hits, and so a score of 0.5 corresponds to a model with low369

skill. Therefore, a skillful model will show a ROC score greater than 0.5, ideally approach-370

ing 1.371

4 Results372

In this work we apply the models described in Section 3.2 to make probabilistic fore-373

casts as to whether an interplanetary shock will be geoeffective. We define ”geoeffective”374

in two ways, firstly, does the interplanetary shock generate an independently identifiable375

ground signature: a Sudden Commencement (SC). Secondly, does the interplanetary shock376

precede a geomagnetic storm, i.e. a Sudden Storm Commencement (SSC).377

4.1 Forecasting SCs378

We first test the ability of the models to provide a probabilistic forecast as to whether379

an SC will be observed on the ground, using information derived from data in the in-380

terval around the interplanetary shock. As discussed in Section 2, out of the 547 inter-381

planetary shocks in the data set, 307 result in an independently identified ground sig-382

nature. Excluding those events for which insufficient solar wind data is available limits383

the data set to 540 interplanetary shocks, 303 (56%) of which are related to SCs. There-384

fore our climatological forecast is 56%, providing a Brier Score of 0.25.385

As discussed in Section 3.1, we use a random forest classifier to rank the impor-386

tance of each of the 32 extracted solar wind features. Figure 1 shows the relative impor-387

tance of the top 10 features, normalized to the most important, where the uncertainty388

is the standard deviation from the ensemble of estimators. The most powerful predic-389

tive parameter can be seen to be the range of the magnetic field magnitude, while the390

ranges in density and velocity (XGSM component) are the second and third. The top391

few features are shown to score highly, while the feature importance quickly drops be-392

–9–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Space Weather

Figure 1. The relative importance of the top 10 features in forecasting an SC, as ranked by a

random forest classifier. The uncertainties shown are the standard deviation of the importances

returned by the ensemble of estimators.

yond this. It should be noted that if the range of the solar wind dynamic pressure is in-393

cluded then this becomes the second most important parameter, with a similar impor-394

tance to the range in density (np) shown in Figure 1.395

We wish to optimize the number of features that we provide the models, we do this396

by adding each of the top 10 features, in order of their importance from Figure 1. Fig-397

ure 2 shows how the addition of features changes the Brier Skill Scores and the ROC scores398

for each of the different models. All models initially show an increase in both metrics399

(representing reliability and skill respectively) following the addition of features, how-400

ever the benefit of additional parameters is seen to plateau at around three features.401

Figure 3 shows the results of the models when provided with the top three features.402

Figure 3a shows a reliability diagram, presenting how the forecast probabilities corre-403

spond to the observations. As discussed in Section 3.4, a perfect probabilistic forecast404

will lie along the diagonal dotted line of gradient unity. The horizontal and vertical dashed405

lines indicate where climatological forecasts would lie. All four models can be seen to406

fairly well correspond to the (diagonal) perfectly reliable forecast, and this is further quan-407

tified in Figure 2d, where the Brier Skill Scores (BSSs) are presented, compared to cli-408

matology. Also included is the BSS obtained by a simple linear 1 dimensional Logistic409

Regression model, equivalent to scaling the probability with the most important param-410

eter: the range in magnetic field magnitude in this case. All four models return very good411

BSSs, outperforming both climatology and the 1d Logistic Regression model, returning412

BSSs between 0.26 and 0.32. The Gaussian Process model is shown to provide the most413

reliable results, being the only model to consistently score above 0.3. For context, as the414
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Figure 2. The variation of the Brier Skill Score (a) and ROC scores (b) returned by the se-

lected models when predicting SCs, as a function of the number of input parameters. The error

bars indicate the standard error of the metrics across the four fold validation regime.

climatological Brier Score is found to be 0.25, a model BSS of 0.3 corresponds to a Brier415

Score of 0.175. Figure 3b analyses the ROC curves, showing the false positive rate plot-416

ted as a function of true positive rate (described in Section 3.4). The line of no skill is417

presented as a dashed diagonal line. All four models show ROC scores between 0.8 and418

