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ABSTRACT
The use of stopwords has been thoroughly studied in traditional
Information Retrieval systems, but remains unexplored in the con-
text of neural models. Neural re-ranking models take the full text
of both the query and document into account. Naturally, removing
tokens that do not carry relevance information provides us with
an opportunity to improve the effectiveness by reducing noise and
lower document representation caching-storage requirements. In
this work we propose a novel contextualized stopword detection
mechanism for neural re-ranking models. This mechanism con-
sists of training a sparse vector in order to filter out document
tokens from the ranking decision. This vector is learned end-to-end
based on the contextualized document representations, allowing
the model to filter terms on a per occurrence basis. This leads to
a more explainable model, as it reduces noise. We integrate our
component into the state-of-the-art interaction-based TK neural
re-ranking model. Our experiments on the MS MARCO passage col-
lection and queries from the TREC 2019 Deep Learning Track show
that filtering out traditional stopwords prior to the neural model
reduces its effectiveness, while learning to filter out contextualized
representations improves it.

1 INTRODUCTION
Filtering stopwords is an established technique in Information Re-
trieval (IR). In many domains stopwords reduce noise and increase
the efficiency of an inverted index [6, 21]. In this paper we examine
the use of stopwords, namely filtering out terms from the scoring
decision, in neural re-ranking models. In particular, we focus on
interaction-based re-ranking models [7], where each query term in-
teracts with each document term, since they offer an opportunity to
modify individual interactions between document and query terms.
Recent advances in neural re-ranking using Transformers, like
BERT [16] and TK [9], showed strong effectiveness gains, thanks to
their ability to contextualize the input sequence. To offset the high
computational cost of contextualized document representations,
some models, such as the TK model, allow to pre-compute and store
document vectors. The storage requirement grows linearly with the
total number of terms, saving less terms means a smaller storage.

We propose a novel sparse-stopword component for interaction-
based neural re-ranking models, which dynamically and explicitly
removes document tokens from the decision layer based on their
contextualized representation. We integrate our component into
the TK [9] model, resulting in a new model which we call TK-Sparse.

,
.

Term importance and stopwords have a long history in IR: from
the collection occurrence based Inverse Document Frequency (IDF)
[17], the theory of retrievability [1, 13], to studies on the impact
of stopwords in retrieval and text processing [6, 21], and visual
inspection tools of neural re-ranking models [10]. Term importance
in neural models has been studied in the context of query attention
[7, 19] and IDF weighting [11], or BERT-based importance measures
for indexing [4]. However, we are the first to study the explicit
filtering of contextualized terms from the ranking decision.

We train the sparse-stopword component by augmenting the
margin ranking loss with an L1-norm of the sparsity vector, in-
cluding a weighting factor to control the sparsity. The successful
optimization requires adaptations to the training process, which
we also discuss to help establish sparsity techniques in the neural-
IR community. Using the established technique of minimizing the
L1-norm to increase a machine learning models sparsity is gaining
popularity among neural networks. In the context of IR, Zamani et
al. [22] utilized sparse representations for indexing, in contrast to
our work their goal was to create single document vector.

We conduct experiments on the MS MARCO passage collection
with two distinct query sets (many queries with limited and fewer
queries with dense judgments from the TREC 2019 Deep Learning
track). We show that removing traditional, Lucene and collection
frequency based, stopwords reduces the effectiveness of the TK
model. However, its augmented version, the TK-Sparse model, with
contextualized stopwords, significantly increases the effectiveness
with up to 40 % of words removed. When pre-computing document
representations, these removed stopwords transfer directly to 40 %
storage savings for contextualized document representations.

Finally, we analyze the distributions of removed contextualized
terms in relation to traditional stopwords. We observe an overlap,
however TK-Sparse removes traditional terms less often and also
removes additional words not part of traditional stopwords.

In summary, the main contributions of this work are:
• We present a novel contextualized stopword component, and
instructions to train it with the TK neural ranking model;

• We demonstrate the effectiveness gains of contextualized
stopwords with an ablation of different sparsity levels;

• We provide a thorough analysis of the contextualized stop-
word occurrence patterns;

• We publish our documented implementation at:
github.com/sebastian-hofstaetter/transformer-kernel-ranking

2 CONTEXTUALIZED STOPWORDS
In this section, we present our contextualized stopword compo-
nent as an adaptation of the TK model (Section 2.1) and required
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adaptations to the training process to successfully train the sparsity
component in the context of IR (Section 2.2).

