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An occupancy prediction model for campus buildings based on 

the diversity of occupancy patterns 

 

Abstract：The complexity and randomness of occupancy often lead to the deviation 

between simulated energy and measured energy. It is of great significance to select 

appropriate approaches for occupancy prediction. This study applied Gaussian 

distribution model to fit occupancy of three functional buildings within a campus. 

Abandoned the average occupancy level widely adopted in exiting researches, a novel 

classified approach considering the diversity of occupancy patterns was proposed. The 

resulting Gaussian curves presented a better fitting performance for stable changes of 

occupancy. Although the sudden increase and decrease of occupancy greatly affects the 

prediction accuracy, the occupancy prediction error based on Gaussian distribution can 

still be controlled within ±15%. The energy of the case building was obtained by 

superposing simulated energy of each occupancy pattern. Rather than traditional 

method of averaging, the classified methodology eliminated the simulation errors 

produced from the inhomogeneous and stochastic occupancy. The exploration of 

changing regularity of energy affected by occupancy and time periods with energy 

saving potential were achieved by integrating energy data with occupancy data. And 

the detection of the degree and occurrence times of peak occupancy of various 

occupancy patterns of rooms provided a support for rational load distribution. 

Keywords: Gaussian distribution, occupancy pattern, building simulation, energy 

saving.  

1. Introduction  

In current society, buildings are major energy consumers and their energy demand 

has significant impact on sustainable development (Han, Zhou, & Luo, 2015). To deliver 

energy efficient solutions without affecting occupant comfort, dynamic building 

performance simulation is widely used during the design stage of buildings to assist 

designers make decisions under various design scenarios (Y. Zhang, Bai, Mills, & 

Pezzey, 2018). When using simulation packages, however, a significant difference 

between the design expectation and actual operation has been realized once the building 

is in use, and such difference has been referred as performance gap (Schakib-Ekbatan, 
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Çakıcı, Schweiker, & Wagner, 2015). Climate, building envelope, building energy 

service system, indoor design criteria, building operation and maintenance and 

occupant behavior were both considered as possible factors affecting performance 

gap(Yoshino, Hong, & Nord, 2017). The parameters related to the physical 

characteristics of the building are easy to determine, such as building size, orientation, 

construction material, Heating, Ventilation, and Air Conditioning (HVAC) system size 

and type, etc(Shen, Newsham, & Gunay, 2017). However, some time-varying parameters, 

such as occupant behavior input, are relatively difficult to predict. Occupant behavior 

has been regarded as one of the most significant considerations for building and system 

design, and occupancy has been suggested as a critical contributor in energy prediction 

model(Yan et al., 2015). It is practical to discover the current state of occupancy in 

many applications such as lighting control, however, for some applications such as ideal 

thermal environment control may require longer prediction horizons.(Huchuk, Sanner, 

& O'Brien, 2019). Therefore, providing a comprehensively and reliably long-term 

occupancy prediction model is still under development. Occupancy is a periodic time 

series, and many time-independent and non-linear models have been developed to 

analyze and predict the sensing occupancy(Candanedo & Feldheim, 2016). These models 

can be generally categorized as deterministic model, stochastic model and machine 

learning. Deterministic model could achieve the establishment of predictable and 

repeatable environment by averaging the diversity of individuals, space and time, 

including linear regression model, logical regression model, time series and Bayesian 

distribution(Gaetani, Hoes, & Hensen, 2016). Markov chain and Monte Carlo method 

were pointed to be the most commonly used stochastic models(Stazi, Naspi, & 

D'Orazio, 2017). And machine learning method included Artificial neural network 

(ANN), Support vector machine (SVM), Classification and Regression Trees (CART), 

etc.(Wang, Chen, & Hong, 2018).  

During the last two decades, various occupancy model have been developed to 

mimic the randomness and diversity of occupants and generate stochastic occupancy 

profiles for building performance simulation(J. Li, Yu, Haghighat, & Zhang, 2019). 

So far, Markov chain and its various derivation were the most widely used in the process 

of occupant behavior simulation. Dong(Dong et al., 2010) extracted relevant 

occupancy information from CO2 acoustic sensors and passive infrared sensors (PIR) 
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to estimate occupant number in an open-plan office, fused with three algorithms 

Support Vector Machines(SVM), Artificial Neural Network(ANN) and Hidden Markov 

model(HMM). The estimation performance of HMM is similar to that of ANN but 

outperformed ANN in the description of occupancy presence profile due to its ability 

to discount sudden brief changes of occupancy level and maintain constant during static 

occupancy periods. In 2014, Dong(Dong & Lam) further developed a unique hidden 

Markov model based on Gaussian mixture model and applied this improved model into 

HVAC system control. Compared with the conventional schedule, 30.1% energy 

reduction in the heating season and 17.8% energy reduction in the cooling season have 

been realized. Given the ability of Autoregressive Hidden Markov Model(ARHMM) to 

establish correlations among the observed variables, Han(Z. Han, Gao, & Fan, 2012) 

developed a model to estimate the occupancy pattern based on the features extracted 

from a wireless sensor network equipped with inexpensive PIR, CO2 sensors, RH 

sensors, air velocity sensors and globe thermometer in a building. The results were 

compared with that obtained from Hidden Markov Model(HMM) and Support Vector 

Machines(SVM), which indicated that the ARHMM performed better than the other 

two methods with an average estimation accuracy of 80.78%. Wang(Wang, Chen, & Song 

stressed the time-series and stochastic characteristics of detected signals and proposed 

a novel Dynamic Markov Tim-Window Inference(DMTWI) model to predict reliable 

occupancy. When comparing the proposed approach with another two conventional 

Auto-Regressive Moving Average(ARMA) model and Support Vector Regression(SVR) 

model, similar x-accuracy (when the error of a prediction less than x occupants, the 

prediction regards as correct) with higher tolerance presented, however, for x-accuracy 

with lower tolerance, DMTWI performed bests for the weekday and weekend day and 

SVR performed bests for holiday. Salimi (Salimi, Liu, & Hammad, 2019) developed a 

time-dependent inhomogeneous Markov chain to predict occupancy of an open-plan 

office based on real occupancy patterns data. High accuracy results of occupancy 

patterns prediction as 86% and 68% on average for the lighting and HVAC systems 

control respectively indicated an acceptable performance of proposed Markov chain in 

distinguishing the temporal behavior of different occupants. However, this progress 

may be just limited to open-plan offices with occupant number no more than four, 

otherwise the prediction accuracy of occupancy will decrease significantly.  