0.83, representing skillful forecasts. The worst performing models in terms of both BSS419

and ROC scores are found to be the Naive Bayes and Random Forest models, perhaps420

due to the specifics of their non-linear methods, and well as the requirement (and only421

partial success) of the process to re-calibrate their probabilities (discussed in Section 3.2).422

The Random Forest model in particular may be showing a tendency to over-fit to the423

training data.424

4.2 Forecasting SSCs425

Building on the above, we assess the ability of the selected models to provide a prob-426

abilistic forecast of whether an observed interplanetary shock will be followed by a ge-427
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Figure 3. Sudden Commencement forecasting results. The reliability curves (a), ROC curves

(b), distribution of predictions (c) and Brier Skill Scores (d) returned by the selected models

when provided with the top three features. The uncertainties in panels b and d are extracted

from the 4-fold cross validation procedure and represent the standard deviation and standard

error respectively. The Brier Skill Scores are shown for the 1D Logistic Regression (1D LR), Lo-

gistic Regression (LR), Naive Bayes (NB), Gaussian Processes (GP) and Random Forest (RF)

models.
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Figure 4. The relative importance of the top 10 features in forecasting an SSC, as ranked by

a random forest classifier. The uncertainties shown are the standard deviation of the importances

returned by the ensemble of estimators.

omagnetic storm, i.e. a geomagnetic storm is observed within 4 hours of shock impact428

(c.f. Fiori et al., 2014). The dataset for this totals 540 interplanetary shocks, of which429

93 (17%) were followed by a geomagnetic storms. The climatological forecast is there-430

fore 17%, which returns a baseline Brier Score of 0.14.431

As above, we evaluate the 32 solar wind features extracted from the interval around432

the shock observation using a random forest classifier. The relative importance of the433

top 10 features is presented in Figure 4. While the range of the field (BRange) still ranks434

highly, in contrast to Figure 1 we see that the most important parameter is now the min-435

imum BZ observed in the interval around the shock. The change in velocity ranks as the436

third most important in forecasting whether a shock will be related to an SSC. In ad-437

dition, if the range in dynamic pressure is also included, it ranks as the 7th most impor-438

tant parameter, though this should be noted with the caveat that it does correlate with439

other features ranked as highly as 3rd most important.440

Figure 5 shows how the addition of parameters, in the order suggested by the ran-441

dom forest feature importances (Figure 4) changes the BSS and ROC score. As with the442

forecasting of SCs above, the inclusion of a second feature increases the skill of the mod-443

els, however the addition of more features are not as beneficial and the scores can be lower.444

The variations between the folds can be seen to be quite substantial (from the error bars),445

which is likely a result of the relatively small number of positive events with which it is446

possible to train the models.447
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Figure 5. The variation of the Brier Skill Score (a) and ROC scores (b) returned by the se-

lected models when predicting SSCs, as a function of the number of input parameters The error

bars indicate the standard error of the metrics across the four fold validation regime.

Figure 6 show the results of the models when provided with the top 4 features, ap-448

proximately maximizing the BSSs and ROC scores from Figure 5 for most models. The449

relatively small number of positive events can be clearly seen in Figure 6c, where the his-450

togram of predicted probabilities is strongly dominated by low values. However, the re-451

liability of the predictions, displayed in Figure 6a and quantitatively assessed in Figure452

6d, can still be seen to clearly outperform climatology. The ROC plots and scores pre-453

sented in Figure 6b also show good scores, above 0.8 for three of the models.454

Interestingly in Figure 6d, and in contrast to the SC forecasting in Figure 3d, the455

addition of more parameters for several of the methods does not seem to provide a strong456

improvement over the use of a single parameter and a linear method (1D LR). This could457

be due to higher dimensional models overfitting the relatively sparse data available. This458

is particularly the case for the highly non-linear Random Forest model, which can be seen459

to give comparatively low BSS and ROC scores. However, it should be noted that in Fig-460

ure 5 the Random Forest model does appear to benefit more than the other models from461

the inclusion of additional features. The best models in terms of both ROC scores and462