2.1 TK-Sparse: Neural Ranking with Sparsity
Our novel sparse-stopword component can be integrated in every
interaction-based model. We integrated our component into the
interaction model TK [9], and refer to it as TK-Sparse.

As the first step, query (q1:n ) and document embeddings (d1:m )
are independently contextualized with a shallow Transformer (TF):

q̂1:n = TF(q1:n )

d̂1:m = TF(d1:m )
(1)

The independence of the contextualization allows us to utilize
the contextualized document representations for our stopword com-
ponent. Every vector d̂j is transformed by two linear layers (with
weight matricesW1,W2 and bias vectors b1,b2), followed by a ReLU
activation, to compute the stopword removal gate r j :

r j = ReLU(tanh(d̂jW1 + b1)W2 + b2) (2)

The ReLU sets every negative value to 0, allowing us to cancel
out interactions for this document term. As a positive side-effect
of the stopword removal we also receive salience information in
form of the positive values for every remaining term. The TK model
applies kernel-activation (KA) [18] with multiple kernels k to the
interaction matrix between every query and document term:

Kk
i, j = KAk(cos(q̂i , d̂j )) (3)

We integrate the result of the stopword component after the
kernel-activation, as otherwise the zeroed document terms would
be counted in the respective kernel. However, we want to com-
pletely cancel the kernel-activation for a term to be able to later
remove the corresponding vector from the document cache. The
integration of the stopword removal gate r j is an element-wise
multiplication with each activation before summing the document
activations:

Kk
i =

m∑
j=1

Kk
i, j ∗ r j (4)

In the last step of the model we add a scaling value αk to coun-
teract the reduced value size expectation per kernel required for
the log-activation, which is applied to every kernel result before
weighting and summing the kernel scores to form the final score:

s =
n∑
j=i

(
log

(
Kk
i ∗ αk

) )
W (5)

Finally, to actually force the model to learn a sparse removal-
vector r we augment the margin ranking loss of a negative docu-
ment dneд and positive document dpos per query with the L1-norm
of the positive & negative r , and a hyperparameter λ to control the
importance of the L1 regularization:

L(dpos ,dneд) = (dneд − dpos + 1) + λ ∗
(
| |rpos | |1 + | |rneд | |1

)
(6)
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Figure 1: Sparsity ratio of removed tokens inTK-Sparse’s val-
idation steps for different λ. The lines represent a 10-point
moving averagewith different lengths due to early stopping.

2.2 Adaptations for Sparse Training
We found the training process of sparse vectors to be cumbersome
and we believe it presents a high entry barrier for the community
to broadly adopt sparsity as a tool in neural re-ranking models.
Therefore, we now discuss our main tricks that we employed to
successfully train our sparse component:

Initialization We initialize the biases (b1, b2) of the stopword
component with sufficiently large positive values to prevent the
model from starting in a broken and un-recoverable state.

Continuous monitoring We continuously save the average
sparsity ratio (i.e. the number of stopwords relative to the total
word count) of the training samples, to quickly detect if there are
problems with the training. Especially the value of the hyperparam-
eter λ, which if set too low has no effect or if set too high collapses
the training quickly by removing all document terms, resulting in
a broken model. In Figure 1, we show that at the beginning of the
training the sparsity ratio is much more volatile than in later stages,
especially after we gradually reduced the learning rate.

Reanimation With the continuous monitoring, we probe the
average of the last 100 training batches to detect if the model has
collapsed to a sparsity ratio of 100%. If this is the case the model
cannot update its state, as no useful gradient can be computed. To
overcome this problem we reanimate the stopword component by
adding a fixed small positive number to the last bias before the ReLU
activation (b2). We do this as long as the sparsity ratio remains at
100%. Usually, the model quickly recovers and resumes training.
This is a quick and efficient way to let the training continue.

Gradient clipping To stabilize the sparsity ratio during training
and reduce the number of reanimations we clip the gradients of
the linear layers to small values, to prevent sudden changes in the
two layers [14]. All our configuration settings are available in our
repository.
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Table 1:MSMARCO-Passage test set results. Stop refers to the percentage of removedwords in the tested documents. Significant
improvements are indicated with the characters assigned to each TK variant. In bold is the top TK variant per metric.