Unlike machine action, occupants behave differently to given set of circumstances. 
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In Candanedo’s study regarding to the occupancy schedule definition based on 

temperature, humidity, light, and occupancy measurement, they noted that the 

occupancy pattern were highly varied day-to-day(Candanedo, Feldheim, & Deramaix, 

2017). Exploration of the diversity of occupancy patterns from big data streams will 

allow for a better understanding of energy usage in buildings(Nguyen & Aiello, 2013). 

In recent decades, Machine learning method and data mining techniques had been 

regarded as a powerful tool to identify unsuspected relationships and to summarize the 

data in novel ways based on large observation datasets. Although data mining 

techniques were largely applied to research fields such as marketing, medicine, biology, 

engineering, medicine, and social science, their applications for building occupant 

behavior prediction and energy consumption simulation were still in elementary phases. 

However, highly effective technique of data mining will facilitate the exploration of 

occupant-building interaction(Wymelenberg, 2012). In this context, Yu tested several 

data mining technique from 2010 to 2012 as ‘decision tree method’(Z. Yu, Haghighat, 

Fung, & Yoshino, 2010), ‘cluster analysis’(Z. Yu, Fung, Haghighat, Yoshino, & 

Morofsky, 2011), and ‘association rule mining’(Z. Yu, Haghighat, Fung, & Zhou, 2012), 

successively, for examining associations and correlations between building operation 

and occupant behavior data. The results obtained could help to prioritize efforts at 

modification of occupant behavior for energy conservation and to provide guidance for 

modeling of occupant behavior in numerical simulation. Simona(D’Oca & Hong, 2015) 

applied a three-step data mining framework as decision tree model-rule induction 

algorithm-cluster analysis along with open source data mining program RapidMiner to 

excavate occupancy patterns of 16 office spaces located in Germany. The application 

of this proposed framework on different data sets facilitated to enhance the robustness 

of the patterns description and prediction of individual or group energy-related behavior 

in office buildings. Meyn(Meyn, Surana, Lin, Oggianu, & Frewen, 2009) introduced a 

sensor-utility-network(SUN) algorithms to analyze and estimate occupancy in 

buildings using sensor measurements from diverse sources, models of facility use, and 

historical data. Compared with the naive approach that relies solely on flow 

measurements, the average estimation error based on SUN estimator at the building 

level reduced from 70% to 11%. Yu(T. Yu, 2010) applied genetic programming 

algorithm(GPA) to learn the behavior of an occupant in single-office room based on 
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sensor data. The learned rules could be used into a building simulation tool to estimate 

the energy demand of a building in many areas as L-HVAC system, office appliances 

and the window opening activities. Hailemariam (Hailemariam, Goldstein, Attar, & 

Khan, 2011) equipped an office workspace with a tandem of heterogeneous sensor array 

to produce a real-time occupancy data, and applied Decision Trees classification to 

distinct the relative accuracy of various occupancy detection options. Having improved 

occupant detection accuracy from 97.9% to 98.4%, it was concluded that Decision 

Trees may well outperform simple thresholds when applied to multiple features derived 

from a single motion sensor.  

The comparison of prediction accuracy of Markov chain model(including its 

derivation) and various machine learning algorithms in existing researches has been 

concluded and listed in Table 1. 

Table 1. Accuracy comparison of occupancy prediction in existing researches 

Reference 
Modeling method 

(Markov chain) 

Type of testing 

room 

Accuracy 

(%) 

Dong et al.(2010) Hidden Markov chain Multiple-office  73 

Z. Han et al.(2012) Autoregressive Markov chain Multiple-office  80.78 

Wang, Chen, &Song(2017) Dynamic Markov chain Multiple-office 80 

Salimi et al. (2019) Inhomogeneous Markov chain Multiple-office  84 

Reference 
Modeling method 

(Machine learning) 

Type of testing 

room  

Accuracy 

(%) 

Meyn et al. (2009) Sensor utility network Multiple-office  89 

T. Yu(2010) Genetic programming algorithm Single-office  80~83 

Hailemariam, Goldstein, 

Attar, &Khan(2011)  
Decision tree algorithm Multiple-office  98.4 

However, researchers generally tend to take the ‘average level’ of occupancy data 

or a ‘typical occupant’ for modelling and building simulation without considering the 

diversity between occupants regarding to their behavior and presence, which will be 

bound to cause excessively peak-load prediction and irrational load distribution(Nägele, 

Kasper, & Girod, 2017). Based on the above consideration, Buttitta(Buttitta, Turner, 

Neu, & Finn, 2019) developed a new methodology to define occupancy-integrated 

archetypes and adopted data mining clustering techniques to embed occupant behavior 

profiles in these archetypes. When applying the occupancy-integrated archetypes rather 

than uniform occupancy archetypes into energy simulation, a thirty percentage of 

difference regarding to the heating demand had been discovered. Li (Z. Li & Dong, 

2018) provided a unique data set containing the occupancy with different pattern 
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varieties and explored the predictive power of Markov chains by different temporal 

scenarios as 15-min ahead, 30-min ahead, 1-h ahead and 24-h ahead. The excellent 

prediction performance indicated that it would be an applicable solution to implement 

such adaptive occupancy models for integrated predictive controls that handle multiple 

building optimization. Capozzoli(Capozzoli, Piscitelli, Gorrino, Ballarini, & 

Corrado, 2017) optimized the HVAC system according to the actual arrival and exit 

time points of occupants in an office building, by displacing the employees with the 

most similar occupancy patterns to the same thermal zone and performing the 

characteristic of the typical occupancy profiles of each sub-zone. The proposed 

methodology has proved to be able to draw low-cost real-life management solutions 

especially for buildings without intermittently occupancy and the energy saving of the 

HVAC system accounted for 14% in comparison to an occupancy-independent 

operation schedule.  