BSSs were the Linear Regression and Gaussian Process models with as little as 2 param-463

eters, with ROC scores and BSSs exceeding 0.82 and 0.21 respectively (e.g. Figure 5).464

The climatological Brier score was 0.14 for this configuration, and so a BSS of 0.21 rep-465

resents a Brier Score of 0.11.466

5 Discussion467

Our results show that simple machine learning techniques can provide models that468

skillfully and reliably forecast the occurrence of both SCs and SSCs from the properties469
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Figure 6. Storm Sudden Commencement forecasting results. The reliability curves (a), ROC

curves (b), distribution of predictions (c) and Brier Skill Scores (d) returned by the selected mod-

els when provided with the top four features. The uncertainties in panels b and d are extracted

from the 4-fold cross validation procedure and represent the standard deviation and standard

error respectively. The Brier Skill Scores are shown for the 1D Logistic Regression (1D LR), Lo-

gistic Regression (LR), Naive Bayes (NB), Gaussian Processes (GP) and Random Forest (RF)

models.
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of interplanetary shocks. However, it is also useful to consider the performance of these470

models when the available input data is limited or when the features used exceed the lim-471

its of the training dataset.472

5.1 Most Powerful Predictive Parameters473

Figures 1 and 4 evaluated the importance of each of the 32 extracted solar wind474

features around the shock identifications, we will now discuss and interpret the results475

in their physical context.476

5.1.1 Sudden Commencements477

The northward deflections of the horizontal geomagnetic field from which sudden478

commencements are identified are often modeled as a combination of two main compo-479

nents; a step like function at low latitudes and a two-pulse structure that dominates at480

higher latitudes (Araki, 1977, 1994). Observations at low latitudes have found that the481

magnitude of the low latitude perturbation scales with the square root of the change in482

solar wind dynamic pressure (e.g. Russell et al., 1992). The SCs used in this study were483

identified from a series of low latitude magnetic observatories, and it might therefore be484

expected that the most powerful predictive features would be the features that consti-485

tute the change in dynamic pressure: when the range in pressure is larger it would be486

expected to generate a more significant ground signature that may be more likely to be487

identified. However, the ranges of density and velocity are only the second and third most488

powerful features in Figure 1. Indeed even when explicitly included, the range in dynamic489

pressure only ranks as the second most important parameter.490

The most powerful feature is found to be the range in |B|. It is possible that the491

range in |B| may serve to distinguish between the phenomenon that is driving the shock.492

For example, it may be that CME driven shocks more often display large changes in |B|,493

compared to those driven by CIRs, while the effect of the distinct phenomena at the Earth494

is known to vary (Richter et al., 1985; E. J. Smith & Wolfe, 1976; B. T. Tsurutani et al.,495

2006; D. Oliveira & Samsonov, 2018). Another consideration is the combination of pa-496

rameters that may be used to define a shock. In the frame of the shock, the ratio of up-497

stream and downstream field, velocity and density should provide the necessary infor-498

mation to evaluate the size of each shock (Rankine, 1870; Hugoniot, 1887, 1889). As the499

values provided to the algorithms are not in the shock frame, it may be that the change500

in velocity is not as good a descriptor of the shock as the field and density changes. This501

may also explain why the addition of parameters beyond the first few is ineffective, once502

the shock is satisfactorily defined, little information of additional value can be included.503

From a physical perspective however, the appearance of the range in BZ as the fourth504

most important parameter may indicate that it is effective in discriminating between per-505

pendicular and parallel shocks, which may be important (e.g. Jurac et al., 2002). Nev-506

ertheless, the fact that the change in B ranks as the most important parameter high-507

lights the importance of forecasting the nature of the magnetic field upstream of the Earth.508

It is also notable that the ranges in the solar wind parameters are selected as im-509

portant, and not the maximum values. This may be explained by the close relationship510

between the range of a parameter and its ratio, which would define the size of the shock511