Sig. Model Stop DEV (limited judgments) TREC-2019 (dense judgments)
nDCG@10 MRR@10 R@10 nDCG@3 nDCG@10 MRR@10 R@10 MAP@1K

BM25 - 0.241 0.194 0.402 0.521 0.501 0.689 0.185 0.294
DUET - 0.299 0.248 0.468 0.598 0.544 0.782 0.191 0.313
CO-PACRR - 0.328 0.273 0.514 0.620 0.612 0.755 0.223 0.365
CONV-KNRM - 0.332 0.277 0.519 0.627 0.609 0.716 0.223 0.360

a TK - bcd j0.369 bcd j0.311 bcd j0.564 0.655 0.649 0.821 0.242 0.396
b TK /w LuceneStop 24 % cd j0.359 cd j0.301 cd j0.555 0.661 0.630 dд0.795 0.220 0.392
c TK /w CollectionTop25 35 % cd j0.353 d j0.296 j0.547 0.649 0.624 0.756 0.214 d0.388
d TK /w CollectionTop50 41 % 0.350 0.293 0.543 0.635 0.627 0.745 0.230 0.376

e TK-Sparse λ = 8 ∗ 10−4 3 % abcdдhi j0.373 abcdhi j0.314 abcd j0.569 d0.669 0.638 0.789 c0.230 0.384
f TK-Sparse λ = 1 ∗ 10−3 19 % abcdhj0.373 abcdhj0.314 abcdhj0.570 cd0.691 bcdeд0.658 dceд0.840 c0.232 bcdeдh0.400
д TK-Sparse λ = 3 ∗ 10−3 12 % abcd j0.372 abcd j0.314 abcd j0.568 d0.665 0.632 0.758 0.220 d0.382
h TK-Sparse λ = 6 ∗ 10−3 26 % abcd j0.371 bcd j0.312 bcd j0.567 0.681 0.653 0.821 0.231 0.391
i TK-Sparse λ = 9 ∗ 10−3 18 % abcdhj0.371 abcd j0.312 bcd j0.567 bcdeд0.714 bcdeд0.657 dcд0.827 0.227 bdeдh0.400
j TK-Sparse λ = 2 ∗ 10−2 43 % 0.350 0.293 0.542 bcdдh0.705 bcdeд0.657 dcд0.832 c0.239 d0.395

3 EXPERIMENT DESIGN
We conduct our experiments using the MS MARCO passage collec-
tion [2] with 8,84 million passages and two distinct query test sets:
The limited-judged DEV set and the densely-judged TREC-2019
from the Deep Learning track [3]1. The DEV set contains 48,598
queries, with 1.06 judgments per query on average, whereas the
TREC set contains 43 queries with 215 judgments per query on
average. We used a binarization point of 2 from the graded TREC
scale and the provided initial ranking list. We conduct statistical
significance tests with a Wilcoxon signed-rank test with p < 0.05.

We capped the passages at 200 and the queries at 30 tokens. We
use a batch size of 32 and the Adam optimizer with a learning rate of
10−4 for representation and sparsity; 10−3 for kernel-pooling. Our
early stopping is based on the nDCG@10 value of our validation
set. Each neural model re-ranks the top 1000 BM25 results.

For the parameter settings of the evaluated models we followed
Hofstätter et al. [9]. For TK & TK-Sparse we used a 2-layered Trans-
former with 300 dimensional GloVe embeddings. For kernel-pooling
we use the default number of 11 kernels from −1 to +1 and standard
deviation of 0.1 for all kernels. For the baselines BM25 (computed by
Anserini [20]), DUET [15], CO-PACRR [11], and CONV-KNRM [5]
we utilize their respective default parameters. We chose to restrict
us to these baselines, as they have been shown to be the most effec-
tive neural ranking models [8], that allow to offline pre-compute
document representations, to speed up query response time. Be-
cause our work is concerned with improving the efficiency in this
scenario. This excludes BERT-based re-ranking, as it always needs
to compute document representations for every query [16].

For the traditional stopword list we utilized the Lucene stop-
words with 33 common words2, additionally we selected the top 25
and 50 occurring tokens from the MS MARCO corpus to evaluate
domain specific stopwords.

1We note that BM25, DUET, TK and BERT models participated in the TREC-2019
evaluation, therefore they have an advantage of not being affected by pool bias [12].
2Taken from the EnglishAnalyzer class

4 RESULTS
We present our results in Table 1. The first section contains non-TK
baselines, the second section TK-based baselines with traditional
stopwords removed and the third section contains results of TK-
Sparse with our novel stopword component.