However, this methodology of occupancy patterns classification was mostly 

applied to the office rooms of commercial buildings. It is still not clear how this 

methodology can be applied to the campus buildings, where occupancy dynamics are 

relatively regular but differ in various functional buildings and even in rooms with 

various occupancy patterns. This will cause differences in the time duration with energy 

saving potential between various buildings or among various rooms within the campus. 

In Davide’s study, the energy saving could reach to 6%~9% for the whole 

residential building, and 3%~13% for the individual apartment in case of 

vacancy(Bionda & Domingo-Irigoyen, 2017). In Oldewurtel’s study, the simulation 

results of their proposed homogeneous occupancy patterns showed a 34% saving 

potential for the case of 5-day and 10-day intervals of average vacancy and occupancy 

for common office buildings in Switzerland equipped with integrated room automation 

facilities(Oldewurtel, Sturzenegger, & Morari, 2013). Compared with residential 

buildings and common office buildings, etc., the occupation of campus buildings are 

mostly limited by class time or office time, or else the great vacancy of rooms and a 

huge waste of energy will be resulted. Furthermore, during which time period would 

campus buildings with different functions exist great energy saving potential? This will 

also be worth deeply pondering and exploring.  

Though the occupancy state can be observed directly in the time series of Markov 

chain, the future occupancy state only depends on the current state but not on the past 
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state(Yang, Santamouris, & Lee, 2016). Instead, the modelling of occupancy model 

based on historical data profiles may significantly improve the prediction 

accuracy(Roselyn et al., 2019). In addition, the occupation and movement strongly 

depend on the time point, which caused a difficulty to obtain a detailed occupancy 

schedule while investigating and testing. Chen(Chen & Soh) proposed and compared 

different occupancy models (including inhomogeneous Markov chain and multivariate 

Gaussian) and data mining approaches (autoregressive integrated moving average, 

artificial neural network and support vector regression) to predict regular occupancy 

level in multi-occupant commercial buildings. In comparison, the occupancy prediction 

performance of stochastic occupancy models were more limited than that of data 

mining approaches. Data mining approaches could effectively determine the correlation 

between the previous and subsequent occupancy state. Hailemariam(Hailemariam, 

Goldstein, Attar, & Khan, 2011) measured several attributes of environment as light, 

sound, CO2 level, power use, and motion by embedding a number of low-cost sensors 

of different types into the cubicle furniture, and performed classification to explore the 

relationships between various sensors and deduce the occupancy of the workspace at 

any given time through Decision Trees method. This individual feature achieved 97.9% 

accuracy of occupancy detection considering a simple threshold and further 98.4% 

accuracy combining multiple motion sensor features with a Decision Tree. Though the 

prediction and detection accuracy of occupancy could be significantly improved, 

machine learning method requires stricter sample data and the data should be collected 

by the combination of various sensors in the process of occupancy prediction, causing 

the increased cost in the meantime of improving the prediction accuracy(Ahmad & Chen, 

2020).  

Recently, Gaussian distribution have been frequently proposed to be used in the 

field of atmospheric diffusion assessment due to its special advantages (i.e. simple 

structure, strong operability, and flexible nonparametric inference ability)(Cao, Cui, 

Chen, & Chen, 2020). Gaussian function provides a flexible and accurate model for a 

wide range of probability distribution(J. Zhang, Yan, Infield, Liu, & Lien, 2019). A 

similarly multiple distribution of occupancy just appears throughout the whole cycle of 

a day. When applying Gaussian distribution into occupancy modelling, the universality 

of the occupancy profiles could be improved and the complexity of occupancy data 
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could be eliminated. In addition, the differences of occupancy between various time 

series of a day could be judged by multiple Gaussian distribution. 

Based, a Gaussian distribution was proposed to fit the occupancy for three 

functional building types, namely dormitory building, lecture building and office 

building within a campus unit in this study. In order to promote the general application 

of occupancy profiles of different campus buildings, the diversity modeling of 

occupancy patterns applied to each case building was mainly focused. Prior to this focus, 

the occupancy and vacancy time nodes of rooms for case buildings were collected and 

then clustered to determine categories of occupancy patterns. The fitting performance 

of Gaussian distribution for occupancy prediction was evaluated by multiplying the 

occupancy data of clustered patterns with their corresponding proportion. The two 

simulated energy adopting the methodology of classification at the room-scale and 

average level at the building-scale were together compared with the measured energy. 

The contribution of comparison lied in the verification of the feasibility of two 

methodologies. Combined the occupancy data and energy data, the explorations of time 

duration with great energy saving potential and theoretical basis for load distribution of 

rooms with diverse occupied pattern were realized. 

The rest of this study was organized as follows: Section 2 introduced the 

methodology regarding to occupancy data collection, occupancy pattern clustering, and 

model development. Section 3 provided detailed research results and corresponding 

discussion, including the clustering of occupancy patterns, the fitting performance of 

Gaussian distribution, and verification of predicted occupancy level. The simulation 

and validation of energy consumption was presented in Section 4. Finally, the 

conclusion and limitation of the current research study were discussed in Section 5. 