(e.g. Rankine, 1870; Hugoniot, 1887, 1889). Additionally, this could correspond to ob-512

servations that the nature of the upstream solar wind into which the shock is propagat-513

ing is also important (e.g. Riley et al., 1997; Liu et al., 2014), as the ranges of these pa-514

rameters would effectively distinguish the greater geoeffectiveness of a shock propagat-515

ing into a more tenuous region.516
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5.1.2 Storm Sudden Commencements517

One of the main differences between the feature importances when forecasting SCs518

and SSCs (Figures 1 and 4) is the dominance of the minimum value of BZ when con-519

sidering SSCs. It has long been thought that the southward component of the IMF is520

strongly associated with ground magnetic disturbances (e.g. Fairfield & Cahill, 1966).521

Notably, Echer et al. (2008) found that all 90 intense geomagnetic storms (Dst < −100 nT )522

within their dataset were associated with strong southward BZ . Therefore, it was ex-523

pected that it would be a significant parameter. Additionally, strong correlations have524

been observed between the Dst index and BZ (e.g. Burton et al., 1975; Temerin & Li,525

2002) or the related dawn-dusk electric field (e.g. Y. Wang et al., 2003; Ontiveros & Gonzalez-526

Esparza, 2010). This work again highlights the importance of forecasting the orienta-527

tion of the magnetic field.528

5.2 Parameterization529

The extraction of features from the solar wind around the shock identification is530

deliberately simple to minimize the affect of missing and incomplete data. However, it531

is likely that more complex fitting or parameter extraction would increase the effective-532

ness of the models. For example, recent work has shown the importance of the orienta-533

tion of the shock front, both through the use of MHD models (D. M. Oliveira & Raeder,534

2014) and also direct observations (D. M. Oliveira & Raeder, 2015).535

While more complex characterization of the shock itself may help, obtaining pa-536

rameters related to the phenomena driving the front may also aid prediction. At the longest537

lead time, remote observations of CMEs have been shown to be useful for inferring fu-538

ture consequences (Kim et al., 2010), especially when combined with empirical limits on539

conditions in near-Earth space (Kim et al., 2014). More detailed in situ analysis of CMEs,540

such as fitting of their structure has also been shown to be useful (e.g. Kang et al., 2006).541

In addition, the properties of the sheath between the CME and the shock have been found542

to be important to determine the magnitude of the interaction with the Earth’s mag-543

netosphere (Kilpua et al., 2019). The sheath itself has been inferred to drive 25−50%544

of intense geomagnetic storms (Richardson et al., 2001; B. T. Tsurutani et al., 1988), through545

several mechanisms (Lugaz et al., 2016). It should be noted that the chosen window of546

data, one hour prior to shock impact, will include some sheath observations. However,547

with our method the most powerful predictive features are dominated by the ranges in548

solar wind parameters, and therefore by the shock itself (with some exceptions, for ex-549

ample the minimum BZ).550

Correlations have been noted between the different regions of the interplanetary551

phenomena, which may aid the forecasting of SSCs using the methods in this study. For552

example, correlations have been observed between the properties of CME sheaths and553

their shocks (B. T. Tsurutani et al., 1988; Lindsay et al., 1994), as well as the shocks and554

the magnetic structure that follows (Luhmann, 1997; R. Lepping et al., 2001). Addition-555

ally, a 30 minute interval around the shock has been suggested to be useful in predict-556

ing the occurrence of long duration southward BZ (Salman et al., 2018). Therefore, though557

information about the larger scale phenomenon driving the shock has not been included558

directly, it may correlate with the features provided.559

5.3 Magnetospheric Information560

While the results in Figure 6 show good skill at forecasting SSCs compared to cli-561

matology, there is not a large increase with the addition of parameters (i.e. Figure 5),562

perhaps as all relevant information about the shock has already been included. In fact,563

the Brier Skill Scores reported for the models mostly do not significantly improve on the564

benchmark of a 1D Logistic Regression model (Figure 6d). There are several reasons ad-565
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Figure 7. The relative importance of the top 10 features in forecasting an SSC (including

magnetospheric indices), as ranked by a random forest classifier. The uncertainties shown are the

standard deviation of the importances returned by the ensemble of estimators.