Training the TK model on documents preprocessed with a tradi-
tional stopword filtering component performs worse than the TK
model without filtering on all evaluation metrics on both query sets.
The more words get filtered the worse the results become. On the
other hand it also increases the model’s efficiency, as less tokens
need to be processed.

When we look at the sparsity of different TK-Sparse configura-
tions, we can see that the word removal between 12-26% does not
follow the ordering of λ; only lower and higher λ values have a
more forceful impact on the sparsity. In Figure 1 we see, that even
though the different configurations converge to different sparsity
levels, many individual points overlap. We select the best model
instance with early stopping, based on the nDCG@10 value alone.
In future work we plan to also incorporate a sparsity target, to be
able to control the desired sparsity value.

From the results of TK-Sparse λ = 8 ∗ 10−4, with very little
stopword removal, we deduce that the limited DEV set profits from
the added salience value of r j per retained term, although the high-
quality TREC queries do not profit. This might constitute a small
overfitting, which is lifted as soon as more words are removed.
We plan to further investigate the differences between limited and
dense judgments in future work.

In general, the sparsity range around 20% offers the best results
overall, for both limited and dense judgments. For the TK-Sparse
λ = 2 ∗ 10−2 configuration, we observe an interesting pattern with
our judgments: The limited DEV results fall down to the same level
as the worst traditional stopword list with a similar stopword ratio.
However, in stark contrast to the low traditional CollectionTop50 re-
sult on the TREC judgments, the contextualized stopword approach
with 43 % of the terms removed shows very strong results on the
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Figure 2: Occurrences and contextualized removal count of
the 15most frequent Lucene stopwords on the validation set.

high-qualitative judgments. We assume this is due to the higher
robustness of multiple relevant judged documents, that penalizing a
single document with wrongly removed terms has not a significant
impact on the overall result.

5 CONTEXTUAL STOPWORD ANALYSIS
The dependence of our stopwords on their context requires us to
analyze their distribution to get an insight into the inner workings
of our stopword component. In Figure 2 we show the occurrences
of the 15 most frequent words from the Lucene stopword list and
the number of removals by different TK-Sparse configurations. For
the two TK-Sparse models, which in total remove less or the same
amount of words as Lucene’s list (λ = 1∗ 10−3 and 6∗ 10−3), we can
clearly observe a much less aggressive removal of stopwords. Only
the λ = 2∗10−2 configuration removes most of Lucene’s stopwords,
as it removes many more words in total. Notable is the seldomly
removed term “is” (which is consistent across TK-Sparse models).

To showcase the difference between two sparsity-levels we high-
light their selected stopwords in a passage in Figure 3. We can see
that λ = 2 ∗ 10−2 model is more aggressive in removing words.
Notable are directional instructions (“to be”, “dna to mrna” and
“mrna in the nucleus”) that are retained in the more conservative
TK-Sparse instance.

To conclude, we summarize that contextual and traditional stop-
words have a wide area of overlap in the terms they target. However
contextual stopwords have a broader reach and also remove fewer
occurrences of the traditional stopwords.

6 CONCLUSION
In this paper we presented a new approach to the use of stopwords
in IR: Learning to remove words from a document with a sparse
vector, depending on the local context of the word in a sequence.

TK-Sparse λ = 6 ∗ 10−3

lesson summary . 1 the first step in protein production is the transcription
of dna to mrna in the nucleus . 2 the next organelles involved are
ribosomes . 3 the golgi apparatus is involved for proteins destined to be
transported to the cell membrane and acts as the cell ’s post office .

TK-Sparse λ = 2 ∗ 10−2

lesson summary . 1 the first step in protein production is the transcription
of dna to mrna in the nucleus . 2 the next organelles involved are
ribosomes . 3 the golgi apparatus is involved for proteins destined to be
transported to the cell membrane and acts as the cell ’s post office .

Figure 3: Example of contextualized stopwords in red & un-
derlined for two sparsity models (passage id: 5035398).

With TK-Sparse we integrated our stopword component into the TK
neural re-ranking model. Our results demonstrate that traditional
stopwords do not have a positive impact on the effectiveness of
neural re-ranking models. TK-Sparse shows significantly better
effectiveness results with up to 40% of the words removed for more
space-efficient document pre-computation.
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