2. Methodology 

    In this study, the research framework was mainly established by the following four 

steps: 1) Classifying of occupancy patterns of rooms by clustering the working schedule 

for dormitory building and the occupancy and vacancy time nodes for lecture/office 

building; 2) Developing Gaussian distribution for occupancy prediction at the classified 

room-scale and unclassified building-scale, respectively; 3) Inputting two types of 

occupancy profiles obtained from the accumulation of clustered patterns and the 
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average level of case buildings to simulate energy; and 4) Comparing the simulated 

energy with the actual energy to verify the application of the classified methodology 

and detect the time duration with great energy saving potential. Detailed framework of 

methodology adopted in this study have graphically depicted as Figure 1.  
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Figure 1. Framework for model development 

2.1 Data collection 

2.1.1 Case study buildings information 

Three functional buildings namely as dormitory building, lecture building and 

office building within a campus located in Tianjin, China, were selected in this study. 
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The lecture building and the office building were serviced by a centralized cooling and 

heating system. But for the dormitory building, only split air conditioners were installed. 

The three case buildings could respectively well represent living, working and learning 

environment within a campus. And they all have the north-south orientation. The basic 

building information, in terms of functions, area, operation time and utilization, have 

been listed as Table 2.   

Table 2 Basic information about the case study buildings 

Building 

type 

Total 

floor area 

(m2) 

Number of 

rooms (-) 

Maximum capacity 

of occupant for one 

room (-) 

Opening 

time (-) 
Room functions (-) 

Dormitory 

building  
3400 200 4 

00:00 -

24:00 

Accommodation 80% 

Laundry/Activity room 20% 

Lecture 

building 
12670 50 65 

06:30 -

22:30 

Professional classroom 80% 

Machine/Activity room 20% 

Office 

building 
3690 40 

8(Teachers’ office) 

25(Graduates’ office) 

06:30 -

22:30 

Teachers’ office 80%  

Graduates’ office 20% 

 

The dormitory building was in operation all the time, providing a living 

environment mainly for undergraduate and graduate students. The students could get in 

and out of their dormitory building by swiping their ID cards at any time. However, the 

lecture building and office building were in operation from 6:30 am to 22:30 pm, strictly 

conformed to management mechanism. The lecture building provided an environment 

for teaching and self-studying. And the office building provided an environment for 

teachers doing office work and graduates conducting researches. The class time and 

office time were from 8:30 to 12:00 am and from 13:30~17:00 pm.  

This study was conducted on the weekdays during the period from 4 June to 15 

July, 2018, when all buildings within campus unit were in normal operation. Based on 

the variety of utilization, the complete database were divided into three parts as shown 

in Figure 2. 
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For prediction accuracy 
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Figure 2. The details of complete database collection 

The former two-week occupancy data of all rooms obtained by cameras and 

questionnaire were used to determine the occupancy patterns. The next three-week data 

recorded by infrared counters were used as training dataset for Gaussian distribution 

establishment, and the last one-week data were used for prediction accuracy verification. 

The concrete methods of data collection and data processing are described in section 

2.1.2 and 2.1.3, respectively. 

2.1.2 Determination of occupancy pattern 

The data used for occupancy pattern clustering were collected from 4 June to 15 

June, 2018. The collected occupancy and vacancy time nodes of all rooms were used 

to cluster and iterate until the clustering centers converge, and finally to determine the 

occupancy pattern. However, limited by experimental equipment, it may be not realistic 

to install related sensors for each room or real-time positioning system for each 

occupant. In order to obtain the occupancy and vacancy time nodes of each room, it is 

best to utilize the monitoring system equipped and controlled uniformly by 

administration. Secured the agreement of university institute and participants, the time 

nodes of all rooms within lecture building and office building were monitored and 

recorded by cameras and the scene under camera are shown as Figure 3. However, with 

privacy considerations, the camera monitoring system is unfeasible for the record of 

occupancy and vacancy information in the dormitory building, instead, the occupied 

regularity of dormitory rooms were obtained through questionnaires, focusing on the 

time nodes when occupants usually leave or return to the rooms. Eventually, a total of 

150 valid questionnaires were surveyed, basically representing the working schedule of 

most dormitory rooms.  
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Although two-week data were collected, it was observed through image that the 

occupancy and vacancy time nodes of the same room were similar. In addition, the type 

of occupants were simple and mainly as teachers and students for such typical buildings 

as dormitory building, lecture building and office building within campus unit. And 

there existed no significant differences in the number of occupants for the rooms with 

similar using function restrained by the class and work arrangement, which could be 

ignored. The two-week data was enough to reflect the occupancy regularity of different 

rooms of these typical buildings, based on which the clustered results of occupancy 

pattern would be highly reliable. 

     

Figure 3. The monitoring scenes under the cameras 

After the occupancy and vacancy time nodes of each rooms for different building 

types have been obtained, K-means clustering method can be used to classify rooms 

with different occupancy patterns. It is a typical clustering algorithm based on distance. 

A closer the distance between any two objects represents a higher similarity. A cluster 

corresponding to a unique clustering center will be composed of these similar 

objects(Feng, Niu, Zhang, Wang, & Cheng, 2019). The key of K-means method is the 

determination of the clustering centers, k objects will be taken out randomly from the 

samples as the initial clustering centers, and they will be updated and iterated until the 

cluster criterion function converges based on Euclidean Distance, just as the clustering 

centers no longer changed. The mathematical expression of Euclidean Distance is 

shown as Equation (1~3). 

22
22

2
21 )(...)()(),(d jpipjiji xxxxxxji 

 (1)
 

),...,,( 21 ipii xxxi                             (2) 

),...,,( 21 jpjj xxxj                             (3) 

Where, i and j represent the objects described by p numerical attributes, d(i,j) 
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represents the Euclidean distance between object i and object j. In this study, object i 

and object j refer to any two occupancy patterns corresponding to different occupancy 

and vacancy time nodes.   

The number of clusters was determined based on the actual situation, and the 

reasonability of the clusters was judged by evaluation indicators. Calinski-Harabaz 

index, as the most commonly applied indicator, represents the covariance between 

different clusters. The mathematical expression is shown as Equation (4). 
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Where, m represents training samples, k represents the number of clusters, Bk 

represents the covariance matrix between clusters, wk represents the covariance matrix 

of data, tr represents the trace of matrix. A larger CH(k) value indicates a greater gap 

between clusters and a more effective clustering result. 