ditional factors that could explain this behavior. First, the extent of the catalogs may566

not be extensive enough to provide adequate coverage for multi-dimensional, non-linear567

models. Second, it is possible that the models need to include some indication as to the568

state of the magnetosphere, as this may have a strong influence. Third, it is also pos-569

sible that the method by which the features have been extracted from the solar wind around570

the shock impact are insufficient to quantify the nature of the coupling to the geomag-571

netic field, both initially during the shock and also for any structure that follows (e.g.572

coronal mass ejection, sheath region, etc.).573

To investigate the second and third points, we can explore adding information about574

geomagnetic indices, providing an estimate of the current magnetospheric conditions and575

to see if the coupling is adequately captured with the properties extracted from the so-576

lar wind data. Similar to the treatment of the solar wind parameters, we extract the min-577

imum, maximum, range and mean of several magnetospheric indices: AU, AL, AE, Sym-578

H and Sym-D in a one hour window prior to shock impact, extending to 15 minutes af-579

ter the initial impact. This does mean that we are including any potential SC signature,580

and therefore we only test the forecasts of SSCs. Figure 7 shows the top 10 parameters581

from the total of 52 possible features.582

It is notable from Figure 7 that the top 4 parameters are all related to the mag-583

netospheric indices, with most corresponding to the initial response of the magnetosphere584

(i.e. the range of several indices). This would suggest that the simple shock parameter-585

ization that has been employed has not captured some of the important information re-586

lating to the interaction of the shock and magnetosphere. However, as noted in Section587
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Figure 8. Storm Sudden Commencement forecasting results when magnetospheric indices are

included. The reliability curves (a), ROC curves (b), distribution of predictions (c) and Brier

Skill Scores (d) returned by the selected models when provided with the top five features. The

uncertainties in panels b and d are extracted from the 4-fold cross validation procedure and rep-

resent the standard deviation and standard error respectively. The Brier Skill Scores are shown

for the 1D Logistic Regression (1D LR), Logistic Regression (LR), Naive Bayes (NB), Gaussian

Processes (GP) and Random Forest (RF) models.

3.1, the fact that the feature representing the minimum BZ is not present (compared with588

Figure 4) does not mean it is no longer important at all. It is likely that while the mag-589

netospheric indices are more powerful predictive parameters, they correlate strongly with590

the minimum BZ and therefore reduce the returned importance of the BZ feature.591

Figure 8 shows the performance of the models, when provided with the top five pa-592

rameters displayed in Figure 7. The top five have been used as this was the point at which593

no significant additional skill was obtained by adding more features. All four models are594

shown to once more provide reliable forecasts compared to climatology as shown by the595

reliability diagram and BSSs (Figures 8a and d). The models are also shown to provide596

good skill, with ROC scores above 0.8. The increase in reliability achieved through the597

addition of magnetospheric indices amounts to modest increase in BSSs scores of up to598

0.05, while the increases in ROC scores are also relatively small at ≤ 0.02, and not present599

for all models considered. Therefore, we may conclude that the coupling of the interplan-600

etary structure to the magnetosphere is not completely captured by the simple param-601

eterization employed. The presence and significance of the minimum Sym-H index also602

suggests that the state of the magnetosphere and ring current is important. However only603

a relatively small increase in skill can be achieved through addition of magnetospheric604

indices.605
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Figure 9. The relative importance of the top 10 features in forecasting SSCs when the fea-

tures are limited, as ranked by a random forest classifier. The uncertainties shown are the stan-

dard deviation of the importances returned by the ensemble of estimators.

5.4 Longer Lead Times606

When forecasting shocks and associated phenomena at large lead times, e.g. from607

heliospheric imaging, there are certain parameters that may be more accurately predicted.608

For example, it may be possible to more accurately forecast the velocity (Kahler & Webb,609

2007; Byrne et al., 2010; Davies et al., 2012, 2013; Barnard et al., 2019) and density (Barnes,610

2020) of a propagating CME, while its internal structure and magnetic field are much611

more challenging (e.g. Kilpua et al., 2019). Recent work has also confirmed that accu-612

rately forecasting CME velocity provides useful information about their geoeffectiveness,613

greatly increasing the value of such forecasts (Owens et al., 2020).614

It is therefore useful to assess how the models perform when provided with a more615

limited dataset, corresponding to the parameters than may be predicted with a greater616

accuracy. For this test, we limit the input features to those related to the velocity and617

density observed at L1. Figure 9 shows the relative importances of each feature, eval-618

uated once more with the ensemble method. Figure 9 shows that features associated with619

the velocity appear to provide the greatest predictive power.620

However, Figure 10 shows the change in metrics with the addition of multiple fea-621

tures, and we can see that including more than one feature does not aid the majority622

of the models. For the ensemble (RF, Random Forest) model including up to five fea-623

tures increases the skill, but in general both ROC and BSS metrics are lower than achieved624

for the other models. The Gaussian Process and Logistic Regression models give the best625

BSSs (∼ 0.16) and ROC scores (∼ 0.8) with around five features and outperform cli-626
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Figure 10. The variation of the Brier Skill Score (a) and ROC scores (b) returned by the

selected models when the features are limited, as a function of the number of input parameters

The error bars indicate the standard error of the metrics across the four fold validation regime.

matological forecasts. These scores are substantially lower than were achieved with the627

inclusion of parameters related to the field. This highlights the need to understand and628

be able to predict some of the magnetic field parameters associated with an incoming629

interplanetary shock and related structures (e.g. Gosling et al., 1991; Huttunen et al.,630

2005; J. Zhang et al., 2007; Richardson & Cane, 2012).631

5.5 Extreme Events632

The most damaging Space Weather events are those that are extreme; they pose633

the largest risk to infrastructure and have the potential to have the largest societal con-634

sequences. Arguably, the most extreme event recorded in history was the Carrington event635

in 1859 (Carrington, 1859; B. T. Tsurutani et al., 2003; Hayakawa et al., 2019). MHD636

modeling has suggested that the ground electric fields during this event would be twice637

as large as during the most extreme geomagnetic storm in the modern era (the March638

1989 storm) (Ngwira et al., 2014). In the space age, the fastest CME ever recorded was639

observed in August 1972 (Hoffman et al., 1975), causing the unexpected detonation of640

sea mines during the Vietnam war (Knipp et al., 2018). More recently, an interplane-641

tary CME inferred to be similar to the Carrington event, potentially providing a worse-642

case scenerio, was fortunately not Earth-directed but was observed by the STEREO space-643

craft in July 2012 (Baker et al., 2013; Ngwira et al., 2013). It is worth noting that the644

upstream conditions ahead of this CME were highly atypical (Russell et al., 2013). As645

such CMEs are so rare, and their parameters so unusual, it is interesting to consider how646

the models presented in this work would react to such an input.647

To test this, we can explore how the models react to data provided above the range648

of the training data. We initially limit the models to the top two most effective features649
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Figure 11. Two dimensional visualizations of the predictions made by the (a) Logistic Regres-

sion, (b) Naive Bayes, (c) Gaussian Process and (d) Random Forest models. The red and orange

contours show the distribution of negative (for which no storm was observed) and positive (for

which a storm was observed within 4 hours) training data, respectively.

(shown in Figure 4) in order to simplify the visualization. The models are then provided650

with a grid of hypothetical events, ranging between the minimum of each feature and651

twice the maximum (calculated for −BZ minimum). Figure 11 shows the distribution652

of predictions made by the four different models. The orange contours show the distri-653

bution of training data corresponding to the shocks resulting in SSCs, while the red con-654

tours shows those that were not related to SSCs. The contours were created using ker-655

nel density estimation (Scott, 2015). The red contours representing ’non-geoeffective’ shocks656

can be seen to be mostly tightly bunched in the lower right of the panels. Meanwhile,657

the orange contours, representing shocks related to SSCs can be seen to be broader, and658

extend towards larger ranges in B.659

The Logistic Regression and Naive Bayes models (Figure 11a, b) can be seen to asymp-660

tote to high probabilities outside of the training region. In contrast, the Gaussian Pro-661

cess and Random Forest models (Figure 11c, d) can be seen to have more structured be-662

havior outside of this region, and both tend to be more conservative in their predictions.663