2.1.3 Measurement of occupancy       

The data used for model establishment and verification were collected from 16 

June to 15 July, 2018. The occupant number was measured using infrared counters as 

Figure 4. The counter could effectively resist the illumination interference to reduce the 

counting errors. Its maximum records can reach to 99,999 times. However, one 

limitation of the counters lied in that occupants could be identified accurately only 

when they enter or leave the room or building in turn. Only one occupant could be 

sensed and recorded even if two or more occupants enter or leave room simultaneously. 

The entrance and exit width of tested rooms and case buildings are just limited to one 

occupant entering or leaving the room simultaneously, eliminating the error caused by 

the limitation.   

Considering the variety of different occupancy patterns at the room-scale, infrared 

counters were installed at the entrance and exit of typical rooms representing clustered 

patterns to record the hourly occupant number as Figure 5 (a). Considering the average 

level of occupancy at the building-scale, infrared counters were installed at the entrance 

and exit of each case building to record hourly occupant number as Figure 5 (b). The 

infrared counters will generate an ‘in data’ or an ‘out data’ and update every time 

someone enters or leaves the room or building. Data will be summarized every hour 

such that the hourly occupant number could be obtained.   



14 

 

                

Figure 4. Monitoring device for occupant number  

                   

(a) At the room-scale                     (b)  At the building-scale 

Figure 5. The installation of infrared counters 

2.2 Model development for occupancy prediction 

This study adopted Gaussian distribution to fit the occupancy profiles. The 

function of Gaussian distribution, expressed as a density function, was defined as 

Equation (5).  
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Taking the diversity of individual rooms into account, the cumulative occupancy 

of the case building could be expressed as Equation (6). 





n

i

iiiim xNatocc
1

);;()(                (6)  

Where, occ(tm) represents the occupancy of the targeted object m(case building); 

n represents the category of occupancy pattern for one case building; ai represents the 

weight coefficient of ith occupancy pattern for one case building, the total proportion of 



15 

 

which is 1, 1
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N

i

ia ; );;( iixN  represents the function of Gaussian distribution of the 

ith occupancy pattern; φi represents correction coefficient of Gaussian function 

);;( iixN   ; μi and σi represents the corresponding mean value and variance, 

respectively. The width of each occupancy peak could be reflected by σi. Each set of μi 

and σi were respectively sorted in order of time series of a day. 

The Gaussian distribution model for diverse occupancy patterns will be developed 

by averaging the fitting results of the former twenty-four days, conducted as the training 

dataset. And the variety of occupancy patterns shall bring out the divergence of the 

Gaussian distribution. It is of great significance to pre-classify occupancy patterns for 

discrimination of different functional rooms and accuracy improvement of occupancy 

prediction. 

2.3 Statistical indicator  

After the Gaussian model was fitted, the last one-week data shown as Figure 1 

were used to evaluate the prediction accuracy. Here, RMSE (Root Mean Square Error) 

is used as the statistical performance indicator. It refers to the arithmetic square root of 

the expected value of the square of the difference between the predicted and measured 

occupancy. The value of RMSE is calculated as Equation (7~8). 
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         (8)   

Where, RMSEd represents the root mean square error of one of verification days;n 

represents the number of verification days; RMSEave represents the average RMSEd of 

verification datasets n; occm(t) and occp(t) represent the observed occupancy and 

predicted occupancy at time t, respectively; T represents the number of observed times 

for one verification day.   

2.4 Simulation of energy consumption  

The building energy consumption generally consists of two parts. One part refers 
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to the fixed power unchanged by occupants such as the fire fighting and emergency 

lighting, maintaining open all the year round. Another part refers to the power affected 

directly by occupants, floating up and down as the changing occupancy(Ding, Wang, 

Wang, Han, & Zhu, 2019). In order to compare the influence of the occupancy profiles 

respectively obtained by classified and unclassified methodology on the energy 

simulation, only occupant-related part rather than the total energy was simulated by 

DesignBuilder. It is a comprehensive graphical interface simulation software based on 

the dynamic simulation program Energyplus. The physical models of the dormitory 

building, lecture building and office building were established respectively as Figure 6. 

 

(a) Dormitory building           (b) Lecture building          (c)Office building 

Figure 6. Physical models of three typical buildings 

3. Results and discussion 

3.1 Clustering of occupancy patterns 

The occupancy patterns of different rooms varied even for the same building type. 

The detected occupancy and vacancy time nodes of rooms for different buildings were 

clustered by K-means method, respectively, judging the optimum number of clusters 

by Calinski-Harabaz index. The Calinski-Harabaz value corresponding to various 

cluster number were shown as Figure 7.  
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Figure 7. Calinski-Harbaz value corresponding to Cluster number 

As a result, the Calinski-Harabaz value is the highest when the clustering room 

number of dormitory building and lecture building are both three, and the clustering 

room number of office building is two. Therefore, it is the optimum case to divide 

rooms of dormitory building and lecture building with different occupancy patterns into 

three categories, and to divide rooms of office building with different occupancy 

patterns into two categories. Only considering whether the rooms were occupied rather 

than the concrete occupancy, the room state was divided into two categories as 

‘occupied’ and ‘unoccupied’. In this study, the occupied state was defined as “1”, and 

the unoccupied state was defined as “0”. It can be seen from the using functions and 

operating mechanism of three campus buildings that the initial room state was ‘1’ for 

dormitory building, and was ‘0’ for lecture building and office building at the beginning 

of a day. Based on the diversity of room states corresponding to different time nodes, 

the occupancy patterns were classified and clustered by K-means method, and the 

corresponding occupancy and vacancy time nodes throughout a day of each clustering 

center obtained by multiple iterations for different building type were depicted as 

Figure 8, respectively. The proportions of each occupancy pattern were shown in Figure 

9.  
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Figure 8. The occupancy and vacancy schedule of various occupancy patterns 

 

Figure 9. The proportion of each occupancy pattern for different building type 

From Figure 8(a), the occupancy pattern 1 and pattern 2 of dormitory building 

slightly varied in the occupancy and vacancy time nodes. The room state of pattern 1 

transformed from occupied to unoccupied at 7:30 am in the early morning and 13:40pm 

after noon break and transformed from unoccupied to occupied at 11:50 am back for 

noon break, and 21:10 pm back for sleep, symbolizing a dormitory room type occupied 

by early-hour keeper. In contrast, the occupancy and vacancy time nodes of pattern 2 
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integrally lagged behind that of pattern 1, which were mainly reflected in the time of 

leaving the room in the early morning, and returning to the room at nighttime, 

representing a dormitory room type occupied by a relatively late-hourly keeper. The 

two types of dormitory room were similarly occupied during two time periods for night 

sleep and noon break, respectively. From Figure 9, the dormitory room of occupancy 

pattern 2 accounted for the most, slightly higher than pattern 1, indicating a smaller part 

of occupants with early schedule than late schedule. However, the proportion of 

dormitory room of occupancy pattern 3 was the least just as 17.3%. This category of 

room had been occupied almost all day, representing a type lived in occupants used to 

house in their dorms.  

From Figure 8(b), three similar time duration with occupied state appeared in 

occupancy pattern 1 and pattern 2 basically followed by the fixed time for class, 

representing the same classroom type mainly used for course teaching. But the three 

time duration still diversified in the time nodes of state transformation from occupied 

to unoccupied and from unoccupied to occupied. The occupancy time node in the early 

morning of pattern 1 was nearly 1h ahead of that of pattern 2. And the unoccupied state 

between the second and third occupied time duration of pattern 2 lasted 1h longer than 

pattern 1. Unlike the former two patterns, the third pattern of classroom had been 

occupied from early morning until nighttime, possibly representing an occupancy 

pattern type used for self-study unlimited by class time. The huge mobility and 

randomness of occupants in such pattern of classrooms caused the continuously 

occupied state even during lunch and dinner time periods. However, the proportion of 

occupancy pattern 3 was the least as 11.85%, indicating the classrooms of case lecture 

building were mostly intended for course teaching but less for self-studying.   

From Figure 8(c), the office room of pattern 1 had been occupied for two time 

duration from 8:00 am to 12:00 am and from 12:40 pm to 17:00 pm, followed by office 

time. And the unoccupied time duration happened during lunch time and off-duty, 

respectively. This category of occupancy pattern was in line with the working schedule 

of teachers, representing an office environment provided for teachers handling office 

work. In comparison, the office room of occupancy pattern 2 had been occupied since 

8:30 am until 22:30 pm except for lunch time and dinner time lasting for around one 

hour. The sustained occupied state of pattern 2 generally conformed to the working 

schedule of graduate students. Pattern 2 represented an office environment provided for 
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graduate students studying or conducting researches. From Figure 9, the office rooms 

of occupancy pattern 1 accounted for a higher proportion than pattern 2, indicating the 

case office building was supplied mainly for teachers and secondarily for graduate 

students.  

3.2 Fitting performance of Gaussian distribution 

The training occupancy dataset introduced in section 2.2 were used to fit Gaussian 

curves of various occupancy patterns obtained above. C omplex model based on 

training dataset may cause results over-fitted in the meantime of improving prediction 

accuracy. A unique set of peak occupancy would be presented in a Gaussian curve 

according to the function expressed as Equation (5). Based on measured occupancy 

data, multiple occupancy peaks were discovered for occupancy patterns of case 

buildings, thus corresponding amount of time series were separated to fit the occupancy 

using Gaussian distribution. Table 2 showed the value and standard error of coefficients 

(φi, μi and σi) of each Gaussian distribution. And the corresponding Gaussian curves of 

dormitory building, lecture building, and office building were fitted as Figure 10 (a), 

10 (b), and 10 (c), respectively.  

Table 2. The value and standard error of coefficients of Gaussian distribution 

Building Pattern 
Time 

series 

Coefficients  [Value (Standard error)] 

μi σi φi 

Dormitory 

building 

1 

1 9.88(0.029) 2.04(0.37) -0.76(0.09) 

2 12.83(0.064) 0.69(0.069) 1.87(0.029) 

3 23.13(0.17) 1.29(0.21) 3.60(0.097) 

2 

1 10.28(0.028) 1.81(0.54) -0.58(0.25) 

2 12.83(0.066) 0.69(0.071) 1.87(0.093) 

3 23.13(0.12) 1.27(0.14) 3.56(0.067) 

3 

1 11.24(0.05) 2.79(0.099) 2.99(0.20) 

2 13.40(0.13) 0.80(0.15) 1.80(0.061) 

3 23.79(0.13) 3.23(0.16) 8.16(0.22) 

Lecture 

building 

 

1 

 

1 10.18(0.18) 1.89(0.054) 5.01(0.30) 

2 15.28(0.14) 2.40(0.14) 5.16(1.1) 

3 19.91(0.09) 1.19(0.15) 1.04(0.03) 

 

2 

 

1 10.28(0.14) 2.16(0.50) 4.64(0.24) 

2 15.85(1.12E-11) 0.028(1.90E-10) 0.48(1.75E-14) 

3 20.08(0.011) 0.99(0.15) 0.61(0.028) 

 

3 

 

1 10.47(0.11) 1.62(0.19) 2.51(0.049) 

2 16.56(0.17) 1.15(0.24) 1.64(0.048) 

3 19.29(0.17) 1.67(0.27) 1.72(0.042) 

Office 

building 

1 
1 10.33(0.17) 1.54(0.31) 4.50(0.2) 

2 15.37(0.13) 1.40(0.15) 4.08(0.1) 

2 1 10.35(0.094) 1.12(0.13) 2.74(0.088) 
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2 15.73(0.093) 1.75(0.40) 4.29(0.3) 

3 20.70(0.072) 1.08(0.12) 2.59(0.077) 
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(a) Dormitory building   
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(b) Lecture building  
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(c) Office building  