Without training data at the more extreme values it is not clear which behavior would664

correspond to better predictions, however it is very important to take the models response665

into account when reporting predictions.666

It is also notable that for very fast CMEs, for example the August 1972 event (Hoffman667

et al., 1975), the transit time from L1 to the Earth’s magnetopause will be relatively short.668

Therefore, the 1 hour window prior to impact will encompass a larger than normal por-669

tion of the CME sheath, perhaps effecting the derivation of the features used in this method.670

The consequences of this would have to be be carefully evaluated for any potential op-671

erational implementation.672
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6 Summary and Conclusions673

We have developed four different models to forecast the consequences of interplan-674

etary shocks on the magnetosphere using simple machine learning techniques. These fore-675

casts perform well at predicting whether the shock will lead to an SC or SSC. We tested676

a linear model (Logistic Regression), two non-linear models (Naive Bayes and Gaussian677

Process) and an ensemble model (Random Forest). The interplanetary shocks are sim-678

ply parameterized by their maximum, minimum, range and mean of observable solar wind679

and IMF properties at L1. This scheme was chosen as it is resilient to missing data and680

does not require manual or complex processing to be performed.681

All four models provided skillful and reliable forecasts as to whether a shock would682

result in the identification of an SC on the ground, with Brier Skill Scores (BSSs) of be-683

tween 0.26 and 0.32 and ROC scores between 0.8 and 0.83. This outperforms both cli-684

matology, which provided the reference to which the BSSs were calculated, and a sim-685

ple 1D linear model. Overall, the Gaussian Process model returned the greatest relia-686

bility, while both the Gaussian Process and Logistic Regression models showed the best687

skill. Meanwhile, the ensemble method showed indications that it may tend to over fit688

the available data. The most powerful predictive power was found to be the range in the689

magnetic field observed, followed by the ranges of density and velocity. This highlights690

the importance of forecasting the magnetic field upstream of the Earth. Physically it is691

possible that the range in the magnetic field serves to distinguish between the phenom-692

ena driving the shock, or that it provides a more robust definition of the shock than the693

change in velocity or density. The fact the ranges of each parameter were shown to pro-694

vide greater performance (rather than the maximums, for example) confirms that the695

conditions into which the shock are propagating are important.696

When forecasting whether a shock will be related to an SSC all four models pro-697

vided skillful results (with ROC scores exceeding ∼ 0.78), while significantly outperformed698

climatology (with BSSs of ∼ 0.21). However, when presented with multiple features the699

reliability of all four models were comparable to that obtained with a more simple one-700

dimensional Logistic Regression model (BSS ∼ 0.19). Once more the Logistic Regres-701

sion and Gaussian Process models were shown to provide slightly greater skill and re-702

liability than the other two models, with the ensemble Random Forest requiring more703

parameters to achieve comparable performance. The most powerful predictive param-704

eter for SSCs was shown to be the minimum value of BZ associated with the shock, con-705

firming the importance of the orientation of the IMF when evaluating the effectiveness706

of a shock.707

The chosen parameterization scheme was then tested by the inclusion of magne-708

tospheric indices and their properties, describing the state of the magnetospheric sys-709

tem as well as the initial impact of the shock and sheath. These added features were found710

to give moderate improvements to the reliability of the models, suggesting that the sim-711

ple parameterization does not fully capture the coupling of the solar wind and magne-712

tosphere, and that an indication of the magnetospheric state is important.713

For longer lead times, properties of the magnetic field around interplanetary shocks714

are challenging to predict, we therefore tested excluding these features from the mod-715

els results. This more limited data set resulted in decreased predictive performance. How-716

ever, when solely relying on properties associated with the velocity and density, all mod-717

els still outperform climatology and provide reliable and skillful predictions (BSSs ∼ 0.16,718