Figure 10. The fitting performance of Gaussian distribution for occupancy prediction   

The occurrence time points and width of peaks of Gaussian curves could be clearly 

observed from the value of coefficients μi and σi as shown in Table 2. The standard errors 

of μi, σi and φi were both lower than 0.5, indicating better fitting performance of 

coefficients. Combined with the measured occupancy data of former 24 days shown as 

Figure 10, it can be seen that the occurrence time points and duration of occupancy 

peak for the same occupancy pattern corresponding to different days were almost 

exactly identical, and even more data would not make distinct influence on the fitting 

results of μi and σi. The amount of training dataset was enough to accurately fit the 

changing curve of occupancy of different time series.  
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It can be seen from Figure 10, three peaks of occupancy existed throughout the 

day in any other patterns of case buildings, except for office room of pattern 1 of office 

building with only two peaks. The three time periods as early morning, noon, and 

nighttime for break of dormitory building generally appeared peaks of occupancy. 

While for another two buildings, a day can be divided into three time periods taking 

lunch time and dinner time as two split points. A universal phenomenon is that the 

movement and activities of students are limited within campus area, causing a diversity 

of occupancy degree presented in classrooms and graduates’ office rooms during above 

three time periods. In contrast, the movement and activities of teachers are more 

random and unlimited in the scope of campus, most of them tend to leave the campus 

for home or other places after office time, resulting in only two occupancy peaks 

presented in teachers’ office room as pattern 1. The fitted Gaussian curves for any 

patterns exhibited smoothly ascending and descending changing process. The width of 

the Gaussian curves depended on the exiting time duration of measured peak and the 

changing intensity between the valley data and the peak data. Separated Gaussian 

model regularized the complexity and the noises of occupancy profiles and achieved 

better fitting performance with fewer coefficients. The fitted occupancy corresponding 

to each time point would exactly coincide with the measured data for the time duration 

with stable change tendency, just as emerged in occupancy pattern 3 of dormitory 

building, occupancy pattern 3 of lecture building, and occupancy pattern 2 of office 

building. The fitting goodness R2 of above three patterns for any time series were both 

more than 0.90, representing an excellent fitting performance of Gaussian distribution 

for occupancy prediction. However, the sudden change of occupancy may cause fitted 

Gaussian curves a little delayed or advanced by measured data. Even though, such 

deviation had not affected the overall fitting performance of curves. The average 

prediction deviation of training days were shown as Figure 11. The phenomenon that 

errors exceeding zero represented lower fitted occupancy than measured data, on the 

contrary, the fitted occupancy was be higher than measured data when the error was 

below zero. The columns of error closer to zero could be identified as normal deviations 

caused by calculation no matter positive or negative. 
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Figure 11. The deviation of occupancy prediction from the measurement 

It can be seen from Figure 11, distinctly positive columns of error usually occurred 

when occupancy located at the valley, and gradually offset until occupancy turned to 

increase steadily. Conversely, distinctly negative error generally appeared at the peak 

of fitted Gaussian curves. Although prediction errors for sudden change between valley 

and peak occupancy were relatively higher, the overall errors were still controlled 

within ±15%. As is seen from Table 1, the prediction errors of most existing proposed 

occupancy models focused on multiple-office rooms were generally in the range of 

10%~20%, thus 15% prediction error presented in this study was situated within an 

acceptable range. 

3.3 Verification of predicted occupancy level 

The later six days conducted as validation dataset were used to verify the 

application of fitted Gaussian distribution model. The average of measured and 

predicted data of the validation dataset expressed in the way of occupancy level, 

including 0%, 0~25%, 25~50%, 50~75%, 75~100%, and 100% were depicted as Figure 

12 (a), 12 (b), and 12 (c), respectively. The occupancy level was ranked based on the 

depth of the color. 
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(a) Dormitory building 

 

(b) Lecture building  

 

(c) Office building  

Figure 12. Comparison of measured and predicted occupancy level 
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It can be seen from Figure 12 (a), the measured and predicted occupancy level for 

any patterns of dormitory room had been highly consistent at two time points as the 

beginning and ending of a day with the highest occupancy, respectively. It can be 

observed directly that the primary difference between pattern 1 and pattern 2 lied in the 

occupancy level during the noon break. And the peak occupancy level of pattern 1 was 

obviously higher than that of pattern 2, supposing early-hour keepers more likely return 

to dormitory rooms for noon break. In comparison, the occupancy of patterns 3 changed 

steadily throughout the day, positioning the measured and predicted results generally at 

the level of 25~50%. This indicated that the dormitory room of pattern 3 lived less than 

two occupants on average used to house in their dorms. 

Similarly smooth changing tendency of occupancy level were applied to 

classrooms of pattern 3 as Figure 11 (b) and office rooms of pattern 2 as Figure 11 (c). 

Observed from the color diversity of measured and predicted results of the two patterns, 

the occupancy corresponding to adjacent time points had been fluctuated at the same or 

contiguous scale of occupancy level. From the measured data shown in Figure 12 (b), 

the primary difference between another two patterns of lecture building lied in the start 

time of the state transformed from unoccupied to occupied. And the color diversity of 

the measured peaks between two patterns may be resulted from the class size. However, 

the differences have not resulted in significant distinction of predicted occupancy level 

between the two patterns with the same functionality. As is seen from Figure 12 (c), the 

measured occupancy of office room of pattern 1 plunged to zero when it reached to the 

time for off-duty limited by fixed office time, instead, the predicted occupancy level 

postponed to decline to zero, conforming to the smoothly downward trend of Gaussian 

curved presented in section 3.2. In order to further weigh and compare the level of 

prediction error of Gaussian distribution for occupancy of different rooms, RMSEave 

index was used to evaluate in the order of time series and the results were shown as 

Figure 13. 
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Figure 13. The average value of statistic indicator RMSEave of verification datasets 

Combined with Figure 10, it can be concluded that lower REMSEave value always 

appeared in the time series of gentle occupancy change. Particularly, for dormitory 

room with the capacity of 4 and teachers’ office room with the capacity of 8, the 

mobility of each occupant will bring about 25% and 12.5% occupancy fluctuate, 

respectively, which caused relatively drastic occupancy change. However, as was seen 

in Figure 10, Gaussian distribution was more suitable for the fit of stable occupancy, 

and thus the prediction performance for the time series with less mobility of occupants 

or the rooms with larger capacity were best with lower REMSEave value. 