ROC scores of 0.8). Once more, the Logistic Regression and Gaussian Process models719

were shown to provide the best relative reliability and skill.720

Finally, the models were provided with extreme hypothetical data with conditions721

beyond that with which they were trained. The responses of the different models were722

shown and contrasted. Both the Logistic Regression and Naive Bayes models were shown723
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to quickly asymptote to high probabilities outside of the training data, while the Gaus-724

sian Process and Random Forest showed much more structured behavior that was heav-725

ily dependent on the data at the edge of the training space. The extrapolation of each726

model therefore needs to be carefully considered when applying such models to extreme727

data.728

Appendix A Feature Correlations729

Many of the properties of the solar wind will be strongly correlated, particularly730

around shocks, and this should be carefully considered when performing feature selec-731

tion or evaluating the relative importance of each feature. Figure A1 shows a correla-732

tion matrix of the 32 extracted solar wind parameters. The main correlations observed733

are between the different statistical values (e.g. the range and maximum) of the same734

property of the solar wind; thereby appearing as squares of similar shades of deep red735

(or deep blue) along the diagonal. We can also see stronger relative correlations (pos-736

itive or negative) between the individual magnetic field parameters than for the veloc-737

ity components. The highest correlation between any density feature and any non-density738

feature is found between the range in density and the range in the field (B), as may be739

expected for shocks (c.f. Rankine, 1870; Hugoniot, 1887, 1889). Similarly, the correla-740

tion between the range in the velocity (VX) and the range in the field (B) is also notably741

high. These correlations confirm that the intervals of data likely contain observations742

of fast forward shocks.743

It should be noted that this correlation matrix was produced on the features af-744

ter they were scaled by the mean and standard deviation of each parameter, this prepa-745

ration is important and is also applied when the features are supplied as inputs to the746

models and feature selection methods.747
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Hugoniot, P. H. (1887). Mémoire sur la propagation du mouvement dans les corps et1000
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Näıve Bayes. In Encyclopedia of machine learning (pp. 713–714). Boston,1371

MA: Springer US. Retrieved from http://link.springer.com/10.1007/1372

978-0-387-30164-8{\ }576 doi: 10.1007/978-0-387-30164-8 5761373

Wing, S., Johnson, J. R., Jen, J., Meng, C.-I., Sibeck, D. G., Bechtold, K., . . . Taka-1374

–36–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Space Weather

hashi, K. (2005, apr). Kp forecast models. Journal of Geophysical Research:1375

Space Physics, 110 (A4). Retrieved from http://doi.wiley.com/10.1029/1376

2004JA010500 doi: 10.1029/2004JA0105001377

Wintoft, P., Wik, M., Matzka, J., & Shprits, Y. (2017, nov). Forecasting1378

<i>Kp</i> from solar wind data: input parameter study using 3-hour aver-1379

ages and 3-hour range values. Journal of Space Weather and Space Climate, 7 ,1380

A29. Retrieved from http://www.swsc-journal.org/10.1051/swsc/20170271381

doi: 10.1051/swsc/20170271382

Wu, J.-G., & Lundstedt, H. (1996, feb). Prediction of geomagnetic storms from1383

solar wind data using Elman Recurrent Neural Networks. Geophysical Research1384

Letters, 23 (4), 319–322. Retrieved from http://doi.wiley.com/10.1029/1385

96GL00259 doi: 10.1029/96GL002591386

Yue, C., Zong, Q. G., Zhang, H., Wang, Y. F., Yuan, C. J., Pu, Z. Y., . . . Wang,1387

C. R. (2010, may). Geomagnetic activity triggered by interplanetary1388

shocks. Journal of Geophysical Research: Space Physics, 115 (A5), n/a–1389

n/a. Retrieved from http://doi.wiley.com/10.1029/2010JA015356 doi:1390

10.1029/2010JA0153561391

Zhang, H. (2004). The Optimality of Näıve Bayes. In In flairs2004 con-1392
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