4. Simulation and validation of energy consumption  

Based on the total number of rooms and the proportions of rooms with various 

occupancy patterns introduced in section 2.1.1 and section 3.1, the number of various 

patterns of rooms for one case building could be obtained. The occupancy profiles 

obtained by Gaussian distribution coupled with relevant parameters including the 

environmental condition and building information, etc., will be input to DesignBuilder, 

accumulating each sub-item of simulated energy data as the second part of energy 

introduced in section 2.3. In light of the resulted energy divergence from the diversity 

of occupancy pattern, the energy of each pattern was simulated separately, multiplied 

by the number of this pattern of rooms, and then superposed to acquire the energy data 

of the whole case building. The comparison of measured and simulated energy data in 

the building level were shown as Figure 14. The ‘classified’ results represented the 

simulated energy data considering the diversity of occupancy pattern at the room-scale, 

while the ‘unclassified’ results represented the simulated energy data considering the 
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average level of occupancy at the building-scale. 
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Figure 14. Comparison of measured and simulated energy consumption 

It can be seen from Figure 14, the simulated energy data and changing tendency 

with classified accorded with the measured data more closely for any building type.  

The situation that several occupants lived or stayed in one room shared part of energy 

failed to be discriminated when applying the occupancy profiles obtained by modelling 

without classified, causing the simulated energy data to exceed the measured data in 

the increasing stage of occupancy, and conversely to fall behind the measured data in 

the decreasing stage of occupancy. Adopting unclassified occupancy patterns for 

modelling in the domain of energy simulation and load distribution would result in 

inaccuracy of energy prediction. While, the methodology of classification at the room-

scale considered the room state and corresponding occupancy of each clustered pattern 

when fitting occupancy, avoiding the errors caused by inhomogeneous distribution of 

occupants. 

Integrated with the fitted Gaussian curve for three time series shown as Figure 10 

(b), both simulated energy data of lecture building presented a similar tendency with 

three peaks. However, the measured energy data maintained peak value during the 

daytime except for the morning and nighttime. The raise of occupancy brought about 

an increased building energy consumption, however, the drop of occupancy with their 
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departure during lunch time and dinner time did not lead to the decrease of energy use. 

The leaving of occupants will not generally trigger the closing behavior of some public 

equipment such as lights, air conditioners, etc., instead, these equipment will keep 

original state once opened, inevitably causing a waste of energy during the valley time 

periods but appearing energy saving potential. Different from the lecture building, a 

majority of occupants of office building would choose to close the energy equipment 

when they leave their office rooms, making the occurrence time of the peak and valley 

of simulated and measured energy generally consistent. However, the energy data 

unlike the occupancy data of office building would not reduce to zero. Some high-

powered equipment just like the laptop/computer were always in standby state of 

operation based on questionnaires. It will be advocated to close these energy equipment 

with departure. As is seen from Figure 12 (c), the occupancy level of office rooms of 

pattern 2 always positioned at a high level but the occupancy level of pattern 1 dropped 

to zero after work, causing the third peak energy lower than the first two peaks of energy. 

Therefore, it is not reasonable to adopt the same load capacity for different peak periods, 

instead, the distributed load for the third peak period shall be less than that for another 

two-peak periods.  

5. Conclusion  

The case study provided an exploration for occupancy modeling and energy 

simulation based on Gaussian distribution considering the diversity of occupancy 

patterns for different building types within a campus. It was observed that Gaussian 

distribution emerged a better fitting performance with lower REMSEave value for the 

time series with less mobility of occupants or the rooms with larger capacity. Although 

distinct prediction deviations still existed for the mutation between valley and peak 

occupancy, the prediction accuracy was yet controlled within an acceptable range of 

±15%. Positive errors, representing lower fitted curves than measurement, usually 

appeared at the valley occupancy and be offset with smooth increase of occupancy. 

Conversely, negative errors, representing excessive fitting results compared with 

measurement, usually appeared at the peak and be eliminated by steady descend of 

curves. 

Generally, the occupancy of some spaces within campus for course teaching or 

self-studying generally presented three peaks separated by lunch and dinner time, 

respectively. However, the occupancy of spaces within campus provided for teachers 
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handling office presented only two peaks during work hours. The exploration of low 

energy or near zero energy output resulted from the unoccupied state of this pattern of 

teachers’ office rooms after work provided basis for the decrease of this part of load 

distribution. Further combining the energy data with occupancy data, sometimes, the 

arrival of occupants at some public spaces brought about the increase of energy use but 

their departure did not result in the projected decrease of energy use. It deserved to be 

noted that the valley time duration certainly cause a waste of energy but demonstrate 

an energy-saving potential caused by irrational load distribution. 

The detection of occupancy patterns conducted in this study could arouse in-depth 

pondering and excavation for both occupancy modelling and building performance 

simulation of a large variety of researches regarding to such functional buildings. And 

the combination of occupancy and energy data could provide firm foundation for the 

domains of load distribution and energy-saving implementation. However, although 

Gaussian distribution considering the diversity of occupancy pattern was validated as a 

qualified method to predict occupancy and energy simulation, it should be pointed out 

that the surveyed and clustered occupancy pattern was not comprehensive. For other 

exceptional cases, such as part of rooms in occupied/unoccupied state during the 

unoccupied/occupied time periods observed in this study should be noted and included 

in our future research. Additionally, whether the regularities of occupant distribution 

indoors detected in this case campus are applicable to most of both domestic and foreign 

campus buildings with various occupant behavior remains to be verified. 
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